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Abstract A variety of techniques have been developed for the approximation of
non-periodic functions. In particular, there are approximation techniques based on
rank-1 lattices and transformed rank-1 lattices, including methods that use sam-
pling sets consisting of Chebyshev- and tent-transformed nodes. We compare these
methods with a parameterized transformed Fourier system that yields similar `2-
approximation errors.

1 Introduction

For the approximation of non-periodic functions defined on the cube [0,1]d , fast al-
gorithms based on Chebyshev- and tent-transformed rank-1 lattice methods have
been introduced and studied in [10, 19, 8, 22, 12, 11, 16]. Recently, we sug-
gested a general framework for transformed rank-1 lattice approximation, in which
functions defined on a cube [0,1]d (or on Rd) are periodized onto the torus
Td ' [0,1)d , [17, 18]. In these approaches we define parameterized families
ψ(·,η) : [0,1]d → [0,1]d ,η ∈ Rd+ of transformations that, depending on the pa-
rameter choice, yield a certain smoothening effect when composed with a given
non-periodic function. This periodization strategies also lead to general parame-
terized classes of orthonormal systems in weighted Hilbert spaces. However, these
methods have the natural drawback of singularities appearing at the boundary points
of the cube, so that any approximation error estimates have to be done with respect
to weighted L∞- and L2-norms.
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We summarize some crucial properties of rank-1 lattice approximation. Then, we
compare the approximation with a half-periodic cosine system and tent-transformed
sampling nodes [13, 3, 1, 2, 22], the Chebyshev approximation [19, 16], as well
as the general framework for the parameterized transformed Fourier system [18].
We discuss numerical results in up to dimension d = 7 and highlight the controlled
smoothening effectwhen varying the parameterη in the transformed Fourier systems.

2 Approximation methods

At first, we summarize the main ideas of the Fourier approximation with sampling
sets in the form of rank-1 lattices [21, 7, 14]. Afterwards, we consider Chebyshev-
and tent-transformed rank-1 lattices in the context of Chebyshev and cosine approx-
imation methods [22, 16]. Finally, we outline the transformed Fourier system for
the approximation of non-periodic signals, as introduced in [18], and provide two
examples of parameterized transformations.

2.1 Fourier approximation

For any frequency set I ⊂ Zd of finite cardinality |I | < ∞ we denote the space of all
multivariate trigonometric polynomials supported on I by

ΠI := span

{
e2πik·x =

d∏̀
=1

e2πik` x` : k ∈ I,x ∈ Td
}
.

with k = (k1, . . . , kd)>,x = (x1, . . . , xd)>. The trigonometric polynomials are or-
thonormal with respect to the L2(T

d)-scalar product

( f ,g)L2(Td ) :=
∫
Td

f (x) g(x) dx, f ,g ∈ L2(T
d).

For all k ∈ Zd we denote the Fourier coefficients ĥk by

ĥk := (h,e2πik(·))L2(Td ) =

∫
Td

h(x) e−2πik·x dx,

and the corresponding Fourier partial sum by SI h(x) :=
∑

k∈I ĥk e2πik·x.
We use sampling nodes in a rank-1 lattice Λ(z,M) of size M ∈ N generated by

the vector z ∈ Zd , that is defined as

Λ(z,M) :=
{
xlatt
j :=

j
M

z mod 1 ∈ Td : j = 0, . . . ,M − 1
}
, (1)
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with 1 := (1, . . . ,1)>, which allows the fast evaluation of Fourier partial sums via
[14, Algorithm 3.1]. For any frequency set I ⊂ Zd the difference set is given by

D(I) := {k ∈ Zd : k = k1 − k2 with k1,k2 ∈ I}. (2)

We define the reconstructing rank-1 lattice Λ(z,M, I) as a rank-1 lattice Λ(z,M) for
which the condition

t · z . 0 (modM) for all t ∈ D(I) \ {0} (3)

holds. Given a reconstructing rank-1 lattice Λ(z,M, I), we have exact integration for
all multivariate trigonometric polynomials p ∈ ΠD(I ), see [21], so that∫

Td
p(x) dx =

1
M

M−1∑
j=0

p(xj), xj ∈ Λ(z,M, I). (4)

In particular, for h ∈ ΠI and k ∈ I we have h(·) e−2πik(·) ∈ ΠD(I ) and

ĥk =

∫
Td

h(x) e−2πik·x dx =
1
M

M−1∑
j=0

h(xj) e−2πik·x j , xj ∈ Λ(z,M, I). (5)

Next, we focus on functions in the Wiener algebra A(Td) containing all L1(T
d)-

functions with absolutely summable Fourier coefficients ĥk given by

A(Td) :=

{
h ∈ L1(T

d) :
∑
k∈Zd

| ĥk | < ∞

}
. (6)

For an arbitrary function h ∈ A(Td) ∩ C(Td) and lattice points xj ∈ Λ(z,M, I) we
lose the former mentioned exact integration property and get approximated Fourier
coefficients ĥΛk of the form

ĥk ≈ ĥΛk :=
1
M

M−1∑
j=0

h(xj) e−2πik·x j

leading to the approximated Fourier partial sum SΛI h given by

h(x) ≈ SΛI h(x) :=
∑
k∈I

ĥΛk e2πik·x.

For the matrix-vector-expression with respect to the frequency set Ilatt ⊂ Z
d we put

Flatt :=
{
e2πik·xlatt

j

}M−1

j=0,k∈Ilatt
, hlatt :=

(
h(xlatt

j )

)M−1

j=0
.
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The evaluation of the function h and the reconstruction of the approximated Fourier
coefficients ĥ := (ĥΛk )k∈Ilatt are realized by the fast Algorithms outlined in [14,
Algorithm 3.1 and 3.2] that solve the systems

hlatt = Flattĥ and ĥ =
1
M

F∗latthlatt,

wherewe haveF∗lattFlatt = MI by constructionwith the identitymatrix I ∈ C |Ilatt |× |Ilatt | .

2.2 Cosine approximation

Next, we consider the half-periodic cosine system{
λk(x) :=

√
2
‖k‖0

d∏̀
=1

cos(πk` x`)

}
k∈Itent

, Itent ⊂ N
d
0 ,x ∈ [0,1]

d, (7)

with the zero-norm ‖k‖0 := |{` ∈ {1, . . . , d} : k` , 0}| and
√

2
‖k‖0 :=

∏d
`=1
√

2
‖k` ‖0 .

In [13] it is pointed out that this system can alternatively be defined in one dimen-
sion over the domain t ∈ [−1,1] as the system λ0(x) = 1√

2
, λk(t) = cos(kπt), λ̃k(t) =

sin((k − 1
2 )πt), which yields the original cosine system after applying the transfor-

mation t = 2x − 1.
The cosine system (7) is orthonormal with respect to the L2([0,1]d)-scalar product

given by

( f ,g)L2([0,1]d ) :=
∫
[0,1]d

f (x) g(x) dx, f ,g ∈ L2([0,1]d).

For k ∈ Zd the cosine coefficient of a function h ∈ L2
(
[0,1]d

)
is naturally defined

as ĥcos
k := (h, λk)L2([0,1]d) and for I ⊂ Zd the corresponding cosine partial sum is

given by SI h(x) :=
∑

k∈I ĥcos
k λk(x). We transfer the crucial properties of the Fourier

system via the tent transformation

ψ(x) := (ψ1(x1), . . . ,ψd(xd))>, ψ`(x`) =

{
2x` for 0 ≤ x` < 1

2 ,

2 − 2x` for 1
2 ≤ x` ≤ 1.

(8)

We have sampling nodes in the tent-transformed rank-1 lattice Λψ(z,M) defined as

Λψ(z,M) :=
{
ycos
j := ψ

(
xlatt
j

)
: xlatt

j ∈ Λ(z,M), j = 0, . . . ,M − 1
}

and we speak of a reconstructing tent-transformed rank-1 lattice Λψ(z,M, I) if the
underlying rank-1 lattice is a reconstructing one. Recalling the definition of difference
sets D(I) in (2), multivariate trigonometric polynomials h(·), h(·) and λk(·) that are
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in ΠD(I ) and supported on k ∈ I ⊂ Nd
0 inherit the exact integration property (4),

because with the tent transformation as in (8) and transformed nodes ycos
j = ψ(x

latt
j ) ∈

Λψ(z,M, I) with xlatt
j = (x

j
1, . . . , x

j
d
)> ∈ Λ(z,M, I) we have

ĥcos
k =

∫
[0,1]d

h(y) λk(y) dy =
√

2
‖k‖0

∫
Td

h(ψ(x))
d∏̀
=1

cos(2πk` x`) dx

=

√
2
‖k‖0

2d

∫
Td

h(ψ(x))
(
e2πik·x + e−2πik·x

)
dx

=

√
2
‖k‖0

2d
1
M

M−1∑
j=0

h(ψ(xj))

(
e2πik·x j + e−2πik·x j

)
=
√

2
‖k‖0 1

M

M−1∑
j=0

h(ψ(xj))

d∏̀
=1

cos(2πk` x j
`
)

=
1
M

M−1∑
j=0

h(ycos
j ) λk(ycos

j ).

For an arbitrary function h ∈ C
(
[0,1]d

)
, we lose the former mentioned exactness

and define the approximated cosine coefficients ĥcos,Λ
k of the form

ĥcos
k ≈ ĥcos,Λ

k :=
1
M

M−1∑
j=0

h(ycos
j ) λk(ycos

j ), ycos
j ∈ Λψ(z,M, I),

and obtain approximated cosine partial sum SΛI h given by

h(x) ≈ SΛI h(x) :=
∑
k∈I

ĥcos,Λ
k λk(x). (9)

In matrix-vector-notation we have

C :=
{
λk

(
ycos
j

)}M−1

j=0,k∈Itent
, htent :=

(
h(ycos

j )

)M−1

j=0
.

Both the evaluation of h and the reconstruction of the approximated cosine coeffi-
cients ĥ :=

{
ĥcos,Λ

k

}
k∈Itent

is realized by solving the systems

htent = Cĥ and ĥ =
1
M

C∗htent, (10)

where we have C∗C = MI by construction with the identity matrix I ∈ C |Itent |× |Itent | .
Fast algorithms for solving both systems are described in [22, 16].
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2.3 Chebyshev approximation

We consider the Chebyshev system, that is defined for x ∈ [0,1]d and a finite
frequency set Icheb ⊂ N

d
0 as{

Tk(x) :=
√

2
‖k‖0

d∏̀
=1

cos (k` arccos(2x` − 1))

}
k∈Icheb

. (11)

The Chebyshev system (11) is an orthonormal system with respect to the weighted
scalar product

(Tk1,Tk2 )L2([0,1]d ,ω) :=
∫
[0,1]d

Tk1 (x)Tk2 (x)ω(x) dx, ω(x) :=
d∏̀
=1

2
π
√

4x`(1 − x`)
.

The Chebyshev coefficients of a function h ∈ L2
(
[0,1]d,ω

)
are naturally defined

as ĥcheb
k := (h,Tk)L2([0,1]d ,ω),k ∈ Z

d and for I ⊂ Zd the corresponding Chebyshev
partial sum is given by SI h(x) :=

∑
k∈I ĥcheb

k Tk(x). We transfer some properties of
the Fourier system via the Chebyshev transformation

ψ(x) := (ψ1(x1), . . . ,ψd(xd))>,

ψ`(x`) :=
1
2
+

1
2

cos
(
2π

(
x` −

1
2

))
, x` ∈ [0,1] , ` ∈ {1, . . . , d}. (12)

We have sampling nodes in the Chebyshev-transformed rank-1 lattice Λψ(z,M)
defined as

Λψ(z,M) :=
{
ycheb
j := ψ

(
xlatt
j

)
: xlatt

j ∈ Λ(z,M), j = 0, . . . ,M − 1
}
.

It inherits the reconstruction property (3) of the underlying reconstructing rank-1
latticeΛ(z,M, I) and is denoted byΛψ(z,M, I). We note that Chebyshev transformed
sampling nodes are fundamentally connected to Padua points and Lissajous curves,
as well as certain interpolation methods that are outlined in [4, 9].

Recalling the definition of difference setsD(I) in (2), multivariate trigonometric
polynomials h(·) and h(·)Tk(·) are in ΠD(I ) and supported on k ∈ I ⊂ Nd

0 inherit the
exact integration property (4), because with the Chebyshev transformation ψ as in
(12) and transformed nodes ycheb

j = ψ(xlatt
j ) ∈ Λψ(z,M, I)with xlatt

j = (x
j
1, . . . , x

j
d
)> ∈

Λ(z,M, I) we have
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ĥcheb
k =

∫
[0,1]d

h(y)Tk(y)ω(y) dy =
√

2
‖k‖0

∫
Td

h(ψ(x))
d∏̀
=1

cos(2πk` x`) dx

=

√
2
‖k‖0

2d

∫
Td

h(ψ(x))
(
e2πik·x + e−2πik·x

)
dx

=

√
2
‖k‖0

2d
1
M

M−1∑
j=0

h(ψ(xj))

(
e2πik·x j + e−2πik·x j

)
=
√

2
‖k‖0 1

M

M−1∑
j=0

h(ψ(xj))

d∏̀
=1

cos(2πk` x j
`
)

=
1
M

M−1∑
j=0

h(ycheb
j )Tk(ycheb

j ).

For an arbitrary function h ∈ L
(
[0,1]d,ω

)
∩ C

(
[0,1]d

)
, we lose the former men-

tioned exactness and define the approximated Chebyshev coefficients ĥcheb,Λ
k of the

form

ĥcheb
k ≈ ĥcheb,Λ

k :=
1
M

M−1∑
j=0

h(ycheb
j )Tk(ycheb

j ), ycheb
j ∈ Λψ(z,M, I),

leading to the approximated Chebyshev partial sum

h(x) ≈ SΛI h(x) :=
∑
k∈I

ĥcheb,Λ
k Tk(x). (13)

In matrix-vector-notation this reads as

T :=
{
Tk(ycheb

j )

}M−1

j=0,k∈Icheb
, hcheb :=

(
h(ycheb

j )

)M−1

j=0
.

The evaluation of h as well as the reconstruction of the approximated Chebyshev
coefficients ĥ :=

(
ĥcheb,Λ

k

)
k∈Icheb

of h are realized by fast Algorithms outlined in [19,
22, 16], that solve the systems

hcheb = Tĥ and ĥ =
1
M

T∗hcheb, (14)

where we have T∗T = MI by construction with the identity matrix I ∈ C |Icheb |× |Icheb | .
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2.4 Transformed Fourier approximation

We recall the ideas of a particular family of parameterized torus-to-cube transfor-
mations as suggested in [18], that generalize the construction idea of the Chebyshev
system in composing a mapping with a multiple of its inverse.

We call a continuously differentiable, strictly increasing mapping ψ̃ : (0,1) → R
with ψ̃(x+ 1

2 ) being odd and ψ̃(x) → ±∞ for x → {0,1} a torus-to-R transformation.
We obtain a parameterized torus-to-cube transformation ψ(·, η) : [0,1] → [0,1]with
η ∈ R+ := (0,∞) by putting

ψ(x, η) :=


0 for x = 0,
ψ̃−1(η ψ̃(x)) for x ∈ (0,1) ,
1 for x = 1,

(15)

which are continuously differentiable, increasing and have a first derivative ψ ′(·, η) ∈
C0([0,1]), where C0 ([0,1]) denotes the space of all continuous functions vanish-
ing to 0 towards their boundary points. It holds ψ−1(y, η) = ψ

(
y, 1
η

)
and we call

%(y, η) := (ψ−1)′(y, η) = ψ ′
(
y, 1
η

)
the density of ψ. In multiple dimensions d ∈ N

with η = (η1, . . . , ηd)
> we put

ψ(x,η) := (ψ1(x1, η1), . . . ,ψd(xd, ηd))>, (16)
ψ−1(y,η) := (ψ−1

1 (y1, η1), . . . ,ψ
−1
d (yd, ηd))

>,

%(y,η) :=
d∏̀
=1
%`(y`, η`) with %`(y`, η`) :=

1
ψ ′(ψ−1(y`, η`))

,

where the univariate torus-to-cube transformations ψ`(·, η`) and their corresponding
densities %`(·, η`) may be different in each coordinate ` ∈ {1, . . . , d}.

We consider integrable weight functions

ω(y) :=
d∏̀
=1
ω`(y`), y ∈ [0,1]d,

such that for any given torus-to-cube transformation ψ(·,η) as in (16) we have

ω(ψ`(·, η`))ψ
′(·, η`) ∈ C0 ([0,1]) .

Applying a torus-to-cube transformation to a function h ∈ L2([0,1]d,ω) ∩ C([0,1]d)
generates a periodic function f ∈ L2(T

d) of the form
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f (x) := h(ψ(x,η))

√√√
ω(ψ(x,η))

d∏̀
=1
ψ ′
`
(x`) with ‖h‖L2([0,1]d ,ω) = ‖ f ‖L2(Td ),

(17)

that is approximated by the classical Fourier system. To construct an approximant
for the original function h we apply the inverse torus-to-cube transformation to the
Fourier system, yielding for a fixed η ∈ Rd+ the transformed Fourier system{

ϕk(·) :=

√
%(·,η)

ω(·)
e2πik·ψ−1(·,η)

}
k∈I

, (18)

which forms an orthonormal system with respect to the weighted L2
(
[0,1]d,ω

)
-

scalar product. For all k ∈ Zd the transformed Fourier coefficients ĥk are naturally
defined as

ĥk := (h, ϕk)L2([0,1]d ,ω) =

∫
[0,1]d

h(y) ϕk(y)ω(y) dy,

and the corresponding Fourier partial sum is given by SI h(y) :=
∑

k∈I ĥk ϕ(y). The
corresponding sampling nodes will be taken from the torus-to-cube-transformed
(abbreviated: ttc) rank-1 lattice Λψ(z,M) defined as

Λψ(z,M) :=
{
yttc
j := ψ

(
xlatt
j ,η

)
: xlatt

j ∈ Λ(z,M), j = 0, . . . ,M − 1
}

andwe speak of a reconstructing torus-to-cube-transformed rank-1 latticeΛψ(z,M, I)
if the underlying rank-1 lattice is a reconstructing one.

Furthermore, the multivariate transformed trigonometric polynomials supported
on I ⊂ Zd are given by Πttc

I := span{ϕk : k ∈ I} and inherit the exact integration
property (5), thus, for h ∈ Πttc

I we have

ĥk =

∫
[0,1]d

h(x) ϕk(x) dx =
1
M

M−1∑
j=0

h(yttc
j ) ϕk(yttc

j ), yttc
j ∈ Λψ(z,M, I).

For an arbitrary function h ∈ L2([0,1]d,ω)∩C([0,1]d)we lose the former mentioned
exactness and define approximated transformed coefficients of the form

ĥΛk :=
1
M

M−1∑
j=0

h(yttc
j ) ϕk(yttc

j )

and leads to the approximated transformed Fourier partial sum SΛI h given by

h(y) ≈ SΛI h(y) :=
∑
k∈I

ĥΛk ϕk(y). (19)
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orthonormal system {ϕk (x)}k∈I scalar product
weight ω

sampling transformation ψ frequency set I

√
2
‖k ‖0 cos(πkx) 1

{
2x for 0 ≤ x < 1

2 ,

2 − 2x for 1
2 ≤ x ≤ 1.

IdN ∩ N
d
0

√
2
‖k ‖0 cos (k arccos(2x − 1)) 1

2π
√

x(1−x)
1
2 +

1
2 cos

(
2π(x − 1

2 )
)

IdN ∩ N
d
0√

%(x ,η)
ω(x) e2π ikψ−1(x ,η) ω(x) ψ(x, η) IdN

Table 1 Comparison of the univariate orthonormal system, sampling sets and frequency sets from
the Chebyshev, cosine and transformed Fourier approximation methods.

In matrix-vector-notation we have

httc :=
(
h(yttc

j )

)M−1

j=0
, Fttc :=

{
ϕk

(
yttc
j

)}M−1

j=0,k∈Ittc
.

The evaluation of h and the reconstruction of the approximated transformed Fourier
coefficients ĥ :=

{
ĥΛk

}
k∈Ittc

is realized by solving the systems

httc = Fttcĥ. and ĥ =
1
M

F∗ttchttc. (20)

Fast algorithms for solving both systems are described in [18].

2.5 Comparison of the orthonormal systems

The previously presented approximation approaches are based on very different
orthonormal systems and use differently transformed sampling sets, which is sum-
marized in dimension d = 1 in Table 1 with the definition of the hyperbolic cross
I1
N given in (23).
Given an univariate continuous function h ∈ C([0,1]), both composition with the

tent transformation (8) and the Chebyshev transformation (12) can be interpreted as
mirroring a compressed version of h at the point 1

2 , so that h(ψ(x)) = h(ψ(1 − x))
for all x ∈ [0, 1

2 ]. In contrast to the the Chebyshev transformation case, for the tent
transformation we generally won’t expect the resulting function h ◦ ψ to be smooth
at the point 1

2 , which will be reflected in the approximation results later on.
The parametrized torus-to-cube transformations (15) are a fundamentally different

transformation class in the sense that the periodization effect is caused primarily by
the multiplication of h(ψ(·, η)) with the first derivative ψ(·, η) ∈ C0([0,1]) (assuming
a constant weight function ω ≡ 1), so that the function h(ψ(·, η))

√
ψ(·, η) ends up

being continuously extendable to the torusT. Additionally, now there is the parameter
η involved which controls the smoothening effect on the periodized function, see
[18].
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0 0.5 1
0

0.5

1

ψ(x) = 1 − |1 − 2x |
ψ(x) = 1

2 +
1
2 cos(2π(x − 1

2 ))

0 0.5 1
0

0.5

1

ψ(x) =

ψ(x, 2) = 1
2 +

1
2 tanh(2 tanh−1(2x − 1))

ψ(x, 4) = 1
2 +

1
2 tanh(4 tanh−1(2x − 1))

Fig. 1 Left: The tent-transformation (8) the Chebyshev-transformation (12). Right: The parame-
terized logarithmic transformation (21) for η ∈ {2, 4}.

We find various suggestions for torus-to-R transformations in [5, Section 17.6],
[20, Section 7.5] and [17]. We list some induced combined transformations ψ(x, η)
and the corresponding density function %(y, η) = (ψ−1)′(y, η) in the sense of defini-
tion (15):

• the logarithmic torus-to-cube transformation

ψ(x, η) :=
1
2
+

1
2

tanh(η tanh−1(2x − 1)), %(y, η) =
4
η

(4y − 4y2)
1
η −1(

(2y)
1
η + (2 − 2y)

1
η

)2 ,

(21)

based on the mapping

ψ̃(x) =
1
2

log
(

2x
2 − 2x

)
= tanh−1(2x − 1),

• the error function torus-to-cube transformation

ψ(x, η) =
1
2

erf(η erf−1(2x − 1)) +
1
2
, %(y, η) =

1
η

e(1−
1
η2 )(erf−1(2y−1))2

, (22)

based on the mapping

ψ̃(x) = erf−1(2x − 1),

which is the inverse of the error function

erf(y) =
1
√
π

∫ y

−y

e−t
2
dt, y ∈ R,

In Figure 1 we provide a side-by-side comparison of all the previously mentioned
transformation mappings.
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3 Approximation results and error analysis

Based on the weight function

ωhc(k) :=
d∏̀
=1

max(1, |k` |), k ∈ Zd,

we define the hyperbolic cross index set

IdN :=
{
k ∈ Zd : ωhc(k) ≤ N

}
(23)

and for β ≥ 0 we furthermore have the Hilbert spaces

Hβ(Td) :=

{
f ∈ L2(T

d) : ‖ f ‖2
Hβ (Td )

:=
∑

k∈Zd
ωhc(k)2β | f̂k |2 < ∞

}
(24)

that are closely related to the Wiener Algebra A(Td) given in (6). For λ > 1
2 and

fixed d ∈ N the continuous embeddings Hβ+λ(Td) ↪→ A(Td) was shown in [15,
Lemma 2.2]. Next, we introduce the analogue on the cube [0,1]d for the Hilbert
space Hβ(Td) as in (24). We define the space of weighted L2

(
[0,1]d,ω

)
-functions

with square summable Fourier coefficients ĥk := (h, ϕk)L2([0,1]d ,ω) by

Hβ
(
[0,1]d,ω

)
:=

{
h ∈ L2

(
[0,1]d,ω

)
: ‖h‖Hβ([0,1]d ,ω) < ∞

}
,

‖h‖2
Hβ([0,1]d ,ω)

:=
∑

k∈Zd
ωhc(k)2β | ĥk |

2. (25)

In case of a constant weight function ω ≡ 1 we just writeHβ
(
[0,1]d

)
.

We define a shifted, scaled and dilated B-spline of second order as

B2(x) :=

{
−x2 + 3

4 for 0 ≤ x < 1
2 ,

1
2

(
x2 − 3x + 9

4

)
for 1

2 ≤ x ≤ 1,
(26)

which we refer to as the B2-cutoff, that was also used in [19, 18]. It is in C1([0,1])
and depicted in Figure 2. Even though it is only once continuously differentiable, it
is also an element in H 5

2−ε ([0,1]) for any ε > 0, which the following arguments
show. It’s well-known a second order B-spline is the result of a convolution of
three step functions χ[0,1] (where χ denotes the indicator function) with themselves,
whose respective Fourier coefficients (χ[0,1](·),e2πik(·))L2([0,1]) decay like |k |−1 for
k → ±∞. Hence, the Fourier coefficients ĥk = (B2,e2πik(·))L2([0,1]) of the B2-cutoff
(26) decay like |k |−3 for k → ±∞. Considering a constant weight function ω ≡ 1,
the ‖ · ‖Hβ ([0,1])-norm given in (25) of B2 is finite if
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0 0.5 1
0

0.5

1
h1(y) = B2(y)

0
0.5

1 0
0.5

1
0

0.5

1

h2(y1, y2) = B2(y1)B2(y2)

Fig. 2 The univariate B2-cutoff h1(y) = B2(y) and the two-dimensional tensored B2-cutoff
h2(y1, y2) = B2(y1)B2(y2).

‖B2‖
2
Hβ ([0,1]) =

∑
k∈Z

ωhc(k)2β | ĥk |2 .
∑
k∈Z

max{1, |k |}2β
1
|k |6

< ∞,

which is the case for

|k |2β−6 ≤ k−(1+ε) ⇔ β ≤
5
2
− ε, ε > 0.

Next, we approximate the tensored B2-cutoff

h(x) =
d∏̀
=1

B2(x`) ∈ H
5
2−ε([0,1]d), ε > 0, (27)

by the approximated Chebyshev, cosine or transformed Fourier partial sums SΛI h
given in (9), (13) and (19). We study the resulting relative `2-and `∞-approximation
errors

εRp (h) :=




(h(xj) − SΛI h(xj)
)R
j=1





`p


(h(xj)

)R
j=1





`p

, p ∈ {2,∞}, (28)

that are evaluated at R ∈ N uniformly distributed points xj ∼ U([0,1]d). The
approximated coefficients appearing in the approximated partial sums (13),(9) and
(19) are calculated by solving the corresponding systems (14), (10) or (20).
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Fig. 3 The hyperbolic cross I2
8 (left) and its first quadrant I2

8 ∩ N
2
0 (right).

3.1 The numerical results of `2-approximation

Throughout this section we repeatedly use the bold number notation 1 = (1, . . . ,1)>
that we already used in the definition of rank-1 lattices (1) and expressions like η = 2
mean that η` = 2 for all ` ∈ {1, . . . , d}.

In [23, 6, 24] we find a broad discussion on the approximation error decay of
function in the Sobolev space Hβ(Td),m ∈ N0. It was proven that there is a worst
case upper error bound of the form

εR2 (h) ≈



h − SΛ

IdN
h




L2([0,1]d)

. N−m(log N)(d−1)/2. (29)

In [18] we find conditions on the logarithmic and the error function transformation
ψ(·,η), given in (21) and (22), such that a certain degree of smoothness of the given
Cm(Td)-function is preserved under composition with ψ(·,η) and the resulting peri-
odized function is at least inH `(Td), ` ≤ m and for each ` it was calculated how large
the parameter η has to be chosen. According to the conditions in [18, Theorem 4], the
tensored B2-cutoff in (27) is transformed into a function f ∈ H0(Td) of the form (17)
for all considered torus-to-cube transformations ψ(·,η) with parameters 1 < η` ≤ 3,
and into a function f ∈ H1(Td) for parameters η` > 3, ` ∈ {1, . . . , d}. While these
conditions are independent of the particular considered function h ∈ Cm(Td), they
are pretty coarse in the sense of not catching the additional smoothness of func-
tions like the B2-cutoff given in (27) which is an almostH 5

2 ([0,1]d)-function as we
showed earlier. In numerical tests we showcase that in certain setups the Chebyshev
coefficients and the transformed Fourier coefficients will indeed decay faster than
the worst case upper bound (29).

In dimensions d ∈ {1,2,4,7} we compare the discrete `2-approximation error ε2,
given in (28), with R = 1.000.000 uniformly distributed evaluation points for all
of the previously introduced approximation approaches. We consider frequency sets
IdN for all transformed Fourier systems and IdN ∩ N

d
0 for the cosine and Chebyshev

systems. Both frequency sets are illustrated in dimension d = 2 with N = 8 in
Figure 3. We use N ∈ {1, . . . ,140} for d = 1, N ∈ {1, . . . ,80} for d = 2, N ∈
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transformation εR
2 (h)

(7) cosine system N−1.5

(11) Chebyshev system N−2.45

(21) log transf. Fourier, η = 2 N−1

(21) log transf. Fourier, η = 4 N−2.25

(22) error fct. transf. Fourier, η = 2 N−1.9

(22) error fct. transf. Fourier, η = 2.5 N−2.5

(22) error fct. transf. Fourier, η = 4 N−2.5

Table 2 The observed decay rates of the discrete approximation error εR
2 (h) as given in (28) when

h is the univariate B2-cutoff as defined in (26).

{1, . . . ,50} for d = 4 and N ∈ {1, . . . ,30} for d = 7.
In dimensions d = 1 and d = 2 we observe that the approximation errors are

significantly better for η = 4 than for η = 2, indicating the increased smoothening
effect of both the logarithmic and the error function transformation. In dimensions
d ∈ {4,7}, the errors for η = 4 turn out to be worse than for η = 2, which we
suspect might be due to the increase of certain constants depending on η in the
error estimate (29). The Chebyshev approximation turns out to be a solid candidate
to approximate the B-spline given in (27). In this specific setup, we also checked
the error behavior for other parameters η ∈ {2.1,2.2, . . . ,3.8,3.9,4.1,4.2, . . .}. As
it turns out, η = 4 is the best choice for the logarithmic transformation and for the
error function transformation the best choice is η = 2.5.

However, as shown in Figure 4, only the error function transformation is able to
match the approximation error of the Chebyshev approximation, which also shows
whenwe investigate and compare the error decay rates of εR2 (h) that were numerically
observed for the univariate case d = 1. In this specific setup, h is still the continuous
second-order B-spline given in (27) that is an element ofH 5

2−ε
(
[0,1]d

)
. Hence, we

expect to obtain an error decay at most εR2 (h) . N−
5
2+ε for any ε > 0 and increasing

values of N when approximating h with respect to any transformed Fourier system.
We achieve these decay rates numerically with the Chebyshev system and with
the transformed Fourier system when considering the logarithmic transformation
with η ∈ {2.5,4}. Interestingly, the decay rates of the cosine system remain at
N−1.5. In comparison, the logarithmically transformed Fourier system with η = 2
loses half an order, which is slightly improved for η = 4. In total we observe that
some transformed Fourier systems are able to achieve the same decay rates as the
Chebyshev system, when we use parameterized torus-to-cube transformations ψ(·, η)
and pick an appropriate parameter η ∈ R+. The results are summarized in Table 2.

3.2 A note on `∞-approximation

As derived in [18] and recalled in (17), the transformed Fourier system (18) for non-
periodic funtions is the result of applying an inverted change of variable ψ−1(·,η) in
the form of (15) to the Fourier system elements within the L2(T

d)-scalar product,
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Fig. 4 Comparing the approximation errors εR
2 (h) of the tensored B2-cutoff (27) approximated by

various orthonormal systems in dimensions d ∈ {1, 2, 4, 7}.

in order to generate another orthonormal system in a given space L2

(
[− 1

2 ,
1
2 ]

d,ω
)
.

There are two interpretations for the resulting integral of the form∫
[0,1]d

%(y,η)
ω(y)

e2πi(k−m)ψ−1(y,η) ω(y) dy =
∫
Td

e2πi(k−m)x dx = δk,m.

We either have another periodic system of the form
{
e2πik·ψ−1(·,η)

}
k∈I

and the

weighted L2
(
[0,1]d, %(·,η)

)
-scalar product; or we attach

√
%(·,η)/ω(·) to the in-

dividual exponentials e2πik·ψ−1(·,η) and end up with the non-periodic system (18)
and the originally given weighted L2

(
[− 1

2 ,
1
2 ]

d,ω
)
-scalar product. If we consider a

constant weight function ω ≡ 1, then there is a drawback that comes with the later
choice, because % is unbounded and causes singularities at the boundary points of
the elements in the approximated transformed Fourier sum (19). So, the pointwise
approximation error εR∞ in (28) isn’t finite, unless we consider a suitably weighted `∞-
norm that counteracts the behavior of the approximant towards the boundary points,
which is discussed more thoroughly in [18]. This strategy is based on choosing the
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weight function ω in such a way that the quotient %(·,η)/ω(·) is either constant or
converges at the boundary points. However, for any chosen torus-to-cube transfor-
mation - especially for the presented parameterized transformations ψ(·,η) in (21)
and (22) with a fixed parameter η - the weight function has to be chosen in such a
way so that on one hand the singularities of the density function are controlled and
on the other hand the given function h is still in L2([0,1]d ,ω).

We achieve this effect for example by showing the connection of the transformed
Fourier framework with the Chebyshev system, when we put the Chebyshev trans-
formation (12) into the transformed Fourier system (18) despite the fact that it is not
a torus-to-cube transformation as in (15). Considering the hyperbolic cross I1

N as de-
fined in (23) and x, y ∈ [0,1], we choose ψ to be the Chebyshev transformation (12)
of the form ψ(x) = 1

2 +
1
2 cos

(
2π(x − 1

2 )
)
, with the inverse ψ−1(y) = 1

2 +
arccos(2y−1)

2π

and the density %(y) = 1
2π
√
y(1−y)

. By putting ω(y) = %(y), the transformed Fourier
system (18) turns into

ϕk(y) = eπik+ik arccos(2y)

= (−1)k(cos(k arccos(2y − 1)) + i sin(k arccos(2y − 1)))

for k ∈ {−N, . . . ,N} and by combining the positive and negative frequencies we
obtain

ϕk(y) =

{
1 for k = 0,
(−1)k2 cos(k arccos(2y − 1)) for k ∈ {1,2, . . . ,N},

which is orthogonal with respect to the L2 ([0,1],ω)-scalar product with ω(y) =
1

2π
√
y(1−y)

. With some additional scaling we obtain an orthonormal system that’s
equivalent to the Chebyshev system (11).

4 Conclusion

We considered the approximation of non-periodic functions on the cube [0,1]d by
different systems of orthonormal functions. We compared the Chebyshev system
that is orthonormal with respect to a weighted L2-scalar product, the system of half-
periodic cosines that uses tent-transformed sampling nodes and a parameterized
transformed Fourier system. For the cosine system, which basically only mirrors a
non-periodic function at it’s boundary points, as well as the transformed Fourier
system with a small parameter, yielded the worst approximation errors. Switching to
the Chebyshev system, which mirrors and additionally smoothens a given function,
improved the approximation error decay. The same effect was obtained for the
transformed Fourier system after increasing the parameter enough to obtain a better
smoothening effect. The numerical experiments showcased the proposed parameter
control in [18] that is set up by periodizing functions via families of parameterized
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torus-to-cube mappings. This approach in particular generalizes the idea used to
derive Chebyshev polynomials.
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