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Abstract We present a new deterministic approximate algorithm for the reconstruc-
tion of sparse Legendre expansions from a small number of given samples. Using
asymptotic properties of Legendre polynomials, this reconstruction is based on Prony-
like methods. The method proposed is robust with respect to noisy sampled data.
Furthermore we show that the suggested method can be extended to the reconstruc-
tion of sparse Gegenbauer expansions of low positive order.

Keywords Legendre polynomials · Sparse Legendre expansions · Gegenbauer
polynomials · Ultraspherical polynomials · Sparse Gegenbauer expansions · Sparse
recovering · Sparse Legendre interpolation · Sparse Gegenbauer interpolation ·
Asymptotic formula · Prony-like method

Mathematics Subject Classification 65D05 · 33C45 · 41A45 · 65F15

1 Introduction

In this paper, we present a new deterministic approximate approach to the reconstruc-
tion of sparse Legendre and Gegenbauer expansions, if relatively few samples on a
special grid are given.
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1020 D. Potts, M. Tasche

Recently the reconstruction of sparse trigonometric polynomials has attained much
attention. There exist recovery methods based on random sampling related to com-
pressed sensing (see e.g. [5,6,11,18] and the references therein) andmethods based on
deterministic sampling related to Prony-like methods (see e.g. [16] and the references
therein).

Both methods are already generalized to other polynomial systems. Rauhut and
Ward [19] presented a recovery method of a polynomial of degree at most N − 1
given in Legendre expansion with M nonzero terms, where O(M (log N )4) random
samples are taken independently according to the Chebyshev probability measure of
[−1, 1]. Some recovery algorithms in compressive sensing are based on (weighted)
�1-minimization (see [19,20] and the references therein). Exact recovery of sparse
functions can be ensured only with a certain probability.

Peter et al. [15] have presented a Prony-like method for the reconstruction of sparse
Legendre expansions, where only 2M +1 function resp. derivative values at one point
are given. We mention that sparse Legendre expansions are important for the analysis
of spherical functions which are represented by expansions of spherical harmonics. In
[1], itwas observed that the equilibriumstate admits a sparse representation in spherical
harmonics (see [1, Section 4.3]), i.e., the equilibrium state can be represented by a
very short Legendre expansion (see [1, Figure 4.5]).

Recently, the authors have described a unified approach to Prony-like methods in
[16] and applied it to the recovery of sparse expansions of Chebyshev polynomials of
first and second kind in [17]. Similar sparse interpolation problems for special polyno-
mial systems have been formerly explored in [3,4,8,12] and also solved by Prony-like
methods. A very general approach for the reconstruction of sparse expansions of eigen-
functions of suitable linear operators was suggested by Peter and Plonka [14]. New
reconstruction formulas for M-sparse expansions of orthogonal polynomials using the
Sturm–Liouville operator, were presented. However one has to use sampling points
and derivative values.

In this paper we present a new method for the reconstruction of sparse Legendre
expansionswhich is basedon a local approximationofLegendre polynomials by cosine
functions. Therefore this algorithm is closely related to [17]. Note that fast algorithms
for the computation of Fourier–Legendre coefficients in a Legendre expansion (see
[2,7]) are based on similar asymptotic formulas of theLegendre polynomials.However
the key idea is that the conveniently scaled Legendre polynomials behave similar to
the cosine functions near zero. Therefore we use a sampling grid located near zero.
Finally we generalize this method to sparse Gegenbauer expansions.

The outline of this paper is as follows. In Sect. 2, we collect some useful properties
of Legendre polynomials. In Sect. 3, we present the new reconstruction method for
sparse Legendre expansions. We extend our recovery method in Sect. 4 to the case of
sparse Gegenbauer expansions of low positive order. Finally we show some results of
numerical experiments in Sect. 5. In Example 5.5, it is shown that themethod proposed
is robust with respect to noisy sampled data.
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Reconstruction of sparse Legendre and Gegenbauer expansions 1021

2 Properties of Legendre polynomials

As known, the Legendre polynomials Pn are special Gegenbauer polynomials C (α)
n of

order α = 1
2 so that the properties of Pn follow from corresponding properties of the

Gegenbauer polynomials (see e.g. [21, pp. 80–84]). For each n ∈ N0, the Legendre
polynomials Pn can be recursively defined by

Pn+2(x) := 2n + 3

n + 2
x Pn+1(x) − n + 1

n + 2
Pn(x) (x ∈ R)

with P0(x) := 1 and P1(x) := x (see [21, p. 81]). The Legendre polynomial Pn can
be represented in the explicit form

Pn(x) = 1

2n

�n/2�∑

j=0

(−1) j (2n − 2 j)!
j ! (n − j)! (n − 2 j)! x

n−2 j

(see [21, p. 84]). Hence it follows that for m ∈ N0

P2m(0) = (−1)m (2m)!
22m (m!)2 , P2m+1(0) = 0 , (2.1)

P ′
2m+1(0) = (−1)m (2m + 1)!

22m (m!)2 , P ′
2m(0) = 0. (2.2)

Further, Legendre polynomials of even degree are even and Legendre polynomials of
odd degree are odd, i.e.

Pn(−x) = (−1)n Pn(x). (2.3)

Moreover, the Legendre polynomial Pn satisfies the following homogeneous linear
differential equation of second order

(1 − x2) P ′′
n (x) − 2x P ′

n(x) + n (n + 1) Pn(x) = 0 (2.4)

(see [21, p. 80]). In the Hilbert space L2
1/2([−1, 1]) with the constant weight 1

2 , the
normalized Legendre polynomials

Ln(x) := √
2n + 1 Pn(x) (n ∈ N0) (2.5)

form an orthonormal basis, since

1

2

∫ 1

−1
Ln(x) Lm(x) dx = δn−m (m, n ∈ N0),

where δn denotes the Kronecker symbol (see [21, p. 81]). Note that the uniform norm

max
x∈[−1,1] |Ln(x)| = |Ln(−1)| = |Ln(1)| = (2n + 1)1/2

is increasing with respect to n (see [21, p. 164]).

123



1022 D. Potts, M. Tasche

Let M be a positive integer. A polynomial

H(x) :=
d∑

k=0

bk Lk(x) (2.6)

of degree d with d � M is called M-sparse in the Legendre basis or simply a sparse
Legendre expansion, if M coefficients bk are nonzero and if the other d − M + 1
coefficients vanish. Then such an M-sparse polynomial H can be represented in the
form

H(x) =
M0∑

j=1

c0, j Ln0, j (x) +
M1∑

k=1

c1,k Ln1,k (x) (2.7)

with c0, j := bn0, j �= 0 for all even n0, j with 0 ≤ n0,1 < n0,2 < · · · < n0,M0 and
with c1,k := bn1,k �= 0 for all odd n1,k with 1 ≤ n1,1 < n1,2 < · · · < n1,M1 . The
positive integer M = M0 + M1 is called the Legendre sparsity of the polynomial H .
The numbers M0, M1 ∈ N0 are the even and odd Legendre sparsities, respectively.

Remark 2.1 The sparsity of a polynomial depends essentially on the chosen polyno-
mial basis. If

Tn(x) := cos(n arccos x) (x ∈ [−1, 1])

denotes the nth Chebyshev polynomial of first kind, then the nth Legendre polynomial
Pn can be represented in the Chebyshev basis by

Pn(x) = 1

22n

�n/2�∑

j=0

(2 − δn−2 j )
(2 j)! (2n − 2 j)!
( j !)2 ((n − j)!)2 Tn−2 j (x)

(see [21, p. 90]). Thus a sparse polynomial in the Legendre basis is in general not a
sparse polynomial in the Chebyshev basis. In other words, one has to solve the recon-
struction problem of a sparse Legendre expansion without change of the Legendre
basis. 
�

As in [19], we transform the Legendre polynomial system {Ln; n ∈ N0} into a
uniformly bounded orthonormal system.We introduce the functions Qn : [−1, 1] →
R for each n ∈ N0 by

Qn(x) :=
√

π

2
4
√
1 − x2 Ln(x) =

√
(2n + 1)π

2
4
√
1 − x2 Pn(x). (2.8)

Note that these functions Qn have the same symmetry properties (2.3) as the Legendre
polynomials, namely

Qn(−x) = (−1)n Qn(x) (x ∈ [−1, 1]). (2.9)
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Reconstruction of sparse Legendre and Gegenbauer expansions 1023

Further the functions Qn are orthonormal in the Hilbert space L2
w([−1, 1]) with the

Chebyshev weight w(x) := 1
π

(1 − x2)−1/2, since for all m, n ∈ N0

∫ 1

−1
Qn(x) Qm(x) w(x) dx = 1

2

∫ 1

−1
Ln(x) Lm(x) dx = δn−m .

Note that
∫ 1
−1 w(x) dx = 1. In the following, we use the standard substitution x =

cos θ (θ ∈ [0, π ]) and obtain

Qn(cos θ) =
√

π

2

√
sin θ Ln(cos θ) =

√
(2n + 1)π

2

√
sin θ Pn(cos θ) (θ ∈ [0, π ]).

Lemma 2.1 For all n ∈ N0, the functions Qn(cos θ) are uniformly bounded on the
interval [0, π ], i.e.

|Qn(cos θ)| < 2 (θ ∈ [0, π ]). (2.10)

Since Lemma 2.1 is a special case of Lemma 4.1 for α = 1
2 , we abstain here from

a separate proof.
Now we describe the asymptotic properties of the Legendre polynomials.

Theorem 2.1 For each n ∈ N0, the function Qn(cos θ) can be represented by the
asymptotic formula

Qn(cos θ) = λn cos

[(
n + 1

2

)
θ − π

4

]
+ Rn(θ) (θ ∈ [0, π ]) (2.11)

with the scaling factor

λn :=
⎧
⎨

⎩

√
(4m+1)π

2
(2m)!

22m (m!)2 n = 2m,√
π

4m+3
(2m+1)!
22m (m!)2 n = 2m + 1

and the error term

Rn(θ) := − 1

4n + 2

∫ θ

π/2

sin
[(
n + 1

2

)
(θ − τ)

]

(sin τ)2
Qn(cos τ) dτ (θ ∈ (0, π)).

(2.12)
The error term Rn(θ) fulfills the conditions Rn(

π
2 ) = R′

n(
π
2 ) = 0 andhas the symmetry

property
Rn(π − θ) = (−1)n Rn(θ). (2.13)

Further, the error term can be estimated by

|Rn(θ)| ≤ 1

2n + 1
| cot θ |. (2.14)
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1024 D. Potts, M. Tasche

Since Theorem 2.1 is a special case of Theorem 4.1 for α = 1
2 , we leave out a

separate proof.

Remark 2.2 From Theorem 2.1 it follows the asymptotic formula of Laplace (see [21,
p. 194]) that for θ ∈ (0, π)

Qn(cos θ) = √
2 cos

[(
n + 1

2

)
θ − π

4

]
+ O(n−1) (n → ∞). (2.15)

The error bound holds uniformly in [ε, π − ε] with ε ∈ (0, π
2 ). 
�

Remark 2.3 For arbitrary m ∈ N0, the scaling factors λn in (2.11) can be expressed
in the following form

λn =
⎧
⎨

⎩

√
(4m+1)π

2 αm n = 2m,√
π

4m+3 (2m + 2) αm+1 n = 2m + 1

with

α0 := 1, αn := 1 · 3 · · · (2n + 1)

2 · 4 · · · (2n)
(n ∈ N).


�
In Fig. 1, we plot the expression | tan(θ) Rn(θ)| for some polynomial degrees n.

We have proved the estimate (2.14) in Theorem 2.1. In the Table 1, one can see
that the maximum value of | tan(θ) Rn(θ)| on the interval [0, π ] is much smaller than

1
2n+1 .

We observe that the upper bound (2.14) of |Rn(θ)| is very accurate in a small
neighborhood of θ = π

2 . Substituting t = θ − π
2 ∈ [−π

2 , π
2 ], we obtain by (2.9) and

(2.11) that

0 pi/4 pi/2 3 pi/4 pi
0

0.01

0.02

0.03

0.04

0.05

0 pi/4 pi/2 3 pi/4 pi
0

0.005

0.01

0.015

0.02

0 pi/4 pi/2 3 pi/4 pi
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

0 pi/4 pi/2 3 pi/4 pi
0

0.5

1

1.5

2
x 10

−3

Fig. 1 Expression | tan(θ) Rn(θ)| for n ∈ {3, 11, 51, 101}

Table 1 Maximum values of | tan(θ) Rn(θ)| for some polynomial degrees n

n 3 5 7 9 11 13

max
θ∈[0,π ] |tan(θ)Rn(θ)| 0.0511 0.0336 0.0249 0.0197 0.0163 0.0139
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Reconstruction of sparse Legendre and Gegenbauer expansions 1025

Qn(sin t) = (−1)n λn cos

[(
n + 1

2

)
t + nπ

2

]
+ (−1)n Rn

(
t + π

2

)

= (−1)n λn cos
(nπ

2

)
cos

[(
n + 1

2

)
t

]
− (−1)n λn sin

(nπ

2

)

× sin

[(
n + 1

2

)
t

]
+ (−1)n Rn

(
t + π

2

)
. (2.16)

3 Prony-like method

In a first step we determine the even and odd indexes n0, j , n1,k in (2.7), similar to
[17]. We use (2.8) and consider the function

√
π

2
4
√
1 − x2 H(x) =

M0∑

j=1

c0, j Qn0, j (x) +
M1∑

k=1

c1,k Qn1,k (x) (3.1)

on [−1, 1]. In the following we use the asymptotic formulas of Qn0, j and Qn1,k from
Theorem 2.1. We substitute x = cos(t + π

2 ) = − sin t for t ∈ [−π
2 , π

2 ]. Now we have
to determine indexes n0, j and n1,k from sampling values of the function

√
π

2

√
cos t H(− sin t)

(
t ∈

[
−π

2
,

π

2

])
. (3.2)

We introduce the function

F(t) :=
M0∑

j=1

d0, j cos

[(
n0, j + 1

2

)
t

]
+

M1∑

k=1

d1,k sin

[(
n1,k+ 1

2

)
t

] (
t ∈

[
−π

2
,

π

2

])

(3.3)
with the coefficients

d0, j := (−1)n0, j /2 c0, j λn0, j , d1,k := (−1)(n1,k+1)/2 c1,k λn1,k .

By (2.9) and (2.16), the new function (3.3) approximates the sampled function (3.2)
in a small neighborhood of t = 0. Then we form

F(t) + F(−t)

2
=

M0∑

j=1

d0, j cos

[(
n0, j + 1

2

)
t

]
(3.4)

and
F(t) − F(−t)

2
=

M1∑

k=1

d1,k sin

[(
n1,k + 1

2

)
t

]
. (3.5)

Now we proceed similar to [17], but we use only sampling points near 0, due to the
small values of the error term Rn(t+ π

2 ) in a small neighborhood of t = 0 [see (2.14)].
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1026 D. Potts, M. Tasche

Let N ∈ N be sufficiently large such that N > M and 2N − 1 is an upper bound of
the degree of the polynomial (2.6). For uN := sin π

2N−1 we form the nonequidistant

sine–grid {uN ,k := sin kπ
2N−1 ; k = 1 − 2M, . . . , 2M − 1} in the interval [−1, 1].

We consider the following problem of sparse Legendre interpolation: For given
sampled data

hk :=
√

π

2

√
cos

kπ

2N − 1
H

(
− sin

kπ

2N − 1

)
(k = 1 − 2M, . . . , 2M − 1)

determine all parameters n0, j ( j = 1, . . . , M0) of the sparse cosine sum (3.4), deter-
mine all parameters n1,k (k = 1, . . . , M1) of the sparse sine sum (3.5) and finally
determine all coefficients c0, j ( j = 1, . . . , M0) and c1,k (k = 1, . . . , M1) of the
sparse Legendre expansion (2.7).

3.1 Sparse even Legendre interpolation

For a moment, we assume that the even Legendre sparsity M0 of the polynomial (2.7)
is known. Then we see that the above interpolation problem is closely related to the
interpolation problem of the sparse, even trigonometric polynomial

hk + h−k

2
≈ fk :=

M0∑

j=1

d0, j cos
(n0, j + 1/2)kπ

2N − 1
(k = 1 − 2M0, . . . , 2M0 − 1),

(3.6)
where the sampled values fk (k = 1 − 2M0, . . . , 2M0 − 1) are approximately given
by hk+h−k

2 . Note that f−k = fk (k = 0, . . . , 2M0 − 1).
We introduce the Prony polynomial Π0 of degree M0 with the leading coefficient

2M0−1, whose roots are cos
(n0, j+1/2)π

2N−1 ( j = 1, . . . , M0), i.e.

Π0(x) = 2M0−1
M0∏

j=1

(
x − cos

(n0, j + 1/2)π

2N − 1

)
.

Then the Prony polynomial Π0 can be represented in the Chebyshev basis by

Π0(x) =
M0∑

�=0

p0,� T�(x) (p0,M0 := 1). (3.7)

The coefficients p0,� of the Prony polynomial (3.7) can be characterized as follows:

Lemma 3.1 (See [17, Lemma 3.2]) For all k = 0, . . . , M0 − 1, the sampled data fk
and the coefficients p0,� of the Prony polynomial (3.7) satisfy the equations

M0−1∑

�=0

( fk+� + f�−k) p0,� = −( fk+M0 + fM0−k).
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Reconstruction of sparse Legendre and Gegenbauer expansions 1027

Using Lemma 3.1, one obtains immediately a Prony method for sparse even Legen-
dre interpolation in the case of known even Legendre sparsity. This algorithm is similar
to [17, Algorithm 2.7] and omitted here.

In practice, the even/odd Legendre sparsities M0, M1 of the polynomial (2.7) of
degree at most 2N − 1 are unknown. Then we can apply the same technique as in [17,
Section 3]. We assume that an upper bound L ∈ N of max {M0, M1} is known, where
N ∈ N is sufficiently large with max {M0, M1} ≤ L ≤ N . In order to improve the
numerical stability, we allow to choose more sampling points. Therefore we introduce
an additional parameter K with L ≤ K ≤ N such that we use K + L sampling points
of (2.7), more precisely we assume that sampled data fk (k = 0, . . . , L + K − 1)
from (3.6) are given. With the L + K sampled data fk ∈ R (k = 0, . . . , L + K − 1),
we form the rectangular Toeplitz-plus-Hankel matrix

H (0)
K ,L+1 := ( fk+� + f�−k)

K−1,L
k,�=0 . (3.8)

Note that H (0)
K ,L+1 is rank deficient with rank M0 (see [17, Lemma 3.1]).

3.2 Sparse odd Legendre interpolation

First we assume that the odd Legendre sparsity M1 of the polynomial (2.7) is known.
Then we see that the above interpolation problem is closely related to the interpolation
problem of the sparse, odd trigonometric polynomial

hk − h−k

2
≈ gk :=

M1∑

j=1

d1, j sin
(n1, j + 1/2)kπ

2N − 1
(k = 1 − 2M1, . . . , 2M1 − 1),

(3.9)
where the sampled values gk (k = 0, . . . , 2M1 − 1) are approximately given by
hk−h−k

2 . Note that g−k = −gk (k = 0, . . . , 2M1 − 1).
We introduce the Prony polynomial Π1 of degree M1 with the leading coefficient

2M1−1, whose roots are cos
(n1, j+1/2)π

2N−1 ( j = 1, . . . , M1), i.e.

Π1(x) = 2M1−1
M1∏

j=1

(
x − cos

(n1, j + 1/2)π

2N − 1

)
.

Then the Prony polynomial Π1 can be represented in the Chebyshev basis by

Π1(x) =
M1∑

�=0

p1,� T�(x) (p1,M1 := 1). (3.10)

The coefficients p1,� of the Prony polynomial (3.10) can be characterized as follows:
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1028 D. Potts, M. Tasche

Lemma 3.2 For all k = 0, . . . , M1 − 1, the sampled data gk and the coefficients
p1,� of the Prony polynomial (3.10) satisfy the equations

M1−1∑

�=0

(gk+� + gk−�) p1,� = −(gk+M1 + gk−M1). (3.11)

Proof Using sin(α + β) + sin(α − β) = 2 sin α cosβ, we obtain by (3.9) that

gk+� + gk−� =
M1∑

j=1

d1, j

(
sin

(n1, j + 1/2)(k + �)π

2N − 1
+ sin

(n1, j + 1/2)(k − �)π

2N − 1

)

= 2
M1∑

j=1

d1, j sin
(n1, j + 1/2)kπ

2N − 1
cos

(n1, j + 1/2)�π

2N − 1
.

Thus we conclude that

M1∑

�=0

(gk+�+gk−�) p1,� =2
M1∑

j=1

d1, j sin
(n1, j + 1/2)kπ

2N − 1

M1∑

�=0

p1,� cos
(n1, j + 1/2)�π

2N − 1

= 2
M1∑

j=1

d1, j sin
(n1, j +1/2)kπ

2N − 1
Π1

(
cos

(n1, j +1/2)π

2N − 1

)
=0.

By p1,M1 = 1, this implies the assertion (3.11). 
�

Using Lemma 3.2, one can formulate a Prony method for sparse odd Legendre
interpolation in the case of known odd Legendre sparsity. This algorithm is similar to
[17, Algorithm 2.7] and omitted here.

In general, the even/odd Legendre sparsities M0 and M1 of the polynomial (2.7)
of degree at most 2N − 1 are unknown. Similarly to Sect. 3.1, let L ∈ N be a
convenient upper bound of max {M0, M1}, where N ∈ N is sufficiently large with
max {M0, M1} ≤ L ≤ N . In order to improve the numerical stability, we allow to
choose more sampling points. Therefore we introduce an additional parameter K with
L ≤ K ≤ N such that we use K + L sampling points of (2.7), more precisely we
assume that sampled data gk (k = 0, . . . , L + K − 1) from (3.9) are given. With
the L + K sampled data gk ∈ R (k = 0, . . . , L + K − 1) we form the rectangular
Toeplitz-plus-Hankel matrix

H (1)
K ,L+1 := (gk+� + gk−�)

K−1,L
k,�=0 . (3.12)

Note that H (1)
K ,L+1 is rank deficient with rank M1. This is an analogous result to [17,

Lemma 3.1].

123



Reconstruction of sparse Legendre and Gegenbauer expansions 1029

3.3 Sparse Legendre interpolation

In this subsection, we sketch a Prony-like method for the computation of the poly-
nomial degrees n0, j and n1,k of the sparse Legendre expansion (2.7). Mainly we use
singular value decompositions (SVD) of the Toeplitz-plus-Hankel matrices (3.8) and
(3.12). For details of this method see [17, Section 3]. We start with the singular value
factorizations

H (0)
K ,L+1 = U (0)

K D(0)
K ,L+1 W

(0)
L+1,

H (1)
K ,L+1 = U (1)

K D(1)
K ,L+1 W

(1)
L+1,

where U (0)
K , U (1)

K , W (0)
L+1 and W (1)

L+1 are orthogonal matrices and where D(0)
K ,L+1 and

D(1)
K ,L+1 are rectangular diagonal matrices. The diagonal entries of D(0)

K ,L+1 are the
singular values of (3.8) arranged in nonincreasing order

σ
(0)
1 ≥ σ

(0)
2 ≥ · · · ≥ σ

(0)
M0

≥ σ
(0)
M0+1 ≥ · · · ≥ σ

(0)
L+1 ≥ 0.

We determine the largest M0 such that σ
(0)
M0

/σ
(0)
1 > ε, which is approximately the

rank of the matrix (3.8) and which coincides with the even Legendre sparsity M0 of
the polynomial (2.7).

Similarly, the diagonal entries of D(1)
K ,L+1 are the singular values of (3.12) arranged

in nonincreasing order

σ
(1)
1 ≥ σ

(1)
2 ≥ · · · ≥ σ

(1)
M1

≥ σ
(1)
M1+1 ≥ · · · ≥ σ

(1)
L+1 ≥ 0.

We determine the largest M1 such that σ
(1)
M1

/σ
(1)
1 > ε, which is approximately the

rank of the matrix (3.12) and which coincides with the odd Legendre sparsity M1 of
the polynomial (2.7). Note that there is often a gap in the singular values, such that
we can choose ε = 10−8 in general.

Introducing the matrices

D(0)
K ,M0

:= D(0)
K ,L+1(1 : K , 1 : M0) =

(
diag (σ

(0)
j )

M0
j=1

OK−M0,M0

)
,

W (0)
M0,L+1 := W (0)

L+1(1 : M0, 1 : L + 1),

D(1)
K ,M1

:= D(1)
K ,L+1(1 : K , 1 : M1) =

(
diag (σ

(1)
j )

M1
j=1

OK−M1,M1

)
,

W (1)
M1,L+1 := W (1)

L+1(1 : M1, 1 : L + 1),

we can simplify the SVD of the Toeplitz-plus-Hankel matrices (3.8) and (3.12) as
follows

H (0)
K ,L+1 = U (0)

K D(0)
K ,M0

W (0)
M0,L+1 , H (1)

K ,L+1 = U (1)
K D(1)

K ,M1
W (1)

M1,L+1.
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1030 D. Potts, M. Tasche

Using the known submatrix notation and setting

W (0)
M0,L

(s) := W (0)
M0,L+1(1 : M0, 1 + s : L + s) (s = 0, 1), (3.13)

W (1)
M1,L

(s) := W (1)
M1,L+1(1 : M1, 1 + s : L + s) (s = 0, 1), (3.14)

we form the matrices

F (0)
M0

:=
(
W (0)

M0,L
(0)

)†
W (0)

M0,L
(1), (3.15)

F (1)
M1

:=
(
W (1)

M1,L
(0)

)†
W (1)

M1,L
(1), (3.16)

where (W (0)
M0,L

(0))† denotes the Moore–Penrose pseudoinverse of W (0)
M0,L

(0).
Finallywedetermine the nodes x0, j ∈ [−1, 1] ( j = 1, . . . , M0) and x1, j ∈ [−1, 1]

( j = 1, . . . , M1) as eigenvalues of the matrix F (0)
M0

and F (1)
M1

, respectively. Thus the
algorithm reads as follows:

Algorithm 3.1 (Sparse Legendre interpolation based on SVD)
Input: L , K , N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N ), L is upper bound of

max{M0, M1}, sampled values H(− sin kπ
2N−1 ) (k = 1 − L − K , . . . , L + K − 1) of

the polynomial (2.7) of degree at most 2N − 1.
1. Compute

hk :=
√

π

2

√
cos

kπ

2N − 1
H

( − sin
kπ

2N − 1

)
(k = 1 − L − K , . . . , L + K − 1)

and form

fk := hk + h−k

2
, gk := hk − h−k

2
(k = 1 − L − K , . . . , L + K − 1).

2. Compute the SVD of the rectangular Toeplitz–plus–Hankel matrices (3.8) and
(3.12). Determine the approximate rank M0 of (3.8) such that σ

(0)
M0

/σ
(0)
1 > 10−8

and form the matrix (3.13). Determine the approximate rank M1 of (3.12) such that
σ

(1)
M1

/σ
(1)
1 > 10−8 and form the matrix (3.14).

3. Compute all eigenvalues x0, j ∈ [−1, 1] ( j = 1, . . . , M0) of the square
matrix (3.15). Assume that the eigenvalues are ordered in the following form 1 ≥
x0,1 > x0,2 > · · · > x0,M0 ≥ −1. Calculate n0, j := [ 2N−1

π
arccos x0, j − 1

2 ]
( j = 1, . . . , M0), where [x] := �x + 0.5� means rounding of x ∈ R to the near-
est integer.

4. Compute all eigenvalues x1, j ∈ [−1, 1] ( j = 1, . . . , M1) of the square
matrix (3.16). Assume that the eigenvalues are ordered in the following form 1 ≥
x1,1 > x1,2 > · · · > x1,M1 ≥ −1. Calculate n1, j := [ 2N−1

π
arccos x1, j − 1

2 ]
( j = 1, . . . , M1).

5. Compute the coefficients c0, j ∈ R ( j = 1, . . . , M0) and c1, j ∈ R ( j =
1, . . . , M1) as least squares solutions of the overdetermined linear Vandermonde–like
systems
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Reconstruction of sparse Legendre and Gegenbauer expansions 1031

M0∑

j=1

c0, j Qn0, j

(
sin

kπ

2N − 1

)
= fk (k = 0, . . . , L + K − 1) ,

M1∑

j=1

c1, j Qn1, j

(
sin

kπ

2N − 1

)
= g−k (k = 0, . . . , L + K − 1).

Output: M0 ∈ N0, n0, j ∈ N0 (0 ≤ n0,1 < n0,2 < · · · < n0,M0 < 2N ), c0, j ∈ R

( j = 1, . . . , M0). M1 ∈ N0, n1, j ∈ N (1 ≤ n1,1 < n1,2 < · · · < n1,M1 < 2N ),
c1, j ∈ R ( j = 1, . . . , M1).

Remark 3.1 The Algorithm 3.1 is very similar to [17, Algorithm 3.5]. Note that one
can also use the QR decomposition of the rectangular Toeplitz-plus-Hankel matrices
(3.8) and (3.12) instead of the SVD. In that case one obtains an algorithm similar to
[17, Algorithm 3.4]. 
�

4 Extension to Gegenbauer polynomials

In this section we show that our reconstruction method can be generalized to sparse
Gegenbauer expansions of low positive order. The Gegenbauer polynomials C (α)

n of
degree n ∈ N0 and fixed order α > 0 can be defined by the recursion relation (see
[21, p. 81]):

C (α)
n+2(x) := 2α + 2n + 2

n + 2
x C (α)

n+1(x) − 2α + n

n + 2
C (α)
n (x) (n ∈ N0)

with C (α)
0 (x) := 1 and C (α)

1 (x) := 2α x . Sometimes, C (α)
n are called ultraspherical

polynomials too. In the case α = 1
2 , one obtains again the Legendre polynomials

Pn = C (1/2)
n . By [21, p. 84], an explicit representation of the Gegenbauer polynomial

C (α)
n reads as follows

C (α)
n (x) =

�n/2�∑

j=0

(−1) j Γ (n − j + α)

Γ (α) Γ ( j + 1) Γ (n − 2 j + 1)
(2x)n−2 j .

Thus the Gegenbauer polynomials satisfy the symmetry relations

C (α)
n (−x) = (−1)n C (α)

n (x). (4.1)

Further one obtains that for m ∈ N0

C (α)
2m (0) = (−1)m Γ

(
m + 1

2

)

Γ (α) Γ (m + 1)
, C (α)

2m+1(0) = 0, (4.2)
(

d

dx
C (α)
2m+1

)
(0) = 2 (−1)m Γ (α + m + 1)

Γ (α) Γ (m + 1)
,

(
d

dx
C (α)
2m

)
(0) = 0. (4.3)
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1032 D. Potts, M. Tasche

Moreover, the Gegenbauer polynomial C (α)
n satisfies the following homogeneous lin-

ear differential equation of second order (see [21, p. 80])

(1 − x2)
d2

dx2
C (α)
n (x) − (2α + 1) x

d

dx
C (α)
n (x) + n (n + 2α)C (α)

n (x) = 0. (4.4)

Further, the Gegenbauer polynomials are orthogonal over the interval [−1, 1] with
respect to the weight function

w(α)(x) = Γ (α + 1)√
π Γ (α + 1

2 )
(1 − x2)α−1/2 (x ∈ (−1, 1)),

i.e. more precisely by [21, p. 81]

∫ 1

−1
C (α)
m (x)C (α)

n (x) w(α)(x) dx = α Γ (2α + n)

(n + α) Γ (n + 1) Γ (2α)
δm−n (m, n ∈ N0).

Note that the weight function w(α) is normalized by

∫ 1

−1
w(α)(x) dx = 1.

Then the normalized Gegenbauer polynomials

L(α)
n (x) :=

√
(n + α) Γ (n + 1) Γ (2α)

α Γ (2α + n)
C (α)
n (x) (n ∈ N0) (4.5)

form an orthonormal basis in the weighted Hilbert space Lw(α)([−1, 1]).
Let M be a positive integer. A polynomial

H(x) :=
d∑

k=0

bk L
(α)
k (x)

of degree d with d � M is calledM-sparse in theGegenbauer basis or simply a sparse
Gegenbauer expansion, if M coefficients bk are nonzero and if the other d − M + 1
coefficients vanish. Then such an M-sparse polynomial H can be represented in the
form

H(x) =
M0∑

j=1

c0, j L
(α)
n0, j (x) +

M1∑

k=1

c1,k L
(α)
n1,k (x) (4.6)

with c0, j := bn0, j �= 0 for all even n0, j with 0 ≤ n0,1 < n0,2 < · · · < n0,M0 and with
c1,k := bn1,k �= 0 for all odd n1,k with 1 ≤ n1,1 < n1,2 < · · · < n1,M1 . The positive
integer M = M0 + M1 is called the Gegenbauer sparsity of the polynomial H . The
integers M0, M1 are the even and odd Gegenbauer sparsities, respectively.
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Reconstruction of sparse Legendre and Gegenbauer expansions 1033

Now for each n ∈ N0, we introduce the functions Q
(α)
n by

Q(α)
n (x) :=

√
Γ (α + 1)

√
π

Γ
(
α + 1

2

) (1 − x2)α/2 L(α)
n (x) (x ∈ [−1, 1]) (4.7)

These functions Q(α)
n possess the same symmetry properties (4.1) as the Gegenbauer

polynomials, namely

Q(α)
n (−x) = (−1)n Q(α)

n (x) (x ∈ [−1, 1]). (4.8)

Further the functions Q(α)
n are orthonormal in the weighted Hilbert space L2

w([−1, 1])
with the Chebyshev weight w(x) = 1

π
(1 − x2)−1/2, since for all m, n ∈ N0

∫ 1

−1
Q(α)

m (x) Q(α)
n (x) w(x) dx =

∫ 1

−1
L(α)
m (x) L(α)

n (x) w(α)(x) dx = δm−n .

In the following, we use the standard substitution x = cos θ (θ ∈ [0, π ]) and obtain

Q(α)
n (cos θ) :=

√
Γ (α + 1)

√
π

Γ (α + 1
2 )

(sin θ)α L(α)
n (cos θ) (θ ∈ [0, π ]).

Lemma 4.1 For all n ∈ N0 and α ∈ (0, 1), the functions Q(α)
n (cos θ) are uniformly

bounded on the interval [0, π ], i.e.

|Q(α)
n (cos θ)| < 2 (θ ∈ [0, π ]). (4.9)

Proof For n ∈ N0 and α ∈ (0, 1), we know by [13] that for all θ ∈ [0, π ]

(sin θ)α |C (α)
n (cos θ)| <

21−α

Γ (α)
(n + α)α−1.

Then for the normalized Gegenbauer polynomials L(α)
n , we obtain the estimate

(sin θ)α |L(α)
n (cos θ)| <

21−α

Γ (α)

√
(n + α) Γ (n + 1) Γ (2α)

α Γ (2α + n)
(n + α)α−1.

Using the duplication formula of the Gamma function

Γ (α) Γ

(
α + 1

2

)
= 21−2α √

π Γ (2α), (4.10)

we can estimate
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1034 D. Potts, M. Tasche

|Q(α)
n (cos θ)| <

√
2

√
Γ (n + 1)

Γ (2α + n)
(n + α)α−1/2.

For α = 1
2 , we obtain |Q(1/2)

n (cos θ)| <
√
2. In the following, we use the inequalities

(see [9])
(
n + σ

2

)1−σ

<
Γ (n + 1)

Γ (n + σ)
<

(
n − 1

2
+

√
σ + 1

4

)1−σ

(4.11)

for all n ∈ N and σ ∈ (0, 1).
In the case 0 < α < 1

2 , the estimate (4.11) with σ = 2α implies that

|Q(α)
n (cos θ)| <

√
2

⎛

⎝
n − 1

2 +
√
2α + 1

4

n + α

⎞

⎠
−α+1/2

.

Since n − 1
2 +

√
2α + 1

4 < 2 (n + α) for all n ∈ N, we conclude that

|Q(α)
n (cos θ)| < 21−α.

In the case 1
2 < α < 1, we set β := 1 − 2 α ∈ (0, 1). By (4.11) with σ = β, we can

estimate

Γ (n + 1)

Γ (n + 2α)
= Γ (n + 1)

(n + β) Γ (n + β)
<

1

n + β

(
n − 1

2
+

√
β + 1

4

)1−β

.

Hence we obtain by n − 1
2 +

√
β + 1

4 < n + β that

|Q(α)
n (cos θ)| <

√
2√

n + β

(
n − 1

2
+

√
β + 1

4

)(1−β)/2

(n + α)α−1/2

<
√
2

(
n − 1

2
+

√
β + 1

4

)−β/2 (
n + 1 − β

2

)β/2

<
√
2.

Finally, by

Q(α)
0 (cos θ) =

√
α Γ (α)

√
π

Γ
(
α + 1

2

) (sin θ)α

and

|Q(α)
0 (cos θ)| ≤ 4

√
π,

we see that the estimate (4.9) is also true for n = 0. 
�
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Reconstruction of sparse Legendre and Gegenbauer expansions 1035

By (4.4), the function Q(α)
n (cos θ) satisfies the following linear differential equation

of second order (see [21, p. 81])

d2

dθ2
Q(α)

n (cos θ) +
(

(n + α)2 + α(1 − α)

(sin θ)2

)
Q(α)

n (cos θ) = 0 (θ ∈ (0, π)).

(4.12)
By the method of Liouville–Stekloff, see [21, pp. 210–212], we show that for

arbitrary n ∈ N0, the function Q(α)
n (cos θ) is approximately equal to some multiple

of cos[(n + α) θ − απ
2 ] in a small neighborhood of θ = π

2 .

Theorem 4.1 For each n ∈ N0 and α ∈ (0, 1), the function Q(α)
n (cos θ) can be

represented by the asymptotic formula

Q(α)
n (cos θ) = λn cos

[
(n + α) θ − απ

2

]
+ R(α)

n (θ) (θ ∈ [0, π ]) (4.13)

with the scaling factor

λn :=

⎧
⎪⎨

⎪⎩

√
(2m+α) Γ (2m+1)

Γ (2α+2m)

2α−1/2 Γ
(
m+ 1

2

)

Γ (m+1) n = 2m,√
Γ (2m+2)

(2m+1+α) Γ (2α+2m+1)
2α+1/2 Γ (α+m+1)

Γ (m+1) n = 2m + 1

and the error term

R(α)
n (θ) := −α(1 − α)

n + α

∫ θ

π/2

sin[(n + α)(θ − τ)]
(sin τ)2

Q(α)
n (cos τ) dτ (θ ∈ (0, π)).

(4.14)
The error term R(α)

n (θ) satisfies the conditions

R(α)
n

(π

2

)
=

(
d

dθ
R(α)
n

) (π

2

)
= 0

and has the symmetry property

R(α)
n (π − θ) = (−1)n R(α)

n (θ). (4.15)

Further, the error term can be estimated by

|R(α)
n (θ)| ≤ 2α(1 − α)

n + α
| cot θ |. (4.16)

Proof 1. Using the method of Liouville–Stekloff (see [21, pp. 210 – 212]), we derive
the asymptotic formula (4.13) from the differential equation (4.12), which can be
written in the form

d2

dθ2
Q(α)

n (cos θ) + (n + α)2 Q(α)
n (cos θ) = −α(1 − α)

(sin θ)2
Q(α)

n (cos θ) (θ ∈ (0, π)).

(4.17)
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1036 D. Potts, M. Tasche

Since the homogeneous linear differential equation

d2

dθ2
X (θ) + (n + α)2 X (θ) = 0

has the fundamental system

cos
[
(n + α) θ − απ

2

]
, sin

[
(n + α) θ − απ

2

]
,

the differential equation (4.17) can be transformed into the Volterra integral equation

Q(α)
n (cos θ) = λn cos

[
(n + α) θ − απ

2

]
+ μn sin

[
(n + α) θ − απ

2

]

−α(1 − α)

n + α

∫ θ

π/2

sin[(n + α)(θ − τ)]
(sin τ)2

Q(α)
n (cos τ) dτ (θ ∈ (0, π))

with certain real constants λn and μn . Introducing R(α)
n (θ) by (4.14), we see immedi-

ately that R(α)
n (π

2 ) = 0. From

d

dθ
R(α)
n (θ) = −α (1 − α)

∫ θ

π/2

cos[(n + α)(θ − τ)]
(sin τ)2

Q(α)
n (cos τ) dτ

it follows that ( d
dθ R(α)

n )(π
2 ) = 0.

2. Nowwe determine the constants λn andμn . For arbitrary even n = 2m (m ∈ N0),
the function Q(α)

2m (cos θ) can be represented in the form

Q(α)
2m (cos θ)=λ2m cos

[
(2m + α) θ− απ

2

]
+μ2m sin

[
(2m + α) θ − απ

2

]
+R(α)

2m (θ)

Hence the condition R(α)
2m (π

2 ) = 0 means that Q(α)
2m (0) = (−1)mλ2m . Using (4.7),

(4.5), (4.2), and the duplication formula (4.10), we obtain that

λ2m =
√

(2m + α) Γ (2m + 1)

Γ (2α + 2m)

2α−1/2 Γ
(
m + 1

2

)

Γ (m + 1)
.

From ( d
dx C

(α)
2m )(0) = 0 by (4.3) it follows that the derivative of Q(α)

2m (cos θ) vanishes

for θ = π
2 . Thus the second condition ( d

dθ R(α)
2m )(π

2 ) = 0 implies that

0 = μ2m (2m + α) (−1)m,

i.e. μ2m = 0.
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3. If n = 2m + 1 (m ∈ N0) is odd, then

Q(α)
2m+1(cos θ) = λ2m+1 cos

[
(2m + 1 + α)θ − απ

2

]

+μ2m+1 sin
[
(2m + 1 + α) θ − απ

2

]
+ R(α)

2m+1(θ).

Hence the condition R(α)
2m+1(

π
2 ) = 0 implies by C (α)

2m+1(0) = 0 [see (4.2)] that

0 = μ2m+1 (−1)m,

i.e. μ2m+1 = 0. The second condition ( d
dθ R(α)

2m+1)(
π
2 ) = 0 reads as follows

−
√

(n + α) Γ (α) Γ (2α) Γ (2m + 2)
√

π

Γ (α + 1
2 ) Γ (2α + 2m + 1) Γ (α)

(
d

dx
C (α)
2m+1

)
(0)

= −λ2m+1 (2m + 1 + α) (−1)m .

Thus we obtain by (4.3) and the duplication formula (4.10) that

λ2m+1 =
√

Γ (2m + 2)

(2m + 1 + α) Γ (2α + 2m + 1)

2α+1/2 Γ (α + m + 1)

Γ (m + 1)
.

4. As shown, the error term R(α)
n (θ) has the explicit representation (4.14). Using (4.9),

we estimate this integral and obtain

|R(α)
n (θ)| ≤ 2α(1 − α)

n + α

∣∣∣∣
∫ θ

π/2

1

(sin τ)2
dτ

∣∣∣∣ = 2α(1 − α)

n + α
| cot θ |.

The symmetry property (4.15) of the error term

R(α)
n (θ) = Q(α)

n (cos θ) − λn cos
[
(n + α)θ − απ

2

]

follows from the fact that Q(α)
n (cos θ) and cos[(n + α)θ − απ

2 ] possess the same
symmetry properties as (4.8). This completes the proof. 
�
Remark 4.1 The following result is stated in [10]: If α ≥ 1

2 , then

(sin θ)α |L(α)
n (cos θ)| ≤ 22

√√
π Γ

(
α + 1

2

)

Γ (α + 1)

(
α − 1

2

)1/6 (
1 + 2α − 1

2n

)1/12

for all n ≥ 6 and θ ∈ [0, π ]. Using (4.11), we can see that (sin θ)α |L(α)
n (cos θ)| is

uniformly bounded for all α ≥ 1
2 , n ≥ 6 and θ ∈ [0, π ]. Using above estimate, one

can extend Theorem 4.1 to the case of moderately sized order α ≥ 1
2 . 
�
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We observe that the upper bound (4.16) of |R(α)
n (θ)| is very accurate in a small

neighborhood of θ = π
2 . By the substitution t = θ − π

2 ∈ [−π
2 , π

2 ] and (4.8), we
obtain

Q(α)
n (sin t) = (−1)n λn cos

[
(n + α) t + nπ

2

]
+ (−1)n Rn

(
t + π

2

)

= (−1)n λn cos
(nπ

2

)
cos[(n+α) t] − (−1)n λn sin

(nπ

2

)
sin[(n+α) t]

+ (−1)n Rn

(
t + π

2

)
.

Now the Algorithm 3.1 can be straightforward generalized to the case of a sparse
Gegenbauer expansion (4.6):

Algorithm 4.2 (Sparse Gegenbauer interpolation based on SVD)
Input: L , K , N ∈ N (N � 1, 3 ≤ L ≤ K ≤ N ), L is upper bound of

max{M0, M1}, sampled values H(− sin kπ
2N−1 ) (k = 1 − L − K , . . . , L + K − 1) of

polynomial (4.6) of degree at most 2N − 1 and of low order α > 0.

1. Compute for k = 1 − L − K , . . . , L + K − 1

hk :=
√

Γ (α + 1)
√

π

Γ (α + 1
2 )

(
cos

kπ

2N − 1

)α

H

(
− sin

kπ

2N − 1

)

and form

fk := hk + h−k

2
, gk := hk − h−k

2
.

2. Compute the SVD of the rectangular Toeplitz–plus–Hankel matrices (3.8) and
(3.12). Determine the approximate rank M0 of (3.8) such that σ

(0)
M0

/σ
(0)
1 > 10−8

and form the matrix (3.13). Determine the approximate rank M1 of (3.12) such
that σ (1)

M1
/σ

(1)
1 > 10−8 and form the matrix (3.14).

3. Compute all eigenvalues x0, j ∈ [−1, 1] ( j = 1, . . . , M0) of the square matrix
(3.15). Assume that the eigenvalues are ordered in the following form 1 ≥ x0,1 >

x0,2 > · · · > x0,M0 ≥ −1. Calculate n0, j := [ 2N−1
π

arccos x0, j − α] ( j =
1, . . . , M0).

4. Compute all eigenvalues x1, j ∈ [−1, 1] ( j = 1, . . . , M1) of the square matrix
(3.16). Assume that the eigenvalues are ordered in the following form 1 ≥ x1,1 >

x1,2 > · · · > x1,M1 ≥ −1. Calculate n1, j := [ 2N−1
π

arccos x1, j − α] ( j =
1, . . . , M1).

5. Compute the coefficients c0, j ∈ R ( j = 1, . . . , M0) and c1, j ∈ R ( j = 1, . . . , M1)

as least squares solutions of the overdetermined linear Vandermonde–like systems
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M0∑

j=1

c0, j Q
(α)
n0, j

(
sin

kπ

2N − 1

)
= fk (k = 0, . . . , L + K − 1) ,

M1∑

j=1

c1, j Q
(α)
n1, j

(
sin

kπ

2N − 1

)
= g−k (k = 0, . . . , L + K − 1).

Output: M0 ∈ N0, n0, j ∈ N0 (0 ≤ n0,1 < n0,2 < · · · < n0,M0 < 2N ), c0, j ∈ R

( j = 1, . . . , M0). M1 ∈ N0, n1, j ∈ N (1 ≤ n1,1 < n1,2 < · · · < n1,M1 < 2N ),
c1, j ∈ R ( j = 1, . . . , M1).

5 Numerical examples

Now we illustrate the behavior and the limits of the suggested algorithms. Using
IEEE standard floating point arithmetic with double precision, we have implemented
our algorithms in MATLAB. In Example 5.1, an M-sparse Legendre expansion is
given in the form (2.7) with normed Legendre polynomials of even degree n0, j ( j =
1, . . . , M0) and odd degree n1,k (k = 1, . . . , M1), respectively, and corresponding
real non-vanishing coefficients c0, j and c1,k , respectively. In Examples 5.3 and 5.4, an
M-sparse Gegenbauer expansion is given in the form (4.6) with normed Gegenbauer
polynomials (of even/odd degree n0, j resp. n1,k and order α > 0) and corresponding
real non-vanishing coefficients c0, j resp. c1,k . We compute the absolute error of the
coefficients by

e(c) := max
j=1,...,M0
k=1,...,M1

{|c0, j − c̃0, j |, |c1,k − c̃1,k |}

(c := (c0,1, . . . , c0,M0 , c1,1, . . . , c1,M1)
T),

where c̃0, j and c̃1,k are the coefficients computed by our algorithms. The symbol +
in the Tables 2, 3, 4 and 5 means that all degrees n j are correctly reconstructed, the

Table 2 Results of Example 5.1
for exact sampled data

N K L Algorithm 3.1 e(c)

101 5 5 + 3.3307e−15

200 5 5 + 5.5511e−16

300 5 5 + 1.5876e−14

400 5 5 − –

400 6 5 + 1.6209e−14

500 6 5 − –

500 7 5 − –

500 9 5 + 2.4780e−13
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symbol − indicates that the reconstruction of the degrees fails. We present the error
e(c) in the last column of the tables.

Example 5.1 We start with the reconstruction of a 5-sparse Legendre expansion (2.7)
which is a polynomial of degree 200.We choose the even degrees n0,1 = 6, n0,2 = 12,
n0,3 = 200 and the odd degrees n1,1 = 175, n1,2 = 177 in (2.7). The corresponding
coefficients c0, j and c1,k are equal to 1. Note that for the parameters N = 400 and
K = L = 5, due to roundoff errors, some eigenvalues x̃0, j resp. x̃1,k are not contained
in [−1, 1]. But we can improve the stability by choosing more sampling values. In the
case N = 500, K = 9 and L = 5, we need only 2 (K + L) − 1 = 27 sampled values
of (3.1) for the exact reconstruction of the 5-sparse Legendre expansion (2.7). 
�

Example 5.2 Now we show that the Algorithm 3.1 is robust with respect to noisy
sampled data. We reconstruct a 5-sparse Legendre expansion (2.7) with the even
degrees n0,1 = 12, n0,2 = 150 and the odd degrees n1,1 = 75, n1,2 = 277 and
n1,3 = 313, where the corresponding coefficients c0, j and c1,k are equal to 1. Then we
add noise of size 10−δη, where η is uniformly distributed in [−1, 1], to each sampling
value. The corresponding results of Algorithm 3.1 are shown in Table 3. Note that for
certain parameters, some eigenvalues x̃0, j resp. x̃1,k are not contained in [−1, 1]. But
we can improve the stability of Algorithm 3.1 by choosing more sampling values (see
Table 3). Note that we can also reconstruct the polynomials for higher noisy level, if
we replace the identification of the rank M0 of (3.8) and M1 of (3.12) in step 2 of
Algorithm 3.1 by a gap condition. For the results see the last four lines of Table 3. 
�

Example 5.3 We consider now the reconstruction of a 5-sparse Gegenbauer expansion
(4.6) of order α > 0 which is a polynomial of degree 200. Similar as in Example 5.1,
we choose the even degrees n0,1 = 6, n0,2 = 12, n0,3 = 200 and the odd degrees
n1,1 = 175, n1,2 = 177 in (4.6). The corresponding coefficients c0, j and c1,k are equal
to 1. Here we use only 2 (L + K ) − 1 = 19 sampled values for the exact recovery
of the 5-sparse Gegenbauer expansion (4.6) of degree 200. Despite the fact, that we
show in Theorem 4.1 only results for α ∈ (0, 1), we show also some examples for
α > 1. But the suggested method fails for α = 3.5. In this case our algorithm cannot
exactly detect the smallest degrees n0,1 = 6 and n0,2 = 12, but all the higher degrees
are exactly detected. 
�

Example 5.4 Weconsider the reconstruction of a 5-sparseGegenbauer expansion (4.6)
of order α > 0 which does not consist of Gegenbauer polynomials of low degrees.
Thus we choose the even degrees n0,1 = 60, n0,2 = 120, n0,3 = 200 and the odd
degrees n1,1 = 175, n1,2 = 177 in (4.6). The corresponding coefficients c0, j and c1,k
are equal to 1. In Table 5, we show also some examples for α ≥ 2.5. But the suggested
method fails for α = 8. In this case, Algorithm 4.2 cannot exactly detect the smallest
degree n0,1 = 60, but all the higher degrees are exactly recovered. This observation
is in perfect accordance with the very good local approximation near θ = π/2, see
Theorem 4.1 and Remark 4.1. 
�
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Table 3 Results of Example 5.2
for noisy sampled data

N K L δ Algorithm 3.1 e(c)

200 5 5 5 − –

200 9 9 5 + 1.6020e−05

200 25 25 5 + 7.9357e−06

200 65 65 5 + 3.3771e−07

200 100 30 3 + 5.1114e−03

200 110 30 3 + 1.2290e−03

200 110 40 3 + 1.2226e−03

200 100 50 3 + 5.6290e−04

Table 4 Results of Example 5.3
α N K L Algorithm 4.2 e(c)

0.1 101 5 5 + 5.5511e−16

0.2 101 5 5 + 2.2204e−16

0.4 101 5 5 − –

0.4 200 5 5 + 1.0769e−14

0.5 200 5 5 + 8.8818e−16

0.9 200 5 5 + 7.5835e−16

1.5 200 5 5 + 1.3323e−15

2.5 200 5 5 + 1.1102e−16

3.5 200 5 5 − –

Table 5 Results of Example 5.4
α N K L Algorithm 4.2 e(c)

0.1 101 5 5 + 1.2879e−14

0.2 101 5 5 + 1.1879e−14

0.4 101 5 5 − –

0.4 200 5 5 + 3.1086e−15

0.9 200 5 5 + 1.3323e−14

2.5 200 5 5 + 7.7716e−16

3.5 200 5 5 + 5.4401e−15

4.5 200 5 5 + 3.3862e−14

7.0 200 5 5 + 2.2204e−16

7.5 200 5 5 + 3.3307e−16

8.0 200 5 5 − –

9.0 200 5 5 − –

Example 5.5 We stress again that the Prony-like methods are very powerful tools for
the recovery of a sparse exponential sum

S(x) :=
M∑

j=1

c j e
f j x (x ≥ 0)
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with distinct numbers f j ∈ [−δ, 0] + i [−π, π) (0 ≤ δ � 1) and complex non–
vanishing coefficients c j , if only finitely many sampled data of S are given. In [17,
Example 5.5], we have presented a method to reconstruct functions of the form

F(θ) =
M∑

j=1

(
c j cos(ν jθ) + d j sin(μ jθ)

)
(θ ∈ [0, π ]).

with real coefficients c j , d j and distinct frequencies ν j , μ j > 0 by sampling the
function F .

Now we reconstruct a sum of sparse Legendre and Chebyshev expansions

H(x) :=
M∑

j=1

c j Ln j (x) +
M ′∑

k=1

dk Tmk (x) (x ∈ [−1, 1]). (5.1)

Here we choose c j = dk = 1, M = M ′ = 5 and (n j )
5
j=1 = (6, 13, 165, 168, 190)T

and (mk)
5
k=1 = (60, 120, 175, 178, 200)T. Substituting x = − sin t for t ∈ [−π

2 , π
2 ],

we obtain

√
π

2

√
cos t H(− sin t)=

M∑

j=1

c j Qn j (− sin t)+
M ′∑

k=1

dk

√
π

2

√
cos t cos

(
mkt+mkπ

2

)
.

(5.2)
By Theorem 2.1, the function

M∑

j=1

c j λn j cos

[(
n j + 1

2

)
t + n jπ

2

]
+

M ′∑

k=1

dk

√
π

2
cos

(
mkt + mkπ

2

)
(5.3)

approximates (5.2) in the near of 0. We apply Algorithm 3.1 with N = 200 and
K = L = 20. In step 3 of Algorithm 3.1, we calculate all frequencies n j + 1

2 and mk

of (5.3), if n j and mk are even:

(
2N − 1

π
arccos x0, j

)7

j=1
=(199.99, 190.50, 178.00, 168.49, 120.00, 60.000, 6.52)T.

In step 4 of Algorithm 3.1, we determine all frequencies n j + 1
2 and mk of (5.3), if n j

and mk are odd:

(
2N − 1

π
arccos x1, j

)3

j=1
= (165.500, 175.000, 13.509)T.

Thus the Legendre polynomials Ln j (x) in (5.1) have the even degrees 6, 168, and 190
and the odd degrees 13 and 165. Thus the Chebyshev polynomials Tmk (x) in (5.1)
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possess the even degrees 60, 120, 178, and 200 and the odd degree 175. Finally, one
can compute the coefficients c j and dk . 
�
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