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Efficient reconstruction of functions on the sphere from scattered data
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2 Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Str. 39, 09107 Chemnitz, Germany

Copyright line will be provided by the publisher

Motivated by the fact that most data collected over the surface of the earth is available at scattered nodes only, the least
squares approximation and interpolation of such data has attracted much attention, see e.g. [1, 2, 5]. The most prominent
approaches rely on so-called zonal basis function methods [16] or on finite expansions into spherical harmonics [12, 14]. We
focus on the latter, i.e., the use of spherical polynomials since these allow for the application of the fast spherical Fourier
transform, see for example [8, 9] and the references therein.

If we consider the problem of reconstructing a spherical polynomial of degree N ∈ Z from sample values, one might set
up a linear system of equations with M = (N + 1)2 interpolation constraints which has to be solved for the unknown vector
of Fourier coefficients f̂ ∈ C(N+1)2 . If the nodes for interpolation are chosen such that the interpolation problem has always
a unique solution, the sampling set is called a fundamental system. As can be seen in Figure 1(b), also geometrically well
distributed nodes on the sphere can lead to an ill conditioned square spherical Fourier matrix. Hence, we relax the condition
that the number of equations M coincides with the number of unknowns (N + 1)2. Considering the overdetermined case
M > (N +1)2 or the underdetermined case M < (N +1)2 leads to far better distributed singular values of the system matrix
as seen in Figure 1(b).

(a) Generalised spiral nodes [15].
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(b) Singular value distribution.

Fig. 1 Distribution of the singular values of the spherical Fourier matrix Y ∈ CM×(N+1)2 with respect to the polynomial degrees
N = 0, . . . , 40 for M = 400 generalised spiral nodes, cf. [7].

Our main result [7] is that for given sampling nodes the polynomial degree N can either be chosen small enough with
respect to the inverse mesh norm or large enough with respect to the inverse separation distance of the sampling set to ensure
a well conditioned spherical Fourier matrix. In both cases, the derived conditions are optimal up to a moderate constant.

In the first part, we consider the overdetermined case M > (N + 1)2, that is the least squares approximation by spherical
polynomials to given data. The approximation by (univariate) trigonometric polynomials has been proven to be stable if the
polynomial degree is less than the inverse of the mesh norm of the sampling set in [6]. Subsequently, Feichtinger, Gröchenig
and Strohmer [3] developed the celebrated adaptive weights, conjugate gradient, Toeplitz method (ACT) for the fast iterative
solution of the least squares problem. Moreover, so-called spherical Lp-Marcinkiewicz-Zygmund inequalities due to Mhaskar,
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Narcowich, Ward [11] and Filbir, Themistoclakis [4] yield stable least squares approximation for a quasi-uniform subset of
a dense sampling set. We generalise the idea of adaptive weights to the sphere and have the following L2-Marcinkiewicz-
Zygmund inequality for dense sampling sets.

Theorem 0.1 Let a sampling setX ⊂ S2 of cardinalityM ∈ N with mesh norm δ = 2maxξ∈S2 minj=0,...,M−1 arccos(ξj , ξ)
be given. Moreover, let the polynomial degreeN ∈ N be bounded by 154Nδ < 1 and set up so called Voronoi weightswj > 0.
Then we have for arbitrary spherical polynomials f =

∑N
k=0

∑k
n=−k f̂

n
k Y

n
k (ξ) the weighted norm estimate

(1− 154Nδ) ‖f‖2L2(S2) ≤
M−1∑
j=0

wj |f(ξj)|2 ≤ (1 + 154Nδ) ‖f‖2L2(S2) .

Under the above conditions and for given data y ∈ CM , the least squares problem

min
f

M−1∑
j=0

wj |yj − f(ξj)|2

has condition number κ ≤ (1 + 154Nδ)/(1− 154Nδ).
On the other hand, we focus on the underdetermined case M < (N + 1)2, where we aim to interpolate the given data.

The trigonometric interpolation problem has been considered in [10], from where we adopt a smoothness-decay principle
to construct strongly localised zonal polynomials with strictly positive Fourier-Legendre coefficients. In conjunction with
a refined version of the packing argument from [13], we prove stable interpolation for well separated sampling sets in the
following.

Theorem 0.2 Let a sampling set X ⊂ S2 of cardinality M ∈ N with separation distance q = min0≤j<l<M arccos(ξj , ξl)
be given. Moreover, let the polynomial degree N ∈ N be bounded by Nq > 14 and set up so called B-spline weights ŵk > 0.
Then the matrixK = (Kj,l)j,l=0,...,M−1, Kj,l =

∑N
k=0

∑k
n=−k ŵkY

n
k (ξj)Y n

k (ξj) has bounded eigenvalues

|λ(K)− 1| ≤
(

14
Nq

)3

.

Under the above conditions and for given data y ∈ CM , the optimal interpolation problem

min
f

N∑
k=0

k∑
n=−k

∣∣∣f̂n
k

∣∣∣2
ŵk

subject to
N∑

k=0

k∑
n=−k

f̂n
k Y

n
k

(
ξj

)
= yj

has condition number κ ≤ (1 + (14/Nq)3)/(1− (14/Nq)3).
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