Kernels of Spherical Harmonics
and Spherical Frames

Daniel Potts, Gabriele Steidl and Manfred Tasche

Abstract. Our concern is with the construction of a frame in L? (S) consisting
of smooth functions based on kernels of spherical harmonics. The corresponding
decomposition and reconstruction algorithms utilize discrete spherical Fourier
transforms. Numerical examples confirm the theoretical expectations.

§1. Introduction

Traditionally, wavelets were tailored to problems on the Euclidean space R?. How-
ever, in most applications one has to analyze functions defined on compact domains.
In particular, in geophysics wavelets on the unit sphere S of R? are of interest. There
exist different approaches to the constructions of spherical wavelets. Having spher-
ical coordinates in mind, the idea of using tensor—products of periodic wavelets and
wavelets on the interval was suggested in [7]. Applying tensor-products of periodic
exponential spline-wavelets and spline—wavelets on the interval, wavelets on S were
constructed in [3]. Unfortunately, tensor-product wavelets can possess singularities
at the poles of S. To avoid these singularities, the coeflicients of scaling functions
and wavelets have to satisfy a linear system on each level, whose dimension grows
very fast (see [3]).

A tensor—product method with a completely different kind of wavelets, namely
trigonometric wavelets [2] and polynomial wavelets [11], was considered in [10]. But
these wavelets cannot be used for the detection of singularities of a given function
at the poles of S.
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Another simple and powerful technique for constructing biorthogonal wavelets
on the sphere applies the so—called lifting scheme. This method was developed
in [12]. One example are lifted versions of generalized Haar—wavelets on spherical
triangles.

Finally, spherical wavelets were constructed by using spherical harmonics. This
idea was realized in a different manner in [6] (for equidistributed nodes on S) and
[9] (for scattered points on S).

Our paper deals with the construction of a frame in L?(S) consisting of smooth
functions arising from kernels of spherical harmonics. The corresponding decom-
position and reconstruction algorithms utilize discrete spherical Fourier transforms.
Numerical examples emphasize that our method is suited for the detection of sin-
gularities of a given function at the poles of S, too.

This paper is organized as follows. Section 2 briefly recalls properties of spheri-
cal harmonics. Introducing the sampling spaces of band-limited functions in Section
3, we verify in Section 4 that these spaces form a multiresolution of L?(.S). In Section
5 we construct the corresponding tight frame in L?*(S). We describe decomposition
and reconstruction algorithms in Section 6 and conclude with numerical tests in
Section 7.

§2. Spherical Harmonics

Starting with the Legendre polynomials

14k,
we define the associated Legendre functions P! (n € No; k =n,n+1,...) by

|

—n)! 1/2 "
P = () (= GoPe) (e e[,

For any fixed n € INg, the functions P’ (k = n,n+1,...) form a complete orthogonal
system in L?[—1,1] with

I 1
5/_1 Pl (x)P(z) dz = 2k—|—15k’l (n € No; k,l=n,n+1,...).

Moreover, the associated Legendre functions fulfil the three—term recurrence relation

((2n))) '/

27 pl

Pii(@)i=0,  Pi(x)= (1=t

Plo(z) —vg oPg(z) +wyp Py_y(z) =0 (k=n,n+1,...) (2.1)
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with

2k + 1 . ((k = n)(k 4+ n))'/?

Gk 2 T G DD

As usual, we parametrize the points of the unit sphere S in IR*® by their spherical
coordinates (6, ) € [0,7] x [0,27). Then the spherical distance between the two
points p = (6, ) and p’ = (¢',¢’) of S is determined by

pp’ := arccos (p - p’)
with the inner (cartesian) product
p-p =cosf cosf + sinf sin’ cos(p —¢').

We are interested in the Hilbert space L?(.S) of all square integrable functions
on S with the scalar product

// F(6,0)g(0,0)sind dp A8 (f, g € L*(S))

and with the corresponding norm || - ||. Set
I:= {(k,n): k€ No, n=—k,..., k}.

An orthogonal basis of L?(S) is given by the set {Y;* : (k,n) € I} of spherical
harmonacs

Yii(0,p) = P,Ln|(cos f) e"? .
It is easy to check that

n m 1 m 1 o i(ln—m
<nﬂm>=§/ PP/ (@) do - oo [ mme g
0

1

o2k +1 Ok )l 5” m ((kvn)7 (lvm) € i) . (2.2)

Furthermore, it holds the following addition theorem for spherical harmonics

Z Vi (0,0) Y, "(0',¢) = Pr(cosf cost + sinf sin6' cos(p — ¢'))
n=—%k
or shortly with p = (0, ¢) and p’ = (¢, ),

> V) Y = Pulpep). (2.3)

n=—=~k
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We consider the Fourier expansion of f € L%(S) with respect to the spherical
harmonics

f= 2 Ck+1)ag(NY, ap(f) = (£Y).

(k,n)Ei
Let [? (i) be the Hilbert space of all complex sequences (aZ)(k nyei with

Z (2k + 1) |a}]* < o0
(k,n)Ei

Then we refer to F: L*(S) — ZZ(T) defined by
Ff=(af(f)gme (f €LS))

as spherical Fourier transform. For more details on spherical harmonics, see e.g. [8].

§3. Sampling Spaces
For 5 € INg we set
Y ={(s,t) : s=0,...,2/%" t:O,...,Qj"H—l},
& ={(k,n) : k=0,...,2 —1;n=—k,...,k}.

We consider the sampling spaces of level j (5 € Ng)
V7 i=span{Y]: (k,n) eI’}

consisting of so—called band-limited functions. Clearly, dim V7 = 22, Moreover, for
band-limited functions, it holds the following sampling theorem.

Theorem 3.1. Let f € V7 (j € Ny) be given . Then we have for (k,n) € 17

n 1 ] ] ] —ngs 7
ar (f) = 2]‘+1 Z gg]—i—l)wg]—i—l)f(pg,t) Yk (pi,t)
(s,t)€ld

with

) ) g

— “95 ) s

and with the Clenshaw—Curtis weights

9
; 1 N —2 sum :
wl ) = DYES] 62])4112 — ©05 ; (s =0,...,27T1), (3.1)
0

u=
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Proof: By definition of V7, it suffices to consider the functions f(6, ) = Y™ (6, )

((I,m) € i]) Their Fourier coefficients can be written as

i) =5 [ PPl e de - - / Tt g (3:2)
-1 0
Now it holds for m, n =1 —27,...,2/ — 1 that
1 [ 1 pE j
6m,n — % el(m—n)c,a d@ — S Z em(m—n)t/2 ) (33)
=0

Hence, for m # n we are done. For m = n, we verify that Pl|n|P,|€n| is an algebraic
polynomial of degree at least 27! — 2 such that ClenshawCurtis quadrature gives
2.] +1

1 /! n TS
5/_1 Pl| |(:L')P,|C |( de = Z i +1) (]+1)P| |<C082 —H) P,'C |(cos 2]+1).

Together with (3.2) and (3.3), thls completes the proof. H

Note that a similar sampling theorem for band-limited function on S was
proved in [4]. From Theorem 3.1 it follows a discrete orthogonality relation for
spherical harmonics.

Corollary 3.2. Let j € Ny be given. Then we have for all (k,n), (I,m) € 17

Cng g 1
> eI YT W )Y Pl = g Sk S
(s,t) €L

Proof: Using Theorem 3.1 for f = Y;™, we obtain the result by (2.2). W

2]-1—1

Theorem 3.1 leads to the following algorithm for the computation of the spher-
ical Fourier transform of a band-limited function f € V7:

Algorithm 3.3 (Discrete Spherical Fourier Transform)
Input: For fixed 5 € Ny, let f(pit) € C ((s,t) € I7) be given.

1. For every s = 0,...,2/1! form by fast Fourier transform

20+t _q

~

1 4 ) , 4 4
I = 9j+1 Z Fpl) e ™™ (n=1-27,.. 27 —1).
t=0

2. Forevery n =1—27,...,27 —1 compute
2.j+1
i . . fn n T8 .
ay , = Z DU+ fr P,l | (cos 2j+1> (k =|nl|,...,27 = 1)
s=0

by the three—term recurrence relation (2.1).

Output: a(f) := ak L, €C ((k,n)e ij)

The size of the Clenshaw—Curtis weights can be estimated as follows:



6 D. Potts, G. Steidl, M. Tasche

Lemma 3.4. For j € Ng and s =0,...,2/%! it holds
(22j+2 _ 1)—1 < ng—U < 277 _ (221+2 _ 1)—1 )
Proof: From (3.1) it follows that

2j+1ng+1) > 2j+1w(()j+1)

_1 Wz‘:l 1 1 1 1 1
- ~\2u—1 2u+l 2\ 241 1  92i+1 41

1 1 1 : :
_ = — 9Jtli9254+2 _ 1)1
_2<21‘+1—1+2J‘+1+1)_2 (2 D™

On the other hand, we have

2/ 1
L 1 1 1 1 1
9i+1,G+1) 1 _ - ‘ I
Ws +uz::1 i1 2us1) Ta\gA o1 oy

1 1 1 . )
9 _ 9 _9jtlio2542  1y—1
=9 2<2]‘+1_1‘|‘2j+1+1)—2 297 (2 ™.

This completes the proof. W

§4. Multiresolution of L*(S)

The following definition of scaling functions is motivated by the outstanding prop-
erties of so—called kernel polynomials associated with orthogonal polynomials in
weighted L?—spaces (see e.g. [1, pp. 35-38]). The constructions of polynomial scal-
ing functions and corresponding wavelets in [2,5,10,11] are based on kernel polyno-
mials. Clearly, the concept of kernel polynomials can be transferred to orthogonal
systems in other Hilbert spaces. We are concerned with the kernels K7 : SxS — C
of level j (j € Ny)

Ki(p,p') := Z 2k + )Y (p) Y, "(p) (p,p" €5)
(k,n)€li

defined with respect to the spherical harmonics in V/. The name “kernel” is ex-
plained by the reproducing property

(LEI(p) =f0) (feV?, pes), (4.1)
which follows immediately from the Fourier expansion
f= Y Ck+Dai(N)Yy (4.2)

(k,n)€li
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of f € V7 and from (2.2).
We introduce the scaling functions ¢? of level 5 (5 € Ng) by

2l = Y (2k+1)Y)

(k,n)€li

and the “rotated” scaling functions qﬁit € V7 ((s,t) € V) by

2j¢g,t = I{j( : 7Pg,t) = Z (2 +1)Y;? Yk_n(Pg,t) :

(k,n)eij
Then we have by (4.1) that
ng . j —n/J ng1j Iy (! 17
ap(6l,) = Y <pz,t>ak<¢f>={2 Vilpg) (k) ey (g3
0 otherwise.

The functions qbit € V7’ ((s,t) € IV) are smooth on the whole sphere S. Unfor-
tunately, they are linearly dependent. By the addition theorem (2.3), the scaling
functions read in terms of the spherical distance as

2l (1) = 3 (2 + 1) P (cos(ppl)) = 3 (4D Pp-pl). (44)

Theorem 4.1 collects further important properties of <bé’t .

Theorem 4.1. For j € Ny and (s,t) € I/ it holds:
(1) Reproducing property:

2(f,¢1,) = fpl,) (FeVI).

) 1l =1, &l (pl,) =2

(iii) Localization property: qbit is localized around pgﬂf, ie.

[l

= 277 =min . fevi, gt =1}.
7 LLrl: f flpe) =1}

Proof: The reproducing property (i) follows immediately from (4.1). In particular,
(1) yields

(K

2 = <¢g7t7¢g,t> =27 ng,t(pg,t)'
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On the other hand, we have by (4.4) and Pi(1) = 1 (k € INg) that

29 1

$Lph ) =279 Y (2k 4 1) Pi(cos0) =27,

k=0

which proves (ii).
The localization property (iii) can be seen by the following standard arguments:

Let f € V7 with fpls) =1, 1e.

L= Y @k+1)ai(HY(phe)-

(k,n)Ei

Then by applying the Cauchy—Schwarz inequality, the Parseval identity and (ii), we
obtain

1< Y @k+1)ap(H)P S @+ YE P

(k,n)€li (k,n)€li
= 171727 &% u(p2,0) = 22 1117
where the equality holds if and only if a? (f) = 277 Yk_"(pi’t) (k,n) € ij), ie. f=
277 ¢, M

Theorem 4.2. The subspaces V7 (j € Ng) form a multiresolution of L*(S) with
the following properties:

(i) VI Cc Vit (j € Ng), clos |J VI=L2%S).
=0
(ii) V7 = span {qb;t (s, t) € VY.
(iii) The set {(21'—1d””wé”l))l/?gbg’t : (s,t) € U} is a tight frame in V7,
ie., for all f € V7 we have

21 N DU |(f, 97 P = |17

(s,t)€TI

Proof: 1. By definition of V7, property (i) is straightforward.
2. Any f € V7 can be represented in the form (4.2), where the Fourier coef-
ficients a?(f) ((k,n) € I7) can be computed by Theorem 3.1. Together with the

definition of ¢] ;, this results in

1 , , S
Fot S )

(s,t)€ld
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Thus (ii) is clear. ‘
3. By the reproducing property of qbit the above expression can be replaced
by
f=270 30 ST (£ 6l 0 6
(s,t) €l
Hence we obtain the final result
A1 = (i f) =270 Y 0Dl (6l ). W
(s,t)€ld
The Fourier—transformed two—scale relation of ¢’ reads as follows
ap(¢) = Al aR(¢"th) (k) €1) (45)
with N
ATt 2 (k,n) EIJM‘
k00 (kyn) € T\ .

§5. Wavelet Spaces

We introduce the wavelet space W7 of level j (j € INg) as the orthogonal complement
of V7in VIl ie. VIt = VI@W/. This implies the orthogonal sum decomposition

L S)y=vre P W (joecNo).
J=Jjo
Clearly, ‘ ‘ ‘ ‘
dim W’ = dim V't — dim V/ = 3.2,
Let the function ¥/ (j € INg) be defined by
)= Y (2k+ 1)V
(k,n)eli+1\1J
and the “rotated” functions ¢g,t c W7 ((s,t) € U+ by
20yl = KT ph ) — KO (- pith) = Z 2k + 1) YY" (plh).
(k,n)€li+1\1i
By the addition theorem (2.3), the functions @/{Z,t can be written alternatively as
27 it(p) = Z (2k 4+ 1) Py (cos(ppi,:;l)) )
Then we have
o o e i —jyv—n/,J+1 Ti+1N\ 15
ap(el) = Y (i) el (1) = {2 Ntes) (hn) € DEAE, )
0 otherwise.

The functions @/Jit ((s,t) € 1) are smooth on the whole sphere S. Obviously, they
are linearly dependent. Moreover, they possess the following important properties:
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Theorem 5.1. For j € Ny and (s,t) € ! it holds:
1) Reproducing property:
3R ducing
2(f 0l = Ffh) (few).
1) Orthogonality property:
i1) Orthogonali
(bl Y1) =0 ((u,v) €T).
(i) ol ll = 312, ol (pl}') =32/,

J
s,

J+1

(iv) Localization property: vy ; is localized around py -, i.e.

[ o S
——m— = 37227 —min {||f||: fe W, F(pLF) =1}
s,t(ps,t )
Proof: The orthogonality property is a direct consequence of the definition of '¢&£,t-
The proof of (i), (iii) and (iv) is omitted here, since it follows exactly the lines of
the proof of Theorem 4.1. W

Theorem 5.2. We have
Wi = span{;/)g’t D (s,) € DT
Th@ functions (2j_2£gj+2)ng+2))1/2¢§7t ((s,t) € IT1) constitute a tight frame in
Wi, ie.,
2772 N U ()P = || £ (5.2)

(s,t)€Ti+1
for all f € W7,

Proof: Fourier expansion of f € W/ with Fourier coefficients a?(f) determined by
Theorem 3.1 gives

f= Y (@k+1ap(HYY (53)
(k,n)eli+1\1i

_ 1 Z G2 £ty i
(s,t)€Ti+1

such that W/ = span {¢§7t . (s,t) € U1} Now (5.2) follows as in the proof of
Theorem 4.2. W

The Fourier-transformed two-scale relation of 17 reads
ap(’) = Bt ap (¢t ((k,n) € 1) (5-4)
with N N
Bﬁu:{2<hmev“\n

k .
o 0 otherwise.
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§6. Decomposition and Reconstruction Algorithms

In this section, we derive efficient decomposition and reconstruction algorithms. In
order to decompose a given function f/t! € VIt (j € INg) of the form

= LS e gt i (6.1)
2(s,t)elj+1

with agtl = fj+1(pg:|;1) ((s,t) € 1), the uniquely determined functions f7 € V7
and g/ € W7 have to be found such that

P = g g (6.2)
Assume that the coefficients agﬁl € C ((s,t) € ) or their discrete spherical
Fourier transform data

. 1 4 4 . . s
6 =g yL eIl () €T (63)
(s,t)€li+t

are known. The functions f7 € V7 and g7 € W/ can be represented by

1

fi = 5 Z ggf+1>w§f+1>ag7t gt, (6.4)
(s,t)€ld
1 . . S
Fg=7 2 B v, (6.5)
(u,v)eli+t
with unknown coefficients ait, ﬁf;’v € C. Let di ne Nljm € C denote the following
discrete spherical Fourier transform data
. 1 . . o N
o= gy O VWYl Y (k) € ), (6.6)
(s,t)eld
iy 1 4 4 o ..
o= srg Y SO0 Yo (m) e DT, (67)
(u,v)€li+?

In order to reconstruct f7T1 € Vi1 (j € INy), we have to compute the coeffi-
cients agtl of the sum (6.2) with given functions f/ € V/ and g/ € W7 (see (6.1)).
Assume that the coefficients ait, 5{;771 € Cin (6.4) — (6.5) or their corresponding
transformed data (6.6) — (6.7) are known. The decomposition and reconstruction
algorithms are based on the following connection between (6.3) and (6.6) — (6.7):
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Theorem 6.1. For j € Ny, let f/*! ¢ VIt fi € VI and ¢ € W/ with (6.1) -
(6.7) be given. Then we have

A (CRORS OF
3 =&t ((Lm) e DT\ ).

Proof: From (6.1), it follows by (4.3) and (6.3) that for all (k,n) € [7+1
ap (FTh) =276 ap (o).

Analogously, by (4.3), (5.1), (6.4) and (6.5) we have

ai(f7) = 2 & ,ai(¢)) ((k.n) €V), (6.8)
ai'(¢’) = 2/ B] pai*(?)  ((lom) € PH). (6.9)

From (6.2) it follows that for all (k,n) € i+t
ap(F7) = ap(f7) + ap(e’).

Using the Fourier—transformed two—scale relations (4.5) and (5.4), we obtain for all
(k,n) € ¥,

265 a(67) = G, AL (67 + B B k(¢
By af (¢7T1) # 0 ((k,n) € Iit1), this yields the assertion. M

As consequence we obtain the following procedures:

Algorithm 6.2 (Decomposition Algorithm)
Input: For fixed j € Ny, let df—nl €C ((k,n)e ij+1) be given.
Set

&), =att ((kon) el),
B, =ath ((Lom) e TH\T).

El

Output: &} , € C ((k,n) € V), 5], € C((I,m) € T+ \ 1)

Algorithm 6.3 (Reconstruction Algorithm)
Input: For fixed ;7 € Ny, let d/i . €C((k,n)e i]) and Bljm eC((I,m) € [+! \i])

be given.

Set ) ) ..
&?c—i_nl = OA[?C n ((k7n) E IJ)’
atl=6, ((kon) e TTIN\T),

Output: di—fnl €C ((k,n) e ij+1).
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Fig. 1. Wavelet part of f; in W6,

§7. Numerical Tests

Finally, we present numerical tests of the described decomposition algorithm. Con-
sider the ellipsoid

e} +aiddai =1 ((z1,72,23) € R?).

Using spherical coordinates (6, p,r) of R?, we get 72 (1 + 3cos?) = 1. Then we
introduce the function f : .S — IR defined by

(1 6 €10,7/2],
f(0.¢) = {(1—|—3c082 9)—1/2 6 € (r/2,7].

Hence f is the union of a half-sphere and a half—ellipsoid. This function f is
smooth on S without the equator {(7/2,¢) : ¢ € [0,27)}. If we rotate the function
f around the zq-axis by the angle 7/4 and /2, we obtain the functions f; and fs,
respectively.

By the decomposition algorithm 6.2, we analyze the local regularity of f; and
f2. In order to compute values of the related wavelet parts on a grid of S, we use
the representation (5.3). As shown in Figures 1 and 2, the corresponding wavelet
parts in W¢ describe the smoothness of f; and f; in the right way.

Acknowledgements. The authors would like to thank Ginter Baszenski for his
support in numerical questions.
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1 1 05 a

Fig. 2. Wavelet part of f, in W¥.
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