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Field Inhomogeneity Correction Based on Gridding
Reconstruction for Magnetic Resonance Imaging

Holger Eggers*, Tobias Knopp, and Daniel Potts

Abstract—Spatial variations of the main field give rise to arti-
facts in magnetic resonance images if disregarded in reconstruc-
tion. With non-Cartesian k-space sampling, they often lead to un-
acceptable blurring. Data from such acquisitions are usually recon-
structed with gridding methods and optionally restored with var-
ious correction methods. Both types of methods essentially face the
same basic problem of adequately approximating an exponential
function to enable an efficient processing with fast Fourier trans-
forms. Nevertheless, they have commonly addressed it differently
so far. In the present work, a unified approach is pursued. The
principle behind gridding methods is first generalized to noneq-
uispaced sampling in both domains and then applied to field inho-
mogeneity correction. Three new algorithms, which are compat-
ible with a direct conjugate phase and an iterative algebraic recon-
struction, are derived in this way from a straightforward embed-
ding of the data into a higher dimensional space. Their evaluation
in simulations and phantom experiments with spiral k-space sam-
pling shows that one of them promises to provide a favorable com-
promise between fidelity and complexity compared with existing
algorithms. Moreover, it allows a simple choice of key parameters
involved in approximating an exponential function and a balance
between the accuracy of reconstruction and correction.

Index Terms—Conjugate phase reconstruction, field inhomo-
geneity, gridding, image reconstruction, iterative reconstruction,
magnetic resonance imaging, off-resonance correction, spiral
imaging.

1. INTRODUCTION

AGNETIC resonance imaging (MRI) relies on a strong,

homogeneous main field. While the field strength deter-
mines the net magnetization available for signal generation, the
field homogeneity ensures adequate coherence between the pre-
cession of individual spins within one voxel and thus sufficient
signal lifetime for an efficient detection. More subtle variations
of the field strength between different voxels lead to a distortion
of the Fourier encoding used to spatially resolve the received
signal and, without correction, to artifacts in images. These ar-
tifacts are mainly limited to geometric distortion and intensity
variation for Cartesian acquisitions, which sample the spatial
frequency domain of the images, the so-called k-space, on a
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Cartesian grid. For non-Cartesian acquisitions, however, more
severe blurring and other artifacts arise.

Field inhomogeneity is in non-Cartesian imaging usually
compensated by either a direct conjugate phase reconstruction
(CPR) [1] or an iterative algebraic reconstruction [2]. Both
are closely related, since one iteration of the latter typically
involves one application of the former and its adjoint. The in-
dividual methods mainly differ in how they make the distortion
of the Fourier encoding amenable to a processing with fast
Fourier transforms (FFTs). They all introduce for this purpose
a coarse segmentation, i.e., discretization, in either the time
domain [1] or the frequency domain [3] and require for each
resulting segment a separate transformation. In the respective
other domain, they perform an interpolation to improve accu-
racy, such as a Hanning interpolation [1] or more sophisticated
linear combinations [4], [5].

If field inhomogeneity is disregarded, non-Cartesian acquisi-
tions are commonly reconstructed with gridding methods [6].
These first convolve the nonequispaced k-space samples with a
window function of finite extent and resample them to an over-
sampled Cartesian grid to then employ FFTs for the transfor-
mation to image space. They also include a weighting of both
the original samples and the resulting images to compensate for
variations in sampling density and to counteract the effect of
the convolution. Remarkably, they do not attempt to estimate
the spatial frequency spectrum of the final images on the Carte-
sian grid. Gridding methods have been demonstrated to reach a
better compromise between accuracy and complexity than sim-
pler methods that rely on an interpolation in k-space only. Al-
ternatively, nonuniform FFTs (NFFTs) have been considered
for the transformation of the nonequispaced k-space samples to
image space [7].

In fact, the same basic problem of adequately approximating
an exponential function to enable an efficient processing with
FFTs underlies the field inhomogeneity correction and the re-
construction of non-Cartesian acquisitions. Nevertheless, it has
been addressed differently so far. Only recently, the similarity
between both has been realized and exploited to suggest a con-
ceptually very simple approach to field inhomogeneity correc-
tion [8]. By embedding the k-space samples and the image pixels
into higher dimensional spaces, the processing can essentially
be reduced to a Fourier transform. To cope with the irregular
sampling in both domains, the use of special NFFTs was advo-
cated.

We start in the present work from this idea and derive less
complex and more accurate approaches to field inhomogeneity
correction from it, which still adhere to a unified treatment of
reconstruction and correction. In the next section, the problem
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of reconstructing images from non-Cartesian acquisitions in the
presence of field inhomogeneity is described mathematically.
The approximation that NFFTs are based on is then general-
ized to irregular sampling in both domains. With its help, three
new algorithms for field inhomogeneity correction are derived
from the proposed embedding of the data into higher dimen-
sional spaces. They are evaluated in simulations and phantom
experiments and compared against existing algorithms. Finally,
their advantages and disadvantages are discussed.

II. THEORY

In MRI, the demodulated signal s(¢) received from an object
with a magnetization m(r) at a reference time point ¢ = 0 is
ideally given by

= / m(r)e O dp, (1)

k(t) denotes the trajectory, along which samples are acquired
in k-space. It is determined by the time variant gradient field
applied during the measurement.

Any inhomogeneity of the main field distorts the Fourier en-
coding that (1) describes. Taking this imperfection into account,
s(t) is more accurately modelled by

s(t) = /m(r)e_i“’(')te_ik(t)"dr. 2)
R3
w(r) denotes the angular off-resonance frequency, which is pro-
portional to the local deviation of the field strength. Other im-
perfections, such as relaxation, are not considered in this work.
We restrict ourselves to 2-D imaging from now on. The
sampled area of k-space is then confined to k € [—m, 7],
and the covered field of view to r € [—(N1/2),(IN1/2)] x
[-(N2/2),(N2/2)]. Discretizing the integral in (2) on Ny No
equispaced voxel positions r, and the signal s(¢) on M time
points ¢, yields

NiN>—-1

Z mpe—iwpt,{e—ik,;-rp (3)

where s, := s(tx), §
and k,, :=

= 5(t), m, == m(r,), w, == w(r,),

k(t.). Usmg the vectors

( n)n 0,....M—1

8 :
m = (M) =0, N, Na—1

and the matrix

—iw,t,  —ik T
H .= (e7'“r'e ?Yk=0,..., M—1;p=0,...,N;y Na—1

this may be rewritten as

We propose determining m by a weighted least squares ap-
proach

M—1
Z W |8k — 8|2 2 min 4

k=0

I8 — Hmllw =

with factors w, > 0 that compensate for variations in the local
sampling density. It leads to the weighted normal equation of
first kind

H'"WHm = H"'Ws 5)

where W is a diagonal matrix with entries W, = w,. Due to
the size of this linear system, we suggest solving it iteratively
with a suitable variant of the conjugate gradient method, such
as the conjugate gradient normal equation residual (CGNR)
method. In this way, (4) is in each iteration minimized over a
certain Krylov space. Moreover, by choosing a zero vector as
initial estimate of m, the intermediate result after one iteration
is, except for a scaling factor, identical to the right-hand side of
this linear system and thus to the result of the CPR, which is
one reason for including W in (5).

The computational complexity of determining m then de-
pends primarily on two factors, the required number of iterations
and the required effort per iteration. The first factor is mostly
linked to the employed initial estimate of m and to the condition
of H. We stick with a zero vector as initial estimate and apply no
additional preconditioning in this work, yet the presence of W
in (5) is also motivated by its beneficial effect on the condition
of the system matrix. The second factor is mainly influenced by
the multiplication of a vector with the matrix H or H". Due
to the distortion of the Fourier encoding, these products may
not simply be implemented with FFTs. They may, however, ef-
ficiently be realized with NFFTs, as we show in the remainder
of this section.

Following [8], we start by embedding the data in both do-
mains in a higher dimensional space. For this purpose, we set
K, = ((ke)T,ts) and 7, = ((r,)T,w,) ", ie., we add
time dimension to the spatial frequency domain and an off-res-
onance frequency dimension to the spatial domain. Equation (3)
may then be rewritten as

Ny{No—1
N !
5, ~ E: me kT, (6)

The samples in both domains are now nonequispaced.

The NFFT and its adjoint, which are also known as nonuni-
form FFT of type 1 and type 2, are summarized in Appendix A.
They require the samples in one domain to be equispaced. Un-
like these standard NFFTs, a so-called NNFFT, or nonuniform
FFT of type 3, was first suggested in [9] and later treated in more
detail in [10], which permits the fast calculation of the Fourier
transform of a vector of nonequispaced samples at a vector of
nonequispaced positions. It basically constitutes a combination
of the NFFT and its adjoint. Applying it to the computation of
(6), an approach we will call 3-D NNFFT, entails a 3-D FFT
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and in both domains a 3-D local linear combination. Addition-
ally, it demands two multiplicative oversampling factors, which
increase the length of the Fourier transform for all three dimen-
sions. The evaluation of the adjoint of (6), i.e., of the sum

M-1
L/ /
E Snelk“ T, (7)
k=0

involves the same effort.

To use the standard NFFTs instead, we have to resample the
data in one domain to a Cartesian grid. Preferably, the spatial
domain is chosen, since it involves no effort for r. We employ
the approximation

aN/2—1

Z 1/) (k _ _) 27ri(i—“‘°N 8)

1— aN/2

e27r1kz ~

for this purpose, with a real oversampling factor «, an integer
constant N, and the Fourier transform ¢(z) and the trunca-
tion ¢ (k) of a window function ¢(k) with a kernel size of
2u, where £ € [—(1/2) + (p/aN),(1/2) — (n/aN)] and
x € [-(N/2),(N/2)]. It is closely related to the approxima-
tion underlying the standard NFFTs (A-4) and derived in Ap-
pendix B. Moreover, we choose an integer constant N3 such
that

Wbw | _Ns 1 Ns 1
2w [ 4 +20¢7 } ©)

for all p and &, and a scaling factor W such that

wp 1 w1 o
—_ E —_— —_— - = —
w |: + OJN3 2 :|

for all p. As the computational complexity grows with it, N
should be kept as small as possible. Centering w,, and ¢,., which
involves in both domains a multiplication with a phase, is, there-
fore, advantageous. We then obtain with (8)

e—iu},,ifh _6—2771“)—" v;t“
1
Wt
OéNg(p( )
aN;z/2—1
Wp [ Wil
xS (o )
W aNs
I=—aN3/2

and by insertion in (3)

) aN3/2—1 NyN,—1
st 8 e )

2w l*—aN.g/Z p=0

. Wil
Xef‘k"’ "'pe_l aN3 |

(10)
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. T
Setting k%' = ((ke)",Wt./(aN3)) and r’(’p’l) =
((rp)T,0) finally yields
1 aN3/2—1 N;N>—1
o bveryin o D DEED DR
O‘N3(p( 27 ) I=—aNs/2 p=0
—ik!" ]

R, (11)
The matrix-vector product may thus be realized by a 3-D NFFT.
Hence, we will call this approach 3-D NFFT. It requires a 3-D
FFT and a 3-D local linear combination in the spatial frequency
domain, and it introduces two multiplicative oversampling fac-
tors only for the added third dimension. The adjoint reads

aN3z/2—1 w I M—1 s
o(%- o) e T
zzg;rs/z W als KZB aNsg (457

12)
and may also be computed with a 3-D NFFT, but additionally
with a sparse summation over /.

We now consider separating the 3-D domains into 2-D ® 1-D
domains. In this way, the Fourier transform along the added third
dimension can be replaced by an explicit sum, which appears
beneficial in view of the sparseness of the data in the 3-D spaces.
By merely rearranging (10), we obtain

_ (Wil
aN3/2—1 o e
S N E —_—
alNad VViL
l=—aN3/2 90( )
NyNy—

! —ik,.r,
X Z < a—M)e . (13)

With this approximation, the matrix-vector product may be cal-
culated by N3 2-D NFFTs and a summation over [, an ap-
proach we will call 2-D ® 1-D NFFT-F. It involves a 2-D FFT
and a 2-D local linear combination in the spatial frequency do-
main for each NFFT, and it demands only one oversampling
factor for each dimension. The adjoint is given by

aN3/2 1 M—1 s eiyzjt\;;l
> (%) X et 09
l=—aN3/2 QN_?, k=0 aN?’(‘O (2—7:)

where the summation over [ is sparse.
We derive a variant of this approach by defining another
scaling factor 1" such that

for all . Using again the approximation (B-1), we get

— ty wpT
—e 27'1, or=

- 1
CMN3¢7 (— pr)

aN3/2 1

Lw, Tl
X Z I,ZJ (— — (I—ZV3> e N3

l=—aNs/2

—iw,t,

(S
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and insertion into (3) yields

aNs/2-1

ty l
S R | = — ———
2 (T OlN3)
l=—0¢N3/2
NiNp—1 mefi_“;f;\?;’
X L e~k=To (15)

= N (-%F)
In this way, the matrix-vector product may also be computed
by N3 2-D NFFTs, followed by a sparse summation over [,
an approach we will call 2-D ® 1-D NFFT-T. The effort for
the NFFTs is substantially reduced if they are evaluated only
at those k-space positions that actually contribute to the sparse
summation. For the adjoint

aN3/2—1 swpTl

>

~ T
I=—aN; /2 ®N3p (%)

M-1

te ! ik,
> b (52w )¢

k=0

(16)
the summation over [ is no longer sparse, but the effort for the
NFFTs may be decreased similarly.

With respect to computational complexity, we conclude that
the 2-D ® 1-D NFFT-T approach is the most efficient. It com-
bines the advantages of an explicit summation and of an im-
plicit local linear combination along the added third dimension
in the spatial frequency domain. It is followed by the 2-D ®
1-D NFFT-F and the 3-D NFFT approaches, which each share
one of the advantages with it. The 3-D NNFFT approach is the
least efficient, since it increases not only the number of segments
from aN5 to a®Nj, like the 3-D NFFT approach, but also the
length of the Fourier transform for the other two dimensions
from aN; x alNa to o’ Ny + 2ap x a®No + 2ap.

III. METHODS

We integrated the four outlined gridding-based approaches
into the CGNR method to solve (5). We then assessed them in
simulations and phantom experiments using spiral k-space sam-
pling. By stopping the CGNR method after either one or several
iterations, we covered the cases of a direct CPR and an iterative
algebraic reconstruction.

A. Simulations

As reference image, a Shepp—Logan phantom with a res-
olution of 256 x 256 was employed. We applied a slightly
smoothed circular shutter with a radius of 7/8 to it in k-space,
since spiral acquisitions only sample a circular area in k-space
and field inhomogeneity seemingly spreads the spatial fre-
quency spectrum over time. The main field was modelled with
the two field maps displayed in Fig. 1. The first reflects a
continuous, parabolic variation of the field strength, the second
a discrete, linear one. The rather unnatural discrete field map
was chosen to study how the algorithms cope with a strong
local variation of the field strength. Both maps span the same
range of off-resonance frequencies of —125 Hz to +125 Hz.

k-space data were calculated by a direct evaluation of (3). We
segmented the acquisition into 12 spiral interleaves with 13 332
samples each, including a twofold oversampling. Two images
obtained with a standard gridding reconstruction of these data,

i.e., without field inhomogeneity correction, are also presented
in Fig. 1. An analytical function described in [11] served the
sampling density compensation in this and all other cases pre-
sented in this work. Obviously, both field distributions give rise
to blurring, but a strong local variation of the field strength
causes further major artifacts.

The implementation of the 3-D NNFFT and 3-D NFFT ap-
proaches basically involves the interfacing to 3-D NNFFT and
3-D NFFT algorithms only. The 3-D NFFT approach addition-
ally requires a postweighting of the data. The implementation
of all 2-D approaches was based on the general framework out-
lined in [12]. It decomposes the approximation of (3) into three
steps: 1) a preweighting of the data, 2) a transformation of each
segment, and 3) a linear combination. Mathematically, it may
be described by

I
My, | 3= Up My,
NiNy—1

/L § : / —ik,. T
sn,l = mp’le 4
p=0

aNs/2-1

§ /
w,q,’[sn,l.

I=—aNs3/2

Sk ~

For the 2-D ® 1-D NFFT-T approach, for instance, the weights
v,,1 and w, ; are given by

’
_;epT!
e 'aNg

OéNg(;? (— w;:)

t:i l —iwet,
Wy =P (f - a—Ng,) €

where w. and t. denote the central and w’ and ¢’ the centered
angular off-resonance frequencies and time points, respectively.
In the second step, only those s/, . need to be computed with the
aN3 NFFTs for which w,; # 0. For all approaches, pruning
techniques were applied to the FFTs that underlie the NFFTs to
improve efficiency in view of the employed oversampling.

Besides these gridding-based approaches, a number of ex-
isting 2-D algorithms were implemented for comparison. These
included a nearest neighbor interpolation with frequency seg-
mentation [3], a Hanning interpolation with time segmentation
[1], the more sophisticated Man interpolation with frequency
segmentation [4], and a least squares interpolation with time
segmentation [5]. Additionally, the counterparts with the respec-
tive other segmentation were implemented, exploiting the du-
ality between time and frequency segmentation [12]. For the
Man interpolation with time segmentation, a manual variation
of the oversampling factor was performed, since no explicit rule
for its choice was known. For the least squares interpolation, a
Householder transformation was employed to solve the mini-
mization problems.

All algorithms were programmed both in Matlab and in C.
They were tested on a conventional workstation equipped with
an Intel Xeon processor running at 2 GHz and with 256 MB
of memory. The software configuration used was Linux 2.4.21,

—iw,te
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Fig. 1. Image and field maps used in simulations. Shown are a filtered Shepp-Logan phantom on the left, a continuous, parabolic and a discrete, linear field map
with off-resonance frequencies in the range of —125 Hz to 4-125 Hz in the middle, and results of a standard gridding reconstruction on the right. The latter were
obtained from simulations of spiral k-space sampling with a readout duration of 32 ms. The dashed line superimposed on the phantom indicates the position where

cross sections were taken for comparison.

FFTW 3.0.1, and NFFT 2.0. The latter is available from [13]
and essentially differs from a standard gridding reconstruction
in two respects only. Instead of a Kaiser—Bessel window, its
Fourier transform is employed as window function, and its shape
parameter is well defined. Images obtained with these algo-
rithms were assessed both visually and quantitatively. For the
latter, we used as measure the root of the sum of squares of the
differences between reconstructed and original image pixels, di-
vided by the root of the sum of squares of the original image
pixels.

B. Experiments

The experiments were performed on a 1.5 T Achieva whole-
body scanner (Philips Medical Systems, Best, The Netherlands).
Transversal cross sections of standard imaging phantoms were
acquired with aresolution of 256 x 256 pixels using a segmented
spiral gradient echo sequence. A field-of-view of 250 mm, a
slice thickness of 10 mm, a flip angle of 90°, a TE of 2 ms, and
aTR of 1 s were chosen. The readout duration, i.e., the length of
time that data are acquired after each excitation, varied between
10 ms and 60 ms, and the number of spiral interleaves changed
accordingly.

Field maps were obtained from two separate measurements,
which usually differed in TE by 1 ms. Two images were recon-
structed from them and thresholded based on signal intensity.
Their phases were then subtracted and the differences scaled and
slightly filtered. To reduce edge effects, the resulting field maps
were additionally extrapolated to areas masked out before.

IV. RESULTS

A. Simulations

The four gridding-based approaches are analyzed regarding
their accuracy in Table I. The presented simulation results were
obtained with the continuous field map and the settings o =
1.25, p = 2, and a N3 = 14. After one iteration, all four algo-
rithms yield similar errors, i.e., they achieve a comparable ac-
curacy for the case of a direct CPR. After three iterations, the
3-D NNFFT approach produces an about 100% and the 2-D ®
1-D NFFT-F approach an about 20% higher error than the two
others. Beyond three iterations, errors did not decrease signifi-
cantly anymore for any algorithm. These simulation results were
found to be representative.

The running times of the four gridding-based approaches are
compiled in Table II. As expected from the theoretical consid-
erations, the 2-D ® 1-D NFFT-T approach is the fastest and
the 3-D NNFFT approach is the slowest. Remarkably, the 3-D
NFFT approach clearly outperforms the 2-D ® 1-D NFFT-F
approach, indicating that the locality of the linear combination
along the added third dimension in the spatial frequency domain
is dominant.

These two comparisons suggest that the 2-D ® 1-D NFFT-T
approach is the preferred of the four gridding-based algorithms.
We, therefore, selected it for all further investigations.

Results of its application to the images in Fig. 1 are presented
in Fig. 2. For the continuous field map, already the first iteration
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TABLE I
COMPARISON OF THE ACCURACY OF DIFFERENT GRIDDING-BASED
CORRECTION ALGORITHMS. LISTED IS THE NORMALIZED ROOT MEAN SQUARE
(RMS) ERROR AFTER 1, 2, AND 3 ITERATIONS

Iteration 1 2 3

3-D NNFFT 5.41-107%2 | 1.15-1072 | 1.13-1072

3-D NFFT 5.31-1072 | 5.83-107* | 5.42.1073

2-D ® 1-D NFFT-F || 5.39-107% | 6.99-107% | 6.39-1073

2-D ® 1-D NFFT-T || 5.32-1072 | 5.50-107% | 5.21 .10~
TABLE II

COMPARISON OF THE RUNNING TIMES OF DIFFERENT GRIDDING-BASED
CORRECTION ALGORITHMS. LISTED IS THE MEASURED COMPUTATION TIME
PER ITERATION

Algorithm Running Time
3-D NNFFT 2000 ms
3-D NFFT 1060 ms
2-D ® 1-D NFFT-F 1530 ms
2-D ® 1-D NFFT-T 840 ms

yields a visually good image. Mainly the second iteration pro-
vides further improvements, in particular at edges. For the dis-
crete field map, the first iteration produces a visually unaccept-
able image due to artifacts arising from the strong local variation
of the field strength. These artifacts are dramatically reduced by
the second iteration, but only after about ten iterations the shape
of the field map is no longer discernible in the image. This dif-
ference in the speed of convergence agrees with earlier work,
which showed that the direct CPR performs reasonably well for
spiral k-space sampling only if the field map is smooth [12],
[14].

The accuracy of the 2-D ® 1-D NFFT-T approach is con-
trasted with that of existing algorithms in Fig. 3. The errors after
one and three iterations were again obtained with the contin-
uous field map and with the settings « = 1.25 and p = 2 for
the 2-D NFFTs. The results for the least squares algorithm were
produced with a time segmentation. Using a frequency segmen-
tation instead, errors increased for low number of segments and
remained comparable for high number of segments. The results
for the gridding-based approach involved matching the over-
sampling factor and the kernel size to the respective a/Ns. Errors
are plotted down to the minimum number of segments defined
by (9), which is 8 in this case. The results for the Man interpola-
tion, for which the same lower bound holds, were obtained with
a frequency interpolation. Slightly lower errors were achieved
with a time segmentation, but the manual tuning of the oversam-
pling factor rendered it impracticable. The results for the nearest
neighbor interpolation are not shown, because it failed to yield
acceptable images for more than one iteration at all. While the

least squares interpolation obviously provides the lowest errors
of all algorithms, the gridding-based approach reaches compa-
rable levels very rapidly for sufficiently large oversampling fac-
tors and kernel sizes. Using the same settings as for the 2-D
NFFTs, a N3 = 14 and both algorithms attain a similar accu-
racy. Moreover, errors do not decrease significantly anymore for
higher number of segments, indicating that the 2-D NFFTs limit
the overall accuracy from this point on. The Man interpolation
provides reasonably good results after one iteration, but needs
many segments to reach an adequate accuracy after three iter-
ations. The Hanning interpolation performs poorly, except for
very few segments.

The running times per iteration of the same algorithms are
compiled in Table III for a fixed number of segments of 14.
Since they do not include the initialization, the differences are
mainly due to varying amounts of data to be regridded per itera-
tion. These amounts are determined by the number of non-zero
weights in the linear combination. The least squares and the Man
interpolation show the longest running times, since all w,, ; # 0.
By contrast, only a maximum of 24+ 1 out of each N3 weights
are nonzero using the gridding-based approach, and only a max-
imum of 3 using the Hanning interpolation. Consequently, both
exhibit significantly shorter running times.

B. Experiments

Representative results of the phantom experiments are sum-
marized in Fig. 4. The off-resonance frequencies cover a range
of 210 Hz in this example. Using 12 spiral interleaves and a
readout duration of 28.5 ms, the 2-D ® 1-D NFFT-T approach
yields an almost perfect image after three iterations. The number
of segments was 12 in this case, corresponding to o = 1.33.
Using 6 spiral interleaves and a readout duration of 56.5 ms, it
still provides an image of good quality, although residual arti-
facts remain visible, mostly near the circumference and the res-
olution rods of the phantom. The number of segments was 19 in
this case, corresponding to o = 1.26.

V. DISCUSSION

The efficient reconstruction of non-Cartesian acquisitions
faces the problem of a nonequispaced sampling in the spatial
frequency domain. It is adequately solved by both the adjoint
NFFT and gridding reconstruction, which rely on the same
approximation of an exponential function (A-4). Field inho-
mogeneity, however, introduces an exponential function with
irregular sampling in both domains. We showed that (A-4) can
be generalized to this case, leading to the similar approximation
(B-1). In this way, the field inhomogeneity correction and the
reconstruction of non-Cartesian acquisitions may be founded
on the same basic approximation. Based on this concept, we
derived three new algorithms in the present work.

Among the gridding-based algorithms, the 3-D NNFFT ap-
proach shows the highest error. We attribute this to the unneces-
sary interpolation for all spatial dimensions. As already pointed
out in [6], gridding remains an approximation even if the sam-
ples are equispaced. The usual discretization of images on a
Cartesian grid should, therefore, be exploited. The inferior ac-
curacy of the 2-D ® 1-D NFFT-F approach compared to the 3-D
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Fig.2. Results of simulations with the 2-D ¢ 1-D NFFT-T approach. Shown are intermediate images after 1, 2, and 3 iterations for the continuous field map at the
top and after 1, 2, and 10 iterations for the discrete field map at the bottom. Below them, the differences to the original phantom are plotted for one cross section.
The scaling of the graphs varies by one order of magnitude between the top and the bottom.

NFFT and 2-D ® 1-D NFFT-T approaches is in line with results
obtained with the other, existing algorithms. Performing the in-
terpolation in the transformed domain of the final result, i.e., in
the spatial frequency domain of the images, generally decreased
the artifact level, both visually and quantitatively. We selected
the 2-D ® 1-D NFFT-T approach for further investigations in
this work for complexity reasons. However, it is worth noting
that the 3-D NFFT approach achieves a similar accuracy while
being conceptually simpler.

The results in Fig. 3 underline the advantage of using a local
linear combination in conjunction with a weighting in the trans-
formed domain instead of a local linear combination only, since
the accuracy of the gridding-based approach is substantially su-
perior to that of the Hanning interpolation from a certain min-
imum number of segments on. It then also exceeds the accu-
racy of the Man interpolation, which may be considered as a
nonoptimal, global linear combination. Moreover, for a calcu-
lable, slightly higher number of segments, the 2-D NFFTs limit
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Fig. 3. Comparison of the accuracy of different correction algorithms. Plotted is the normalized root mean square (RMS ) error as function of the number of
segments in the interpolation after 1 and 3 iterations on the left and on the right, respectively.

TABLE III
COMPARISON OF THE RUNNING TIMES OF DIFFERENT CORRECTION
ALGORITHMS. LISTED IS THE MEASURED COMPUTATION TIME PER ITERATION,
USING COMPARABLE PARAMETER SETTINGS

Algorithm Running Time
Least squares 1530 ms
Gridding-based 840 ms
Man 1530 ms
Hanning 710 ms

the achievable overall accurancy, thus equalizing it for the grid-
ding-based approach and the least squares interpolation.

The results in Table III highlight the relevance of the amount
of data to be regridded for the complexity. As in gridding re-
construction, the use of a local neighborhood in the interpola-
tion appears to be advantageous. However, the primary benefit
is in this case the reduced effort for the 2-D NFFTs rather than
for the linear combination. Previously, it has been proposed to
eliminate most of the regridding from both the direct CPR [12]
and the iterative algebraic reconstruction [15]. While a detailed
comparison remains to be done, the apparent advantage is often
offset by either a restriction on the supported k-space trajecto-
ries or the requirement of higher oversampling factors to avoid
excessive backfolding, as demonstrated for a related problem in
parallel imaging [16].

The required number of segments also has a considerable in-
fluence on the complexity. For the gridding-based approach, the
application of the well-known concept of oversampling permits
a simple choice of an adequate number of segments. Moreover,
the unified treatment of reconstruction and correction enables
a balance of the accuracy of both. Thus, the accuracy of one is
not increased beyond the limit set by the other. The same choice

may, in principle, be used for the least squares interpolation.
Fig. 3 suggests, however, that the error flattens out with fewer
segments compared to the gridding-based approach. While this
observation may be exploited to further reduce the complexity
especially for the direct CPR in this particular case, it is not nec-
essarily generalizable.

Finally, the effort involved in the initialization affects the
complexity. It is mainly determined by the calculation of the
weights for the linear combination from a given field map.
Those approaches which require little such effort are clearly
preferable for small number of iterations. The Hanning and
the Man interpolation, but also the gridding-based approaches
are among these, since they solely need to evaluate a given
function. By contrast, the considerably higher effort for the
least squares interpolation usually pays off for large number of
iterations only.

The framework we chose for field inhomogeneity correction
assumes a piecewise constant field map. While this is usually a
sufficiently accurate model, a more precise one is obtained by
also taking intravoxel gradients into account. These lead to a
distortion of the actual k-space trajectory, which varies with the
spatial position. For a more detailed description of the problem
and a potential solution, the reader is referred to [17]. The frame-
work we proposed for reconstruction includes a weighting in
the linear system of equations to be solved. This weighting en-
tails in theory a signal-to-noise (SNR) penalty [5]. In our expe-
rience, however, the loss in SNR was insignificant and was far
outweighed by the acceleration of convergence it provided.

APPENDIX A

In this appendix, the NFFT and its adjoint, i.e., the nonuni-
form FFT of type 1 and type 2 [9], are outlined for the one di-
mensional case, and their close relation to gridding reconstruc-
tion is highlighted. For a more detailed description, the reader
is referred to [18].
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Fig. 4. Results of phantom experiments with the 2-D ¢ 1-D NFFT-T approach. Shown are a reference image and a field map obtained with Cartesian k-space
sampling on the left, and two corresponding uncorrected and corrected images obtained with spiral k-space sampling in the middle and on the right. The latter were
reconstructed from measurements with a readout duration of 28.5 ms and 56.5 ms, respectively.

Let a function ¢ € L?(R) N L*(R), the so-called window
function, be given. Its one periodization

oo
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is assumed to have a uniformly convergent Fourier series.
Hence, it may be written as
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where z € Z. Substituting k by k — k' in (A-1) yields
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which may be approximated by
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for k € [—(1/2),(1/2)] and 2 = —(N/2),...,(N/2). The
factor a > 1 is commonly referred to as the oversampling
factor. For the sake of simplicity, NV and aN are assumed to
be even. Provided that all ¢,(p) are nonzero, (A-3) may be
rewritten as

L aN/2-1 / l

2mikx " 2w L

e N — P | k— —) e“™an  (A-4)
aNc, () 1:%/2 < aN

where @ has been replaced by 1. The latter is the one periodiza-
tion of a truncation of ¢ defined by

_Jek) kel-I5 Iy
o= {70 15T

The support of 1) is determined by 2, the so-called kernel size.
Typically, 1+ € N is chosen such that 4 < N. The truncation
thus reduces the complexity of the evaluation of the right-hand
side of (A-4) considerably.
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The NFFT, i.e., the nonuniform FFT of type 2, evaluates the
trigonometric polynomial

N/2-1

_ Z f e—27rikz
- Jxrt
z

=-N/2

(A-5)

for N given equispaced samples fx at M given nonequispaced
positions k; € [—(1/2),(1/2)]. In matrix-vector notation, it
reads

(A-6)

with
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where f; := f
yields

k;). Applying the approximation (A-4) to (A-5)
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Accordingly, A may be approximated by BF D, where D is a
diagonal matrix with entries D, = 1/c_,(¢), F' an oversam-
pled Fourier matrix, which includes the factor 1/(aN), and B
a sparse matrix with entries Bj; = 9(k; — I/(aN)).

The adjoint NFFT, i.e., the nonuniform FFT of type 1, evalu-
ates the sum

for M given nonequispaced samples f; at N given equispaced
positions z = —(N/2), ..., (N/2) — 1. It may be considered as
a multiplication of f with A" ~ D'F'B". As pointed out in
[7], [18], gridding reconstruction is simply a fast algorithm for
the application of D" F™ B" t0 a vector of nonequispaced sam-
ples. Including a sampling density compensation, it performs
the following [6]
1) a weighting of the data, i.e., a multiplication with a diag-
onal matrix W,
2) a convolution with a window function and a resampling to
anHoversampled Cartesian grid, i.e., a multiplication with
B,

3) an inverse FFT, i.c., a multiplication with F"",

4) a deapodization, i.e., a multiplication with D".
Obviously, the adjoint NFFT and gridding reconstruction rely
on the same approximation and involve very similar processing.
Moreover, the Kaiser—Bessel window, or its Fourier transform,
is a particularly good choice for ¢ in both cases [18], [19]. More
sophisticated approaches based on scaling vectors [20], a min-
imization of the Frobenius norm of certain error matrices [21],

or a min—max interpolation [22] did not prove significantly su-
perior.

APPENDIX B

In this appendix, the approximation underlying the NFFT and
its adjoint (A-4) is generalized to real x. Starting from

po)i= [ ety a

i —27ri(k+p).rdk

~i/2 P=T>®

o(k+p)e

and, with the same steps as from (A-2) to (A-4), to
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l wi( == +p)z
e i S SRE e
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fork € [—(1/2),(1/2)] and = € [-(N/2),(N/2)]. Like (A-4),
this approximation may be reduced to

aN/2-1

. 1 l e
2mwikr A y . 2T
¢ ~ aNg(z) Z v <k aN) ¢

l=—aN/2

fork € [—(1/2)+(pu/aN),(1/2)—(u/aN)], since the support
of ¢ is [—(pu/aN), (pu/aN)]. Consequently, (B-1) is a good
approximation if kz € [—(N/4)+ (1/2c), (N/4) — (pn/2c0)]. It
is worth noting that the further restriction of k£ may in principle
be avoided by explicitly taking the periodization into account.
This alternative is not explored in the present work, however.

(B-1)
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