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Abstract

Various applications such as MRI, solution of PDEs, etc. need to perform an inverse nonequispaced fast
Fourier transform (NFFT), i. e., compute M Fourier coefficients from given N nonequispaced data. In
the present paper we consider direct methods for the inversion of the NFFT. We introduce algorithms
for the setting M = N as well as for the underdetermined and overdetermined cases. For the setting
M = N a direct method of complexity O(N logN) is presented, which utilizes Lagrange interpolation and
the fast summation. For the remaining cases, we use the matrix representation of the NFFT to deduce
our algorithms. Thereby, we are able to compute an inverse NFFT up to a certain accuracy by means of a
modified adjoint NFFT in O(M logM +N) arithmetic operations. Finally, we show that these approaches
can also be explained by means of frame approximation.

Keywords: inverse nonequispaced fast Fourier transform, nonuniform fast Fourier transform, direct
inversion, frame approximation, iNFFT, NFFT, NUFFT
2000 MSC: 65Txx, 42C15

1. Introduction

The NFFT, short hand for nonequispaced fast Fourier transform or nonuniform fast Fourier transform
(NUFFT), respectively, is a fast algorithm to evaluate a trigonometric polynomial

f(x) =

M
2 −1∑

k=−M2

f̂k e2πikx (1.1)

for given Fourier coefficients f̂k ∈ C, k = −M2 , . . . ,
M
2 − 1, M ∈ 2N, at nonequispaced points xj ∈

[
− 1

2 ,
1
2

)
,

j = 1, . . . , N . In case we are given equispaced points and M = N , this evaluation can be realized by means
of the fast Fourier transform (FFT). For this setting also an algorithm for the inverse problem is known.

Hence, we are interested in an inversion also for nonequispaced data, i. e., the Fourier coefficients f̂k shall
be computed for given function values fj = f(xj) of the trigonometric polynomial (1.1). Additionally, we
study the inversion of the adjoint problem, namely the reconstruction of function values fj ∈ C from given
data

hk =

N∑
j=1

fj e−2πikxj , k = −M2 , . . . ,
M
2 − 1. (1.2)

In general, the number N of nodes xj is independent from the number M of Fourier coefficients f̂k and
therefore the nonequispaced Fourier matrix

A :=
(
e2πikxj

)N, M2 −1
j=1, k=−M2

∈ CN×M , (1.3)
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which we would have to invert, is rectangular in most cases. Nevertheless, several approaches have been
developed to compute an inverse NFFT (iNFFT). First of all, there are some iterative methods. Recently, in
[27] an algorithm was published for the setting M = N which is based on the CG method as well as low rank
approximation and is specially designed for jittered equispaced points. An approach for the overdetermined
case can be found in [12], where the solution is computed iteratively by means of the CG algorithm using
the Toeplitz structure of A∗WA with a diagonal matrix W of Voronoi weights. In [23] the CG method in
connection with the NFFT was used to formulate an iterative algorithm for the underdetermined setting
which deploys AŴA∗ with weights Ŵ based on kernel approximation. Furthermore, already in [11] a direct
method was explained for the setting M = N which uses Lagrange interpolation as well as fast multipole
methods. Based on this, in [28] another direct method was deduced for the same setting which also uses
Lagrange interpolation but additionally incorporates an imaginary shift for the fast evaluation of occurring
sums. Since A∗A is a Toeplitz matrix another direct method for the overdetermined setting can be derived
using this special structure, see [18], analogously to [3]. In addition, also a frame-theoretical approach
is known from [15] which provides a link between the adjoint NFFT and frame approximation and could
therefore be seen as a method to invert the NFFT.

In this paper we present new direct methods for inverting the NFFT in general. For the quadratic setting,
i. e., M = N , we review our method introduced in [21], which is also based on Lagrange interpolation but
utilizes the fast summation to evaluate occurring sums. For the general case, we use as a motivation that
for equispaced points an inversion can be realized by AA∗ ≈MIN and aim to generalize this result to find
a good approximation of the inversion for nonequispaced nodes. To this end, we employ the decomposition
A ≈ BFD known from the NFFT approach and compute the sparse matrix B such that we receive an
approximation of the form AD∗F ∗B∗ ≈MIN . In other words, we are able to compute an inverse NFFT by
means of a modified adjoint NFFT. Analogously, an inverse adjoint NFFT can be obtained by modifying the
NFFT. Hence, the inversions can be computed in O(M logM +N) arithmetic operations. The necessary
precomputations developed in this paper are of complexity O(N2) and O(M2), respectively. Therefore, our
method is especially beneficial in case we are given fixed nodes for several problems. Finally, we show that
these approaches can also be explained by means of frame approximation.

The present work is organized as follows. In Section 2 we introduce the already mentioned algorithm,
the NFFT. Afterwards, in Section 3 we deal with the inversion of this algorithm. In Section 3.1 we firstly
review our method from [21] for the quadratic setting M = N . Secondly, in Section 3.2 the underdetermined
and overdetermined settings are studied, which are treated separately in Sections 3.2.1 and 3.2.2. Finally,
in Section 4 we deduce an approach for the inversion which is based on frame theory. Therefore, first of all,
the main ideas of frames and approximation via frames will be introduced in Section 4.1 and subsequently,
in Section 4.2, we will use these ideas to develop an approach for the iNFFT adapted from [15]. In the
end, we will see that this frame-theoretical approach can be traced back to the methods for the inversion
introduced in Section 3.2.

2. Nonequispaced fast Fourier transform

For given nodes xj ∈
[
− 1

2 ,
1
2

)
, j = 1, . . . , N , M ∈ 2N, as well as arbitrary Fourier coefficients f̂k ∈ C,

k = −M2 , . . . ,
M
2 − 1, we consider the computation of the sums

fj = f(xj) =

M
2 −1∑

k=−M2

f̂k e2πikxj , j = 1, . . . , N, (2.1)

as well as the adjoint problem of the computation of the sums (1.2) for given values fj ∈ C. A fast algorithm
to solve this problem is called nonequispaced fast Fourier transform (NFFT) and is briefly explained
below, cf. [10, 5, 29, 26, 25, 16, 20, 27].

By defining the matrix (1.3) as well as the vectors f := (fj)
N
j=1, f̂ := (f̂k)

M
2 −1
k=−M2

and h := (hk)
M
2 −1
k=−M2

, the

computation of sums of the form (2.1) and (1.2) can be written as f = Af̂ and h = A∗f , where A∗ = A
T

denotes the adjoint matrix of A.
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2.1. The NFFT

We firstly restrict our attention to problem (2.1), which is equivalent to the evaluation of a trigonometric
polynomial f at nodes xj , see (1.1). At first, we approximate f by a linear combination of translates of a
1-periodic function w̃, i. e.,

f(x) ≈ s1(x) :=

Mσ
2 −1∑

l=−Mσ2

gl w̃
(
x− l

Mσ

)
,

where Mσ = σM with the so-called oversampling factor σ ≥ 1. In the easiest case w̃ originates from
periodization of a function w : [− 1

2 ,
1
2 )→ R. Let this so-called window function be chosen such that its

1-periodic version w̃(x) =
∑
r∈Z w(x+ r) has an absolutely convergent Fourier series. By means of the

definition

ĝk :=

Mσ
2 −1∑

l=−Mσ2

gl e
−2πikl/Mσ , k ∈ Z,

and the convolution theorem, s1 can be represented as

s1(x) =

∞∑
k=−∞

ck(s1) e2πikx (2.2)

=

Mσ
2 −1∑

k=−Mσ2

ĝk ck(w̃) e2πikx +

∞∑
r=−∞
r 6=0

Mσ
2 −1∑

k=−Mσ2

ĝk ck+Mσr(w̃) e2πi(k+Mσr)x.

Comparing (2.1) and (2.2) gives rise for the following definition. We set

ĝk :=

 f̂k
ŵ(k)

: k ∈ {−M2 , . . . ,
M
2 − 1},

0 : k ∈ {−Mσ

2 , . . . , Mσ

2 − 1} \ {−M2 , . . . ,
M
2 − 1},

where the Fourier transform of w is given by

ŵ(k) =

∫ ∞
−∞

w(x) e−2πikx dx =

∫ 1
2

− 1
2

w̃(x) e−2πikx dx = ck(w̃). (2.3)

Furthermore, we suppose w is small outside the interval [−m/Mσ,m/Mσ], m�Mσ. Then w can be approx-
imated by wm(x) = χ[−m/Mσ,m/Mσ ] · w(x), which is compactly supported since χ[−m/Mσ,m/Mσ] denotes the
characteristic function of [−m/Mσ,m/Mσ] . Thus, w̃ can be approximated by the 1-periodic function w̃m with∑

k∈Z
ŵ(k) e2πikx = w̃(x) ≈ w̃m(x) =

∑
r∈Z

wm(x+ r).

Hence, we obtain the following approximation

f(xj) ≈ s1(xj) ≈ s(xj) :=

Mσ
2 −1∑

l=−Mσ2

gl w̃m

(
xj − l

Mσ

)
=

bMσxjc+m∑
l=dMσxje−m

gl w̃m

(
xj − l

Mσ

)
,

where simplification arises because many summands vanish. By defining

• the diagonal matrix

D := diag

(
1

Mσŵ(k)

)M
2 −1

k=−M2
∈ CM×M , (2.4)
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• the truncated Fourier matrix

F :=
(

e2πik
l
Mσ

)Mσ
2 −1, M2 −1

l=−Mσ2 , k=−M2
∈ CMσ×M , (2.5)

• and the sparse matrix

B :=

(
w̃m

(
xj − l

Mσ

))N, Mσ2 −1
j=1, l=−Mσ2

∈ RN×Mσ , (2.6)

this can be formulated in matrix-vector notation and we receive the approximation A ≈ BFD. Therefore,
the corresponding fast algorithm consisting of three steps is of complexity O(M logM +N).

Remark 2.1. Suitable window functions can be found in [10, 5, 29, 9, 13, 16, 20].

Remark 2.2. It must be pointed out that because of consistency the factor 1
Mσ

is here not located in the
matrix F as usual but in the matrix D.

2.2. The adjoint NFFT

Now we consider the problem (1.2), which is treated similarly to [26], and therefore we firstly define the
function

g̃(x) :=

N∑
j=1

fj w̃(xj − x) (2.7)

and calculate its Fourier coefficients

ck(g̃) =

∫ 1
2

− 1
2

g̃(x) e−2πikx dx =

N∑
j=1

fj e−2πikxj
∫ 1

2

− 1
2

w̃(y) e2πiky dy = hk c−k(w̃).

In other words, the values hk can be computed if c−k(w̃) and ck(g̃) are known. The Fourier coefficients of
g̃ are determined approximately by means of the trapezoidal rule

ck(g̃) ≈ 1

Mσ

Mσ
2 −1∑

l=−Mσ2

N∑
j=1

fj w̃
(
xj − l

Mσ

)
e−2πikl/Mσ .

Let the function w moreover be well localized in time so that w̃ can be replaced by w̃m again. Then we
obtain the approximation

ck(g̃)

c−k(w̃)
≈ 1

Mσŵ(−k)

Mσ
2 −1∑

l=−Mσ2

N∑
j=1

fj w̃m

(
xj − l

Mσ

)
e−2πikl/Mσ =: h̃k. (2.8)

Rewriting this by means of (2.4), (2.5) and (2.6) we receive A∗ ≈D∗F ∗B∗. Hence, the algorithm for the
adjoint problem is also of complexity O(M logM +N).

3. Inversion of the NFFT

Having introduced the fast methods for nonequispaced data, we aim to find an inversion for these
algorithms encouraged by the fact that for equispaced data the inversion is well-known. Therefore, we face
the following two problems.
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(1) Solve

Af̂ = f ,

given: f ∈ CN , find: f̂ ∈ CM ,
(3.1)

i. e., reconstruct the Fourier coefficients f̂ = (f̂k)
M
2 −1
k=−M2

from given function values f = (fj)
N
j=1. This

will be solved by an inverse NFFT.

(2) Solve

A∗f = h,

given: h ∈ CM , find: f ∈ CN ,
(3.2)

i. e., reconstruct the coefficients f = (fj)
N
j=1 from given data h = (hk)

M
2 −1
k=−M2

. This will be solved by

an inverse adjoint NFFT.

In both problems the numbers M and N are independent. It is obvious that except for the quadratic setting
M = N there are two different ways to choose M and N . The first possibility is M < N , i. e., for the inverse
NFFT in (3.1) we are given more function values than Fourier coefficients, which we are supposed to find.
That means, we are in an overdetermined setting. The second variation is the converse setting M > N , where
we have to find more Fourier coefficients than we are given initial data. Hence, this is the underdetermined
case. Analogously, the same relations can be considered for the inverse adjoint NFFT in (3.2). There M
belongs to the given data whereas N goes with the wanted solution. Thus, the overdetermined case in now
M > N while the problem is underdetermined for M < N .

This section is organized as follows. Firstly, in Section 3.1 the inversions are derived for the quadratic
case M = N . Secondly, in Section 3.2.1 we survey the underdetermined case of the inverse NFFT, which
corresponds to the overdetermined case of the adjoint. Finally, in Section 3.2.2 the overdetermined case of
the inverse NFFT is explained, which is related to the underdetermined case of the adjoint.

3.1. The quadratic case

For the quadratic case M = N we use an approach analogous to [11, 28], where an inversion is realized
by means of Lagrange interpolation. While the fast algorithms are obtained in [11] by means of FMM, our
method from [21] employs the fast summation for acceleration, see [25].

The main idea is to use a relation between two evaluations of a trigonometric polynomial

fj := f(yj) =

N
2 −1∑

k=−N2

f̂k e2πikyj , j = 1, . . . , N,

and

gl := f(xl) =

N
2 −1∑

k=−N2

f̂k e2πikxl , l = 1, . . . , N, (3.3)

for different nodes xl, yj ∈
[
− 1

2 ,
1
2

)
, l, j = 1, . . . , N, and Fourier coefficients f̂k ∈ C, k = −N2 , . . . ,

N
2 − 1. By

defining the coefficients

al =

N∏
n=1

sin(π(xl − yn)) and bj =

N∏
n=1
n6=j

1

sin(π(yj − yn))
, l, j = 1, . . . , N, (3.4)
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we observe the relation

gl = al

N∑
j=1

fj bj

(
1

tan(π(xl − yj))
− i

)
, l = 1, . . . , N, (3.5)

cf. [11, Theorem 2.3]. Hence, for given nonequispaced nodes yj the computation of an inverse NFFT
can be realized by choosing additional points xl and applying formula (3.5). If these nodes xl are chosen

equidistantly we can compute the Fourier coefficients f̂k by simply applying an FFT to the coefficients gl in
(3.3).

Remark 3.1. It must be pointed out that the considered approach is only applicable for disjoint sets of
nodes. If this condition is violated this would mean division by zero in case of the coefficients bj , cf. (3.4).
However, this can easily be avoided since we are free to choose the equispaced points xl distinct from yj .

We approximate the coefficients gl in (3.5) by using the fast summation, see [25]. Considering the
computation scheme we see that it is possible to compute

g̃l :=

N∑
j=1

fj bj cot(π(xl − yj)), l = 1, . . . , N, (3.6)

by means of the fast summation. Then the wanted coefficients gl can be obtained by

gl = al

g̃l − i ·
N∑
j=1

fj bj

 , l = 1, . . . , N, (3.7)

where we only have to compute an additional scalar product of two vectors, which requires only O(N) arith-
metic operations. Considering the kernel K(x) = cot(πx) in detail it becomes apparent that this function
has not only a singularity at x = 0 but also at the boundary x = ±1. Thus, we have to make an effort. For
detailed information about the computation see [21].

The coefficients al and bj can also be computed efficiently by the fast summation because of the obser-
vations

ãl := ln |al| = ln

∣∣∣∣∣
N∏
n=1

sin(π(xl − yn))

∣∣∣∣∣ =

N∑
n=1

ln |sin(π(xl − yn))|

and

b̃j := ln |bj | = ln

∣∣∣∣∣∣∣
N∏
n=1
n6=j

1

sin(π(yj − yn))

∣∣∣∣∣∣∣ = −
N∑
n=1
n 6=j

ln |sin(π(yj − yn))| .

Therefore, it is possible to use the kernel K(x) = ln(| sin(πx)|) to compute the absolute values and perform
a sign correction afterwards to receive the signed coefficients al and bj . Having a closer look at the kernel
it becomes apparent that this function is also one-periodic and shows singularities at the same positions as
the cotangent does. Hence, the computation works analogously.

Remark 3.2. A straightforward implementation of (3.5) can lead to overflow and underflow issues. The
closer our nodes are the more formula (3.5) suffers from these issues. However, having a look at the
coefficients al and bj we recognize that the decrease and the increase are in the same scale. Thus, for

s ∈ R we realize a stabilization by considering |al| · |bj | = eln |al| eln |bj | = eãl eb̃j = eãl+s eb̃j−s, i. e., instead
of computing products of the coefficients we use the additional factor es to overcome numerical difficulties.

To bring the coefficients as close together as possible we choose s = min
{

minj{d̃j},minl{c̃l}
}

. For details

see also [19, ./matlab/infft1d].

Thus, we obtain the following fast algorithm.

6



Algorithm 3.3 (Fast inverse NFFT - quadratic case).

For N ∈ 2N let be given equispaced nodes xl ∈
[
− 1

2 ,
1
2

)
, l = 1, . . . , N , nonequispaced nodes yj ∈

[
− 1

2 ,
1
2

)
and

fj ∈ C, j = 1, . . . , N .

1. Compute ãl = ln |al| and b̃j = ln |bj | by means of the fast summation using the kernel function
K(x) = ln(| sin(πx)|). O(N logN)

2. Determine the stabilization factor s and set al = eãl+s and bj = eb̃j−s. O(N)

3. Perform a sign correction for al and bj. O(N)
(If the nodes have to be sorted, we end up with O(N logN))

4. Compute g̃l analogously to ãl by means of the fast summation with the kernel function K(x) = cot(πx),
cf. (3.6). O(N logN)

5. Compute gl via (3.7). O(N)

6. Compute

f̌k =
1

N

N∑
l=1

gl e
−2πikxl , k = −N2 , . . . ,

N
2 − 1,

by means of an FFT. O(N logN)

Output: f̌k ≈ f̂k
Complexity: O(N logN)

Remark 3.4. This algorithm is part of the software package NFFT 3.4.1, see [19, ./matlab/infft1d].

Now we have a look at some numerical examples.

Example 3.5. We choose arbitrary Fourier coefficients f̂k ∈ [1, 100] and compute the evaluations of the

related trigonometric polynomial (1.1). Out of these we want to retrieve the given f̂k. As mentioned in
[15, 8, 1] we examine so-called jittered equispaced nodes

yj = −1

2
+
j − 1

N
+

1

4N
θ, j = 1, . . . , N, with θ ∼ U(0, 1), (3.8)

where U(0, 1) denotes the uniform distribution on the interval (0, 1) and the factor 1
4 is our choice for the

arbitrary perturbation parameter which has to be less than 1
2 in order to not let the nodes switch position.

For a detailed study of this sampling pattern we refer to [1, Section 4]. We consider the absolute and relative
errors per node

eabsr

N
=

1

N
‖f̂ − f̌‖r and

erelr
N

=
‖f̂ − f̌‖r
N ‖f̂‖r

(3.9)

for r ∈ {2,∞}, where f̌ is the outcome of Algorithm 3.3.
As a first experiment we use N = 2c with c = 1, . . . , 14, and for the parameters needed in the fast

summation we use the standard values, see [19]. In a second experiment we fix N = 1024 and increase some
of the standard values, namely the cut-off parameter m and the degree of smoothness p shall be chosen
uniformly m = p = c with c = 4, . . . , 12.

The corresponding results are depicted in Figure 3.1. Having a look at the errors per node for growing
N , see (a), we observe that the errors are worse if we consider very small sizes of N . Otherwise, we recognize
that these errors remain stable for large sizes of N . In (b) we can see that for fixed N a higher accuracy
can be achieved by tuning the parameters of the fast summation.
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(a) N = 2c, c = 1, . . . , 14,
and m = p = 4.
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10−8

10−6
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(b) N = 1024 and
m = p = c, c = 4, . . . , 12.

Figure 3.1: Comparison of the errors per node (3.9) of reconstructed Fourier coefficients generated by Algorithm 3.3 for jittered
equispaced nodes.

Remark 3.6. We have a look at the condition number of the nonequispaced Fourier matrix A. Figure 3.2
displays cond2(A) = ‖A‖2‖A−1‖2 for different kinds of nodes for increasing N = 2c, c = 1, . . . , 10. There
we see that the distribution of the nonequispaced nodes is of great importance. For jittered equispaced
nodes, cf. (3.8), the condition number is nearly 1 for all sizes of N , so this problem is well-conditioned.
However, for Chebyshev nodes

yj =
1

2
cos

(
2(N − j) + 1

2N
π

)
, j = 1, . . . , N, (3.10)

or logarithmically spaced nodes

yj =

(
6

5

)j−N
, j = 1, . . . , N,

it is easy to see that the condition number rises rapidly. These last mentioned problems are simply ill-
conditioned and we cannot assume a good approximation by Algorithm 3.3. For a detailed investigation of
the condition number for rectangular nonequispaced Fourier matrices see [22] and the references therein and
also [4, 6].

Remark 3.7. We obtain an inverse adjoint NFFT by simply considering the adjoint of Algorithm 3.3, i. e.,
for v := (vl)

N
l=1 being the inverse Fourier transform of h we apply the formula

fj = bj

N∑
l=1

al vl

(
1

tan(π(xl − yj))
+ i

)
, j = 1, . . . , N. (3.11)

This relation can easily be seen by using the matrix representation of Algorithm 3.3.

3.2. The rectangular case

For the general case M 6= N we follow a different approach. To clarify the idea we firstly have a look at
equispaced nodes

xj = j
N ∈

[
− 1

2 ,
1
2

)
, j = −N2 , . . . ,

N
2 − 1.

Thereby, we obtain

A =
(

e2πik
j
N

)N
2 −1, M2 −1

j=−N2 , k=−M2
and A∗ =

(
e−2πik

j
N

)M
2 −1, N2 −1

k=−M2 , j=−N2
.
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Figure 3.2: Comparison of condition numbers of the nonequispaced Fourier matrix A computed using cond from MATLAB for
different kinds of nodes for N = 2c, c = 1, . . . , 10.

Considering products of these two matrices it becomes apparent that A∗A = NIM for M ≤ N as well as
AA∗ = MIN for M ≥ N with N |M . This is to say, in these special cases we are given an inversion of the
NFFT by composition of the Fourier matrices. Hence, we seek to use this result to find a good approximation
of the inversion in the general case. This will be done by modification of the matrix B so that we receive
an approximation of the form AD∗F ∗B∗ ≈MIN similar to the equispaced case. For this purpose, the
entries of the matrix B should be calculated such that its sparse structure with at most (2m+ 1) entries
per row and consequently the arithmetic complexity of the algorithms is preserved. A matrix B satisfying
this property we call (2m+1)-sparse.

It is to be noticed that the fact of underdetermination and overdetermination is not of great importance
when deducing the methods for the inversion. Even if it is a necessary condition for the exact inversion for
equispaced nodes, the algorithms in the nonequispaced setting can always be used in both cases. However,
we will see later on that each algorithm works best in one of these cases and therefore they are already
introduced for this special case. Having this in mind we give an outline of how to handle problems (3.1) and
(3.2).

(1) To solve (3.1) our aim is to compute a sparse matrix B∗ from given nodes xj such that by application
of an adjoint NFFT we obtain a fast inverse NFFT.

Suppose we are given the approximation AD∗F ∗B∗ ≈MIN . Then it also holds that

1

M
AD∗F ∗B∗f ≈ f ∀f ∈ CN . (3.12)

If we now set

f̌ :=
1

M
D∗F ∗B∗f ,

we can rewrite approximation (3.12) as Af̌ ≈ f . Since we already know that Af̂ = f this means
f̌ ≈ f̂ , which could be interpreted as a reconstruction of the Fourier coefficients f̂ . To achieve a good
approximation we want f̌ to be as close as possible by f̂ . This can be accomplished by optimizing
Af̌ ≈ f , i. e., we aim to solve the optimization problem

Minimize
f̌∈CM

‖Af̌ − f‖2.

Using the definition of f̌ this norm can be estimated above by

‖MAf̌ −Mf‖2 = ‖AD∗F ∗B∗f −Mf‖2 ≤ ‖AD∗F ∗B∗ −MIN‖F ‖f‖2,
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where the Frobenius norm is denoted by ‖ · ‖F. Because f is given, this expression can be minimized
by solving

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖AD∗F ∗B∗ −MIN‖2F. (3.13)

(2) To solve (3.2) we aim to compute a sparse matrix B from given nodes xj such that by application of
an NFFT we obtain a fast inverse adjoint NFFT.

Again we suppose AD∗F ∗B∗ ≈MIN , which is equivalent to its adjoint

BFDA∗ ≈M IN and
1

M
BFD (A∗f) ≈ f ∀f ∈ CN ,

respectively. Because we know h = A∗f , this could be interpreted as a reconstruction of the coeffi-
cients f . To achieve a good approximation we solve the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDh−Mf‖2,

where the norm could be estimated as follows.

‖BFDh−Mf‖2 = ‖BFDA∗f −Mf‖2 ≤ ‖BFDA∗ −MIN‖F ‖f‖2.

Hence, we end up with the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDA∗ −MIN‖2F.

So, all in all, with the chosen approach we are able to generate an inverse NFFT as well as an inverse adjoint
NFFT by modifying the matrices B∗ and B, respectively, and applying an adjoint NFFT or an NFFT with
these modified matrices.

Remark 3.8. We investigate below if the reconstruction error can be reduced by appropriate choice of
the entries of the matrix B. Already in [24] the minimization of the Frobenius norm ‖A−BFD‖F was
analyzed regarding a sparse matrix B to achieve a minimum error for the NFFT. In contrast, we study the
minimization of ‖AD∗F ∗B∗ −MIN‖2F to achieve a minimum error for the inverse NFFT as well as the
minimization of ‖BFDA∗ −MIN‖2F to achieve a minimum error for the inverse adjoint NFFT.

3.2.1. Inverse NFFT – underdetermined case

We start deducing our inversion as outlined in general. However, in the numerical experiments in
Examples 3.13 and 3.14 we will see that this method is especially beneficial for the underdetermined setting
and hence it is already attributed to this case.

As mentioned before we aim to find a solution for (3.1) by solving (3.13). Therefore, we consider the
matrix AD∗F ∗B∗ for given nodes xj ∈ T, j = 1, . . . , N . Apparently, we have

AD∗F ∗ =

 1

Mσ

M
2 −1∑

k=−M2

1

ŵ(−k)
e2πik(xj−

l
Mσ

)

N,
Mσ
2 −1

j=1, l=−Mσ2

. (3.14)

By defining the “inverse window function”

K(x) =
1

Mσ

M
2 −1∑

k=−M2

1

ŵ(−k)
e2πikx (3.15)

we receive

K := AD∗F ∗ =
(
K
(
xh − l

Mσ

))N, Mσ2 −1
h=1, l=−Mσ2

.

10



Having a look at the matrix B∗ it becomes apparent that there are only a few nonzero entries. Thus, we

study the window w̃m for further simplification. For wm we have supp(wm) =
[
− m
Mσ

, m
Mσ

]
, i. e., for the

1-periodic version w̃m(x) :=
∑
z∈Z wm(x+ z) it holds

w̃m

(
xj − l

Mσ

)
6= 0 ⇐⇒ ∃ z ∈ Z : −m ≤Mσxj − l +Mσz ≤ m.

By defining the set

IMσ,m(xj) :=
{
l ∈
{
−Mσ

2 , . . . , Mσ

2 − 1
}

: ∃ z ∈ Z with−m ≤Mσxj − l +Mσz ≤ m
}

(3.16)

we can therefore write

(AD∗F ∗B∗)h,j =

M
2 −1∑

k=−M2

e2πikxh

 ∑
l∈IMσ,m(xj)

1

Mσŵ(−k)
e−2πik

l
Mσ w̃m

(
xj − l

Mσ

) .

Hence, our considered norm can be written as

‖AD∗F ∗B∗ −MIN‖2F = (3.17)

=

N∑
h=1

N∑
j=1

∣∣∣∣∣∣
M
2 −1∑

k=−M2

e2πikxh

 ∑
l∈IMσ,m(xj)

1

Mσŵ(−k)
e−2πik

l
Mσ w̃m

(
xj − l

Mσ

)−Mδhj

∣∣∣∣∣∣
2

.

Based on the definition of the Frobenius norm of a matrix A ∈ Rk×n we obtain for aj being columns
of A ∈ Rk×n that

‖A‖2F =

k∑
i=1

n∑
j=1

|aij |2 =

n∑
j=1

‖aj‖22.

This yields that (3.17) can be rewritten by means of

T j =
(

e−2πik
l
Mσ

)M
2 −1

k=−M2 , l∈IMσ,m(xj)
, bj =

(
w̃m

(
xj − l

Mσ

))
l∈IMσ,m(xj)

and ej = (δhj)
N
h=1 as

‖AD∗F ∗B∗ −MIN‖2F =

N∑
j=1

‖AD∗T jbj −Mej‖22. (3.18)

Therefore, the considered norm in (3.13) is minimal if and only if ‖AD∗T jbj −Mej‖22 is minimal for all
j = 1, . . . , N . Hence, we obtain the optimization problems

Minimize
b̃j∈R2m+1

‖AD∗T j b̃j −Mej‖22, j = 1, . . . , N, (3.19)

since the columns of the matrix B∗ contain at most (2m+ 1) nonzeros. Thus, if

Kj := AD∗T j =

 1

Mσ

M
2 −1∑

k=−M2

1

ŵ(−k)
e2πik(xh−

l
Mσ

)

N
h=1, l∈IMσ,m(xj)

∈ CN×(2m+1) (3.20)

has full rank the solution of problem (3.19) is given by

b̃j = M
(
K∗jKj

)−1
K∗jej , j = 1, . . . , N. (3.21)

For generating the modified matrix B∗opt it must be pointed out that the vectors b̃j only contain the (2m+ 1)
nonzeros of the columns of B∗opt. Hence, attention must be paid to the periodicity which can also be seen
in the structure of the matrix B∗.

11



Remark 3.9. Whether the matrix Kj has full rank only depends on the matrix A. The conditions when
this matrix has full rank can e. g. be found in [17] and [23].

Next we develop a method for the fast computation of b̃j . It is already known from Section 2 that sums
of the form (2.1) can be computed in O(M logM +N) arithmetic operations for given nodes xj ∈

[
− 1

2 ,
1
2

)
,

j = 1, . . . , N, and coefficients f̂k ∈ C, k = −M2 , . . . ,
M
2 − 1. If we have a look at the matrix Kj , cf. (3.20),

it becomes apparent that we can compute its entries by means of the NFFT with coefficients

f̂k =
1

Mσŵ(−k)
, k = −M2 , . . . ,

M
2 − 1, (3.22)

and nodes yh,l := xh − l
Mσ

, h = 1, . . . , N, l ∈ IMσ,m(xj), which are at most N(2m+ 1) many. If we put the
columns of Kj one below the other into a vector, we are able to compute these entries only using one NFFT
of length N(2m+ 1). In so doing, we have to reshape the obtained vector into a matrix afterwards.

Another point to mention is that the coefficients f̂k are the same for the computation of all matrices
Kj , j = 1, . . . , N . This is to say, we can precompute step 1 and step 2 of the NFFT since there only

information about the Fourier coefficients f̂k is needed, cf. [26]. Merely for the last step of the NFFT we
need the current nodes and therefore this step has to be performed separately for every j = 1, . . . , N . Thus,
we receive the following algorithm.

Algorithm 3.10 (Fast optimization of the matrix B∗).

For N ∈ N let xj ∈
[
− 1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1 and Mσ = σM .

Furthermore, we are given the oversampling factor σ2 ≥ 1 and the cut-off parameter m2 for an NFFT.

1. Compute g = FDf̂ , cf. (2.4) and (2.5), with f̂k in (3.22). O(M logM)

2. For j = 1, . . . , N :

Determine the set IMσ,m(xj), cf. (3.16). O(1)

Perform Bg, cf. (2.6), for the vector of nodes

y :=
(
yT1 , . . . ,y

T
s

)T
for yn being the columns of the matrix Y := (yh,l)

N
h=1, l∈IMσ,m(xj)

. O(N)

Reshape the obtained vector into the matrix Kj ∈ CN×(2m+1). O(N)

Solve the normal equations for Kj, cf. (3.21). O(N)

3. Compose B∗opt column-wise of the vectors b̃j observing the periodicity. O(N)

Output: optimized matrix B∗opt
Complexity: O(N2 +M logM)

Remark 3.11. It is possible to simplify Algorithm 3.10 by replacing the inverse window function in (3.15)
by the Dirichlet kernel

DM
2 −1(x) =

M
2 −1∑

k=−M2 +1

e2πikx =
sin((M − 1)πx)

sin(πx)
. (3.23)

Hence, the entries of Kj in (3.20) can explicitly be stated by means of (3.23) as

Kj =

[
1

Mσ
DM

2 −1

(
xh − l

Mσ

)]N
h=1, l∈IMσ,m(xj)

and thereby the term M logM in the computational costs of Algorithm 3.10 is eliminated. Thus, we end
up with an arithmetic complexity of O(N2).
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Remark 3.12. This algorithm using a window function or the Dirichlet kernel is part of the software
package NFFT 3.5.1, see [19, ./matlab/infft1d].

Now we have a look at some numerical examples.

Example 3.13. Firstly, we verify that the optimization was successful. To this end, we compare the norms

‖AD∗F ∗B∗ −MIN‖F and ‖AD∗F ∗B∗opt −MIN‖F, (3.24)

where B∗ denotes the original matrix from the adjoint NFFT and B∗opt the optimized matrix generated
by Algorithm 3.10. Even though our method is attributed to the underdetermined setting, this is not a
restriction. Hence, we also test for the overdetermined setting.

(i) Firstly, we choose N = 128 jittered equispaced nodes, cf. (3.8), M = 2c with c = 4, . . . , 12, and for the
NFFT in Algorithm 3.10 we choose the Kaiser-Bessel window, σ2 = 2.0 and m2 = 2m to receive high
accuracy. Figure 3.3 depicts the comparison of the norms (3.24) for different values of m and σ for
B∗opt generated using B-Splines as well as the Dirichlet kernel as mentioned in Remark 3.11. It can
be seen that the optimization was really successful for large values of M compared to N whereas the
minimization does not work in the overdetermined setting M < N . But in fact, this is not surprising
because then we try to approximate the identity by a low rank matrix since AD∗F ∗B∗ ∈ CN×N
has at most rank M . Therefore, Algorithm 3.10 is specially attributed to the underdetermined case.
We recognize that the optimization is worsened against expectation by using a higher oversampling
factor σ whereas increasing the cut-off m expectedly leads to better results.

Figure 3.4 displays the run-times of Algorithm 3.10 comparing B-Spline and Dirichlet kernel for m = 2
and σ = 1.0. It is obvious that the usage of the Dirichlet kernel considerably reduces the run-time.
Since the results are the same for other parameters and window functions additional tests are omitted.

(ii) Next we repeat the example for Chebyshev nodes, cf. (3.10). The corresponding outcomes for B-Splines
can be found in Figure 3.5. There we see that the gap between M and N has to be huge to achieve
results similar to those for jittered equispaced nodes.

Example 3.14. Secondly, we check if we can retrieve given Fourier coefficients from evaluations of the
related trigonometric polynomial (1.1), cf. Example 3.5. For f = (f(xj))

N
j=1 with given nodes xj we

consider the estimate f̌ =
(
f̌k
)M

2 −1
k=−M2

= 1
M D∗F ∗B∗optf , where B∗opt is the output of Algorithm 3.10. Here

we choose the Dirichlet kernel with σ = 2.0 and jittered equispaced nodes xj . We consider the absolute and
relative errors per node

eabsr

N
=

1

N
‖Af̌ − f‖r and

erelr
N

=
‖Af̌ − f‖r
N ‖f‖r

(3.25)

for r ∈ {2,∞}. As a first experiment we use N = 2c with c = 1, . . . , 12, M = 4N , and m = 4. In a
second experiment we fix N = 512 and M = 2048 and the cut-off parameter m shall be chosen m = c with
c = 4, . . . , 12. The corresponding results are depicted in Figure 3.6. Having a look at the errors per node for
growing N , see (a), we observe that the errors are worse if we consider very small sizes of N . Otherwise, we
recognize that these errors get smaller for large sizes of N . In (b) we can see that for fixed N these errors
remain quite stable when tuning the cut-off parameter m.

Remark 3.15. The second problem (3.2) can be solved similarly by searching an approximation of the form
BK∗ = BFDA∗ ≈MIN . Therefore, we consider the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BK∗ −MIN‖2F.

This is equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖KB∗ −MIN‖2F,

which is what we discussed in Section 3.2.1 and hence can be solved likewise.

13



101 102 103

10−2

10−1

100

101

102

103

104

size of M

F
ro
b
en
iu
s
n
o
rm

original matrix
Dirichlet kernel
B-Spline

(a) m = 2 and σ = 1.0

101 102 103

101

102

103

size of M
F
ro
b
en
iu
s
n
or
m

original matrix
Dirichlet kernel
B-Spline

(b) m = 2 and σ = 2.0

101 102 103
10−5

10−3

10−1

101

103

size of M

F
ro
b
en
iu
s
n
o
rm

original matrix
Dirichlet kernel
B-Spline

(c) m = 4 and σ = 1.0

Figure 3.3: Comparison of Frobenius norms (3.24) of the original matrix B∗ and the optimized matrix B∗
opt generated by

Algorithm 3.10 using B-Spline window functions as well as the Dirichlet kernel for N = 128 jittered equispaced nodes and
M = 2c with c = 4, . . . , 12.
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Figure 3.4: Comparison of run-times of Algorithm 3.10 using the B-Spline as well as the Dirichlet kernel with m = 2 and
σ = 1.0 for N = 128 jittered equispaced nodes and M = 2c with c = 4, . . . , 12.
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Figure 3.5: Comparison of Frobenius norms (3.24) of the original matrix B∗ and the optimized matrix B∗
opt generated by

Algorithm 3.10 using B-Spline window functions as well as the Dirichlet kernel with m = 2 and σ = 1.0 for different numbers
of Chebyshev nodes and M = 2c with c = 4, . . . , 12.
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Figure 3.6: Comparison of the errors per node (3.25) of reconstructed Fourier coefficients generated by Algorithm 3.10 using
the Dirichlet kernel and σ = 2.0 for jittered equispaced nodes.

Example 3.16. Finally, we discuss the analogs of the examples mentioned above for problem (3.2).
Since it is clear that the optimization problems are equivalent we refer to Example 3.13 for results with
respect to the minimization of the norm. Similarly to Example 3.14, we check if we are able to per-
form an inverse adjoint NFFT for a trigonometric polynomial (1.1). This time we consider the estimate

f̃ =
(
f̃j

)N
j=1

= 1
M BoptFD(A∗f) of the function values f = (f(xj))

N
j=1 = (fj)

N
j=1, where Bopt is the adjoint

of the output of Algorithm 3.10. We consider the absolute and relative errors per node

eabsr

N
=

1

N
‖f̃ − f‖r and

erelr
N

=
‖f̃ − f‖r
N ‖f‖r

(3.26)

for r ∈ {2,∞} and perform the same experiments as in Example 3.14. The corresponding results can be
found in Figure 3.7. There we see quite the same behavior in (a), whereas in (b) the errors get even worse
when increasing the cut-off parameter m.
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Figure 3.7: Comparison of the errors per node (3.9) of reconstructed function values generated by Algorithm 3.10 using the
Dirichlet kernel and σ = 2.0 for jittered equispaced nodes.
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3.2.2. Inverse NFFT – overdetermined case

Previously, in Section 3.2.1 we studied KB∗ and BK∗, where K = AD∗F ∗ ∈ CN×Mσ and B ∈ RN×Mσ.
There we have seen that the inversion based on the minimization related to these matrices works best for
M > N , which is the underdetermined case for the inverse NFFT as well as the overdetermined case for
the inverse adjoint NFFT. However, often we are given nonequispaced samples with M < N and search a
corresponding trigonometric polynomial of degree M . Hence, we look for another approach which yields the
best results in this overdetermined setting M < N . To this end, we investigate B∗K.

Initially, we consider the function g̃(x) =
∑N
j=1 fj w̃m(xj − x). Using this we can represent the vector

g̃ :=
(
g̃
(

l
Mσ

))Mσ
2 −1

l=−Mσ2
by g̃ = B∗f . Furthermore, we know by (2.8) that the adjoint NFFT can be written

as (h̃k)
M
2 −1
k=−M2

=: h̃ = D∗F ∗B∗f and thereby we have h̃ = D∗F ∗g̃. Now we claim h̃
!
≈ f̂ . Thus, it follows

g̃ = B∗f = B∗Af̂
!
≈ B∗Ah̃ = B∗AD∗F ∗g̃ = B∗Kg̃,

i. e., we seek B∗ as the solution of the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗K − IMσ‖
2
F .

This is equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖K∗B − IMσ‖
2
F . (3.27)

By means of definitions (3.14) and (2.6) we obtain

K∗B = FDA∗B =

 N∑
j=1

M
2 −1∑

k=−M2

1

Mσŵ(k)
e−2πik(xj−

s
Mσ

) w̃m

(
xj − l

Mσ

)
Mσ
2 −1

s, l=−Mσ2

. (3.28)

Analogously to (3.16), we define the set

IMσ,m(l) := {j ∈ {1, . . . , N} : ∃ z ∈ Z with−m ≤Mσxj − l +Mσz ≤ m} . (3.29)

Hence, we can rewrite (3.27) by analogy with Section 3.2.1 as

‖FDA∗B − IMσ‖
2
F =

Mσ
2 −1∑

l=−Mσ2

‖FDH lbl − el‖22,

where

bl :=

(
w̃m

(
xj − l

Mσ

))
j∈IMσ,m(l)

, H l :=
(
e−2πikxj

)M
2 −1
k=−M2 , j∈IMσ,m(l)

and el denote the columns of the identity matrix IMσ
. We obtain, cf. (3.20),

Ll := FDH l =

 1

Mσ

M
2 −1∑

k=−M2

1

ŵ(k)
e2πik(

s
Mσ
−xj)


Mσ
2 −1

s=−Mσ2 , j∈IMσ,m(l)

∈ CMσ×|IMσ,m(l)|. (3.30)

Thereby we receive the optimization problems

Minimize
b̃l∈R2m+1

‖Llb̃l − el‖22, l = −Mσ

2 , . . . , Mσ

2 − 1.
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If the matrix Ll ∈ CMσ×|IMσ,m(l)| has full rank the solution of (3.27) is given by

b̃l = (L∗lLl)
−1

L∗l el, l = −Mσ

2 , . . . , Mσ

2 − 1. (3.31)

This time we cannot tell anything about the dimensions of Ll in general since the size of the set IMσ,m(l)

depends on several parameters. Having these vectors b̃l we can compose the modified matrix Bopt, observing

that b̃l only consist of the nonzero entries of Bopt. Then the approximation of the Fourier coefficients is
given by

f̂ ≈ h̃ = D∗F ∗B∗optf . (3.32)

In other words, this approach yields another way to invert the NFFT by also modifying the adjoint NFFT.
Analogously to Section 3.2.1, we are able to compute the entries of the matrix Ll, see (3.30), by means

of an NFFT with the M coefficients

f̂k =
1

Mσŵ(k)
, k = −M2 , . . . ,

M
2 − 1, (3.33)

and nodes ys,j := s
Mσ
− xj , s = −Mσ

2 , . . . , Mσ

2 − 1, j ∈ IMσ,m(l), which are at most MσN many. Here we also
require only one NFFT by writing the columns of Ll one below the other. The obtained vector including
all entries of Ll has to be reshaped afterwards. This leads to the following algorithm.

Algorithm 3.17 (Fast optimization of the matrix B).

For N ∈ N let xj ∈
[
− 1

2 ,
1
2

)
, j = 1, . . . , N, be given nodes as well as M ∈ 2N, σ ≥ 1 and Mσ = σM .

1. Compute g = FDf̂ , cf. (2.4) and (2.5), with f̂k in (3.33). O(M logM)

2. For l = −Mσ

2 , . . . , Mσ

2 − 1:

Determine the set IMσ,m(l), cf. (3.29). O(N)

Perform Bg, cf. (2.6), for the vector of nodes

y :=
(
yT1 , . . . ,y

T
s

)T
for yn being the columns of the matrix Y := (yl,j)

Mσ
2 −1
l=−Mσ2 , j∈IMσ,m(l)

. O(N)

Reshape the obtained vector into the matrix Ll ∈ CMσ×|IMσ,m(l)|. O(N)

Solve the normal equations for Ll, cf. (3.31). O(N3 +N2M)

3. Compose Bopt column-wise of the vectors b̃l observing the periodicity. O(M)

Output: optimized matrix Bopt

Complexity: O(N2M2 +N3M)

Remark 3.18. If we assume the nodes are somewhat uniformly distributed, like for instance jittered equi-
spaced nodes, we can get rid of the complexity related to N and end up with arithmetic costs of O(M2).

Remark 3.19. It is also possible to simplify the computation of Ll by incorporating the Dirichlet ker-
nel (3.23), i. e., we set ŵ(k) = 1 for all k = −M2 + 1, . . . , M2 − 1, and the last nonzero entry 1

ŵ(M2 )
of the

matrix D∗ is set to zero. Hence, the entries of the matrix

Ll =

[
1

Mσ
DM

2 −1

(
l
Mσ
− xj

)]Mσ2 −1
l=−Mσ2 , j∈IMσ,m(l)

can explicitly be stated and therefore the term M logM in the computational costs of Algorithm 3.17 can
be eliminated. Nevertheless, even if we assume uniformly distributed nodes as in Remark 3.18, we remain
with arithmetic costs of O(M2).
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Remark 3.20. This algorithm using a window function or the Dirichlet kernel is part of the software
package NFFT 3.5.1, see [19, ./matlab/infft1d].

Example 3.21. As in Example 3.13 we verify at first that the optimization was successful. On that account,
we compare the norms

‖FDA∗B − IMσ‖F and ‖FDA∗Bopt − IMσ‖F, (3.34)

where B denotes the original matrix from the NFFT and Bopt the optimized matrix generated by Algo-
rithm 3.17. Although our method is attributed to the overdetermined setting, this again means no restriction.
Therefore, also the underdetermined setting is tested.

(i) Again we examine at first jittered equispaced nodes, see (3.8). We choose M = 128 and consider the
norms (3.34) for N = 2c nodes with c = 2, . . . , 14. In order to compute the NFFT in Algorithm 3.17
we choose the Kaiser-Bessel window, an oversampling of σ2 = 2.0 and the cut-off parameter m2 = 2m
to achieve results comparable to Example 3.13. However, one could also choose a larger cut-off to
receive more accuracy for growing N .

In Figure 3.8 one can find the comparison of the norms (3.34) for different values of m and σ for
Bopt generated using B-Splines as well as the Dirichlet kernel mentioned in Remark 3.19. It can be
seen that for σ = 1.0 the minimization was very successful especially for large N compared to M . For
N < M the minimization was not successful. Similarly to Example 3.13, this results from the fact that
the corresponding matrix FDA∗B is of low rank. Therefore, Algorithm 3.17 is specially attributed
to the overdetermined case.

Having a look at the graphs with high oversampling we recognize that the norms of the optimized
matrices remain stable for all sizes of N . Thus, also for this method the optimization seems not to
work for high oversampling.

While the computational costs could not be scaled down, we see in Figure 3.9 that using the Dirichlet
kernel reduced the run-time for all sizes of N . Results for other window functions are omitted since
they show the same behavior.

(ii) Next we repeat the example using Chebyshev nodes, cf. (3.10). The corresponding results for B-Splines
can be found in Figure 3.10. We recognize that these graphs look similar to Figure 3.8, in contrast to
Example 3.13 where the optimization for Chebyshev nodes was quite difficult.

Remark 3.22. Another approach for computing an inverse NFFT in the setting N ≥ M can be obtained
by using the fact that A∗A is of Toeplitz structure. To this end, the Gohberg-Semencul formula, see [18],
can be used to solve the normal equations A∗Af̂ = A∗f exactly by analogy with [3]. Therefore, the inverse
NFFT consists of two steps: an adjoint NFFT applied to f and the multiplication with the inverse of A∗A,
which can be realized by means of 8 FFTs. The computation of the components of the Gohberg-Semencul
formula can be seen as a precomputational step.

However, even if this algorithm is exact and therefore yields better results than our approach from
Section 3.2.2 there is no exact generalization to higher dimensions since there is no generalization of the
Gohberg-Semencul formula to dimensions > 1. This approach can only be used for approximations on very
special grids, such as linogramm grids, utilizing the given specific structure, see [2, 3].

Example 3.23. As in Example 3.14 we consider a trigonometric polynomial. For f = (f(xj))
N
j=1 with

given nodes xj we consider the estimate f̌ =
(
f̌k
)M

2 −1
k=−M2

= D∗F ∗B∗optf , where B∗opt is the outcome of

Algorithm 3.17, and compare it to the given function values f . Again, we choose the Dirichlet kernel
with σ = 2.0 and jittered equispaced nodes xj . We consider the absolute and relative errors per node
(3.9) for r ∈ {2,∞}. As a first experiment we use M = 2c with c = 1, . . . , 12, N = 4M , and m = 4. In a
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Figure 3.8: Comparison of Frobenius norms (3.34) of the original matrix B and the optimized matrix Bopt generated by
Algorithm 3.17 using B-Spline window functions as well as the Dirichlet kernel for M = 128 and N = 2c jittered equispaced
nodes with c = 2, . . . , 14.
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Figure 3.9: Comparison of run-times of Algorithm 3.17 using the B-Spline as well as the Dirichlet kernel with m = 2 and
σ = 1.0 for M = 128 and N = 2c jittered equispaced nodes with c = 2, . . . , 14.

101 102 103 104
10−7

10−3

101

105

109

size of N

F
ro
b
en
iu
s
n
or
m

original matrix
Dirichlet kernel
B-Spline

(a) m = 2 and σ = 1.0

101 102 103 104

101

102

103

104

105

size of N

F
ro
b
en

iu
s
n
or
m

original matrix
Dirichlet kernel
B-Spline

(b) m = 2 and σ = 2.0

101 102 103 104
10−6

10−2

102

106

1010

size of N

F
ro
b
en
iu
s
n
or
m

original matrix
Dirichlet kernel
B-Spline

(c) m = 4 and σ = 1.0

Figure 3.10: Comparison of Frobenius norms (3.34) of the original matrix B and the optimized matrix Bopt generated by
Algorithm 3.17 using B-Spline window functions as well as the Dirichlet kernel for M = 128 and N = 2c Chebyshev nodes
with c = 2, . . . , 14.
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second experiment we fix N = 2048 and M = 512 and the cut-off parameter m shall be chosen m = c with
c = 4, . . . , 12. The corresponding results are displayed in Figure 3.11. We recognize that the errors per node
for growing M , see (a), are worse if we consider very small sizes of N but decrease for large sizes of M .
In (b) we can see that for fixed M these errors remain quite stable when tuning the cut-off parameter m.
One could also consider the Toeplitz approach described in Remark 3.22. There we observed stable absolute
errors of size 10−15 and stable relative errors of size 10−18.
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(a) M = 2c, c = 1, . . . , 12,
N = 4M and m = 4.

4 6 8 10 12

10−10

10−9

10−8

10−7

size of m

er
ro
rs

absolute `∞-error absolute `2-error
relative `∞-error relative `2 error

(b) N = 2048,M = 512
and m = 4, . . . , 12.

Figure 3.11: Comparison of the errors per node (3.9) of reconstructed Fourier coefficients generated by Algorithm 3.17 using
the Dirichlet kernel and σ = 2.0 for jittered equispaced nodes.

Remark 3.24. Having a look at the remaining matrix product K∗B we recognize that the corresponding
optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖K∗B − IMσ‖
2
F

was already solved to find a solution for the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗K − IMσ
‖2F .

Hence, it is merely left to examine the current approximation. Due to the minimization problem we have
FDA∗B = K∗B ≈ IMσ

. Because B ∈ RN×Mσ is rectangular and therefore not invertible we multiply by a
right-inverse of B, i. e., a matrix B′ ∈ RMσ×N that holds BB′ = IN , and receive FDA∗ ≈ B′. Multiplying
by a vector f yields FDA∗f ≈ B′f , which can be written by means of A∗f = h as FDh ≈ B′f . Finally,
we multiply left-hand by B, which results in the approximation BFDh ≈ f and thus provides another
method to invert the adjoint NFFT by modifying the NFFT.

Example 3.25. Finally, we consider the analog of Example 3.16. To this end, we exchange the estimate
by f̃ = BoptFD(A∗f), where Bopt is the adjoint of the outcome of Algorithm 3.17. We conduct the same
experiments as in Example 3.23 but consider the errors per node (3.26). The corresponding results can be
found in Figure 3.12. There we see that our optimization was not successful in the case N > M since there
is no reasonable chance to approximate the function values in any of the tested settings.

4. Frames

During the last few decades the popularity of frames rose rapidly and more and more articles are con-
cerned with this topic. Recently, an approach was published in [15] connecting frame approximation to
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Figure 3.12: Comparison of the errors per node (3.9) of reconstructed function values generated by Algorithm 3.17 using the
Dirichlet kernel and σ = 2.0 for jittered equispaced nodes.

the adjoint NFFT. Thus, in this section we consider the concept of frames and discuss an approach for
inverting the NFFT based on [15]. Besides the basic information about the approximation of the inverse
frame operator, a link to the methods explained in Section 3.2 is provided.

4.1. Approximation of the inverse frame operator

First of all, we sum up the main idea of frames and frame approximation, basically adapted from [15]
and [7].

Definition 4.1. Let H be a separable Hilbert space with inner product 〈·, ·〉. Then a sequence {ϕj}∞j=1 ⊂ H
is called frame if there exist constants A,B > 0 such that

A‖f‖2 ≤
∞∑
j=1

|〈f, ϕj〉|2 ≤ B‖f‖2 ∀f ∈ H.

The operator S : H → H, Sf =
∑∞
j=1〈f, ϕj〉ϕj, is named the frame operator.

Given this definition we can already state one of the most important results in frame theory, the so-called
frame decomposition. If {ϕj}∞j=1 is a frame with frame operator S, then

f =

∞∑
j=1

〈f, S−1ϕj〉ϕj =

∞∑
j=1

〈f, ϕj〉S−1ϕj ∀f ∈ H. (4.1)

In other words, every element of H can be represented as a linear combination of the elements of the frame,
which is a property similar to an orthonormal basis. Though, to apply (4.1) it is necessary to state the
inverse operator S−1 explicitly. However, this is usually difficult (or even impossible). Hence, it is necessary
to be able to approximate S−1. For this purpose, we use the method from [14] by analogy with [15], which
is based on so-called admissible frames, see [15, Definition 1].

We suppose {ψl}∞l=−∞ is an admissible frame with respect to {ϕj}∞j=1. As shown in [14], the dual frame

{S−1ϕj}∞j=1 can then be approximated by

S−1ϕj ≈ ϕ̃j :=

Mσ
2 −1∑

l=−Mσ2

pl,j ψl, j = 1, . . . , N, (4.2)
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where Φ† =: [pl,j ]
Mσ
2 −1, N
l=−Mσ2 , j=1

is the Moore-Penrose pseudoinverse of the matrix

Φ := [〈ϕj , ψl〉]
N, Mσ2 −1
j=1, l=−Mσ2

. (4.3)

In so doing, the matrix dimensions have to fulfill the condition N ≥Mσ + cM
1

2s−1
σ . Given this approximation

of the dual frame, inserting (4.2) in (4.1) and cutting off the infinite sum yields the approximation

f ≈ f̃ :=

N∑
j=1

Mσ
2 −1∑

l=−Mσ2

〈f, ϕj〉 pl,j ψl. (4.4)

4.2. Linking the frame-theoretical approach to the iNFFT

Now we aim to find a link between the frame approximation (4.4) and the iNFFT from Section 3.2. To
this end, we consider a discrete version of the frames recommended in [15], i. e.,

{ϕj(k) := e−2πikxj , j ∈ N} and

{
ψl(k) :=

e−2πikl/Mσ

Mσŵ(−k)
, l ∈ Z

}
(4.5)

for k ∈ Z, where xj ∈ [− 1
2 ,

1
2 ) denote the nonequispaced nodes. Note that we changed time and frequency

domain to match our notations in Section 2. Thereby, we receive the scalar product

〈ϕj , ψl〉`2 =

∞∑
k=−∞

ϕj(k)ψl(k) =

∞∑
k=−∞

1

Mσŵ(k)
e−2πik(xj−

l
Mσ

).

Truncating the infinite sum yields an approximation of the matrix Φ in (4.3) by

Φ`2 =

(
K
(
xj − l

Mσ

))N, Mσ2 −1
j=1, l=−Mσ2

(4.6)

with the kernel K(x) from (3.15). In the following explanations we choose Φ = Φ`2 .

Remark 4.2. In general, we do not have admissible frames for our known window functions w because
of the factor 1

ŵ(k) , k = −∞, . . . ,∞. Only for finite frames the appropriate conditions can be satisfied. In

addition, it must be pointed out that for other sampling patterns than the jittered equispaced nodes it was
already mentioned in [8] that the admissibility condition may not hold or even the conditions for constituting
a frame may fail, cf. [15].

4.2.1. Theoretical results

For these given frames we consider again the frame approximation (4.4). Our aim is to show that the
inversion of the NFFT illustrated in Section 3.2 can also be expressed by means of a frame-theoretical
approach, i. e., by approximating a function f̂ in the frequency domain, cf. (2.3), and subsequently sampling
at equispaced points k = −M2 , . . . ,

M
2 − 1.

The frame approximation of the function f̂ is given by

˜̂
f =

N∑
j=1

Mσ
2 −1∑

l=−Mσ2

〈f̂ , ϕj〉`2 pl,j ψl (4.7)

with pl,j as defined in (4.2). Hence, we are acquainted with two different methods to compute the Fourier

coefficients f̂k from given data 〈f̂ , ϕj〉 =: fj , the frame approximation (4.7) as well as the adjoint NFFT (2.8).
In what follows, we suppose that we can achieve a reconstruction via frames. Utilizing this, we modify the
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adjoint NFFT so that we can use this simple method to invert the NFFT. Thus, we are looking for an

approximation of the form h̃k ≈ ˜̂
f(k) ≈ f̂k, k = −M2 , . . . ,

M
2 − 1.

To compare the adjoint NFFT and the frame approximation we firstly rewrite the approximation (2.8)
of the adjoint NFFT by analogy with [15]. This yields

h̃k =

Mσ
2 −1∑

l=−Mσ2

cl ψl(k), k = −M2 , . . . ,
M
2 − 1, (4.8)

with coefficients vector

c := (cl)
Mσ
2 −1
l=−Mσ2

=

 N∑
j=1

fj w̃m

(
xj − l

Mσ

)
Mσ
2 −1

l=−Mσ2

= B∗f , (4.9)

where f := (fj)
N
j=1 = (〈f̂ , ϕj〉`2)Nj=1. Likewise we rewrite (4.7), cf. [15], as

˜̃
hk :=

˜̂
f(k) =

Mσ
2 −1∑

l=−Mσ2

dl ψl(k), k = −M2 , . . . ,
M
2 − 1, (4.10)

with d := (dl)
Mσ
2 −1
l=−Mσ2

= Φ†f . Furthermore, we define the vectors h̃ := (h̃k)
M
2 −1
k=−M2

and
˜̃
h := (

˜̃
hk)

M
2 −1
k=−M2

as well

as the matrix Ψ := (ψl(k))
M
2 −1,

Mσ
2 −1

k=−M2 , l=−
Mσ
2

. Thereby, (4.8) and (4.10) can be represented by h̃ = Ψc and

˜̃
h = Ψd. Hence, we can now estimate the difference between both approximations.

Theorem 4.3. Let ŵ :=
(
(ŵ(−k))−1

)M
2 −1
k=−M2

be a vector satisfying ‖ŵ‖2 <∞. Then the following estimates

hold.

(i) For Mσ < N we have ∥∥∥h̃− ˜̃
h
∥∥∥
2
≤ 1√

Mσ

‖ŵ‖2 ‖ΦB∗ − IN‖F ‖Φ†f‖2. (4.11)

(ii) For Mσ > N we have ∥∥∥h̃− ˜̃
h
∥∥∥
2
≤ 1√

Mσ

‖ŵ‖2 ‖B
∗Φ− IMσ

‖F ‖Φ†f‖2, (4.12)

where B∗ denotes the adjoint matrix of (2.6) and Φ = Φ`2 is given as in (4.6).

Proof. By analogy with [15] Definitions (4.8) and (4.10) imply

∥∥∥h̃− ˜̃
h
∥∥∥
2

= ‖Ψc−Ψd‖2 ≤ ‖Ψ‖F ‖c− d‖2 =

√√√√√ M
2 −1∑

k=−M2

Mσ
2 −1∑

l=−Mσ2

|ψl(k)|2 · ‖c− d‖2

=
1

Mσ

√√√√√√
M
2 −1∑

k=−M2

∣∣∣∣ 1

ŵ(−k)

∣∣∣∣2
Mσ
2 −1∑

l=−Mσ2

∣∣∣e−2πikl/Mσ

∣∣∣2︸ ︷︷ ︸
≤1

· ‖c− d‖2 ≤
1√
Mσ

‖ŵ‖2 ‖c− d‖2 .

Next we consider the norm ‖c− d‖2 separately.
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(i) For Mσ < N we have by (4.9) and (4.10) that

c− d =
(
B∗ −Φ†

)
f =

(
B∗ − (Φ∗Φ)−1Φ∗

)
f =

(
(Φ∗Φ)−1Φ∗

)
(ΦB∗ − IN )f .

This leads to

‖c− d‖2 ≤ ‖ΦB∗ − IN‖F ‖
(
(Φ∗Φ)−1Φ∗

)
f‖2 ≤ ‖ΦB∗ − IN‖F ‖Φ†f‖2.

(ii) In analogy, for Mσ > N we have that

c− d =
(
B∗ −Φ†

)
f =

(
B∗ −Φ∗(ΦΦ∗)−1

)
f = (B∗Φ− IMσ )

(
Φ∗(ΦΦ∗)−1

)
f

and thereby

‖c− d‖2 ≤ ‖B∗Φ− IMσ
‖F ‖

(
Φ∗(ΦΦ∗)−1

)
f‖2 ≤ ‖B∗Φ− IMσ

‖F ‖Φ†f‖2.

4.2.2. Optimization

Our aim is to minimize the distances shown in (4.11) and (4.12) to modify the adjoint NFFT such
that we can achieve an inversion of the NFFT. To this end, we suppose we are given nodes xj as well as
frames {ϕj} and {ψl} and thereby the matrix Φ = Φ`2 . Thus, our purpose is to improve the approximation
of the adjoint NFFT by modifying the matrix B∗.

Connection to the first approach. Firstly, we consider the case Mσ < N . Minimizing the distance in (4.11)
yields the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖ΦB∗ − IN‖2F, (4.13)

which is of similar form to those seen in Section 3.2. For solving this problem we have a closer look at the
matrix ΦB∗. By Definitions (2.6) and (4.6) we obtain

ΦB∗ =

 Mσ
2 −1∑

l=−Mσ2

M
2 −1∑

k=−M2

1

Mσŵ(k)
e−2πik(xj−

l
Mσ

) w̃m

(
xh − l

Mσ

)N
j, h=1

. (4.14)

In addition, we consider analogously to (3.28)

BFDA∗ =

 Mσ
2 −1∑

l=−Mσ2

M
2 −1∑

k=−M2

1

Mσŵ(k)
e−2πik(xj−

l
Mσ

) w̃m

(
xh − l

Mσ

)N
h, j=1

. (4.15)

Comparing these matrices (4.14) and (4.15) we recognize that they are exactly the transposed of each other,

i. e., ΦB∗ = (BFDA∗)T = (BK∗)T . Thereby, (4.13) is equivalent to the problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖BFDA∗ − IN‖2F

and can be solved like already seen in Section 3.2.1. It may be recognized that the objective is a slightly
different one since now we seek an approximation of the form BFDA∗ ≈ IN instead of BFDA∗ ≈MIN .
However, the constant does not change the method and thus the same fast algorithm can be used.
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Connection to the second approach. For Mσ > N we consider the estimate (4.12) where minimization leads
to the optimization problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖B∗Φ− IMσ
‖2F. (4.16)

Again we have a closer look at the appropriate matrix

B∗Φ =

 N∑
j=1

M
2 −1∑

k=−M2

1

Mσŵ(k)
e−2πik(xj−

s
Mσ

) w̃m

(
xj − l

Mσ

)
Mσ
2 −1

l, s=−Mσ2

(4.17)

and additionally consider the matrix from (3.28). Once more, a comparison of (4.17) and (3.28) yields

B∗Φ = (FDA∗B)
T

= (K∗B)
T
, i. e., they are equal except for transposition. Because (4.16) is hence

equivalent to the transposed problem

Minimize
B∈RN×Mσ : B (2m+1)-sparse

‖FDA∗B − IMσ
‖2F,

(4.16) can be solved like already discussed in Section 3.2.2.
Therefore, we have shown that the frame-theoretical approach can be traced back to the methods for

inverting the NFFT introduced in Section 3.2. In other words, the explanations in Section 4 can be seen as
simply having a different point of view to the problem of Section 3.2.

Remark 4.4. Note that the method of [15] is based only on optimizing the diagonal matrix D whereas we
used similar ideas to modify the sparse matrix B.

5. Conclusion

In the present paper we developed new direct methods for computing an inverse NFFT, i. e., for the
reconstruction of M Fourier coefficients f̂k from given N nonequispaced data fj . Furthermore, solutions
for the adjoint problem, the reconstruction of function values fj from given data hk, were proposed. For
both problems we derived efficient algorithms for the quadratic setting as well as for the overdetermined
and underdetermined case.

In the quadratic setting we used a relation between two evaluations of a trigonometric polynomial which
can be deduced by means of Lagrange interpolation. Approximation of corresponding coefficients by means
of the fast summation yields algorithms of complexity O(N logN).

The main idea for the overdetermined and underdetermined cases was the minimization of a certain
Frobenius norm so that the solution can be deduced by means of the least squares method. All in all, we
ended up with precomputational algorithms of complexity O(N2) and O(M2), respectively, whereas the
algorithms for the inversion require only O(M logM +N) arithmetic operations.

Finally, we investigated an approach based on [15] considering frame approximation which can be used

to approximate a function f̂ in the frequency domain and subsequently sample at equispaced points. By
comparing this procedure to the adjoint NFFT we modified the last-mentioned to achieve an iNFFT. In
so doing, we found out that the thereby obtained approaches can be traced back to the methods for the
inversion introduced for the overdetermined and underdetermined cases.

For the future it might be of interest to study for what kind of distribution of nodes and which window
functions the frame-theoretical approach is applicable. Moreover, a generalization of the presented methods
to higher dimensions is subject of ongoing research.
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