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Abstract.

This paper is concerned with the solution of systems of linear equations Ayx =
b, where {An}nen denotes a sequence of positive definite Hermitian ill-conditioned
Toeplitz matrices arising from a (real-valued) nonnegative generating function f € Cay
with zeros. We construct positive definite Hermitian preconditioners My such that
the eigenvalues of M ;leN are clustered at 1 and the corresponding PCG-method
requires only O(N log N) arithmetical operations to achieve a prescribed precision.
We sketch how our preconditioning technique can be extended to symmetric Toeplitz
systems, doubly symmetric block Toeplitz systems with Toeplitz blocks and non-—
Hermitian Toeplitz systems.

Numerical tests confirm the theoretical expectations.
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1 Introduction.

Systems of linear equations
ANLB =b

with positive definite Hermitian Toeplitz matrices Ay arise in a variety of ap-
plications in mathematics and engineering (see [11] and the references therein).
Along with stabilization techniques for direct fast and superfast Toeplitz solvers,
preconditioned conjugate gradient methods (PCG—methods) and other iterative
methods have attained much attention during the last years. As essential com-
putational effort, the CG—method requires the multiplication of a vector with
the matrix Ay in each iteration step. For Toeplitz matrices Ay, the multiplica-
tion with a vector can be computed with O(N log N) arithmetical operations by
fast Fourier transforms (FFT). The number of iteration steps of the CG—method
depends on the distribution of the eigenvalue of Ay. In particular, it holds (see
[1, p.573]
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2 D. Potts and G. Steidl

THEOREM 1.1. Let Ay be a positive definite Hermitian (N, N)-matriz which
has p and q isolated large and small eigenvalues, respectively:

0</\1S/\2§...S/\q < GS/\,H_lS...)\N,pr
(1.1) < AN—pt1 SAvpr2 <. < AN (0<a<b< ).

Let [x] denote the smallest integer > x. Then the CG-method for the solution
of Anx = b requires at most

14+ 1/2
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iteration steps to achieve precision T, i.e.

||zn — 2|
llzo —zlla =

where ||z||a := VZ' AN x and where z,, denotes the numerical solution after n
iteration steps.

In the sequel, we denote by Cs5, the space of 2r—periodic, real-valued contin-
uous functions.

Let {o% }¥_, be a sequence of real numbers and let vy (¢) denote the number
of those among oY (k =1,..., N) which are outside the interval (p — &,p + ¢).
If yn(e) < K (€), where K (¢) is independent of N, then we say that the values
o are clustered at p [32]. If the eigenvalues of a sequence of (N, N)-matrices
Ay are clustered at 1, then the CG-method converges superlinearly (see [13]).

For a sequence of (N, N)-Toeplitz matrices Ay = An(f) (N € N) generated
by a function f € Co,, it is well-known that the eigenvalues are distributed as
7 [32, 17]. Let

Smin == min{f(z) : 2 €[0,27)}, fmax = max{f(z) : z €[0,2m)}.

Then the eigenvalues of An(f) are contained in [fmin, fmax]- If f > 0, then
by Theorem 1.1 the number of iteration steps of the CG-method to achieve
a prescribed precision is independent of N and the CG—method requires only
O(N log N) arithmetical operations.

The situation changes completely, if we allow f > 0 to have zeros. In this case,
the CG—method converges very slow with increasing V. To accelerate the conver-
gence of the CG—method, several authors proposed preconditioners for Toeplitz
systems. Clearly, the multiplication of any vector with the preconditioned ma-
trix should also only require O(N log N) arithmetical operations. Therefore,
two types of preconditioners were mainly exploited for linear Toeplitz systems,
namely so—called “Strang—preconditioners” [13, 30, 14]

. 2 \V 7
(12 My(SvhFw) = Fy ding (v C5D) i,



Preconditioners for Toeplitz matrices 3

where Sy f denotes the (N —1)—th Fourier sum of f and optimal preconditioners
[15] B B
(13) MJ(\D,(FN) = FN 5(FN AN FN) FN,

where §(A) := diag(agk)n_ and agy are the diagonal entries of A. Here Fy
denotes the N—th Fourier matriz

Fy = o (efzmjk/N)N‘l _

VN k=0

If f > 0, then both preconditioners M y are positive definite and the eigenvalues
of the preconditioned matrices M ;,1 Ap are clustered at 1. The same holds if we
replace F'y by other unitary matrices, for example by the product of F y with a
unitary diagonal matrix which leads to w—circulant preconditioners [10, 19] or, if
Ay is real-valued, by unitary trigonometric matrices as the sine-I transform [5]
which results in so—called 7—preconditioners, the Hartley transform [7] or other
trigonometric transforms [8, 21].

Unfortunately, if f > 0 has zeros, then the above preconditioners do not work
in general. The Strang-preconditioners are not positive definite for arbitrary
f € Cax. The convergence of the PCG—method with the above optimal pre-
conditioners is not independet of N also in the 7—case, if f has zeros of higher
order [6, 4]. An alternative choice are banded preconditioners belonging to the
Toeplitz or to the 7—class which lead to satisfactory results [5, 9, 10, 26, 4],
multigrid methods [16] or ”improved circulants” [31].

In this paper, we propose simple positive definite w—circulant preconditioners.
In particular, if f(2wj/N) > 0 for all j = 0,...,N — 1, then we obtain our
preconditioners by replacing Sy f in (1.2) by f. In Section 3, we prove that
our preconditioners lead to superlinear convergence of the corresponding PCG—
method and that the number of PCG—iterations for reaching a fixed tolerance is
independent of N.

Our idea can be extended to (real) symmetric Toeplitz matrices, non—Her-
mitian Toeplitz matrices and doubly symmetric block Toepliz matrices with
Toeplitz blocks. We sketch various generalizations in Section 4. Writing this
paper, we became aware of the preprint [20] of T. Huckle located at his home
page, where the author suggests a trigonometric preconditioner with respect
to the discrete sine transform of type I which is similar to our trigonometric
preconditioners in Section 4. However, our initial approach in the complex case
and our proofs are different from [20].

Numerical tests for Hermitian and symmetric Toeplitz matrices as well as for
non—-symmetric Toeplitz matrices and doubly symmetric block Toeplitz matrices
with Toeplitz blocks in Section 5 demonstrate the quality of our new precondi-
tioners.

2 Construction of preconditioners

Let Car and L (1 < p < o0) denote the Banach spaces of 2r—periodic
continuous functions and of 27r—periodic Lebesgue measurable functions with
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2w
finite integral [ |f(z)|? dz, respectively. By oy, we denote the vector consisting

0
of N zeros and by Iy the (N, N)—identity matrix.
We are interested in the solution of Hermitian Toeplitz systems

(2.1) An(f)z = b, An(f):= (a—)Nile

where the sequence {An(f)}3_; of Toeplitz matrices is generated by a nonneg-
ative function f € Cy, i.e.

1 27 ke
= = — -t d .
ap = ag(f) = o ; f(z)e " d
Then we obtain for u = (uj)j-\’:_o1 € CVN that
N—1 N-1
(2.2) u' AN(f)’U, = UjURA;—k
=0 k=0
1 N—-1 N-1 o
= 5 Tjup f(z)e URrgy
T 20 k=0 0
1 2r N-1
- o / 1S™ w2 f(z) de >0
0 k=0

such that the Toeplitz matrices Ay (f) are positive semidefinite. Moreover, if
f > 0 on a set of positive Lebesgue measure, then following lemma states that
the matrices Ay (f) are positive definite such that (2.1) can be solved by the
CG-method.

LEMMA 2.1. Let f € LY  be a nonnegative function, where the set {z €
[0,27] : f(z) > O} has a positive Lebesque measure. Then the corresponding
Toeplitz matrices An(f) are positive definite.

Lemma 2.1 was proved in [9]. However, the proof is very short such that we
include it in this paper.

PROOF. Let N € N be fixed. By the above considerations, it remains to show
that 0 is not eigenvalue of Ay (f). Assume that Ay(f) has eigenvalue 0. Then
there exists u € CN u # ox) such that

1 20 N-1 )
@ An(flu = o 1> upe®? f(z) dz =0.
0 k=0

Since the integrand is nonnegative almost everywhere, the integrand must be
zero almost everywhere. Consequently,

N-1
| Z ukelkzl =0
k=0
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on the set {z € [0,27] : f(z) > 0} of positive Lebesgue measure. But this implies
the contradiction u = oy. O

By Theorem 1.1, the convergence of the CG—method depends on the distri-
bution of the eigenvalues of Ax(f). Unfortunately, if the generating f € Ca,
has zeros, then the CG—method converges very slow. To accelerate the conver-
gence of the CG—method we are looking for suitable preconditioners M y(f) of
Ap(f). Having Theorem 1.1 in mind, we want to find a Hermitian positive def-
inite matrix M y(f) such that the eigenvalues of M x(f) ' An(f) are bounded
from below by a positive constant independent of N and the number of isolated
eigenvalues of M y(f) ' An(f) is independent of N.

For the construction of M n(f) we consider (2.2). In the following, we assume
that f has only a finite number of zeros. Then we can choose an equispaced grid

27l 27
Ty = W‘*—’LU (wG[O,W),l—O,.,N—l)
such that
(2.3) flz)) >0 (=0,...,N=-1).

Approximating the integral on the right-hand side of (2.2) by the trapezoidal
rule with respect to the above grid, we obtain
N—

1 2 1 .
(2.4) ' An(flu = /0 Z ug e*®|? f(z) dz

27

e
[=)

N-1

2
-

m eikzl |2 f(ml)

Q

3
N
= k=0
N—

=2

N-1
— f(wl) Z ﬂje—27rll_7/Ne—1]w %
j=0

1 (N—l )
27ikl/N ikw
— upe e
VN o
= (FN WN’l_l,)l .DNFN V_VNU
)u

= o My(f
with the diagonal matrices
. —i N-1 . —
Wy := diag (e k“’)kzo , Dy := diag (f(xl))lliol
and with o
(2.5) MnN(f) = MN(f,Fn) := Wy FyDy FNWy.

By (2.3), the matrix M n(f) is Hermitian and positive definite. A matrix of the
form (2.5) is called an a—circulant matrix and in the special case that w = n/N
a skew—circulant matrix. Setting v := My (f)Y/? u, we get

o My(f) V2 AN(f) My (f) 20 ~ 3'v
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such that by properties of the Rayleigh quotient, M x(f) seems to be a good
preconditioner of Ay (f). Indeed, using FFT, the multiplication with

MN(f)_l =Wxn FNDI_Vl FN WN

takes only O(N log N) arithmetical operations. In the next section, we prove
that the eigenvalues of My (f)~! An(f) are clustered at 1.

We mention that our preconditioner M y(f) is closely related to the Strang—
preconditioner M n(Syf) = Mn(Snf, Fn) in (1.2). By orthogonality of the
functions e (j € Z) in L2_, it is easy to check that (2.2) can be replaced by

— 1 2r 2 ikz |2
@' An(flu = o /. Ikzzo u " (S f)(z) dz
with
N—-1 -
(Snf)(z) = Y, a;e’”.
j=—(N-1)

Now the above quadrature formula (2.4) with w = 0 and with Sy f instead of f
leads to the Strang—preconditioner. Clearly, if f is a trigonometric polynomial of
degree < N and if f(27l/N) >0 (1 =0,...,N—1), then Mn(Snf) = Mn(f).

However, for arbitrary nonnegative functions f € Cs,, the matrix M n(Sn f)
may be not positive definite. This is one reason for the introduction of M y(f).

3 Clustering of the eigenvalues of My (f) ' An(f)
We rewrite (2.4) as

N-1 N-1
(31) ’D,IAN(f)’U, = Uj Uk G5k

=0 k=0

N—-1 N—-1

~ wjupaj—r = @ My(f)u

=0 k=0

with
| N2 ‘ ‘
ar = &k(f) = ¥ f($l)e_27rllk/N e~ ikw
=0

and ask for the approximation error. Assume that f € Cs, is a function of
bounded variation. Replacing f(z;) by the Fourier series of f at z;, we obtain

1 N-1
(3.2) ar = N E E a; el e 2milk/N o—ikw
1=0 jcZ
N1 1 Nt
— a; eflwk elwi - e727r1lk:/N e27rll]/N
N
j=0 1=0
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N-1 1 N-1
+ Z Z aj+rNe—1wk el‘w(J-‘rT‘N) N e—27r1lk/N e27rllJ/N

Jj=0 rez\{o} =
= ar + Z ak_,_rNei"”N.
reZ\ {0}

This is the well-known aliasing effect. Set

(33) b = bi(f) == D akren(f)eN .

rez\{0}

Then it follows by (3.2) that

(34)  An(f) = Mn(f) + By(f), Bn(f)= — (b)) -
Thus
(3-5) My (f)""An(f) = In + My(f)"'Bn(f) .
Note that
ak_N(f) kZl,...,N—l,
bi(Snf) = § awen(f) k=-1,...,1-N,
0 k=0,

which describes the approximation error in case of the Strang—preconditioner.

LEMMA 3.1. Let ps; be a nonnegative, real-valued trigonometric polynomial of
degree < s, where 2s < N. Then at most 2s eigenvalues of M n(ps) ™ An(ps)
differ from 1.

Proor. By (3.3), it follows that b, = 0 for |k| < N — 1 — s. Consequently,
By (f) has rank 2s. Now the assertion follows by (3.5). O

For the proof of our main theorem we need the following

LEMMA 3.2. Let g € C2r be a nonnegative function, where the set {z €
[0,27] : g(z) > O} has a positive Lebesgue measure. Furthermore, let h € Car
be a positive function with hmin > 0 and let f := gh. Then, for any N € N, the
eigenvalues of An(9) AN (f) lie in the interval [hmin, Pmax)-

Lemma 3.2 was proved for example in [5]. For a more sophisticated version
see [28, 27]. We want to give the following very simple proof.

PROOF. Applying the theorem of mean in
1 2w

2

N—
@' An(flu =
k

1
1> w e f(e) de,
=0

we obtain that

1 2r N-1 .
@An(Pu = heos [ 1S we P g(a) de
0 k=0
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with h. € [Pmin, hmax]- This can be rewritten as
' An(f)u = h. @' Ax(9)u .
By Lemma 2.1, the matrix Ay (g) is positive definite such that for u # on

o' An(f)u

he = )
' An(9)u

By properties of the Rayleigh quotient this yields the assertion. 0O

In the following, we restrict our attention to nonnegative functions f € Ca,
having a zero of even order 2s (s € N) in z = 0. The clustering of the eigenvalues
of My (f) YAn(f) for arbitrary functions

fl@) = @—z)™ ...z —2m)" f(2), (F>0)
follows in a similar way.

With f € Cs, or better with the order 2s of the zero z = 0 of f, we associate
the nonnegative trigonometric polynomial

(3.6) ps(z) == (2—2cosz)® = (2—e® — e7i7)°

of degree s which has a zero of the same order 2s in z = 0.
Now we can prove our main result.

THEOREM 3.3. Let f € Ca, be a nonnegative function with a zero of order 2s
(s €N) inz =0. Let An(f) denote the corresponding Toeplitz matrices with
preconditioners M n(f) defined by (2.5). Then the matrices M n(f) 1An(f)
have the following properties:

i) The eigenvalues of My (f)"*AN(f) are bounded from below by a positive
constant independent of N.

ii) Let ps denote the associated trigonometric polynomial (3.6) of f and let h :=
f/ps- Then, for N > 2s, at most 2s eigenvalues of My (f) AN (f) are not
contained in the interval [ﬁ, %]

i4i) The eigenvalues of M n(f) ' An(f) are clustered at 1.

PROOF. In this proof, we denote by Ry (m) arbitrary (N, N)-matrices of rank
m.

1. To prove ii), we use the decomposition

u An(flu 4 An(f)u 4 An(ps)u
'&’MN(f)u o ﬂ’AN(ps)u ﬁ’MN(f)u

(u #on) .
By Lemma 3.2 and since An(ps) and M n(f) are positive definite, it follows

that
@ ANp)u B AN W Ax(p,)u
B e g My S W Ma(u S E M
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By (3.4) and Lemma 3.1, we conclude that

An(ps) = Mn(ps) + Rn(2s)
and consequently

@ Ry (2s)u

u An(f)u u' My (ps) w
max o' MN(f)’U, )

@ My(Nu = e G e (w0

By construction of M n(f) this can be rewritten as

' (AN(f) = Pmax B (28)) . _ Pmax
’l_l,IMN(f)'u/ ~  Pmin

(u # on) .

Assume that Ry (2s) has s; positive eigenvalues. Then, by properties of the
Rayleigh quotient and by Weyl’s theorem [18, p.184] at most s; eigenvalues
of My(f) " 'An(f) are larger than ’im . Similarly, we obtain that by con-

sideration of the left-hand side of (3.%n that at most 2s — s; eigenvalues of
My (f)"YAn(f) are smaller than ,’zmi“ Thus, at most 2s eigenvalues of

max

My (f)~ An(f) are not contained in [fmin, max],

hm min

2. To prove i), we use the decomposition (see [4, 6])

@ An(flu _ @' An(flu @' Mn(ps)u @' An(ps)u
' My(f)u w An(ps)u @' My(flu a' My(ps)u

(u #on) .

By Lemma 3.2 and construction of M y(f) we see that

ﬂIAN(f)u > hmin 'E"IAN(ps)u
@ My(f)u = hAmax @ My(ps)u’

Since An(ps) and M n(ps) are positive definite, it remains to show that there
exists ¢ < oo such that

'&IAN(ps)u 1
— NP7 s 2 5.
w' Mpy(ps)u — c>0

By (3.4) this this can be rewritten as

u' (An(ps) — Bn(ps))u

<

@' An(ps) u = ¢
u' (=Bn(ps)) u

14+ — N7 < ..

+ u' An(ps)u = €

The rest of the proof follows the same lines as the proof of Theorem 4.3 in [4],
which was formulated for so—called 7—preconditioners.
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3. By definition, h = f/p; is a continuous positive function. Since the trigono-
metric polynomials are dense in Cs,, for all € > 0, there exist a positive trigono-
metric polynomial ¢ of degree n = n(e) such that

1 1
(38) q(:c) - 5 Ehmin S h($) S Q(x) + 5 8hmin
for all z € [0, 27). Thus, since p, > 0,

1 1
(39) qps — _5hminps S f S qPs + _Ehminps -

2 2
Regarding (2.2), we obtain by the inequality of the right-hand side

1
ﬁ'IAN(f)u S ﬁ'IAN(qps)u + §5hmin’l_l:IAN(Ps)u,

and further, since M y(f) is positive definite, for all u € CV (u # on)

_y =1 !
wAy(flu _ #An(gp)u 1, wAN(ps)u

(10 I My(Du S @My(Ha T 2 e M

Now it holds by (3.4) and Lemma 3.1 that
(3.11) An(ps) = Mn(ps) + Rn(2s) .
Moreover, we have by [3] that

An(gps) = An(q) An(ps) + Rn(2n +2s).
By (3.11), this can be written as

An(gps) = (Mn(q) + Rn(2n)) (Mn(ps) + Rn(25)) + Rn(2n+2s)
(3.12) = Mn(q) Mn(ps) + Rn(m)

with a Hermitian matrix Ry (m) of rank m < 4n+4s+min{2n, 2s}. Substituting
(3.11) and (3.12) in (3.10), we obtain

a' An(flu  _ @' Mn(g Mn(ps)u @' Ry(m)u

+

'&’MN(f)u - ﬁ’MN(f)u ﬁ’MN(f)u
1 ' My(ps)u 1 ' Rn(25)u
Tt e My (Hu T 2T T My () u
and since
ﬁIMN(ps)u < 1
ﬁ’MN(f)u ~  Amin
further
u'[An(f) = Ry(m)]u _ @' My(q) My(ps)u L L
W' Mn(f)u - u' Mn(f)u 2
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with m < m + 2s. Setting v := My(ps)*/?>u and using that My (f) =
MN(h) MN ps)7 we get

@ [An()) - Bu(i)u _ ¥ Mn(@v | 1_

ﬁ’MN(f)u _’l_)'MN(h)’U 27

Finally, we have by (3.8) and by definition of My, for all v € CN (v # on)
that

(3.13)

1
' My(g)v < v My(h)v + ishmin v'v

_, 1
and further since 0 < = J\/erN’U( v < o that

' My(q)v
v My(h)v
Using the above inequality in (3.13), we obtain

@' [An(f) — Rn(m)]u
<1 .
@' Mn(f)u sire
Similarly, we conclude from the left-hand inequality of (3.9) that
u' [AN(f) — Rn(m)]u
' My(f)u -

1
<1+ -¢.
_+26

1 — €.

Consequently, at most 7 eigenvalues of M n(f)"! Ax(f) are not contained in
[1 —¢€,1+¢€]. This completes the proof. O

By Theorem 3.3, Theorem 1.1 and construction of M n(f), our PCG-method
converges superlinearly and requires only O(N log N) arithmetical operations to
achieve a prescribed precision.

REMARK 3.1. Unfortunately, we cannot find a similar proof for nonnegative
functions f € Can having not only zeros of even order. The reason therefore
is that there does not exist a nonnegative trigonometric polynomial which has a
zero of odd order in x = 0. Consequently, we cannot produce an equivalent of
(3.6). Our numerical tests show that our preconditioners work well also in the
odd case. However, for the matrices An(f) generated by the function

f(z) =v2—2cosz = |2 sing|,

the number n of eigenvalues of M ' (f)An(f) which are not contained in the
interval (1 —e,1+¢€) grows as follows:

N 32| 64 | 128 | 256 | 512
e=10"3 7| 8 9 10| 11
e=10°[10|12| 13| 15| 17

At first glance it seems that the eigenvalues of M n(f) " *An(f) are not clus-
tered at 1.
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4 Generalizations of the preconditioning technique

In this section, we sketch how our preconditioners can be generalized to the
following settings:

- AN(f) are (real) symmetric Toeplitz matrices,

- AN(f) are non—Hermitian Toeplitz matrices,

- Ay, n(f) are doubly symmetric block Toeplitz matrices with Toeplitz blocks.

4.1 Preconditioners for symmetric Toeplitz matrices

First, we suppose in addition to Section 2 that the generating function f € Ca,
of the matrices Ay (f) is even. Then

ak:ak(f):%/f(a:) cos kz dz
0

and the Toeplitz matrices Ax(f) € RV are symmetric. In this case, the
multiplication of a vector with Ay (f) can be realized using fast trigonometric
transforms instead of fast Fourier transforms. See Remark 4.1. In this way,
complex arithmetic can be completely avoided in the iterative solution of (2.1).
This is one of the reasons to look for preconditioners of type (2.5), where the
Fourier matrix F'yy is replaced by trigonometric matrices corresponding to fast
trigonometric transforms.

In practice, four discrete sine transforms (DST) and four discrete cosine trans-
forms (DCT) were applied (see [33]). Any of these eight trigonometric trans-
forms can be realized with O(N log N) arithmetical operations (see for example
[2], [29]). Likewise, we can define preconditioners with respect to any of these
transforms. Here we refer to the extensive examinations in [23]. For the case
f > 0, interesting results concerning 7—preconditioners which are related to the
sine-I transform are contained in [6, 4]. In particular, Di Benedetto suggested a
banded preconditioner of the form M y(ps) with respect to the sine-I transform.

In this paper, we restrict our attention to the so—called DST-IT and DCT-II,
which are determined by the following transform matrices:

2\ /2 §(2k + 1)m\ V!
DCT-II : C¥ = (—) (aN cos 7) e RV,
N N g 2N k=0
2\ /2 G+ DCE+D\V !
DST-II : S¥ = (N) (sﬁl sin T) . e RV,
J,R=

where ey := 2712 (k = 0,N) and el := 1 (k = 1,...,N — 1). Moreover, we
use the DCT-I with transform matrix

3 e\ N
Clhyr= ((6?)2 cos J—W> .
k=0
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The matrices C& and Sk are orthogonal and C% N1 satisfies

N
(4.1) Cly1 Gl = 5 v

The eight trigonometric transforms are closely related to Toeplitz matrices
[24]. In particular, it holds for the DCT-II and the DST-II:

LEMMA 4.1. Let stoepa’ and shanka' denote a symmetric Toeplitz matriz
and a persymmetric Hankel matriz with first row a', respectively. Then there
ezist the following relations between trigonometric transforms and symmetric
Toeplitz matrices:

(Cf\f)l D, CJIJ = % stoep(ag, ---,an—1) + % shank(ay,...,an—1,0),
<Sf\,1)l D, SJIVI = %stoep(ao,...,aN_l) - %shank(al,...,aN_l,O)
with
D, := diag(dg,-..,dn_1)", D :=diag(ds,...,dn)",
d = (do...,dn)" =Crys (a0,--. an_1,0) .

For the proof see [24].

REMARK 4.1. By Lemma 4.1, it follows that
! !
stoep(ao,...,aN,l) = (C{\{) D1 C{\{ + (S{\{) D2 SJI\{

Thus, if the vector d is precomputed by the DCT-I, then the multiplication of
a vector with a symmetric Toeplitz matriz of size (N,N) requires two DCT-
II, two DST-II and 2N real multiplications and can therefore be realized with
O(Nlog N) arithmetical operations (see also [24]).

Since for even f € Ca, the (N — 1)—th Fourier sum can be written as

N-1
(Snf)(z) =2 Z )2ay, cos(kz) ,
k=0
we obtain by Lemma 4.1 that
An(f) = (€Y (eD)ck — shank(as,...,an 1,0)
. N-1
(4.2) = (C}) diag ((SN f)(%)) c¥l — shank(as,...,an_1,0),
7=0
AN(f) = (S%)I(zb)sg\{ + Sha‘nk(a’lr",aNfl)O)

. N
(4.3) = (S diag ((SN f)(%r)) S + shank(a,...,an—1,0).

=1
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Consequently, we introduce the Strang-type—preconditioners by [25]:

. -1
DCT-1II: My(Snf,CY) = (Cﬁ)'diag<5Nf(’—”)) cy,
N') i
(4.4) oy
DST —II: My (Sn f,85) = (S{V’)'diag<8Nf(%)) si.
j=1

See also [21]. Again, if f has zeros, then it can not be assured that the Strang—
type—preconditioners are positive definite. Therefore, we define similar to (2.5)
the preconditioners

. -1
DCT-II: My(f,CY) = (Cy) diag (f(%)), cy,
(4.5) =0

. N
. ™
DST-II:  My(f,SY) = (s{\{)'dlag<f(%)> S
i=1

If f(jmx/N) > 0 for all j = 0,...,N — 1, then M y(f,C}) is positive definite.
If f(jn/N) > 0forall j=1,...,N, then M y(f, Sk ) is positive definite.

Note that independent of our results, T. Huckle [20] suggested a preconditioner
of type (4.5) with respect to the DST-I.

Clearly, if f is a trigonometric polynomial of degree < N, then the Strang—
type—preconditioners (4.4) coincide with our preconditioners (4.5). Moreover,
we have by (4.2) and (4.3) for trigonometric polynomials f = p of degree < s
(2s < N) that

An(p) = My(p,C}y) — Rn(2s) = Mn(p,SY) + Rn(2s) .

Thus, we can prove in a completely similar way as in Section 3 the following

THEOREM 4.2. Let f € Ca, be an even nonnegative function with a zero of
order 2s (s € N) inxz = 0. Let An(f) denote the corresponding Toeplitz matrices
with preconditioners My (f) = M y(f, SN) defined by (4.4). Then the matrices
My (f)"YAN(f) have the following properties:

i) The eigenvalues of M n(f)"YAN(f) are clustered at 1.

i1) Let ps denote the associated trigonometric polynomial (3.6) of f and let h :=
f/ps- Then, for N > 2s, at most 2s eigenvalues of M n(f) L AN(f) are not
contained in the interval [fmin  Hmex]

hmax? Amin

The PCG-method with our preconditioners can be realized in a more efficient
way than the PCG—method with banded Toeplitz matrices as preconditioners
[22, 26]:

REMARK 4.2. Qur PCG-method requires only two DCT-II, two DST-II and
O(N) real multiplications in each iteration step. This can be seen for the pre-
conditioner My (f,CX) as follows: Instead of

(CHYETCY ((CHYDCY + (SH)DSK) = = (CHYE~'CYb
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.\ N-1
with E := diag (f(%)) , we solve

7=0
E™ (D + C(S)Dsy(CN)) 3=

with & := Cf\,l:c and b := EilevI b. The vectors d, b and = can be precomputed
and postcomputed, respectively. See also [19, 20].

4.2 Preconditioners for non—-Hermitian Toeplitz matrices

Next, we are interested in the solution of systems of linear equations Ay (f)x =
b with regular, but non-Hermitian Toeplitz matrices Ay (f). We intend to solve
the normal equation

(46) AN (HAN(f)e = Ay()b
using the PCG-method. By [3], it holds that

Ay (f)An(f) = An(/f]*) + Ry + Uy,

with a low rank matrix Ry and a matrix U of small spectral norm. If f = p
is a trigonometric polynomial of degree < s (2s < N), then

AN(HAN(f) = An(If?) + Rn(2s).

Assume that | f| € Ca, has only a finite number of zeros. If Ay (|f|?) is Hermitian
and if | f(2% 4+ w)| > 0 for a suitable w € [0,27/N) for all j =0,..., N —1, then
we define our preconditioners by
2 . 2my 5 N-L
MN(|f| ,FN) = Wy Fy diag |f(T +’LU)| FnWhy.
=0

If A (|f]?) is symmetric and if | f(2£2)| > Oforall j = 0,...,N—1or |f(2&)| >
Oforall j=1,...,N, then we use

. N-1
Ml ) = (CHY diag (IFGDE)  CH,
j=0
. N
an  M(fPsE) = (SN ding (11GDR)  SH
j=1

as preconditioners, respectively.

4.8 Preconditioners for doubly symmetric block Toeplitz matrices with Toeplitz
blocks

Finally, the generalization of our results to doubly symmetric block—Toeplitz
systems with Toeplitz blocks is straightforward. We consider systems of linear
equations

Aunz =D,
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where Ay v denotes a positive definite doubly symmetric block—Toeplitz matrix
with Toeplitz blocks (BTTB matrix), i.e.

Aun = (A, )Yy with A, = (ar’j*k);'\,[k;lo

> r,5=0

and a,; = a,j- We assume that the matrices Ay, n are generated by a
real-valued 27—periodic continuous even function in two variables, i.e.

27 27

1 s
aj g = ) //(P(S,t) e 157 HtR) g5 dt .
0 0

Lemma 4.1 can be extended to BTTB matrices as follows:

Ayny = (CHeocy) D (CilocCy) +(Siieock) D, (SioCy)
+ (Cit®SY) D3 (Ciy ® SY) + (S ® Sy)' Da(Si ® S)

with

D, := diag (col(dr,j)%;ldel) ) D, := diag (COl(ar,j);y:B};A:ll) ;

D3 := diag (col(dr,j)jy:’f;:lo) , D, := diag (col(&m)jyz’ll‘ﬁ:l) ,
(ar,j)é\;’nfo = éf\l-}—l ((aT'aj)j'\,I;'ZIO) (é{v+1)l )

arN:=0(r=0,...,M)and ap,; :=0(j =0,...,N). Here col: RV-M — RMN
is defined by

N—-1,M—-1 MN-1
= (377‘)

col (;,1) ;0,10 r=o  With Tpnyj =T

Consequently, the multiplication of a vector with a BT'TB matrix requires only
O(MN log(MN)) arithmetical operations. For details see [25]. We define our
so—called “level-2” preconditioners by

.\ N—1,M—1
My(p,Cliocl)) = (ClloCHY diag(col (o, 20 ) x
M’ N k=0
(Cu®Cy),
1 II 1 I\ 4 T Jm M
Mpy(p,Syy ®Sy)) = (Sy®Sy) diag(col ( o(5, ) ) x
M™N°J ;=1

(St ®SN).

Using the same arguments as in the Remark 4.2, we see that our PCG—method
requires per iteration step only M N multiplications more than the conventional
CG-method.
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5 Numerical Examples

In this section, we show the efficiency of our new preconditioning technique by

various numerical examples. The fast computation of the preconditioners and
the PCG—method were implemented in MATLAB, where the C-programs for
the fast trigonometric transforms were included by cmex. The algorithms were
tested on a Sun SPARCstation 20.
As transform length we choose N = 2™ and as right—hand side b of (2.1) the
vector consisting of N entries “1”. The PCG-method started with the zero
vector and stopped if ||r()]|2/||r@||2 < 1077, where () denotes the residual
vector after j iterations.

It is remarkable, that the number of iterations also depends on roundoff-
errors. Computation by the PCG—method which incorporates the FFT for the
fast matrix—vector multiplications leads to another number of iteration steps
than the same computation without FFT—techniques, i.e. with straightforward
matrix—vector multiplications.

We begin with Hermitian ill-conditioned Toeplitz matrices An (f) arising from
the generating function

i) f(z) = (x/2—7/4)* (z €[0,2m)) .

The second column of Table 5.1 shows the number of iterations of the CG-
method without preconditioning. The columns 3 and 4 contain the numbers
of iterations of the PCG-method with the optimal preconditioner M (F )
given by (1.3) and with our preconditioner M n(f, Fn) defined by (2.5) with
w := /N, respectively.

Table 5.1: f(z) = (z/2 — 7/4)* (z € [0,27))

n| In | MRZ(Fn)| Mn(f,Fn)
4 26 17 11
5 85 36 13
6 349 67 15
7 1570 154 20
8 | > 3000 377 23
9 | > 3000 995 25
10 | > 3000 2220 32

Next, we consider symmetric Toeplitz matrices Ayx. We compare the Strang—
type—preconditioners (4.4), our preconditioners (2.5) and (4.5) and the optimal
trigonometric preconditioners defined by
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DCT-I:  MR(CY) := (C) §(CN An (CY))CH,
DST-IL: M (S = (SY)s(SY An (8K K.
See for example [8, 12, 24]. Our test matrices correspond to the following gen-
erating functions:
ii) (see [26]): f(z) := (z®> —1)? (z € [-m,m)).
In (2.5), we set w :=m/N.
iii) (see [26, 9, 10])): f(z) :==2* (z € [-m,7)).
In (2.5), we set w :=7/N.

The Tables 5.2 and 5.3 present the number of iteration steps for different pre-
conditioners. The asterix emphasizes that the corresponding preconditioners are
not positive definite. Our new preconditioners lead to the best results. Compare
also with [26, 9, 10]. Note that by the Remark 4.2, our PCG-method requires
per iteration step only few arithmetical operations more than the conventional
CG—method.

Table 5.2: f(z) = (22 —1)? (z € [-m,m))

Mny(Snf,0n) || MJ(On) || Mn(f,0n)

n| Iy cl s ol | s s¥ | Fua
5 25 9* 8* 17 | 10 5 5
6 69 9* 8* 21 | 11 5 6
7 | 190 10 107 26 | 14 7 7
8 | 457 10 10 33 | 16 8 8
9 | >1000 | 11 9 43 | 19 9 9
10 | > 1000 || 10* 107 59 | 24 7 7

Our next test is related to non-Hermitian Toeplitz systems. As generating
function of An(f) we choose

iv) (see [24)): f(z) = z%€'® (z € [—-m,7)).

Then, the matrices Ay (f) have real entries such that we restrict our attention
to trigonometric preconditioners. Table 5.5 compares the PCG—method applied
to the normal equation (4.6) with

- the optimal preconditioner of A\ (f)AN(f) (see [24])

MR := Oy 5(OnAly(f)An(f)OY) On,
- the optimal preconditioner of A (|f|?)
Mgz := O}y 6(OnAN(|f|*)O%) On,
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Table 5.3: f(z) =z* (z € [-m, 7))

My(Snf,0n) || MJ(On) | My(f,0n)
n| Iy cl si clt | s s | Fy
5 33 12* 10* 18 10 6 6
6 | 116 18* 15* 30 13 7 6
7| 487 27* 217 54 16 8 8
8 | >1000 || 40* 33* 155 | 19 9 10
9 | >1000 || 115* 63* 376 | 25 9 10
10 | >1000 || 218 | 165* | >1000 | 32 10 11

- the Strang-type-preconditioner M n(Sn(|f|?),On) and our preconditioner
My (|f[?, SY) defined by (4.7).

Finally, let us turn to BTTB matrices Ax n. In our two examples, the matrices
Apn N are generated by the functions
v) (see [22]): ¢(s,t) = s? t* and ¥(s,t) = (s2 + %)% (s,t € [-m,7)) .
Both matrices are ill-conditioned and the CG-method without preconditioning,
with Strang—type—preconditioning or with optimal trigonometric preconditioning
converges very slow (see [22, 25]). Our preconditioning determined by (4.7) leads
to the number of iterations in Table 5.5. Again, our PCG—method requires per
iteration step only few arithmetical operations more than the conventional CG—
method.
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