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Abstract

The discrete Fourier transform in d dimensions with equispaced knots in space and
frequency domain can be computed by the fast Fourier transform (FFT) in O(Nd log N)
arithmetic operations. In order to circumvent the ‘curse of dimensionality’ in multi-
variate approximation, interpolations on sparse grids were introduced. In particular, for
frequencies chosen from an hyperbolic cross and spatial knots on a sparse grid fast Fourier
transforms that need only O(N logd N) arithmetic operations were developed. Recently,
the FFT was generalised to nonequispaced spatial knots by the so called NFFT.

In this paper, we propose an algorithm for the fast Fourier transform on hyperbolic
cross points for nonequispaced spatial knots in two and three dimensions. We call this
algorithm sparse NFFT (SNFFT). Our new algorithm is based on the NFFT and an ap-
propriate partitioning of the hyperbolic cross. Numerical examples confirm our theoretical
results.
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1 Introduction

In multivariate approximation one has to deal with the so called ‘curse of dimensionality’,
i.e., the number of degrees of freedom for representing an approximation of a function with a
prescribed accuracy depends exponentially on the dimensionality of the considered problem.
This obstacle can be circumvented to some extend by the interpolation on sparse grids and the
related approximation on hyperbolic cross points in the Fourier domain, see, e.g., [17, 14, 3].
Let

g (x) =
∑

k∈Zd

ĝk e−2πikx ,

be a function of dominating mixed smoothness or from a Korobov space. Instead of approxi-
mating g on the standard tensor product grid

{

k = (k1, . . . , kd)
⊤ ∈ Z

d : max{|k1|, . . . , |kd|} <

N
}

with O(Nd) degrees of freedom, it can be approximated with only O(N logd−1 N) degrees
of freedom from the hyperbolic cross

{

k = (k1, . . . , kd)
⊤ ∈ Z

d : (1 + |k1|) · · · (1 + |kd|) < N
}

.

The approximation error deteriorates only by a factor of logd−1 N , cf. [14].
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The fast evaluation of trigonometric polynomials with equispaced knots in space and frequency
domain can be computed by the fast Fourier transform (FFT) in only O(Nd log N) arithmetic
operations [4]. If the frequencies are chosen from a hyperbolic cross and the spatial knots lie
on a sparse grid there exist fast algorithms of order O(N logd N), see [1, 11].

In [6, 2, 13], the FFT has been generalised by the fast Fourier transform at nonequispaced
knots (NFFT) which requires O(Nd log N + M) arithmetic operations for the evaluation of a
trigonometric polynomial at M arbitrary knots.

In this paper, we present an algorithm for the fast evaluation of trigonometric polynomials
from hyperbolic crosses, where in contrast to [1, 11], the spatial knots can be chosen arbitrarily.
We will call this algorithm sparse NFFT (SNFFT).

The outline of this paper is as follows. In Section 2, we show how the NFFT can be coupled
with hyperbolic crosses. The main idea consists in an appropriate partitioning of the index
set and the application of the NFFT to the resulting blocks. In Section 3, we define the two
dimensional hyperbolic cross and its block partition for the SNFFT. Fast algorithms for the
sparse discrete cosine and sine transforms at nonequispaced spatial knots in two dimensions
are given in Section 4. In Section 5, we introduce a modified three dimensional hyperbolic
cross which easily can be partitioned into blocks again. Finally, Section 6 presents numerical
examples and a discussion of the results.

2 Coupling NFFT with hyperbolic crosses

Our new fast algorithm for the evaluation of trigonometric polynomials from hyperbolic
crosses at arbitrary knots is based on the application of the NFFT to an appropriate parti-
tioning of the hyperbolic cross. First, we sketch the NFFT, then we explain how to couple it
with block partitionings.

Let N = (N1, . . . , Nd)
⊤ ∈ 2N

d, Id
N :=

{

− N1

2 , . . . , N1

2 − 1
}

× · · · ×
{

− Nd

2 , . . . , Nd

2 − 1
}

,

and T
d :=

[

− 1
2 , 1

2

)d
. The d-variate NFFT(N1, . . . , Nd) computes approximations f̃ of the

trigonometric polynomial

f(x) =
∑

k∈Id
N

f̂k e−2πikx (2.1)

at arbitrary knots xℓ ∈ T
d, ℓ = 0, . . . ,M − 1. The main idea for the fast computation of (2.1)

consists in the approximation of f by linear combinations of translates of a window function.
Original approaches used Gaussian bells [6, 5] or B-splines [2] as window functions. A general
approach to NFFTs can be found in [15, 13]. An early review of several algorithms for the
NFFT is given in [16]. A free NFFT software package is available on our web page [12] (see
also [9]).

While the straightforward evaluation of (2.1) requires O(|Id
N |M) arithmetic operations, the

fast computation by NFFT needs

O(αd|Id
N | log |Id

N | + mdM)

arithmetic operations. Both parameters, the oversampling factor α and the cut-off parameter
m have to be chosen in accordance with the desired accuracy of the fast algorithm. In general
the approximation error introduced by the NFFT decays exponentially in m, where the basis
of the exponent depends on α. In our numerical experiments, we will focus on the Gaussian
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window function. Then, by [7], the error can be estimated by

|f(xℓ) − f̃(xℓ)|
∑

k∈Id
N
|f̂k|

≤ d 2d+1 e−mπ(1−1/(2α−1)) . (2.2)

Next, we want to apply the NFFT in connection with hyperbolic crosses. Our aim is the fast
approximate evaluation of the trigonometric polynomial

f(x) =
∑

k∈Hd
J

f̂k e−2πikx (2.3)

at arbitrary knots xℓ ∈ T
d, ℓ = 0, . . . ,M − 1 and for a hyperbolic cross Hd

J which can be
partitioned into blocks of indices Hd

J =
⋃

r(I
d
Nr

+ ρr) with frequency shifts ρr ∈ Z
d. Then,

the sum in (2.3) can be split up according to the blocks as

f(xℓ) =
∑

r

e−2πiρrxℓ

∑

k∈Id
N r

f̂k+ρr
e−2πikxℓ (2.4)

with the ’nonuniform twiddle factors’ e−2πiρrxℓ . Now we apply the NFFT of size |Id
Nr

| on
every block. Due to the triangle inequality, the overall error remains bounded by (2.2). The
number of arithmetic operations on every block is O(αd|Id

Nr
| log |Id

Nr
|+ mdM). So our main

task consists in the construction of an adequate partition of the hyperbolic cross with only
few blocks which leads to a fast overall algorithm.

Remark 2.1 We would like to emphasise a technical detail concerning NFFTs of short size.
Obviously, NFFTs with small N1, . . . , Nd, should be computed directly. The case where only
few Ni are small needs more care. We exemplify our solution for d = 2 and N1 ≤ m < N2.
Splitting up the sum in equation (2.1) into both dimensions yields

f(xℓ) = f
(

(xℓ)1, (xℓ)2
)

=
∑

k1∈I1
N1

(

∑

k2∈I1
N2

f̂k1,k2
e−2πik2(xℓ)2

)

e−2πik1(xℓ)1 . (2.5)

Now the computation can be done by an one dimensional NFFT for the inner bracket, followed
by a direct computation of the outer sum in a total of O

(

N1(αN2 log N2 + mM)
)

arithmetic
operations.

3 NFFT on hyperbolic cross points – the bivariate case

Let J ∈ N0 and N = 2J+2. We define the following index sets as building blocks for our
partitioning of the hyperbolic crosses in two and three dimensions. For r ∈ N0, let

H−
r

H0
r

H+
r

:=
:=
:=

{ −2r+1, . . . ,−2r − 1 },
{ −⌊2r−1⌋, . . . , ⌈2r−1⌉ − 1 },
{ 2r, . . . , 2r+1 − 1 }.

Obviously, the sets H−
r and H+

r are just shifted versions of H0
r , i.e.,

H−
r = −⌈3

2 2r⌉ + H0
r and H+

r = ⌊3
2 2r⌋ + H0

r . (3.1)
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Figure 3.1: Hyperbolic cross points in 2D for J = 0, . . . , 3.

Furthermore, we have that

∣

∣H−
r

∣

∣ =
∣

∣H0
r

∣

∣ =
∣

∣H+
r

∣

∣ = 2r , H0
r1

× . . . × H0
rd

= Id
(N1,...,Nd)⊤ (3.2)

for N1 = 2r1 , . . . , Nd = 2rd and r1, . . . , rd ≥ 1.
Let us now define the blocks of the hyperbolic cross in 2D. For the levels r = 0, . . . , ⌈J

2 ⌉, let

H
right
J,r

H
top
J,r

H left
J,r

Hbottom
J,r

:=
:=
:=
:=

H0
r × H+

J−r,

H+
J−r × H0

r ,

H0
r × H−

J−r,

H−
J−r × H0

r ,

HJ,r := H
right
J,r ∪ H

top
J,r ∪ H left

J,r ∪ Hbottom
J,r ,

Hcentre
J := H0

⌊J
2
⌋+1

× H0
⌊J

2
⌋+1

.

Now the two dimensional hyperbolic cross is the index set H2
J ⊂ I2

(N,N)⊤
given by

H2
J := Hcentre

J ∪

⌈J
2
⌉

⋃

r=0

HJ,r ,

cf. Figure 3.1. Since the cardinalities for these index sets are
∣

∣

∣
H

right
J,r

∣

∣

∣
=

∣

∣

∣
H

top
J,r

∣

∣

∣
=

∣

∣

∣
H left

J,r

∣

∣

∣
=

∣

∣

∣
Hbottom

J,r

∣

∣

∣
= 2J ,

∣

∣

∣
Hcentre

J,r

∣

∣

∣
= 22(⌊J

2
⌋+1) ,

the total number of hyperbolic cross points is |H2
J | = (J + 4)2J+1, compared to |I2

(N,N)⊤
| =

N2 = 4J+2 indices for the full tensor product grid.
Following equation (2.4), we are interested in the computation of

f(xℓ) =
∑

k∈Hcentre
J

f̂k e−2πikxℓ +

⌈J
2
⌉

∑

r=0

∑

k∈HJ,r

f̂k e−2πikxℓ (3.3)

at arbitrary knots xℓ ∈ T
2, ℓ = 0, . . . ,M − 1. We start by computing the centre block,

i.e., the first sum in (3.3) by a bivariate NFFT(2⌊
J
2
⌋+1, 2⌊

J
2
⌋+1) with arithmetic complexity
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O(J2J + M). Next we consider the following sums

f label
J,r (xℓ) :=

∑

k∈Hlabel
J,r

f̂k e−2πikxℓ

where label ∈ {right, top, left,bottom}. We explain the computation of a left block. By using
equation (3.1), we obtain

∑

k∈Hleft
J,r

f̂k e−2πikxℓ =
∑

k1∈H0
r

∑

k2∈H−
J−r

f̂k1,k2
e−2πi(k1(xℓ)1+k2(xℓ)2)

= e2πi⌈ 3

2
2J−r⌉(xℓ)2

∑

k∈H0
r×H0

J−r

f̂k1,k2−⌈ 3

2
2J−r⌉ e−2πikxℓ .

Due to (3.2) each of these blocks can be computed by a bivariate NFFT(2r, 2J−r) with arith-
metic complexity O(J2J + M), see also Remark 2.1.
Since the number of blocks is O(J), the overall complexity for computing f(xℓ) for ℓ =
0, . . . ,M −1 is O(J22J +JM). We refer to the following algorithm on hyperbolic cross points
as sparse NFFT (SNFFT).

Algorithm 3.1 (SNFFT 2D)

Input: J ∈ N0, f̂k ∈ C for k ∈ H2
J ,

M ∈ N, xℓ ∈ T
2 for ℓ = 0, . . . ,M − 1.

1. Compute the values

f̃(xℓ) =
∑

k∈Hcentre
J

f̂k1,k2
e−2πikxℓ .

by a bivariate NFFT(2⌊
J
2
⌋+1, 2⌊

J
2
⌋+1).

2. For r = 0, . . . , ⌈J
2 ⌉ compute

f̃(xℓ) = f̃(xℓ)

+ e−2πi⌊ 3

2
2J−r⌋ (xℓ)2

∑

k∈H0
r×H0

J−r

f̂k1,k2+⌊ 3

2
2J−r⌋ e−2πikxℓ

+ e−2πi⌊ 3

2
2J−r⌋ (xℓ)1

∑

k∈H0
J−r

×H0
r

f̂k1+⌊ 3

2
2J−r⌋,k2

e−2πikxℓ

+ e2πi⌈ 3

2
2J−r⌉ (xℓ)2

∑

k∈H0
r×H0

J−r

f̂k1,k2−⌈ 3

2
2J−r⌉ e−2πikxℓ

+ e2πi⌈ 3

2
2J−r⌉ (xℓ)1

∑

k∈H0
J−r

×H0
r

f̂k1−⌈ 3

2
2J−r⌉,k2

e−2πikxℓ .

by four bivariate NFFT(2r, 2J−r).

Output: f̃(xℓ) approximate value of f(xℓ), ℓ = 0, . . . ,M − 1.
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Algorithm 3.1 reads in matrix-vector notation as

AJ f̂ =
[

AJ,0 | AJ−1,1 | . . . | A⌊J
2
⌋,⌈J

2
⌉ | Acentre

J

]









f̂J,0
...

f̂
centre
J









where the sub-matrices are given by

AJ,r :=
[

A
right
J,r | A

top
J,r | Aleft

J,r | Abottom
J,r

]

, Alabel
J,r :=

(

e−2πikxℓ

)

ℓ=0,...,M−1;k∈Hlabel
J,r

for label ∈ {right, top, left,bottom}.

4 NDCT and NDST on hyperbolic cross points in 2D

Similar algorithms can be constructed for the discrete cosine transform and sine transform,
based on the fast discrete cosine and sine transforms for nonequispaced knots, developed in
[8]. The bivariate fast cosine transform at nonequispaced knots NFCT(N1, N2) computes
approximations of

f(xℓ) =

N1−1
∑

k1=0

N2−1
∑

k2=0

f̂k1,k2
cos

(

2πk1(xℓ)1
)

cos
(

2πk2(xℓ)2
)

and the bivariate fast sine transform at nonequispaced knots NFST(N1, N2) computes ap-
proximations of

f(xℓ) =

N1−1
∑

k1=1

N2−1
∑

k2=1

f̂k1,k2
sin

(

2πk1(xℓ)1
)

sin
(

2πk2(xℓ)2
)

at arbitrary knots xℓ ∈ [0, 1
2 ]2, ℓ = 0, . . . ,M − 1.

A coupling with hyperbolic crosses can be done as follows. Again let N = 2J+2. Here we use
the index sets depicted in Figure 4.1. For r = 0, . . . , J + 2 define

H ′
J,r := {0, . . . , 2J+2−r − 1} × {⌊2r−1⌋, . . . , 2r − 1} , H ′

J :=

J+2
⋃

r=0

H ′
J,r

The cardinalities for these index sets are

∣

∣H ′
J,0

∣

∣ = 2J+2 ,
∣

∣H ′
J,r

∣

∣ = 2J+1 ,
∣

∣H ′
J

∣

∣ = (J + 4) 2J+1 .
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Figure 4.1: Hyperbolic cross points for the NFCT in 2D for J = 0, . . . , 3.

Then the sparse NFCT can be computed by

f(xℓ) =
∑

(k1,k2)⊤∈H′
J

f̂k1,k2
cos(2πk1(xℓ)1) cos(2πk2(xℓ)2)

=

J+2
∑

r=0

∑

(k1,k2)⊤∈H′
J,r

f̂k1,k2
cos(2πk1(xℓ)1) cos(2πk2(xℓ)2)

=

J+2
∑

r=0

cos(⌊2r−1⌋2π(xℓ)2)

2J+2−r−1
∑

k1=0

2r−1−1
∑

k2=0

f̂k1,k2+2r−1 cos(2πk1(xℓ)1) cos(2πk2(xℓ)2)

+

J+2
∑

r=1

sin(⌊2r−1⌋2π(xℓ)2)

2J+2−r−1
∑

k1=0

2r−1−1
∑

k2=0

f̂k1,k2+2r−1 cos(2πk1(xℓ)1) sin(2πk2(xℓ)2) .

Using the fast algorithms from [8] we obtain an overall arithmetic complexity of O(J22J +
JM).

5 NFFT on hyperbolic cross points – the trivariate case

Let us consider the hyperbolic cross in three dimensions. For r = 1, . . . , J + 1, we define the
index sets

H front
J,0 := H2

J × {0} , H front
J,r := H2

J−r−1 × H+
r−1 ,

Hrear
J,0 := H2

J−1 × {−1} , Hrear
J,r := H2

J−r−1 × H−
r−1 .

The three dimensional hyperbolic cross is given by

H3
J :=

J+1
⋃

r=0

H front
J,r ∪

J+1
⋃

r=0

Hrear
J,r ,

cf. Figure 5.1. The total number of hyperbolic cross points is

∣

∣H3
J

∣

∣ =
∣

∣H2
J

∣

∣ +
∣

∣H2
J−1

∣

∣ +
J+1
∑

r=1

∣

∣H2
J−r−1

∣

∣

(

∣

∣H+
r−1

∣

∣ +
∣

∣H−
r−1

∣

∣

)

= 2J−1
(

J2 + 11J + 26
)

.

The arithmetic complexity of the resulting algorithm is O(J32J + J2M), since for r =
1, . . . , J + 1 we have to compute O(J − r) trivariate NFFTs with complexity O(J2J + M)
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Figure 5.1: Hyperbolic cross points in 3D for J = 0, . . . , 3, only the part k1, k2, k3 ≤ 0 is
shown.

each. Unfortunately, this algorithm has drawbacks: we have to compute NFFTs for O(J2)
blocks of our partition. Thus, the (asymptotic) arithmetic complexity for an equal number
of knots and Fourier coefficients M = |H3

J | is O(J42J ), i.e., not optimal. Furthermore, the
second part of the NFFTs for the blocks is the most time consuming part for interesting
problem sizes J .
Therefore, we use a simplification H̃3

J of the hyperbolic cross with H3
J ⊂ H̃3

J ⊂ I3
(N,N,N)⊤

,

which can easily be partitioned into only O(J) blocks but has a total number of O(2
3

2
J)

points. For r = 0, . . . , ⌈J
2 ⌉, we define the following index sets

H̃
top
J,r

H̃ left
J,r

H̃ front
J,r

H̃bottom
J,r

H̃
right
J,r

H̃rear
J,r

:=
:=
:=
:=
:=
:=

H+
J−r × H0

r × H0
r ,

H0
r × H+

J−r × H0
r ,

H0
r × H0

r × H+
J−r ,

H−
J−r × H0

r × H0
r ,

H0
r × H−

J−r × H0
r ,

H0
r × H0

r × H−
J−r ,

H̃J,r := H̃ left
J,r ∪ H̃

right
J,r ∪ H̃

top
J,r ∪ H̃bottom

J,r ∪ H̃ front
J,r ∪ H̃rear

J,r .

The centre block is given by

H̃centre
J := H0

⌊J
2
⌋+1

× H0
⌊J

2
⌋+1

× H0
⌊J

2
⌋+1

.

The cardinalities for these index sets are
∣

∣

∣
H̃ left

J,r

∣

∣

∣
=

∣

∣

∣
H̃

right
J,r

∣

∣

∣
=

∣

∣

∣
H̃

top
J,r

∣

∣

∣
=

∣

∣

∣
H̃bottom

J,r

∣

∣

∣
=

∣

∣

∣
H̃ front

J,r

∣

∣

∣
=

∣

∣

∣
H̃rear

J,r

∣

∣

∣
= 2J+r ,

∣

∣

∣
H̃centre

J

∣

∣

∣
= 23(⌊J

2
⌋+1) .

The modified three dimensional hyperbolic cross H̃3
J is given by

H̃3
J := H̃centre

J ∪

⌈J
2
⌉

⋃

r=0

H̃J,r ,
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cf. Figure 5.2. Thus, the total number of hyperbolic cross points is |H̃3
J | = 2J6(2⌈

J
2
⌉+1 − 1) +

23(⌊J
2
⌋+1), compared to |I3

(N,N,N)⊤
| = N3 = 8J+2 indices for the full tensor product grid.

Similar to equation (3.3), we are now interested in the computation of

f(xℓ) =
∑

k∈H̃centre
J

f̂k e−2πikxℓ +

⌈J
2
⌉

∑

r=0

∑

k∈H̃J,r

f̂k e−2πikxℓ

at arbitrary knots xℓ ∈ T
3, ℓ = 0, . . . ,M − 1. We compute each of the blocks as in the

two dimensional case and end up with the following algorithm of arithmetic complexity

O(J2J+⌈J
2
⌉ + JM).

Algorithm 5.1 (SNFFT 3D)

Input: J ∈ N0, f̂k ∈ C for k ∈ H̃3
J ,

M ∈ N, xℓ ∈ T
3 for ℓ = 0, . . . ,M − 1.

1. Compute the values

f̃(xℓ) =
∑

k∈H0

⌊J
2
⌋+1

×H0

⌊J
2
⌋+1

×H0

⌊J
2
⌋+1

f̂k1,k2,k3
e−2πikxℓ .

by a trivariate NFFT(2⌊
J
2
⌋+1, 2⌊

J
2
⌋+1, 2⌊

J
2
⌋+1).

2. For r = 0, . . . , ⌈J
2 ⌉ compute

f̃(xℓ) = f̃(xℓ)

+ e2πi⌈ 3

2
2J−r⌉ (xℓ)1

∑

k∈H0
J−r

×H0
r×H0

r

f̂k1−⌈ 3

2
2J−r⌉,k2,k3

e−2πikxℓ

+ e2πi⌈ 3

2
2J−r⌉ (xℓ)2

∑

k∈H0
r×H0

J−r
×H0

r

f̂k1,k2−⌈ 3

2
2J−r⌉,k3

e−2πikxℓ

+ e2πi⌈ 3

2
2J−r⌉ (xℓ)3

∑

k∈H0
r×H0

r×H0
J−r

f̂k1,k2,k3−⌈ 3

2
2J−r⌉ e−2πikxℓ

+ e−2πi⌊ 3

2
2J−r⌋ (xℓ)1

∑

k∈H0
J−r

×H0
r×H0

r

f̂k1+⌊ 3

2
2J−r⌋,k2,k3

e−2πikxℓ

+ e−2πi⌊ 3

2
2J−r⌋ (xℓ)2

∑

k∈H0
r×H0

J−r
×H0

r

f̂k1,k2+⌊ 3

2
2J−r⌋,k3

e−2πikxℓ

+ e−2πi⌊ 3

2
2J−r⌋ (xℓ)3

∑

k∈H0
r×H0

r×H0
J−r

f̂k1,k2,k3+⌊ 3

2
2J−r⌋ e−2πikxℓ .

by six trivariate NFFT(2r, 2r, 2J−r).

Output: f̃(xℓ) approximate value of f(xℓ), ℓ = 0, . . . ,M − 1.
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Figure 5.2: Modified hyperbolic cross in 3D for J = 0, . . . , 3, only the part k1, k2, k3 ≤ 0 is
shown.

6 Numerical results

Our algorithms were implemented in C and tested on an AMD AthlonTMXP 2700+ with
2GB main memory, SuSe-Linux (kernel 2.4.20-4GB-athlon, gcc 3.3) using double precision
arithmetic. Further, we have used the libraries FFTW 3.0.1 [10] and NFFT 2.0.1 [12]. In the
following, we compare Algorithm 3.1 and Algorithm 5.1 with the straightforward summation
(2.3), denoted by SNDFT (sparse nonequispaced discrete Fourier transform) and with the
’ordinary’ NFFT where N = 2J+2 and all Fourier coefficients with an index not in the sets
H2

J and H̃3
J , respectively, are set to zero. We have chosen random knots xℓ ∈ [−1

2 , 1
2 ]d and

random Fourier coefficients f̂k ∈ {a + bi : a, b ∈ [0, 1]}.
All tests use an oversampling factor of α = 2 and the Gaussian window function. We pre-
computed the Gaussian at 105 equispaced evaluations points. Then, a linear interpolation
scheme is used during the NFFT to compute an actual value of the window function at a
certain knot xℓ.

First, we examine the error caused by the various approximations within the SNFFT in
Algorithms 3.1 and 5.1. The relative error

E∞ :=
|f(xℓ) − f̃(xℓ)|

∑

k∈Hd
N
|f̂k|

(6.1)

is shown in Figure 6.1. According to the estimate in (2.2), the error decays exponentially as
m increases. Due to our approximation of the Gaussian window function, it saturates at a
level of 10−10.
Next, we are interested in computation times and memory requirements. Here, we choose the
number of evaluation knots equal to the number of Fourier coefficients on the hyperbolic cross,

i.e., M = (J + 4)2J+1 for d = 2 and M = 2J6(2⌈
J
2
⌉+1 − 1) + 23(⌊J

2
⌋+1) for d = 3. We compare

the computation time and the memory requirements of the SNFFT, of the straightforward
summation SNDFT, and of the ’ordinary’ NFFT. Table 6.1 shows the theoretical CPU-time
and the memory requirements. The actually required CPU times of all three algorithms are
shown in Figure 6.2. As expected, the SNFFT outperforms the other algorithms. So we
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Figure 6.1: The error E∞ (solid) and the error estimate given in (2.2) (dashed). Left: Algo-
rithm 3.1 with J = 7 and m = 2, . . . , 13. Right: Algorithm 5.1 with J = 5 and m = 2, . . . , 13.

obtain, e.g., for d = 2, J = 12 and M = |Hd
12| = 131072, a CPU-time of 37 seconds for the

SNFFT compared to 37 minutes for the SNDFT.

In the second test, we face the memory requirements of all three algorithms as shown in Figure
6.3. Here, the SNFFT needs only a constant amount of 2 MByte more for precomputations
than the SNDFT.

d = 2 d = 3

algorithm time memory time memory

NFFT J22J 22J J23J 23J

SNDFT J222J J2J 23J 2
3

2
J

SNFFT J22J J2J J2
3

2
J 2

3

2
J

Table 6.1: Theoretical order of magnitude for CPU-time and memory requirements.

Concluding remarks

In this paper, we proposed fast algorithms for the evaluation of trigonometric polynomials
from hyperbolic cross points at arbitrary knots. Thus, we generalised the algorithms presented
in [1, 11] for frequencies chosen from a hyperbolic cross and knots on a sparse grid. Our
algorithms are based on a block partition of the hyperbolic cross, coupled with NFFTs on
every block. The numerical results have shown the superiority of the proposed algorithms
with respect to computing time, whereas the memory requirements and the approximation
error remain bounded.
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Figure 6.2: Elapsed CPU-time in seconds (solid) and theoretical orders of magnitude given
in Table 6.1 (dashed) for the SNFFT (circle), SNDFT (triangle), and NFFT (square). Left:
Algorithm 3.1 with J = 2, . . . , 15, m = 4. Right: Algorithm 5.1 with J = 2, . . . , 10, m = 4.
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Figure 6.3: Memory requirements in bytes (solid) and theoretical orders of magnitude given
in Table 6.1 (dashed) for the SNFFT (circle), SNDFT (triangle), and NFFT (square). Left:
Algorithm 3.1 with J = 2, . . . , 15, m = 4. Right: Algorithm 5.1 with J = 2, . . . , 10, m = 4.
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