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Magnetic gels are soft elastic materials consisting of magnetic particles embedded in a polymer
network. Their shape and elasticity can be controlled by an external magnetic field, which gives rise
to both, engineering and biomedical applications. Computer simulations are a commonly used tool
to study these materials. A well-known bottleneck of these simulations is the demanding calculation
of dipolar interactions. Under periodic boundary conditions established algorithms are available for
doing this, however, at the expense of restricting the way in which the gels can deform in an external
magnetic field. Moreover, the magnetic properties depend on the sample shape, ruling out periodic
boundary conditions entirely for some research questions. In this article we will employ the recently
developed dipolar variant of the P2NFFT method that is able to calculate dipolar interactions
under open boundary conditions with an N logN scaling in the number of particles, rather than the
expensive N2 scaling of a direct summation of pair forces. The dipolar P2NFFT method has been
implemented within the ScaFaCoS library. The molecular dynamics software ESPResSo has been
extended to make use of the library.

After a short summary of the method, we will discuss its value for studying magnetic soft matter
systems. A particular focus is put on developing a tuning strategy to reach the best performance of
the method at a predefined accuracy, and lastly applying the method to a magnetic gel model. Here,
adapting to the gel’s change in shape during the course of a simulation is of particular interest.

Keywords: simulations, magnetic gels, dipolar interactions, open boundary conditions, nonequispaced fast
Fourier transform, NFFT, P2NFFT

I. INTRODUCTION

In this article we report on the application of a novel
scheme called particle-particle NFFT method (P2NFFT)
to calculate the dipolar interactions in soft magnetic ma-
terials for the case of open boundary conditions. This
is a relevant use case, in particular, for magnetic gels.
These materials consist of magnetic nanoparticles em-
bedded into a gel matrix [1, 2]. This allows to control
their shape and elasticity via external magnetic fields [3–
6] giving rise to applications such as actuation [7–9] or
biomedical applications, since the magnetic field control-
ling their behaviour does not significantly interact with
living matter. A review on magnetic gels can be found in
Ref. [10], a discussion of their study using particle-based
simulations in Ref. [11].

Simulations of magnetic gels have been performed
mostly using molecular dynamics [12–17] as well as finite-
elements and finite-volume methods [18–22].

Two interesting aspects in the simulation of a magnetic
gel are the calculation of the elasticity, – and sometimes
the structure – of the hydrogel matrix, and the calculation
of the interactions between the embedded magnetic par-
ticles. The excluded volume interaction of the magnetic

∗ weeber@icp.uni-stuttgart.de

particles is often approximated by hard or soft sphere po-
tentials, while the magnetic interaction is simplified to a
point dipole approximation, with the dipoles sitting at
the particles center. Hence, the task is to calculate the
dipolar interaction energy

−µ0

4π

[
3
〈~µi, ~rij〉〈~µj , ~rij〉

r5ij
− 〈~µi, ~µj〉

r3ij

]
, (1)

where µ0 is the magnetic vacuum permittivity, and
~µi, ~µj ∈ R3 denote the particles’ dipole moments. Fur-
thermore, we denote by ~ri ∈ R3 and ~rj ∈ R3 the positions
of the dipoles as well as by

rij := ‖~rij‖ := ‖~ri − ~rj‖

their distance.
Which of the two parts, elasticity or dipolar interac-

tions, is most computing intensive, depends on the mod-
eling approach. In those cases, where the hydrogel or
its elasticity is simulated in great detail, either via the
inclusion of explicit polymer chains or via a continuum
model, these calculations dominate the computing time.
The calculation of the dipolar interactions, on the other
hand, is most relevant for models which model the hydro-
gel’s elasticity in a very coarse-grained fashion, e.g., by
entropic springs connecting the magnetic particles. These
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models can then contain a large number of magnetic par-
ticles. In case of Ref. [16], e.g., 10 000 dipolar particles
are simulated.

It is important to note that dipolar interactions are
long-ranged, as the interaction scales like r−3, where r
denotes the distance between two dipoles. A simple cut-
off scheme for reducing the number of dipole pairs to be
considered results in significant errors. Under periodic
boundary conditions the computational complexity can
be reduced to O(N logN), where N denotes the num-
ber of dipoles in the system, using particle mesh Ewald
methods like the dipolar P3M method [45]. However,
the behaviour of a magnetic gel is also determined by its
shape [16, 24, 25], due to the shape-dependent demagne-
tization energy. Hence, when this effect is important and
needs to be taken into account, open boundary conditions
have to be applied.

While it is possible to calculate the dipolar interactions
for an open system by considering all pairs of particles,
the calculations scale like O(N2), making the simulation
for large N computationally expensive. In this contri-
bution, the dipolar P2NFFT method [26, 27] is applied
to solve this problem. By using a Fourier-space based
calculation for the long range part and applying a regu-
larization at the boundaries to obey the open boundaries,
the method achieves an O(N logN) scaling with respect
to the number of dipoles in the system.

Support for the dipolar P2NFFT method with open,
periodic, and mixed boundary conditions has been added
to the ScaFaCoS library [28, 29]. The implementation
is parallelized by means of MPI. Support for using the
ScaFaCoS library for long range interactions has been
added to the ESPResSo molecular dynamics software [30,
31]. Furthermore, a tuning scheme has been developed
that allows to find those method parameters resulting in
a given accuracy. The paper is structured as follows. In
Sec. II, a brief overview of the method is presented, in
Sec. IV the tuning procedure is described. The model
system, on which the method and tuning are evaluated,
is described in Sec. III, tuning results as well as timings
and the method’s scaling behaviour are then presented
in Sec. V. Based on this, a heuristic scheme for selecting
method parameters is discussed in Sec.VI. Lastly, we
apply the method to a magnetic gel simulation (Sec. VII)
and conclude with a summary.

II. DIPOLAR P2NFFT FOR OPEN BOUNDARY
CONDITIONS

Given a system consisting of N dipoles at positions
~rj ∈ R3, each possessing a dipole moment ~µj ∈ R3, the

energy of this system is given by

Udd = −µ0

4π

N∑
j=1

N∑
i=1,i6=j

〈~µi,∇i〉 〈~µj ,∇j〉
rij

. (2)

Here,∇ denotes the gradient operator and 〈·, ·〉 represents
the Euclidean inner product in R3. Further, the single
summands are a short form notation of the expressions〈

~µi,∇~x
〈
~µj ,∇~y

1

‖~x− ~y‖

〉〉
evaluated at ~x = ~ri and ~y = ~rj . Calculating the par-
tial derivatives results in a representation of the single
summands as introduced in Eqn. 1.

Instead of computing only the overall energy Udd, one
is often interested in computing the single potentials

φj := −µ0

4π

N∑
i=1,i6=j

〈~µi,∇i〉
rij

, (3)

the fields

~Ej := −∇jφj , (4)

the torques

~Tj := ~µj × ~Ej ,

as well as the acting forces

~Fj := −
[
∇j∇>j φj

]
~µj . (5)

A direct evaluation of the underlying sums of length N ,
cf. Eqn. 2 or 3 for instance, results in an arithmetic com-
plexity of O(N2), which is impractical for large particle
systems. The dipolar P2NFFT method, as introduced in
the following, enables an efficient approximation of the
introduced quantities with only O(N logN) arithmetic
operations.

In order to derive fast approximation methods in the
field of molecular dynamics simulations, a common ap-
proach is to apply the so-called Ewald splitting. This is
especially done in the case that periodic boundary con-
ditions are desired. Although we are interested in open
boundary conditions, we still apply the Ewald splitting
in order to separate the interactions into short range and
long range parts, see Sec. II A.

The so-called long range part is approximated by a
trigonometric polynomial and evaluated based on the well
known fast Fourier transform (FFT). Since the particles
have arbitrary positions ~rj ∈ R3, we make use of the
fast Fourier transform for nonequispaced data (NFFT),
which is introduced in Sec. II B. Finally, the NFFT
based fast summation approach, which combines differ-
ent NFFT modules, is applied in order to approximate
the long range potentials and forces. We give a short in-
troduction to the fast summation approach in Sec. II C.
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A. Ewald splitting

The function f(r) = r−1, where r denotes a distance
between two particles, takes a central role in the field
of dipolar interactions, see Eqns. 2 and 3. We split the
function into two parts via

1

r
=

erf(αr)

r
+

erfc(αr)

r
, (6)

where α > 0 is the Ewald or splitting parameter, erf(·)
denotes the error function given by

erf(x) :=
2√
π

∫ x

0

e−t
2

dt

and erfc(·) := 1− erf(·) is the complementary error func-
tion, see [32]. Note that the second summand in Eqn. 6 is
still singular at r = 0, whereas the first part has a finite
limit for r → 0, which is given by

lim
r→0

erf(αr)

r
=

2α√
π
.

Furthermore, the erf-term is approaching the value zero
very slowly for r → ∞, whereas the second summand
tends to zero exponentially fast.

The potentials can now be computed based on Eqn. 3
by applying the introduced Ewald splitting (Eqn. 6) to
the single summands with r := rij . The included partial
derivatives are computed later on. In case of the poten-
tials we obtain

φj = φshortj + φlongj ,

where we define the short range part

φshortj := − µ0

4π

N∑
i=1,i6=j

〈~µi,∇i〉
erfc(αrij)

rij
(7)

and the long range part

φlongj := − µ0

4π

N∑
i=1,i6=j

〈~µi,∇i〉
erf(αrij)

rij
(8)

= − µ0

4π

N∑
i=1

〈~µi,∇i〉
erf(αrij)

rij
. (9)

Note that the function r−1erf(αr) is continuous at r = 0
and, thus, we allow rij = 0. In addition, the gradient of
the radial function vanishes at the origin. Consequently,
the contribution for i = j is equal to zero, i.e., no self-
potential is computed. In contrast, in order to compute

the fields, as defined in Eqn. 4, we apply a further differ-
ential operator to the expressions given in Eqns. 7 and 8.
Thus, we compute a self-field given by

~Eself
j =

µ0

4π
· 4α3

3
√
π
~µj .

Analogously to the self-potential, the self-force is equal
to zero.

B. FFT for nonequispaced data

We give a brief introduction to fast Fourier trans-
forms for nonequispaced data (NFFT) in three dimen-
sions, cf. [33–36]. The NFFT is going to be applied
in order to approximate the long range interactions in
Eqn. 9. Therefor, the interaction kernel r−1erf(αr) will
be approximated by a trigonometric polynomial. Finally,
a combination of different NFFT modules [37] will be
used in order to evaluate the long range interactions, see
Secs. II C and II D.

In the following we define for some ~m = (m1,m2,m3) ∈
2N3 the index set

I~m :=
(
[−m1

2 ,
m1

2 )× . . .× [−m3

2 ,
m3

2 )
)
∩ Z3.

The NFFT realizes an efficient computation of the sums

f(~xj) =
∑
~k∈I~m

f̂~k e2πi〈~k,~xj〉, j = 1, . . . , N, (10)

i.e., the efficient evaluation of a trigonometric polyno-
mial f at given nonequispaced nodes ~xj ∈ [−1/2, 1/2)3.
Note that the components of the vector ~m represent the
number of Fourier coefficients present in each single di-
mension. In the context of the dipolar P2NFFT method,
|~m| = m1m2m3 is the total number of Fourier coefficients
used for the approximation of the function r−1erf(αr).
Later in this article, see Section V, we will restrict our
considerations to meshes of size ~m = (m,m,m), i.e., we
use the same number of mesh points m ∈ 2N in each
single dimension.

The basic idea of the NFFT is explained as follows.
We simply apply the ordinary inverse FFT on the given
equispaced mesh in Fourier space. Afterward, the values
of f in the nonequispaced nodes ~xj are recovered based
on the computed equispaced data via a so called window
function.

In other words, the function values f(~xj) are finally
approximated via

f(~xj) ≈
∑
~l∈I~m

g~l ϕ̃
(
~xj −

~l
~m

)
, (11)
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where we set
~l
~m :=

(
l1
m1
, l2m2

, l3m3

)
∈ R3. The function ϕ̃

is in general the 1-periodization of a compactly supported
window function ϕ with small support, for example a B-
spline. Thus, the sums in Eqn. 11 consist only of a small
number of nonzero summands.

We remark that the NFFT method allows the applica-
tion of other window functions, such as Bessel functions
or Gaussians, for instance. Furthermore, a so called over-
sampling factor may be applied in Eqn. 11. For the sake
of simplicity we restrict our considerations in the present
paper to the above mentioned B-spline window function
without oversampling and refer to Ref. [38], for instance,
for further discussions. We denote by a ∈ 2N the order
of the B-spline and refer to a as the assignment order in
the following.

The coefficients g~l in Eqn. 11 are obtained by apply-
ing a classical inverse FFT on the given regular grid in
Fourier space. In order to correct for the convolution with
the window function afterward, the given Fourier coeffi-

cients f̂~k are deconvolved with the Fourier coefficients of
the window function before. Finally, the NFFT basically
consists of the following three steps:

1. Deconvolution in Fourier space:

ĝ~k :=
f̂~k

c~k(ϕ̃)
(12)

2. Inverse FFT:
(
ĝ~k
)
~k∈I~m

7→
(
g~l
)
~l∈I~m

.

3. Approximate the function values by evaluating the
short sums 11.

The efficient computation of the sums

h(~k) =

N∑
j=1

fj e−2πi〈~k,~xj〉, ~k ∈ I~m,

is realized similarly based on the FFT. The efficient al-
gorithm is widely known as adjoint NFFT.

In addition, the NFFT has been generalized in order
to evaluate the gradients ∇f(~xj) ∈ C3, see [39], as well
as the Hessians ∇∇>f(~xj) ∈ C3×3, as presented in [27].
We refer to these variants as the gradient NFFT and the
Hessian NFFT, respectively.

A further variant is called adjoint gradient NFFT en-
abling the efficient computation of

h(~k) :=

N∑
j=1

〈
~fj ,∇j

〉
e2πi〈~k,~xj〉 ∈ C, (13)

where ~k ∈ I~m. For more details we refer to [27]. The
introduced variants of the NFFT are applied in order to
compute the considered dipolar interactions efficiently,
see Sec. II D.

C. Fast summation for radial kernels

We aim to approximate sums of the form

fj :=

N∑
i=1

〈~ci,∇i〉K(‖~xi − ~xj‖), j = 1, . . . , N, (14)

where K : [0, L]→ R is a continuously differentiable func-
tion, ~cj ∈ C3 are some given vectors and the nodes ~xj ,
j = 1, . . . , N , are supposed to be arbitrarily distributed
in a ball of radius L/2, i.e., we have ‖~xi − ~xj‖ ≤ L for all
i, j.

Note that the long range parts of the potentials
(Eqn. 9) are exactly of the form given in Eqn. 14, where
we have ~ci = ~µi and K(r) = −µ0(4πr)−1erf(αr).

In Sec. II B we introduced the NFFT algorithm, en-
abling an efficient evaluation of trigonometric polynomi-
als (Eqn. 10) at arbitrary nodes ~xj ∈ T3. Now we con-
sider expressions as given in Eqn. 14, which are in general
non-periodic. A second difficulty results from the fact
that a separation of the source nodes ~xi and the target
nodes ~xj is not readily possible, and, hence, a naive eval-
uation would require O(N2) arithmetic operations. To
overcome these two problems, we extend the non-periodic
kernel function K to a smooth periodic function, which
we realize based on the so called regularization technique.
Next, we approximate the resulting periodic function by
a trigonometric polynomial, which finally enables an effi-
cient evaluation of Eqn. 14 via separating the source and
target nodes. This ansatz is closely related to the classical
NFFT based fast summation approach [40].

If we are able to calculate the derivatives of the func-
tion K, we may construct a regularized function KR :
[−h/2, h/2]3 → R defined via

KR(~x) :=


K(‖~x‖) : ‖~x‖ ≤ L,
KB(‖~x‖) : L < ‖~x‖ ≤ h/2,

KB(h/2) : else,

(15)

with some h ≥ 2L. The function KB : [L, h/2]→ R is con-
structed such that the values of the first p− 1 derivatives
coincide with those of the kernel function K at x = L and
that the first p−1 derivatives vanish at x = h/2. The con-
stant continuation with value KB(h/2) makes the function
KR smooth on the cube [−h/2, h/2]3. The polynomial KB,
which fulfills the given interpolation conditions, is com-
puted via the so called two point Taylor interpolation,
see [41, 42].

Note that there are no further restrictions to the period
h > 0, except for h ≥ 2L. In order to describe the size of
the regularization domain relative to the size of the whole
interval, we introduce the variable ε ∈ [0, 1/2) and write

L = h(1/2− ε) ⇐⇒ ε =
h− 2L

2h
.
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By construction, the h-periodic continuation (regard-
ing all three dimensions) of the regularization KR is
smooth. Thus, it is well approximated by a three-
dimensional trigonometric polynomial

KR(~x) ≈
∑
~k∈I~m

b̂~k e2πi〈~k,h
−1~x〉, (16)

where h−1~x ∈ [−1/2, 1/2)3. The Fourier coefficients b̂~k can
be computed via sampling the regularized function KR

at equispaced nodes and applying the FFT.
Since ‖~xi − ~xj‖ ≤ L we obtain

fj ≈
∑
~k∈I~m

b̂~kS~k e−2πi〈~k,h
−1~xj〉, (17)

where we define

S~k :=

N∑
i=1

〈~ci,∇i〉 e2πi〈~k,h
−1~xi〉. (18)

An efficient approximation of the values fj , as defined in

Eqn. 14, is now possible as follows. The sums S~k, ~k ∈ I~m,
are evaluated via the adjoint gradient NFFT, cf. Eqn. 13,
followed by a simple multiplication with the coefficients

b̂~k, and, finally, the sums in Eqn. 17 are computed via the
NFFT, cf. Eqn. 10.

D. The P2NFFT method

In the following we assume that the particles are lo-
cated in a ball of radius L/2 with L > 0. Since the comple-
mentary error function tends to zero exponentially fast,
we may reduce the computational effort needed in order
to compute the short range potentials (Eqn. 7) by only
considering distances rij ≤ rc with some appropriate near
field cutoff radius rc < L. Of course, such a near field ra-
dius only exists in the case that the splitting parameter α
is also reasonably chosen. The same applies to the short
range parts of the fields and the forces, which are defined
analogously containing further partial derivatives.

Provided that ‖~rj‖ ≤ L/2 for all j = 1, . . . , N , we
can simply apply the presented NFFT based fast sum-
mation approach in order to compute the long range
parts of the potentials (Eqn. 9), i.e., we set ~ci = ~µi and
K(r) = −µ0(4πr)−1erf(αr) in Eqn. 14. We start with ap-
proximating the sums in Eqn. 18 based on the adjoint gra-
dient NFFT, cf. Eqn. 13. Afterward, the sums in Eqn. 17
are approximated via the NFFT, cf. Eqn. 10.

In an analog manner, the long range parts of the fields
and the forces may be approximated. Whereas the long
range potentials are obtained by applying the NFFT to

sums in Eqn. 17, the long range parts of the fields and
the forces are obtained via

~Elong
j = −∇jfj and ~F long

j = −
[
∇j∇>j fj

]
~µj ,

respectively. Here, fj are approximately given via
Eqn. 17, with ~ci = ~µi and K(r) = −µ0(4πr)−1erf(αr).
Instead of the NFFT we hereby apply the gradient NFFT
and the Hessian NFFT, respectively.

Error control

The error behaviour of dipolar particle mesh methods
is already well studied regarding fully periodic boundary
conditions, cf. [43–45]. This allows for a fast tuning of
the method parameters such that a given accuracy can
be reached. In contrast, there are no error estimation
formulae for the presented method under mixed periodic
and open boundary conditions. For open boundary con-
ditions, however, the exact results are easily calculable by
means of direct summation. The method parameters of
P2NFFT can then be tuned by numercially minimizing
the error of the P2NFFT calculations, depending on the
method parameters. This is explained in Sec. IV.

Recent results indicate that for charge-charge systems,
the parameters can be tuned heuristically based on the er-
ror estimates known for 3d-periodic constraints [42]. This
aproach may be transferrable to the dipole-dipole case in
the future, particularly for 1d and 2d periodic geometries,
where the exact result cannot be easily calculated.

III. MODEL SYSTEM

As this paper is focussed on the calculation of dipolar
interactions, we use a dipolar hard sphere system for illus-
trating the tuning procedure and timing of the method.
I.e., soft repulsion between the coatings of magnetic par-
ticles as well as the elasticity of the hydrogel matrix in a
magnetic gel is not included, see Sec. VII for the simula-
tion of an actual magnetic gel system.

A fluid of dipolar hard spheres is characterized by two
dimensionless quantities. First, the volume fraction

φ =
1

6

Nπσ3

V
, (19)

measuring the ratio of the volume covered by the hard
spheres of diameter σ, and the total simulation volume
V . Second,

λ =
µ0µ

2

4πσ3kT
(20)
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is the ratio of the maximum dipolar energy per particle
of two touching particles (Eqn. 1), divided by the ther-
mal energy kT . The number of particles N and their
diameter σ can be chosen arbitrarily in a system with
periodic boundaries. In the non-periodic case discussed
here, however, the number of particles N is an additional
parameter, since it controls the relative influence of bulk
and surface properties. We use reduced units and set the
particle diameter σ and the thermal energy kT equal to 1.
For the magnetic fluid, experimentally achievable param-
eters of φ = 0.05 and λ = 4 are assumed. Furthermore,
model systems with λ ∈ {2, 4, 6, 8} at φ = 0.05 and for
φ ∈ {0.01, 0.05, 0.09, 0.13, 0.17} at λ = 4 are considered
for some system sizes.

The test system is generated by randomly placing N
particles into the simulation box. Then, overlap between
the particles is removed as follows. A purely repulsive
Lennard-Jones potential

U(r) =

{
4
[(
σ
r

)12 − (σr )6] for r < σ,

0 otherwise,
(21)

is applied to the particles. Then, the interaction energy is
minimized by the steepest descent method. At the end of
this procedure, the minimum distance between any two
particles in the system is larger or equal to σ. Note that
this is different from the Weeks-Chandler-Andersen po-
tential, which is cut at 2

1
6σ. During the tuning and tim-

ing of the P2NFFT method, the particles do not move,
so the Lennard-Jones interaction is not necessary here.
We consider system sizes of 5 000, 10 000, 20 000, 40 000
80 000, 160 000, and 320 000 particles. The orientations of
all magnetic dipole moments are chosen randomly. By se-
lecting a suitable unit for the electric current, the vacuum
permittivity in Eqn. 1 can be set to µ0

4π = 1. Inserting the
definition of λ from Eqn.20 into the dipole-dipole inter-
action (Eqn. 1), setting the thermal energy kT = 1 and
the particle distance to σ yields a value of

µ =
√
λσ3 (22)

for the magnetic moment.

IV. TUNING PROCEDURE

At this point, there are no error estimation formulae
for the method. However, in contrast to periodic ones,
for open boundary conditions the exact result can be ob-
tained from direct summation. The error for a given set of
parameters is then obtained by comparing the P2NFFT
result to the exact one. As error measure we use the av-
erage between the root mean square force error and root

mean square torque error

∆ =
1

2


√√√√ N∑

i=1

|~Fi − ~F exact
i |2 +

√√√√ N∑
i=1

|~Ti − ~T exact
i |2

 ,

(23)

where N denotes the number of particles, and ~Fi and ~Ti
denote the force and torque on particle i. Exact results
are obtained from direct summation.

When applying the method in simulations, the set of
parameters has to be found which gives the fastest com-
putation time at the desired level of accuracy. The pa-
rameter space is high-dimensional, as it consists of num-
ber the of mesh points m, the Ewald splitting parameter
α, the real-space cutoff for calculating short range inter-
actions rc, the assignment order a and the parameter ε
controlling the regularization at the boundaries. There-
fore not all possible combinations of parameters can be
tested. We developed a tuning procedure, which consists
of two phases. First, the set of parameters giving the
fastest calculation which still fulfill the accuracy require-
ment are generated for all combinations of mesh sizes m
and assignment orders a to be considered. In the second
phase, the calculations for these parameter sets are timed
on the desired number of processor cores, and the param-
eter set providing the fastest calculation is selected.

Let us now examine the first phase in more detail. It
is important to note that while all parameters can affect
the accuracy of the result, the Ewald splitting parame-
ter α and the parameter ε controlling the regularization
do not influence the run-time of the algorithm. Hence in
the first step, for a given number of mesh points, assign-
ment order, and real space cutoff, we select the Ewald
splitting parameter α and the regularization parameter
ε which minimize the error (Eqn. 23) by means of a nu-
merical minimization using the L BFGS B method from
the SciPy package (www.scipy.org). The optimization
is constrained: for the Ewald splitting parameter α, val-
ues between 0.4/rc and 5/rc are considered, where rc is
the real space cutoff. The regularization parameter ε can
adopt values between 0.001 and 0.15. The optimization is
then repeated for different real space cutoffs. For a fixed
number of mesh points and assignment order, the small-
est real space cutoff which allows the accuracy target to
be met results in the fastest simulations. It is determined
by bisecting the interval between the minimum and max-
imum real space cutoff considered (five and 20 particle
diameters (σ), respectively). Finally, this procedure is
performed for all combinations of the number of mesh
points and assignment order, which are to be considered.
As the results do not depend on each other, they can be
executed in parallel.

Once viable parameter sets are collected, the calcula-
tion is timed on the target architecture with the desired
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number of processor cores using these parameter sets ob-
tained in the previous step, and the fastest one is selected
for production simulations. In practice, both, the root-
mean-square force and torque error, and the timing re-
sults slightly depend on the configuration of particles in
the system. When tuning for an accuracy of 10−4, we
therefore averaged over four configurations. Timing is
conducted for eight configurations.

V. SCALING BEHAVIOUR AND METHOD
PARAMETERS

For the purpose of obtaining the scaling behaviour of
the method and studying the optimal values of its pa-
rameters, tuning was carried out on systems of 5 000 to
320 000 particles. Assignment orders a of two to five were
considered. For the number of mesh points, candidates
were evaluated which are multiples of small prime factors,
as this results in faster Fourier transforms. The full list
is

m = {64, 80, 96, 104, 112, 120, 128,

136, 144, 152, 160, 176, 192,

224, 256, 288, 320, 352, 384,

416, 448, 480, 512}.

(24)

Mesh sizes below 60(N/10000)
1
3 were not considered.

Furthermore, a time limit of 16 hours on four processor
cores was applied to the tuning of any individual combi-
nation of number of mesh points and assignment order.
Parameter sets which could not be tuned in that time
will not provide good simulation performance, in the first
place. Applying this limitation, even for the largest sys-
tem containing 320 000 particles, 39 viable parameter sets
were obtained, with the number of mesh points ranging
from 192 to 512. As mentioned in Sec. IV, the sets of pa-
rameters that satisfy the accuracy requirements have to
be timed to pick the fastest one on a given architecture.
Timings were run on 1, 2, 4, 8, and 16 cores on a node
containing two Intel Xenon E2630 processors with 8 cores,
each. In Fig. 1, results for the strong scaling are shown.
I.e., we plot the time for a calculation versus the number
of particles N . Data is shown for different numbers of
processor cores. It can be seen that the computing time
scales almost linearly in the number of particles. The
logarithmic component is not significant when increasing
the number of particles by a factor of 64 (5 000 to 320 000
particles).

Results for weak scaling are shown in Fig. 2. Here,
the computing time for a fixed number of particles per
processor core is shown versus the number of processor
cores. It can be seen that up to four cores, the loss in
efficiency is small. For eight and 16 cores, however, the
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FIG. 1. Strong scaling for calculations on 5 000 to 320 000
particles performed on one to 16 cores. It can be seen that
the scaling is close to linear over the complete range of system
sizes
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FIG. 2. Weak scaling for calculations on 5 000, 10 000 and
20 000 particles per core for one to 16 cores. The computation
time increases with the number of cores, in particular, for 8
and 16 cores. This might be caused by the large amount of
data being communicated between the cores.

calculations take significantly more time. This might be
related to the rather high communication volume caused
by a large real space cutoff and a large FFT grid.

Let us now turn to the parameter sets obtained by the
tuning procedure. The timings and associated method
parameters for one and 16 cores and the full range of
system sizes can be found in Tbl. I. It is worth mention-
ing that in many cases, several sets of method parame-
ters lead to very similar computation times. Often, the
five most favorable sets of parameters result in computa-
tion time differences of only a few percent. This is due
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1 core 16 cores
N t [s] m a rc α ε t [s] m a rc α ε

5000 0.453 80 8 11.445 0.262 0.060 0.070 96 8 9.922 0.308 0.051
10000 0.920 112 8 10.391 0.293 0.041 0.141 112 8 10.391 0.293 0.041
20000 1.897 144 8 10.039 0.304 0.030 0.291 144 10 9.570 0.322 0.029
40000 3.860 176 8 10.156 0.302 0.021 0.579 192 8 9.453 0.330 0.018
80000 7.805 224 8 9.922 0.310 0.012 1.191 224 8 9.922 0.310 0.012

160000 15.674 288 8 9.688 0.320 0.001 2.402 256 8 10.625 0.287 0.006
320000 31.726 352 10 9.336 0.331 0.001 4.741 352 10 9.336 0.331 0.001

TABLE I. Timings and method parameters for the fastest calculations meeting the accuracy target of 10−4 on one and 16 cores.
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 256
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h
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e
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number of particles
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1/3
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n

1/3
 fit

FIG. 3. Number of mesh sites m in each Cartesian direction
versus the number of particles N . Results are shown for calcu-
lations on one and 16 cores, respectively. It can be seen that

m scales like N
1
3 , resulting in an approximately constant ratio

of mesh sites per particle m3/N in the simulation box. The
fluctuations are, in part, caused because for some parameters,
an assignment order of 10 rather than 8 yielded the fastest
calculations.

to trade-offs, e.g. between a higher assignment order or
number of mesh points on the one hand and a lower real-
space cutoff on the other hand. In Fig. 3, the number of
mesh sites per direction m is plotted against the num-
ber of particles N . Results are shown for calculations
on one and 16 cores, respectively. They can be fitted
with m ∼ N

1
3 . This implies that the ratio of mesh sites

per particle m3/N stays roughly constant for all system
sizes. Because for some cases an assignment order of 10
rather than 8 yielded the fastest calculations, resulting
in a slightly smaller real space cutoff, we observe some
fluctuations of the timing data around the fit in Fig. 3.
For the dipolar interaction parameter λ = 4 and volume
fraction φ = 0.05, we also find that the real space cut-
off has to be tuned to ≈ 10σ ± 1.5σ for all system sizes
and number of processor cores. Furthermore, the Ewald
splitting parameter scales roughly as α ∼ 1/rc, as long as

 4
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 16

 64  128  256  512

c
u
to

ff

mesh sites

10000 particles
320000 particles

m
-3/4

 fit

FIG. 4. Real space cutoff, rc, versus the mesh size per Carte-
sian direction, m, for the parameter sets resulting in the
fastest calculation while meeting the accuracy requirement
for 10 000 and 320 000 particles. The results can be fitted
via rc ∼ m−0.75.

only the system size and the number of processor cores is
changed.

When choosing the method parameters, a trade-off is
made between reducing the effort of the real and Fourier
space parts, respectively. The computation time of the
real space part scales like O(r3c ), where rc is the real-
space cutoff, whereas the Fourier space part scales like
O(m3 logm). In Fig. 4, we show the cutoff versus the
number of mesh points per Cartesian direction, for the
fastest calculations meeting the accuracy target. It can be
seen that the cutoff scales approximately as rc ∼ m−0.75.

Let us finally examine the influence of the strength
of the dipolar interactions λ (Eqn. 20) and the volume
fraction φ (Eqn. 19) on the optimal calculation time and
corresponding method parameters. Results for a system
containing 10 000 particles with a dipolar interaction pa-
rameter of λ = 4 and for different densities can be found
in Tbl. II. It can be seen that the calculation time in-
creases with increasing density. While the calculations
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ρ t [s] m a rc α ε
0.01 0.649 96 8 15.430 0.175 0.041
0.05 0.920 112 8 10.391 0.293 0.041
0.09 1.045 112 10 8.867 0.356 0.048
0.13 1.104 112 10 8.164 0.394 0.049
0.17 1.171 120 10 7.344 0.446 0.049

TABLE II. Optimal calculation times and associated method
parameters for various volume fractions φ (Eqn. 19) for a sys-
tem of 10 000 particles with a dipolar interaction parameter
λ = 4 simulated on a single cpu core.

λ t [s] m a rc α ε
2.0 0.813 112 8 9.453 0.312 0.036
4.0 0.920 112 8 10.391 0.293 0.041
6.0 1.002 112 8 10.977 0.283 0.043
8.0 1.042 112 10 10.742 0.296 0.048

TABLE III. Optimal calculation times and associated
method parameters for various dipolar interaction strengths
λ (Eqn. 20) for a system of 10 000 particles with a volume
fraction φ = 0.05 simulated on a single cpu core.

for low densities are carried out largely in real space, the
effort is shifted to the long range calculations in Fourier
space for higher densities. It is worth mentioning that
the effort for the short range calculations also increases
with density. This effort is proportional to the number of
particles nc in a sphere of radius rc, where rc is the short
range cutoff, we therefore have

nc ∼ φr3c . (25)

The ratio between nc at φ = 0.17 and φ = 0.01 is approx-
imately 1.83.

Results for varying dipolar interaction parameters λ
are presented in Tbl. III. The volume fraction is kept con-
stant at φ = 0.05. While varying λ changes the strength
of the dipolar interaction, we keep the target accuracy
constant at 10−4. This is justified, because the relative
importance of interactions in a soft matter system is mea-
sured by their relative strength compared to the thermal
energy kT . Hence, the required accuracy is determined
by this energy scale rather than by the strength of a par-
ticular interaction. From the table, it can be seen that
the computation time increases with increasing interac-
tion strength, both, due to an increase of the short range
cutoff and the number of mesh points. So, in contrast
to the case of a varying volume fraction, the relative im-
portance of short and long range calculations does not
change strongly. The increase in computation time is
likely mostly due to the error being proportional to λ.

VI. TUNING HEURISTICS

The full tuning procedure described in Sec. IV requires
a very high computational effort. To make the use of
the P2NFFT method practical in simulations, a faster
approach is needed. If tabulated tuning results are avail-
able for a similar system, this can be done by extrapolat-
ing. This is possible based on the m ∼ N 1

3 scaling of the
number of mesh points m with the number of particles
N (Fig. 3). Moreover, while in some cases an assignment
order of a = 10 produced slightly faster calculations, the
difference to a = 8 is not large. Based on these obser-
vations, an extensive tuning only has to be carried out
for a single number of particles. From those tuning re-
sults, the number of mesh points for other system sizes
can be extrapolated. We tested this scheme as follows.
The number of mesh points (m0 = 112) for N0 = 10 000
particles, a dipolar interaction parameter of λ = 4, and
a volume fraction of φ = 0.05 was taken as basis. For all
system sizes N , considered (5 000 to 320 000 particles),
the number of mesh points was obtained as

mN = m0

(
N

N0

) 1
3

. (26)

Based on this estimate, the closest mN was chosen from
the list of mesh sizes considered (Eqn. 24). The timing
for this m and an assignment order of a = 8 was then
compared against the fastest one obtained for the same
system size in the full tuning. For λ = 4 and φ = 0.05,
and for all system sizes above 10 000 particles, the compu-
tation time using the estimated m was found to be within
five percent of the optimal one obtained in the full tun-
ing for the respective system size. The scheme can even
be used for varying volume fractions φ and dipolar inter-
action parameters λ. Then, however, not only the mesh
constant from Eqn. 24 closest to the extrapolated one, but
the three closest ones should be considered. In that case,
the calculation time was within 15 percent of the optimal
one even for the systems with different volume fractions
and interaction parameters (Tbl. II and Tbl. III) and for
the systems with less than 10 000 particles discussed in
the previous section.

In practice, after the number of mesh points has been
estimated, only a tuning of the Ewald splitting parameter
α and the regularization parameter ε has to be run, which
typically takes less than an hour. This is a low effort
compared to a typical soft matter simulation, which runs
for millions of time steps.

If no tabulated tuning results are available for extrapo-
lation, it is also possible to employ a simplified version of
the full tuning which is based on the assumption that the
real space cutoff decreases monotoneously with increasing
mesh size. This is applied in the next section.
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FIG. 5. Initial configuration of a simple model ferrogel. It
consists of a number of flexible chains of magnetic particles. In
each node of the network, the ends of six chains are attached.

VII. APPLICATION TO MAGNETIC GELS

Let us now consider the simulation of a magnetic gel.
Since these materials can deform quite strongly in an
external magnetic field, and since the simulation is run
under open boundary conditions, special care has to be
taken. Since the P2NFFT method uses a mesh covering
the simulation box, the box geometry has to be adapted,
when the gel changes its shape. A too large simulation
box, where a lot of the mesh does not contain particles,
slows down the calculation. On the other hand, the sam-
ple should also not leave the simulation box. Moreover,
the P2NFFT method parameters need to be adapted,
when the simulation box is changed. Lastly, the local
structure of the material changes considerably in an ex-
ternal magnetic field. This can result in the need for a
complete re-tuning of the method after an initial reshap-
ing of the gel.

To illustrate how to cope with these requirements,
in this section, we describe a sample simulation pro-
tocol. The scripts to run this protocol are pro-
vided with this article and at http://github.com/
RudolfWeeber/scafacos_espressomd_dipoles. They
can be used as a starting point for new projects.
The ‘dipoles‘ branch of ScaFaCoS [28] with the com-
mit hash ‘066f753f0572c7397508231cb4fc9432d5aeaf04‘
is used. The commit hash for ESPResSo is
‘7a0ec981f24de839689f61781581ce6194ecf51d‘.

The three-dimensional gel model used is loosely based
on “Model I“ in Refs. [13, 14]. Please note that the
model used here is intended as an example application for
P2NFFT, not as a model suitable for study of ferrogels.

The model gel consists of a network of flexible chains of
14 particles, each. Additional particles are placed in the
nodes of the network, so that the ends of six chains are
connected to each node. As depicted in Fig. 5, the initial
arrangement is part of a simple cubic lattice. The gel is
cut in a spherical shape and any dangling chains at the
surface are removed. In total, there are 17957 particles in
the system. Both, node particles and the particles making
up the chains, carry a magnetic moment giving a dipolar
interaction parameter of λ = 2 (Eqn. 20). The particles
also interact via a purely repulsive Lennard-Jones poten-
tial (WCA-potential [46])

U(r) =

 4ε

[(σ
r

)12
−
(σ
r

)6]
+

1

4
r < 2

1
6σ

0 otherwise,

 , (27)

with ε = σ = 1. Neighboring particles in the chains are
connected by a harmonic bond

U(r) =
1

2
kr2, (28)

with k = 200. The particles are thermalized by a
Langevin thermostat, which applies random forces and
a velocity dependent friction to the particles [47]. Ther-
mal energy and friction are set to kT = γ = 1. During
the simulation, both, the particles forming the chains and
the particles in the network’s nodes can move. The bonds
are maintained throughout the simulation.
a. Setup of the simulation model The initial state

shown in Fig. 5 is easily constructed but is not yet a real-
istic representation of a gel in thermal equilibrium. Due
to the entropy introduced at thermal energies kT > 0, the
polymer chains coil and the network as a whole shrinks.
This initial relaxation (1.5 · 106 time steps of dt = 0.015)
is done without considering the dipolar interactions be-
tween the particles, to save computation time.
b. Obtaining suitable P2NFFT parameters First it is

necessary to calculate the exact dipolar forces and torques
for the thermalized system via direct summation. This
is then used as reference to calculate the error of the
P2NFFT calculation for a given set of method parame-
ters. Then the tuning is run. For the model gel, we use
a simplified version of the tuning procedure described in
Sec. IV, which avoids the complex workflow and makes
use of a single script. Rather than tuning for different
mesh sizes in parallel, this is done serially. Assuming a
monotone relationship between mesh size and real space
cutoff (Fig. 4), the highest and lowest candidate mesh
sizes m are tuned first to determine the highest and low-
est relevant real space cutoffs rc. Further mesh sizes are
attempted in ascending order, such that the maximum
real space cutoff to consider can be decreased further.
Thus, tuning runs for later in the process will take less
time.
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FIG. 6. Snapshot of the model ferrogel at the end of the simulation. Left: no external field is applied, the gel has a roughly
spherical shape. Right: A field of H = 10 is applied along the x-axis. The gel elongates parallel to the field direction and
shrinks in the perpendicular one.

c. Running and re-tuning the model Based on the
P2NFFT parameters obtained by the tuning, the actual
simulation – including dipolar interactions –, is run. This
is done once for the case without an external magnetic
field applied, and once for a field of H = 10. Every ten
time steps (dt = 0.015), is is checked whether the gel
is too close to the boundary of the simulation box. If
there is a layer of less than two ore more than six par-
ticle diameters (σ in Eqn. 27) around the gel, the box is
reshaped to a boundary of four diameters. To maintain
a good accuracy of the P2NFFT calculation, the mesh
size m in each Cartesian coordinate is adjusted to re-
cover the mesh density obtained in the tuning process.
Without this adjustment, the accuracy of the P2NFFT
calculations deteriorate significantly.

Due to the presence of the external field and the dipole-
dipole interactions, the gel changes its shape and inner
structure. So, even with the adjustment of the mesh size
as the box is re-shaped, there is no guarantee that the ini-
tial choice of P2NFFT parameters are still a good choice.
Hence, the forces and torques obtained by P2NFFT have
to be compared to an exact calculation using direct sum-
mation during a long simulation run.

When no external magnetic field is applied, and the gel
stays roughly spherical (left part of Fig. 6), we found that
the accuracy after 100 000 time steps is still comparable
to the accuracy target of the P2NFFT tuning. When,
on the other hand, the gel is deformed by an external
field, the deviations turn out to be significant, making
a retuning of the method after 50 0000 time steps and a
simulation of the remaining 50 000 time steps with the
new parameters necessary. Images of the model gel both,

with and without an external field applied, are shown in
Fig. 6.

d. Scripts provided with this article The following
scripts are provided with this article and can serve as a
starting point for new models

• run-test.sh
Run a short test version of the simulation protocol
described above

• run-full.sh
Run the full simulation protocol described above.
This is used to obtain the samples shown in Fig. 6.

• model.py
Model class

• gen-system.py
Sets up a model gel and thermalizes it

• add-reference-forces-torques.py
Adds reference forces and torques to a stored parti-
cle configuration by means of direct summation of
the dipolar interactions

• tune.py
Tunes the P2NFFT method for a given particle con-
figuration including reference forces and torques

• run.py
Runs the model, calculating dipolar interactions by
means of P2NFFT
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• get-accuracy.py
Compares the P2NFFT results for dipolar interac-
tion to an exact calculation by means of direct sum-
mation

• p2nfft common.py
Support methods for P2NFFT, e.g., for the re-
tuning and mesh size adapting

VIII. CONCLUSION AND OUTLOOK

In this article, we provided a brief overview of the
P2NFFT method for the calculation of dipolar interac-
tions under open boundary conditions. The method is
based on the fast Fourier transform for nonequispaced
data (NFFT), and yields a scaling of N logN in the num-
ber of particles, as compared to the N2 scaling of sum-
ming up the dipolar interactions directly. In order to
make the NFFT algorithms applicable, the involved long
ranged non-periodic functions are periodized based on
a polynomial interpolation and finally approximated by
trigonometric polynomials.

Furthermore, we have demonstrated the usefulness of
the algorithm to magnetic soft matter by showing a sam-
ple case, namely the application to a ferrogel simulation.
We have developed a tuning procedure based on a com-
parison to exact results obtained by direct summation,
provide a simulation protocol for a magnetic gel model,

and explain how to cope with a strong change of sample
shape and structure during the simulation.

In summary, we have demonstrated that the P2NFFT
method is well suited for the simulation of large magnetic
soft matter systems with open boundaries. However, due
to the effort needed for interpolating onto a regular grid,
the method will outperform direct summation for system
sizes on the order of 10 000 particles and above. For the
application to magnetic gels, large simulations are impor-
tant, because the material properties in the bulk and sur-
face regions may be different. Hence, the surface to bulk
ratio of simulations should be comparable to that in ex-
periments. In the future, it may be of interest to off-load
part of the calculations, such as the Fourier transforms,
onto an accelerator such as a graphics card. Since Fourier
transforms perform very well on graphics cards, a consid-
erable speed-up can be expected. Lastly, the P2NFFT
method is also applicable to systems with mixed period-
icity. Then, a different tuning scheme is required, as the
exact result can no longer be calculated directly.

ACKNOWLEDGEMENTS

RW, FW, and CH are grateful for financial sup-
port from the DFG through the SPP 1681, SFB 716
and cluster of excellence Simtech EXC 310, and to the
BW-Unicluster for computing resources. FN, DP and
CH gratefully acknowledge support by the German Re-
search Foundation (DFG), project PO 711/12-1 and HO
1108/25-1.
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