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QUADRATURE ERRORS, DISCREPANCIES, AND THEIR
RELATIONS TO HALFTONING ON THE TORUS AND THE

SPHERE∗

MANUEL GRÄF† , DANIEL POTTS† , AND GABRIELE STEIDL‡

Abstract. This paper deals with continuous-domain quantization, which aims to create the
illusion of a gray-value image by appropriately distributing black dots. For lack of notation, we refer
to the process as halftoning, which is usually associated with the quantization on a discrete grid.
Recently a framework for this task was proposed by minimizing an attraction-repulsion functional
consisting of the difference of two continuous, convex functions. The first one of these functions
describes attracting forces caused by the image gray values, the second one enforces repulsion between
the dots. In this paper, we generalize this approach by considering quadrature error functionals on
reproducing kernel Hilbert spaces (RKHSs) with respect to the quadrature nodes, where we ask
for optimal distributions of these nodes. For special reproducing kernels these quadrature error
functionals coincide with discrepancy functionals, which leads to a geometric interpretation. It turns
out that the original attraction-repulsion functional appears for a special RKHS of functions on R2.
Moreover, our more general framework enables us to consider optimal point distributions not only
in R2 but also on the torus T2 and the sphere S2. For a large number of points the computation
of such point distributions is a serious challenge and requires fast algorithms. To this end, we work
in RKHSs of bandlimited functions on T2 and S2. Then the quadrature error functional can be
rewritten as a least squares functional. We use a nonlinear conjugate gradient method to compute a
minimizer of this functional and show that each iteration step can be computed in an efficient way
by fast Fourier transforms at nonequispaced nodes on the torus and the sphere. Numerical examples
demonstrate the good quantization results obtained by our method.
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1. Introduction. Halftoning is a method for creating the illusion of a continu-
ous tone image having only a small number of tones available. It is usually associated
with the quantization on a discrete grid. In this paper, we use the name halftoning
for continuous-domain quantization; cf. [48, 28]. We focus just on two tones, black
and white, and ask for appropriate distributions of the black “dots.” Applications
of halftoning include printing and geometry processing [54] as well as sampling prob-
lems occurring in rendering [60], relighting [36], and artistic nonphotorealistic image
visualization [4, 49]. Halftoning has been an active field of research for many years.

Dithering methods which place the black dots at image grid points include, e.g.,
ordered dithering [7, 47], error diffusion [22, 32, 52, 53], global or direct binary search
[1, 6], and structure-aware halftoning [45]. Ostromoukhov [44] extended the error
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diffusion idea by proposing a stencil design which takes the blue noise spectrum into
account and depends on the gray values being processed. This approach was further
improved by Chang, Alain, and Ostromoukhov [11] who proposed to use thresholds
and error diffusion stencils depending on the local frequency, orientation, and contrast
in the image. This is realized by using five lookup tables created manually in a
calibration step. For a related, patented technique, see [31].

In this paper we consider algorithms which use the continuous domain as possible
black dot positions instead of the image grid. More precisely, consider a gray-value
image u : G → [0, 1] on a (squared) grid G := G × G, where G := { 1

2n + i
n : i =

0, . . . , n − 1}. Since “black” is 0 and “white” 1, we will later use the corresponding
weight distribution w := 1 − u. Now we intend to find the positions pi ∈ [0, 1]2,
i = 1, . . . ,M , of M black dots which create the illusion of the original gray-value
image u; see Figure 1 for an illustration.

For this purpose stochastic point distributions were frequently used in computer
graphics. Among them the Poisson point distribution stands out for its superior blue
noise characteristics. The blue noise analysis of dithered patterns was first described
by Ulichney [58, 59] and is widely accepted for evaluating dithering and screening
methods. For a comparison of various methods for generating Poisson point distri-
butions, we refer the reader to [39]. An artistic point distribution method on the
continuous domain, called stippling was proposed by Secord [49]. Like some of the
Poisson point distribution methods, it is based on weighted centroidal Voronoi tessel-
lation and Lloyd’s iterative algorithm [27, 41]. Recall that Lloyd’s algorithm tries to
find a useful minimizer of the error functional

L((pk, Vk)
M
k=1) :=

M∑
k=1

∫
Vk

w(x)|x − pk|2 dx

over any set of points {pk}Mk=1 belonging to Ω̄ ⊂ R2 and any tessellation {Vk}Mk=1

of Ω̄. A necessary condition for L to be minimized is that the Vk’s are the Voronoi
regions corresponding to the pk’s, and, simultaneously, the pk are the centroids of
the corresponding Vk’s. For a comprehensive overview and references up to 1999,
see [17]. Recently, efficient centroidal Voronoi tessellation were also developed for
mesh surfaces by Liu et al. [40]. A capacity-constrained variant of Lloyd’s algorithm
was proposed by Balzer, Schlömer, and Deussen [4]. Note that the method in this
paper can also be considered as capacity-constrained, since it minimizes a certain
discrepancy. Balzer’s approach aims to overcome the drawback of Lloyd’s algorithm
which introduces regularity artifacts if not stopped at a suitable iteration step. Very
recently an interesting approach for generating stochastic blue-noise distributions that
formulates the problem as sampling a statistical mechanics interacting particle model
was developed by Fattal [21]. In particular, his strategy generates a high-quality
stochastic point distribution in a time that is linear in the number of points.

In [55], a novel halftoning framework was proposed, where the vector p :=
(pi)

M
i=1 ∈ R2M of the black dot positions was determined to be a minimizer of the

functional

(1.1) E(p) :=

M∑
i=1

∑
x∈G

w(x)‖pi − x‖2 − λ

2

M∑
i,j=1

‖pi − pj‖2.

Here λ := 1
M

∑
x∈G w(x) is an equilibration parameter between the “opposite” func-

tionals. The intention for considering minimizers of this functional as “good” black
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dot positions comes originally from electrostatic principles used in [48] for halftoning.
The black points are considered as small particles of equal size moving in an environ-
ment, e.g., under a glass pane above the image w. The particles are attracted by the
image forces w(x) at the points x ∈ G. On the other hand, there is a force of repulsion
between the particles modeled by the negative sign of the second sum which becomes
minimal if the sum of distances between the particles are maximized. In [55] a circum-
stantial numerical comparison to other methods was performed which showed that the
method achieves unsurpassed quality, has a blue noise spectrum which can keep up
with state-of-the-art techniques, and performs superior with respect to Gaussian scale
space properties. Furthermore, the use of the nonequispaced fast Fourier transform
lowers the complexity of O(M2) per iteration achieved in [48] to O(M logM). Very
recently, a new parallel implementation for GPUs was proposed in [28] which reduces
the runtime again substantially.

Fig. 1. Left: Original 256 × 256 image. Right: Stippling result by minimizing (1.1) with
m = 30150 points using the technique from [55].

In this paper, we deal with the continuous version of the above attraction-repulsion
functional

(1.2) E(p) :=
M∑
i=1

∫
[0,1]2

w(x)‖pi − x‖2 dx− λ

2

M∑
i,j=1

‖pi − pj‖2,

where w : [0, 1]2 → [0, 1] is defined on the whole square [0, 1]2 and λ := 1
M

∫
[0,1]2 w(x) dx.

We can also consider (1.2) with more general functions ϕ : [0,∞) → R and obtain

(1.3) Eϕ(p) :=
λ

2

M∑
i,j=1

ϕ(‖pi − pj‖2)−
M∑
i=1

∫
[0,1]2

w(x)ϕ(‖pi − x‖2) dx.

In (1.2) the function ϕ(r) = −r was used. In [48] the function ϕ(r) = − log(r) with
a modification near zero was applied. Further, the authors in [55] also mentioned
ϕ(r) = −rτ , 0 < τ < 2, and ϕ(r) = r−τ , τ > 0, with a modification near zero as
possible choices. For monotone decreasingly, convex ϕ with ϕ(0) < ∞ it is easily
shown that the minimizers of (1.3) exist; cf. [55].
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In this paper we look at the halftoning problem from different points of view. The
framework arises primarily from approximation theory but touches many different
areas in mathematics as well. The proposed setting is quite general and enables us to
consider in some sense optimal point distributions not only in R2 but also on the torus
T
2 and the sphere S

2, or other compact manifolds in R
d. Let us remark that even in

the seemingly easiest case with w ≡ 1 the search for optimal point configurations is a
very tough problem, at least in more than one dimension. For example on the sphere
with the Coulomb potential ϕ(r) = r−1 we are confronted with the Thomson problem
[56], which asks for the ground states of a given number of electrons on the sphere.
This famous problem originated many publications concerning the computation [63],
asymptotic [37], and characteristic [10] of optimal distributions on the sphere, to name
but a few. Another interesting application of our halftoning procedure on the sphere
may be found in methods for solving partial differential equations arising in geoscience
[23].

In the following, we consider worst case quadrature errors on reproducing kernel
Hilbert spaces (RKHSs) in dependence on the quadrature nodes and ask for optimal
node distributions. In the literature this was mainly done for constant weights w ≡ 1.
A weighted setting appears in connection with the so-named “importance sampling”;
see [43] and the references therein. It turns out that the attraction-repulsion func-
tional (1.2) leads to the same optimal point distributions as the quadrature error
functional for a certain RKHS of functions on R2 with the Euclidean distance kernel.
For special reproducing kernels we show that the quadrature error functionals coin-
cide with discrepancy functionals. This adds another interesting point of view which
is closely related to the notation of “capacity constraints” in halftoning; see [3, 4]. As
was already mentioned, the main challenge for computing optimal point distributions
is the design of fast algorithms. Here, we present an algorithm which works on RKHSs
of bandlimited functions on T2 and S2. We show that the quadrature error functional
can be rewritten as a least squares functional. Then we propose a nonlinear conjugate
gradient (CG) method for computing a minimizer. Indeed, on S2 we apply the CG
method on manifolds; see [19, 51]. This method was also successfully used for the
approximation of spherical designs in [26]. We show how each step within the CG
method can be realized in an efficient way by fast Fourier transforms at nonequis-
paced nodes on the torus (NFFT) and the sphere (NFSFT), respectively. Finally, we
provide proof-of-concept numerical examples based on the NFFT library [34].

Our paper is organized as follows. In section 2, we introduce the worst case
quadrature errors on RKHSs in dependence on the quadrature nodes and show that
the attraction-repulsion functional (1.2) appears as a special case. The relation to dis-
crepancy functionals is proved in section 3. Furthermore, we provide certain discrep-
ancy kernels on S1, T2, and S2 and compare them numerically with the corresponding
restrictions of the negative Euclidean distance kernel −‖x− y‖2. Section 4 deals with
the efficient computation of optimal point distributions. In subsection 4.1, the func-
tionals are considered on RKHSs of bandlimited functions on S1, T2, and S2, which in
that case can be rewritten as least squares functionals. We show that the evaluation
of these functionals as well as the computation of their gradients and vector multi-
plications with their Hessians are realized in a fast way by using NFFTs/NFSFTs.
Subsection 4.2 provides the CG algorithms with respect to our setting. Finally, we
present halftoning examples on T2 and S2 in section 5.

2. Quadrature errors in RKHSs and halftoning. In this section, we con-
sider worst case quadrature errors in RKHSs. We show that for special RKHSs the
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minimizers of the corresponding error functional coincide with those of the halftoning
functional (1.3). Of course our more general setting can be used as a starting point
for various applications. In this paper, we will use it to design halftoning procedures
on the torus T2 and the sphere S2, which can be easily generalized to halftoning on
arbitrary compact manifolds X ⊂ R

d.

2.1. Quadrature error in RKHSs. In what follows, we restrict our attention
to X ∈ {Rd, S1,T2, S2} and remark that arbitrarymeasurable sets are possible. Recall,
that the d-dimensional sphere and torus is defined by

S
d := {x ∈ R

d+1 : ‖x‖2 = 1} and T
d := S

1 × · · · × S
1 ⊂ R

2d,

respectively. A symmetric function K : X ×X → R is said to be positive semidefinite
if for any M ∈ N points x1, . . . , xM ∈ X and any a := (a1, . . . , aM )T �= 0 the relation

(2.1) aT (K(xi, xj))
M
i,j=1 a ≥ 0

holds true and positive definite if we have strict inequality in (2.1). A (real) reproduc-
ing kernel Hilbert space (RKHS) is a Hilbert space HK with inner product 〈f, g〉HK ,
f, g ∈ HK , having a reproducing kernel, i.e., a function K : X × X → R which fulfills

Kx := K(·, x) ∈ HK ∀x ∈ X ,
f(x) = 〈f,K(·, x)〉HK ∀x ∈ X and ∀f ∈ HK .(2.2)

An equivalent definition of a RKHS says that it is a Hilbert space on which the point
evaluation functionals are continuous. To every RKHS there corresponds a unique
positive semidefinite kernel and conversely given a positive semidefinite function K
there exists a unique RKHS of real-valued function havingK as its reproducing kernel;
see [62, Theorem 1.1.1].

If, additionally, X is compact and equipped with a finite measure μX we can
expand by Mercer’s theorem any continuous kernels K into an μX -almost everywhere
absolutely and uniformly convergent series

K(x, y) =

∞∑
l=1

λlψl(x)ψl(y) =

∞∑
l=1

λlψl(x)ψl(y)

of orthonormal eigenfunctions ψl ∈ L2(X ) with associated eigenvalues λl > 0 of the
integral operator TK given by

TKf(x) :=

∫
X
K(x, y)f(y) dμX (y).

For more information on RKHSs, we refer the reader to [2].
In the following, we let X be equipped with the canonical Lebesgue surface mea-

sure μX and use the abbreviation dy = dμX (y). Furthermore, we consider a nontrivial,
measurable function w : X → [0,∞) with the property

(2.3) hw(x) :=

∫
X
w(y)K(x, y) dy ∈ HK ,

i.e.,

‖hw‖2HK
=

〈∫
X
w(y)K(·, y) dy, hw

〉
HK

=

∫
X
w(y)〈K(·, y), hw〉HK dy

=

∫
X
w(y)hw(y) dy =

∫
X

∫
X
w(x)w(y)K(x, y) dxdy <∞.(2.4)
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We remark that for compact sets X and continuous kernels K the condition (2.4) is
satisfied. In the case X = Rd, which is only of interest in subsection 2.2, we suppose
that w has compact support. For appropriately chosen points pj ∈ X , j = 1, . . . ,M ,
we are interested in approximating the integrals

Iw(f) :=

∫
X
f(x)w(x) dx for f ∈ HK

by a quadrature rule

(2.5) Q(f,p) := λ
M∑
i=1

f(pi), λ :=
1

M

∫
X
w(x) dx,

where p := (p1, . . . , pM ) ∈ XM . This quadrature rule appears to play a key role in
our paper. In the literature mainly the case w ≡ 1 was considered; see [43] and the
references therein. The worst case quadrature error is given by

(2.6) errK(p) := sup
f∈HK

‖f‖HK
≤1

|Iw(f)−Q(f,p)| = ‖Iw −Q(·,p)‖,

where the latter norm is the operator norm of the linear functionals on HK . In
particular, we see that Iw(f) = Q(f,p), for some p ∈ XM and all f ∈ HK , if and
only if errK(p) = 0.

The following theorem shows a relation between this error functional and the
halftoning functional (1.3).

Theorem 2.1. Let K : X × X → R be a positive semidefinite function and HK

the associated RKHS. Then the relation

errK(p)2 = 2λEK(p) + ‖hw‖2HK

holds true, where

(2.7) EK(p) :=
λ

2

M∑
i,j=1

K(pi, pj)−
M∑
i=1

∫
X
w(x)K(pi, x) dx.

In particular, for compact sets X the minimizers of errK and EK exist and coincide.
Proof. We rewrite Iw as

Iw(f) =

∫
X
〈f,K(·, x)〉HKw(x) dx

=

〈
f,

∫
X
w(x)K(·, x) dx

〉
HK

= 〈f, hw〉HK ,

so that by (2.2) and (2.5)

Iw(f)−Q(f,p) =

〈
f, hw − λ

M∑
i=1

K(·, pi)
〉

HK

and consequently

errK(p) =

∥∥∥∥∥hw − λ

M∑
i=1

K(·, pi)
∥∥∥∥∥
HK

.
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Now the squared worst case error reads

errK(p)2 = ‖hw‖2HK
− 2λ

〈
hw,

M∑
i=1

K(·, pi)
〉

HK

+ λ2
M∑

i,j=1

K(pi, pj)

= ‖hw‖2HK
− 2λ

M∑
i=1

hw(pi) + λ2
M∑

i,j=1

K(pi, pj)

= ‖hw‖2HK
− 2λ

M∑
i=1

∫
X
w(x)K(pi, x) dx+ λ2

M∑
i,j=1

K(pi, pj)(2.8)

and the minimizers of this functional coincide with those of EK .

By the following proposition, slight modifications of the kernel do not change the
minimizers of the functional.

Proposition 2.2. Let K : X×X → R be a symmetric function and let K̃(x, y) :=
aK(x, y) + b(K(x, 0) + K(0, y)) + c with a > 0 and b, c ∈ R. Then the functionals
EK̃ and EK differ only by the factor a and an additive constant C ∈ R, i.e., EK̃ =
aEK + C.

Proof. By (2.7) and the definition of λ, we obtain with certain constants C̃, C ∈ R

independent of p that

EK̃(p) =
λ

2

M∑
i,j=1

(
aK(pi, pj) + b (K(pi, 0) +K(0, pj))

)

−
M∑
i=1

∫
X
w(x)

(
aK(pi, x) + b (K(pi, 0) +K(0, x))

)
dx + C̃

=
aλ

2

M∑
i,j=1

K(pi, pj)− a
M∑
i=1

∫
X
w(x)K(pi, x) dx

+
bλ

2
2M

M∑
i=1

K(pi, 0)− b

M∑
i=1

K(pi, 0)

∫
X
w(x) dx + C

=
aλ

2

M∑
i,j=1

K(pi, pj)− a

M∑
i=1

∫
X
w(x)K(pi, x) dx+ C = aEK(p) + C.

The functional EK looks as that in (1.3) if K is a radial kernel K(x, y) = ϕ(‖x−
y‖2). Therefore, we ask for radial kernels which are positive semidefinite in the next
subsection.

2.2. Relation to halftoning functionals on Rd. In this subsection, we con-
sider the relation between EK and (1.3) in detail. To this end, in this subsection
we let X := Rd and let w : Rd → [0,∞) be a nontrivial, continuous function with
compact support in [0, 1]d.

A kernel K : Rd × R
d → R is called a radial kernel if K(x, y) = ϕ(‖x − y‖2) for

some function ϕ : [0,∞) → R. We are looking for positive semidefinite, radial kernels
K. Note that since Rl is a subspace of Rd for l ≤ d positive semidefiniteness of a kernel
on Rd implies its positive semidefiniteness on Rl. Positive definite, radial kernels on
Rd are given for instance by the inverse multiquadrics K(x, y) := (ε2 + ‖x− y‖)22)−τ ,
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ε > 0, τ > d/2, which are related to ϕ(r) = r−τ in (1.3). For other examples, see
[64, 20].

For the kernel in (1.2) we have to consider conditionally positive definite, radial
functions Φ(x) := ϕ(‖x‖2) of order 1. These functions are defined to be continuous
with the property that for any M ∈ N points x1, . . . , xM ∈ R

d the relation

aT (Φ(xi − xj))
M
i,j=1 a > 0 ∀a = (a1, . . . , aM )T �= 0 with

M∑
i=1

ai = 0

holds true. For conditionally positive definite, radial functions of higher order which
are not relevant in this paper, we refer to [64]. Examples of conditionally positive
definite, radial functions of order 1 in Rd are

Φ(x) = −‖x‖τ2 , 0 < τ < 2,

Φ(x) = −(ε2 + ‖x‖22)τ , 0 < τ < 1 (multiquadrics).

Of course our dithering functional (1.2) is exactly EΦ(x−y) for the first function with
τ = 1 in R

2, while the multiquadrics are related to (1.3) with ϕ(r) = −rτ . Unfor-
tunately the above kernels Φ(x − y) are not positive semidefinite. However, given a
conditionally positive definite radial kernel Φ of order 1, then the kernel

KΦ(x, y) := Φ(x− y)− Φ(y)− Φ(x) + Φ(0) + 1

is again a positive semidefinite kernel, which gives rise to a RKHS HKΦ . These spaces
can be characterized as in [64, Theorem 10.18–10.21] and by Proposition 2.2 we see
that EΦ(x−y) and EKΦ have the same minimizers. Hence, the minimizers of the
original attraction-repulsion functional (1.2) can be considered as optimal quadrature
points in the Hilbert space HKΦ .

Remark 2.3 (halftoning on R
1
). For X = R, the minimizers of (1.3) with ϕ(r) =

−r can be described analytically. In one dimension we can suppose that the point
positions are ordered by p1 ≤ · · · ≤ pM such that our functional simplifies to the
convex functional

Eϕ(p) =

M∑
i=1

∫ 1

0

w(x)|pi − x| dx− λ

2

M∑
i,j=1

|pi − pj |

=
M∑
i=1

∫ 1

0

w(x)|pi − x| dx+ λ
M∑
i=1

(M − (2i− 1))pi.

We observe that the right-hand side is a continuously differentiable function on RM ,
so that a sufficient condition for an ordered minimizer p̂ of the functional Eϕ is given
by

0 =
∂

∂pi
Eϕ(p̂) = λ(M − (2i− 1)) +

∫ p̂i

0

w(x) dx−
∫ 1

p̂i

w(x) dx

= λ(M − (2i− 1)) +

∫ p̂i

0

w(x) dx−
(
λM −

∫ p̂i

0

w(x) dx
)
,

which leads to the relations∫ p̂i

0

w(x) dx = λ
(
i− 1

2

)
, i = 1, . . . ,M.
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In other words, the first point p̂1 is determined by
∫ p̂1

0 w(x) dx = λ/2 and the other

points by
∫ p̂i+1

p̂i
w(x) dx = λ , i = 1, . . . ,M−1. In particular, for continuous functions

w with w(x) > 0, x ∈ [0, 1], the minimizer p̂ is uniquely determined with the points
p̂i, i = 1, . . . ,M , lying in [0, 1].

We note further that there is an interesting connection to the Sobolev spaces

HKβ := {f : [0, 1] → R : f(β) = 0, f abs. continuous, f ′ ∈ L2([0, 1])}
anchored at β ∈ [0, 1] which were considered in [43]. These RKHSs have the repro-
ducing kernels

Kβ(x, y) :=
1

2

(|x− β|+ |y − β| − |x− y|).
Using similar arguments as in the proof of Proposition 2.2 one can check that our
functional Eϕ and the functionals EKβ , β ∈ [0, 1], have the same minimizers.

3. Discrepancies. The quadrature errors considered in the previous section are
closely related to discrepancies which add a geometric point of view. We consider in
the following X ∈ {S1,T2, S2} with the canonical Lebesgue surface measure μX and
geodesic metric dX . Let D := X × [0, R] and let B(c, r) := {x ∈ X : dX (c, x) ≤ r} be
the ball centered at c ∈ X with radius r ≤ R. By 1B(c,r) we denote the characteristic
function of B(c, r). Then we define the L2-discrepancy as

(3.1) discB2 (p) :=

⎛
⎝∫

D

(∫
X
w(x)1B(t)(x) dx − λ

M∑
i=1

1B(t)(pi)

)2

dt

⎞
⎠

1
2

,

where we have set t := (c, r) ∈ D and dt := dc dr. For an interpretation of the L2-
discrepancy (3.1) we note that the expression in the inner brackets relates the integral
of w on B(c, r) with the number of points contained in B(c, r) for fixed (c, r) ∈ D and
that the discrepancy is then the squared error of their differences taken over all t ∈ D.
This point of view is closely related to capacity-constrained methods used in [3, 4].

In what follows, we will see that the so-defined L2-discrepancy discB2 can be
considered as a quadrature error in a particular RKHS; cf. [43] and the references
therein. Therefore, we define the discrepancy kernel

(3.2) KB(x, y) :=
∫ R

0

∫
X
1B(c,r)(x)1B(c,r)(y) dc dr =

∫ R

0

μX (B(x, r) ∩ B(y, r)) dr

and conclude by the relation

aT (KB(xi, xj))
M
i,j=1 a =

∫ R

0

∫
X

⎛
⎝ M∑

j=1

aj1B(c,r)(xj)

⎞
⎠2

dc dr ≥ 0

that KB is a positive semidefinite kernel. Hence, the kernel KB gives rise to a RKHS
HKB and the relation between the discrepancy discB2 and the quadrature error errKB
is given by the following theorem.

Theorem 3.1. Let KB be defined by (3.2) and let HKB be the associated RKHS
of functions on X . Then errKB given by (2.6) and discB2 determined by (3.1) coincide:

errKB(p) = discB2 (p).
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Proof. Using the definition (3.2) of KB and (3.1) we obtain

(discB2 (p))
2 =

∫
D

(∫
X
w(x)1B(t)(x)dx

)2

dt− 2λ

∫
D

∫
X
w(x)1B(t)(x)dx

(
M∑
i=1

1B(t)(pi)

)
dt

+ λ2
M∑

i,j=1

∫
D

1B(t)(pi)1B(t)(pj)dt

=

∫
D

(∫
X
w(x)1B(t)(x) dx

)2

dt− 2λ

M∑
i=1

∫
X
w(x)

∫
D

1B(t)(x)1B(t)(pi)dt dx

+ λ2
M∑

i,j=1

KB(pi, pj)

=

∫
D

(∫
X
w(x)1B(t)(x)dx

)2

dt

−2λ

M∑
i=1

∫
X
w(x)KB(pi, x)dx+ λ2

M∑
i,j=1

KB(pi, pj).

Finally, we see by (2.4) that

∫
D

(∫
X
w(x)1B(t)(x) dx

)2

dt =

∫
X

∫
X
w(x)w(y)

∫
D

1B(t)(x)1B(t)(y)dt dxdy

=

∫
X

∫
X
w(x)w(y)KB(x, y)dt dxdy = ‖hw‖2HKB

,

and we are done by (2.8).

Next we want to examine the relation between the negative Euclidean distance
kernel K(x, y) = Φ(x− y) = −‖x− y‖2 considered in subsection 2.2 and the discrep-
ancy kernel KB defined in (3.2) for X ∈ {S1,T2, S2}.

Kernels on S1. The circle S1 is naturally embedded in R2 by

S
1 = {x := (2π)−1

(
cos(2πα), sin(2πα)

)T ∈ R
2 : α ∈ [0, 1)},

where the correspondence between x ∈ S1 and α ∈ [0, 1) is one-to-one. The geodesic
distance is given for x :=

(
cos(2πα), sin(2πα)

)T
and y :=

(
cos(2πβ), sin(2πβ)

)T
by

dS1(x, y) = (2π)−1 arccos (cos(2π(α − β))) = min{|α− β|, 1 − |α− β|} ≤ 1

2
.

The restriction of the negative Euclidean distance kernel on S1 is

Φ(x− y) = −‖x− y‖2 = −(2π)−1
√
(cos(2πα)− cos(2πβ))2 + (sin(2πα)− sin(2πβ))2

= − 1

π
| sin(π(α − β))| = − 1

π
| sin(πdS1(x, y))| .

For the discrepancy kernel we use the balls B(c, r), c ∈ S1, 0 ≤ r ≤ 1/2, and obtain
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with d := dS1(x, y) that

KB(x, y) =
∫ 1

2

0

μS1(B(x, r) ∩ B(y, r)) dr

=

∫ 1
2

d
2

2

(
r − d

2

)
dr +

∫ 1
2

1
2− d

2

2

(
r − 1

2
+
d

2

)
dr

=
1

4
+

1

2
d(d− 1).

We note that Wahba’s smoothing spline kernel R of order 1 on S1 (cf., [62, p. 21]) is
given by

R(x, y) = 1 + 2

∞∑
k=1

1

(2πk)2
cos(2πkd)

=
13

12
+

1

2
d(d − 1)

=
5

6
+KB(x, y)

so that EKB and ER have the same minimizers. The kernel R is the reproducing
kernel of the Hilbert space consisting of the functions

f(x) = f̃(α) := f0 + 2

∞∑
k=1

fk cos(2πkα) with

∞∑
k=1

k2f2
k <∞,

x :=
(
cos(2πα), sin(2πα)

)T
, with inner product

〈f, g〉HR =

∫ 1

0

f̃(α) dα

∫ 1

0

g̃(α) dα+

∫ 1

0

f̃ ′(α)g̃′(α) dα.

The kernels Φ(x − (−(2π)−1, 0)T) and KB(x, (−(2π)−1, 0)T) as functions of α are
plotted in Figure 2. Since adding a constant and multiplying the kernel by a positive
constant does not change the local minimizers of our functional (2.7), we compare
the different kernels after an appropriate affine scaling. That is the maximum and
the minimum of the scaled kernels are set without loss of generality to 1 and 0,
respectively. Figure 2 shows that both kernels are quite similar.

By the following remark, the minimizers of EK for the discrepancy kernel K can
be characterized analytically. The arguments are similar as those in Remark 2.3.

Remark 3.2 (halftoning on S1). The discrepancy kernel reads up to a constant
as K(x, y) = 1

2 ([x− y]21 − [x− y]1), where

[x− y]1 :=

{ |x− y| if |x− y| ≤ 1/2,
1− |x− y| otherwise,

x, y ∈ [0, 1].

We are looking for minimizers of

λ

2

M∑
i,j=1

(
[pi − pj ]

2
1 − [pi − pj ]1

) − M∑
i=1

∫ 1

0

w(x)
(
[pi − x]21 − [pi − x]1

)
dx.

If |x− y| ≥ 1/2, we obtain that

[x− y]21 − [x− y]1 = 1− 2|x− y|+ |x− y|2 − 1 + |x− y| = |x− y|2 − |x− y|.
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Fig. 2. Scaled kernels Φ(x− (−(2π)−1, 0)T) and KB(x, (−(2π)−1, 0)T) on S1 as functions of α.

Thus, we can replace [·]1 by | · | in the functional. Now an ordering of the point
positions 0 ≤ p1 ≤ · · · ≤ pM ≤ 1 results as in Remark 2.3 in

λ

2

M∑
i,j=1

(pi−pj)2+λ
M∑
i=1

(M−(2i−1))pi−
M∑
i=1

∫ 1

0

w(x)(pi−x)2 dx+
M∑
i=1

∫ 1

0

w(x)|pi−x| dx.

Setting the gradient to zero we obtain

∫ p̂i

0

w(x) dx = λ
(
i− 1

2

)
+ λ

M∑
j=1

p̂j −
∫ 1

0

xw(x) dx, i = 1, . . . ,M.

Subtracting the ith equation from the (i + 1)st one, we see that the points have to

fulfill
∫ p̂i+1

p̂i
w(x) dx = λ, i = 1, . . . ,M − 1. It follows that for the constant weight

w ≡ 1 the point p̂1 can be chosen arbitrarily in [0, 1/M ].
Kernels on T2. The torus T2 is naturally embedded in R4 by

T
2 = {x := (2π)−1

(
cos(2πα1), sin(2πα1), cos(2πα2), sin(2πα2)

)T ∈ R
4 : α1, α2 ∈ [0, 1)}

with geodesic distance

dT2(x, y) =
√
dS1(α1, β1)2 + dS1(α2, β2)2

for

x := (2π)−1
(
cos(2πα1), sin(2πα1), cos(2πα2), sin(2πα2)

)T
,

y := (2π)−1
(
cos(2πβ1), sin(2πβ1), cos(2πβ2), sin(2πβ2)

)T
.

The restriction of the negative Euclidean distance kernel is

Φ(x− y) := −‖x− y‖2 = − 1

π

√
sin2(π(α1 − β1)) + sin2(π(α2 − β2))

= − 1

π

√
1− cos(π(α1 + α2 − β1 − β2)) cos(π(α1 − α2 − β1 + β2)).

Since the torus is flat, the balls B(x, r) on T2 with radius r ≤ R ≤ 1/2 can be
considered as two-dimensional Euclidean balls B̃((α1, α2), r). In the Euclidean plane
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R2 the area of intersection of two balls of radius r with distance d between their
centers is

a(r, d) :=

{
2r2 arccos(d/(2r))− d

√
r2 − d2/4, r ≥ d/2,

0 else.

With the integral
(3.3)
AR(d)

:=

∫ R

0

a(r, d) dr

=

{
R
3 (2R

2 arccos(d/(2R))− d
√
4R2 − d2)− d3

12 log
(
d/(2R+

√
4R2 − d2)

)
, d ≤ 2R,

0 else,

we obtain the kernel

KB(x, y) =
∫ R

0

μT2(Br(x) ∩ Br(y))dr =

4∑
i=1

∫ R

di/2

a(r, di) dr =

4∑
i=1

AR(di),

where
(3.4)

d1 :=
√
|α1 − β1|2 + |α2 − β2|2, d2 :=

√
(|α1 − β1| − 1)2 + |α2 − β2|2,

d3 :=
√
|α1 − β1|2 + (|α2 − β2| − 1)2, d4 :=

√
(|α1 − β1| − 1)2 + (|α2 − β2| − 1)2.

For an illustration of the above relations see Figure 3, where one easily observes that
this kernel is the periodization of the radial kernelA1/2(d). We remark that this kernel

cannot be written in the form KB(x, y) = K̃(dT2(x, y)), hence it is not rotationally
invariant. Figure 4 shows on the left-hand side the appropriately scaled kernels Φ(x)
and KB(x, 0) as functions of (α1, α2) which have nearly the same shape.

For our implementations it will be necessary to approximate the kernels by a
trigonometric polynomial. Therefore, we expand the kernel KB in a Fourier series

(3.5) KB(x, y) =
∑

(n1,n2)T∈Z2

K̂B(n1, n2)e
−2πi(n1,n2)

T·(α1−β1,α2−β2)
T

.

Since the kernel KB is the periodization of the radial kernel A1/2(d) the Fourier
coefficients of KB are given by

K̂B(n1, n2) = k̂B
(√

n2
1 + n2

2

)
,

where the function

k̂B(0) = 2π

∫ 1

0

xA1/2(x)dx =
π2

160
,

k̂B(r) = 2π

∫ 1

0

xA1/2(x)J0(2πxr)dx =
π2

160
2F3

(
3

2
,
5

2
; 2, 3,

7

2
;−π2r2

)
, r > 0,

can be expressed via the Bessel function of first kind J0 and the hypergeometric
function 2F3.



QUADRATURE ERRORS, DISCREPANCIES, AND HALFTONING A2773

Fig. 3. Visualization of the intersection of two balls on the torus T2; cf. (3.3)–(3.4).

Fig. 4. Left: Scaled kernels Φ(x) and KB(x, 0) on T2. Right: Scaled kernels KB(x, 0) and
K̃B(x, 0) as functions of (α1, α2).

The right-hand side of Figure 4 depicts the scaled versions of the kernel KB(x, 0)
and the truncation of K̃B(x, 0) with bandwidth N = 40, where one observes a notable
difference only at the origin.

Kernels on S2. The sphere S2 is embedded in R3 by using spherical coordinates

x = x(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ)T, (ϕ, θ) ∈ [0, 2π)× [0, π].

The geodesic distance is given by

dS2(x, y) = arccos(x · y), x, y ∈ S
2.
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The restricted distance kernel has the form

Φ(x − y) = −‖x− y‖2 = −2 sin(dS2 (x, y)/2).

On the sphere there is no special direction. Hence, the discrepancy kernelKB obtained
from the spherical caps B(c, r), c ∈ S

2 with radius r ≤ π is rotationally invariant,
i.e., KB(x, y) = K̃B(dS2(x, y)). For computing the function K̃B we need the area of
intersection of two spherical caps with center distance d and radius r which is given
by

a(r, d) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ r ≤ d/2,

4 [arccos (sin(d/2)/ sin r)− cos r arccos (tan(d/2) cot r)] , d/2 < r < π/2,

4r − 2d, r = π/2,

4 [arccos (sin(d/2)/ sin r)− cos r arccos (tan(d/2) cot r)] , π/2 < r < π − d/2,

−4π cos r, π − d/2 ≤ r < π.

Then the discrepancy kernel is given by

KB(x, y) = K̃B(dS2 (x, y)) =
∫ π

0

a(r, dS2 (x, y)) dr.

Figure 5 shows a plot of the scaled distance and discrepancy kernels as functions of
dS2(x, (0, 0, 1)

T).

Fig. 5. Scaled kernels Φ(x) and KB(x, (0, 0, 1)T) on S2 as functions of d
S2(x, (0, 0, 1)

T).

4. Computation of minimizers on S1, T2, and S2. In this section, we present
algorithms for the efficient computation of local minimizers p̂ of functionals EK for
given functions w on X ∈ {S1,T2, S2}. The case X = S1 is only included for conve-
nience. In the next section, we will use the resulting coordinates p̂i, i = 1, . . . ,M ,
as point positions for halftoning of w on the torus and the sphere. Our algorithms
rest upon bandlimited kernels K = KN which approximate the distance/discrepancy
kernels from the previous section. First, we reformulate EKN as a nonlinear least
squares functional EN . We will see that the evaluation of this functional, its gradient,
and the vector multiplication with its Hessian at any point p ∈ XM can be realized
in an efficient way. This will be used for the nonlinear CG method to compute a local
minimizer of EN .
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4.1. A least squares setting. Let X ∈ {S1,T2, S2} and let {ψl : l ∈ N} be
an orthonormal basis of L2(X ). Then any real-valued function w ∈ L2(X ) can be
written in the form

(4.1) w(x) =
∞∑
l=1

ŵlψl(x), ŵl = 〈w,ψl〉L2 =

∫
X
w(x)ψl(x) dx.

We will work in spaces of bandlimited functions

ΠN (X ) := span{ψl : l = 1, . . . , dN}

of dimension dN := dimΠN (X ). More precisely, we will use the following settings:

ΠN (S1)

:= span{ e−2πin(·) : n = −N/2, . . . , N/2}, dN = N + 1,

ΠN (T2)

:= span{ e−2πin(·) : n = (n1, n2)
T, nj = −N/2, . . . , N/2, j = 1, 2}, dN = (N + 1)2,

ΠN (S2)

:= span{Y k
n : n = 0, . . . , N ; k = −n, . . . , n}, dN = (N + 1)2,

where N is supposed to be even in the first two cases. Here Y k
n denotes the spherical

harmonics of degree n and order k (cf. [42]),

Y k
n (x) = Y k

n (θ, ϕ) :=

√
2n+ 1

4π
P |k|
n (cos θ) eikϕ,

where the associated Legendre functions P k
n : [−1, 1] → R and the Legendre polyno-

mials Pn : [−1, 1] → R are given by

P k
n (x) :=

(
(n− k)!

(n+ k)!

)1/2 (
1− x2

)k/2 dk

dxk
P k
n (x), n ∈ N0, k = 0, . . . , n,

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
, n ∈ N0.

We will apply bandlimited kernels of the form

(4.2) KN (x, y) :=

dN∑
l=1

λlψl(x)ψl(y)

with λl > 0. Note that these kernels are reproducing kernels for the RKHSs HKN :=
ΠN (X ) with the inner product

〈f, g〉HKN
=

dN∑
l=1

f̂lĝl
λl

.

We are interested in minimizers of EKN for given w ∈ L2(X ). For the efficient
computation of these minimizers it is useful to rewrite the functional as a weighted
least squares problem.
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Theorem 4.1. Let the kernel KN be given by (4.2) and let HKN := ΠN (X ) be
the associated RKHS. Then the relation errKN (p)

2 = EN (p) holds true, where

(4.3) EN (p) :=

dN∑
l=1

λl

∣∣∣∣∣λ
M∑
i=1

ψl(pi)− ŵl

∣∣∣∣∣
2

= ‖Λ 1
2F (p)‖22

with Λ := diag(λl)
dN

l=1 and F (p) = (Fl(p))
dN

l=1, Fl(p) := λ
∑M

i=1 ψl(pi)− ŵl. In partic-
ular, the functionals EKN and EN have the same minimizers.

Proof. We rewrite the function in (4.3) as

EN (p) = λ2
dN∑
l=1

λl

∣∣∣∣∣
M∑
i=1

(
ψl(pi)− ŵl

Mλ

)∣∣∣∣∣
2

= λ2
dN∑
l=1

λl

M∑
i=1

(
ψl(pi)− ŵl

Mλ

) M∑
j=1

(
ψl(pj)− ŵl

Mλ

)

= λ2
dN∑
l=1

λl

M∑
i=1

M∑
j=1

( |ŵl|2
M2λ2

− ŵl

Mλ
ψl(pi)− ŵl

Mλ
ψl(pj) + ψl(pi)ψl(pj)

)

=

dN∑
l=1

λl|ŵl|2 − 2λRe

(
dN∑
l=1

λlŵl

M∑
i=1

ψl(pi)

)
+ λ2

M∑
i=1

M∑
j=1

KN (pi, pj).

Using the relation hw(x) =
∑dN

l=1 λlŵlψl(x) (cf. (2.3)) we further conclude that

EN (p) = ‖hw‖2HKN
− 2λ

M∑
i=1

∫
X
w(x)KN (pi, x)dx+ λ2

M∑
i=1

M∑
j=1

KN(pi, pj),

which yields the assertion.

Remark 4.2 (relation to spherical designs). By Theorem 4.1 we have that Iw(f) =
Q(f,p) for some p ∈ XM and all f ∈ HKN if and only if errKN (p)2 = EN (p) = 0.

Consider the case X = S2, w ≡ 1 =
√
4πY 0

0 , and

(4.4) KN (x, y) :=

N∑
n=0

n∑
k=−n

λnY
k
n (x)Y

k
n (y) =

N∑
n=0

λn
2n+ 1

4π
Pn(x · y).

A set {pi : i = 1, . . . ,M} satisfying

∫
S2

f(x) dx =
4π

M

M∑
i=1

f(pi) ∀f ∈ ΠN (S2)

is called spherical N -design. The concept of spherical N -designs was introduced by
Delsarte, Goethals, and Seidel [15]. Up to now there is no theoretical result which
proves the existence of an N -design with M = (N + 1)2 nodes for arbitrary N ∈ N.
But recently, in [12] it was verified that for N = 1, . . . , 100, spherical N -designs with
(N + 1)2 nodes exist using the characterization of fundamental spherical N -designs
and interval arithmetic. For further recent developments on spherical N -designs and
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related topics we refer to the survey article [5]. Finally, we remark that the equivalence
between spherical N -designs and the relation

EN (p) = λ2
N∑

n=1

n∑
k=−n

λn

∣∣∣∣∣
M∑
i=1

Y k
n (pi)

∣∣∣∣∣
2

= 0

was applied by Sloan and Womersley in [50].
The rest of this section describes how to compute for given ŵl, l = 1, . . . , dN , local

minimizers of EN (p) in an efficient way also for large numbersM of point positions. As
our algorithm of choice we present the nonlinear CG method in the next subsection.
The efficient computation of each CG step rests upon

• algorithms for the fast evaluation of bandlimited functions on S
1,T2, and S

2,
• simple representations of the gradient and the Hessian of EN .

In the following, we describe these two items in more detail. The evaluation of band-
limited functions

f(pi) =

dN∑
l=1

f̂lψl(pi), i = 1, . . . ,M,

can be written in matrix-vector form as

f = AN f̂ ,

where f := (f(pi))
M
i=1, f̂ := (f̂l)

dN

l=1 appropriately ordered, and
(4.5)

AN :=

⎧⎪⎪⎨
⎪⎪⎩

FN =
(
e−2πinpi

)
i=1,...,M ;n=−N/2,...,N/2

∈ CM,N+1 for S1,

F 2,N =
(
e−2πi(n1,n2)

T·pi

)
i=1,...,M ;ni=−N/2,...,N/2,i=1,2

∈ CM,(N+1)2 for T2,

Y N = (Y n
k (pi))i=1,...,M ;n=0,...,N, |k|≤n ∈ CM,(N+1)2 for S2.

Recently fast algorithms for the matrix-vector multiplication with AN and A
T

N were
proposed. More precisely, the algorithms for the first two cases S1 and T2, called
nonequispaced fast Fourier transform, (NFFT) or unequally spaced fast Fourier trans-
form can be found, e.g., in [8, 18, 34, 46]. The algorithms on the sphere S

2, called
nonequispaced fast spherical Fourier transform (NFSFT), were developed in [35, 38];
see also [16, 30]. In our numerical examples we have applied the software package
[33].

Proposition 4.3. For a prescribed accuracy ε > 0 the matrix-vector multipli-
cation with the matrices AN and A

T

N given in (4.5) can be computed by using the
NFFT/NFSFT with the following arithmetic complexity:

(4.6)

O(N logN +M log(1/ε)) for S1,

O(N2 logN +M log2(1/ε)) for T2,

O(N2 log2N +M log2(1/ε)) for S
2.

Using the NFFT/NFSFT algorithms the same complexity as in Proposition 4.3
is achieved for the evaluation of EN (p) as the following corollary states.

Corollary 4.4 (efficient evaluation of F (p) and EN(p)). For a given point
p ∈ XM and ŵl, l = 1, . . . , dN , the computation of F (p) and EN (p) can be realized
with the arithmetic complexity given in Proposition 4.3.
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Proof. We conclude from the relation(
M∑
i=1

ψl(pi)

)dN

l=1

= A
T

Ne, e := (1, . . . , 1)T ∈ R
M ,

that the vector on the left-hand side can be computed with the arithmetic complexity
provided by Proposition 4.3. The remaining operations do not increase this complex-
ity.

Next we consider the gradient of EN . By ∇Xψ we denote the gradient of ψ on X
and by ∇i

XEN the gradient of EN with respect to the ith component vector pi. Then
straightforward computation shows that the gradient ∇ = ∇XM of EN at p ∈ XM is

given by ∇EN (p) =
(∇i

X EN(p)
)M
i=1

, where

∇i
XEN (p) = 2λRe

⎡
⎢⎢⎢⎢⎢⎣

dN∑
l=1

λl

(
λ

M∑
j=1

ψl(pj)− ŵl

)
︸ ︷︷ ︸

Fl(p)

∇Xψl(pi)

⎤
⎥⎥⎥⎥⎥⎦ .

Hence, the gradient can be written as

(4.7) ∇EN (p) = 2Re
[
JF (p)

T

ΛF (p)
]
,

where

JF (p) :=
((∇i

XFl(pi)
)T

)dN ,M

l=1,i=1
= λ

(
∇Xψl(pi)

)dN ,M

l=1,i=1

denotes the Jacobian matrix of F . For our three settings the gradients are specified
as follows.

Gradient on S1. For

EN(p) =

N/2∑
n=−N/2

λn

∣∣∣∣∣λ
m∑
i=1

e−2πinpi − ŵn

∣∣∣∣∣
2

we obtain with ∇S1ψn(pi) = −2πin e−2πinpi that
(4.8)

JF (p)
T

= λ
(−2πin e−2πinpi

)M,N/2

i=1,n=−N/2
= λFNDN , DN := diag (−2πin)

N/2
n=−N/2 .

Gradient on T2. For

EN(p) =

N/2∑
n1,n2=−N/2

λn

∣∣∣∣∣λ
M∑
i=1

e−2πin·pi − ŵn

∣∣∣∣∣
2

, n := (n1, n2)
T,

we get with ∇T2ψn(pi) = −2πin e−2πin·pi and an appropriate ordering that

(4.9) JF (p)
T

= λ(I2 ⊗ F 2,N)

(
IN ⊗DN

DN ⊗ IN

)
,

where IN denotes the N ×N identity matrix and ⊗ the Kronecker product.
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Gradient on S2. On the sphere we will work only with kernels of the form (4.4)
such that

EN(p) =

N∑
n=0

n∑
k=−n

λn

∣∣∣∣∣λ
m∑
i=1

Y k
n (pi)− ŵk

n

∣∣∣∣∣
2

.

Then we have to clarify the definition of the gradient of a function on S2. To this
end, let TxS

2 := {v ∈ R3 : 〈v,x〉 = 0} be the tangent space at a point x ∈ S2.
For x := x(θ, ϕ) ∈ S2\{(0, 0,±1)T} this tangent space is spanned by the orthonormal
vectors eϕ := (− sinϕ, cosϕ, 0)T and eθ := (cos θ cosϕ, cos θ sinϕ,− sin θ)T. Then the
spherical gradient operator is defined as

∇S2 := eϕ
1

sin θ

∂

∂ϕ
+ eθ

∂

∂θ
;

cf. [24, 57]. Note that this is the orthogonal projection of ∇ψ̃(x) ∈ R3 onto TxS
2,

where ψ̃ denotes an extension of ψ to R3. In particular, the derivatives of the spherical
harmonics can be computed by

∂

∂ϕ
Y k
n (θ, ϕ) = ikY k

n (θ, ϕ),

sin θ
∂

∂θ
Y k
n (θ, ϕ) = n

√
(n+ 1)2 − k2

(2n+ 1)(2n+ 3)︸ ︷︷ ︸
ak
n+1

Y k
n+1(θ, ϕ)

− (n+ 1)

√
n2 − k2

(2n+ 1)(2n− 1)︸ ︷︷ ︸
bkn−1

Y k
n−1(θ, ϕ),

where Y k
n−1 := 0 for |k| > n − 1; see [61, p. 146]. Using this relation we obtain for

pi = x(θi, ϕi) ∈ S2\{(0, 0,±1)T} that

∇S2Y
k
n (pi) =

1

sin θi
ik Y k

n (ϕi, θi) eϕi +
1

sin θi

(
akn+1Y

k
n+1(ϕi, θi)− bkn−1Y

k
n−1(ϕi, θi)

)
eθi

and consequently

(4.10)

∇i
S2
EN (p) =

2λ

sin θi
Re

[
N∑

n=0

n∑
k=−n

Y k
n (ϕi, θi) ik λnF

k
n (p)

]
eϕi

+
2λ

sin θi
Re

[
N+1∑
n=0

n∑
k=−n

Y k
n (ϕi, θi)

(
aknλn−1F

k
n−1(p)− bknλn+1F

k
n+1(p)

)]
eθi

= xϕieϕi + xθieθi ,

where F k
N+1(p) = F k

N+2(p) = 0. Hence, the coordinate vectors xϕ := (xϕi)
M
i=1 and

xθ := (xθi)
M
i=1 can be computed by

(4.11)

(
xϕ

xθ

)
= 2λRe

[
(I2 ⊗ S−1)

(
Y NDN,ϕ

Y N+1D̃N,θ

)
ΛF (p)

]
,
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where S := diag (sin θi)
M
i=1, DN,ϕ is the diagonal matrix determined by the first

summand in (4.10), and D̃N,θ is the matrix with at most two nonzero entries in each
row corresponding to the second summand in (4.10).

In summary we obtain the following corollary.
Corollary 4.5 (efficient evaluation of ∇EN (p)). For a given point p ∈ XM and

given ŵl, l = 1, . . . , dN , the gradient ∇EN (p) can be computed with the arithmetic
complexity given in Proposition 4.3.

Proof. The proof follows by Corollary 4.4 and the relation (4.7) together with
(4.8), (4.9), and (4.11).

Finally, we are interested in the Hessian H = HXM of EN . By HXψ we denote
the Hessian of ψ on X . By straightforward computation we obtain that

HEN (p) =
(
Hi,jEN(p)

)M
i,j=1

,

where

Hi,jEN (p) = 2λ2Re

[
dN∑
l=1

λl ∇Xψl(pi)
(
∇Xψl(pj)

)T

]
(4.12)

+ δi,j2λRe

⎡
⎢⎢⎢⎢⎣

dN∑
l=1

λl

(
λ

M∑
m=1

ψl(pm)− ŵl

)
︸ ︷︷ ︸

Fl(p)

HXψl(pi)

⎤
⎥⎥⎥⎥⎦ .(4.13)

For the proposed optimization methods one can also use an approximation H̃EN of the
Hessian of EN , which involves only the first summand (4.12) in the above expression,
i.e., the diagonal part is neglected so that

H̃EN (p) := 2λ2Re

(
dN∑
l=1

λl ∇Xψl(pi)
(
∇Xψl(pj)

)T

)M

i,j=1

= 2Re
[
JF (p)

T

Λ JF (p)
]
.(4.14)

This matrix does not depend on the values ŵl. Note that the approximate Hessian is
also used in the Gauss–Newton method for solving nonlinear least squares problems;
see [9, sect. 9.2]. Let us specify the Hessian for our three settings.

Hessian on S1. Since HS1

(
e−2πinpi

)
= (2πin)2 e−2πinpi , we obtain together with

(4.14) and (4.8) that

HEN (p) = 2λ2Re
[
FND2

NΛFN
T
]
+ 2λdiag

(
Re

[
FND2

NΛF (p)
])
.

Hessian on T2. We have that

HT2

(
e−2πin·pi

)
= −4π2

(
n2
1 n1n2

n1n2 n2
2

)
e−2πin·pi .

Hence, the block-diagonal part (4.13) of the Hessian is given by

2λRe

[
(I2 ⊗ F 2,N )

(
IN ⊗D2

N DN ⊗DN

DN ⊗DN D2
N ⊗ IN

)
(I2 ⊗ΛF (p))

]
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after a corresponding sorting. Thus, the multiplication of the first (4.12) and second
part (4.13) of the Hessian with a vector can be realized in a fast way by applying
(4.14) and (4.9).

Hessian on S2. The Hessian HS2ψ(x) is a linear operator on TxS
2. For x :=

x(θ, ϕ) we consider the corresponding matrix with respect to the basis {eθ, eϕ}. Then
the Hessian reads as

sin2 θHS2 =

(
sin θ

∂

∂θ
,
∂

∂θ

)T (
sin θ

∂

∂θ
,
∂

∂θ

)
− cos θ

(
sin θ ∂

∂θ
∂
∂ϕ

∂
∂ϕ − sin θ ∂

∂θ

)
;

cf. [57]. Using the relations for the derivatives of the spherical harmonics again, we
conclude that the block-diagonal part (4.13) of the Hessian can be expressed by

(4.15) 2λRe
[
(I2 ⊗ S−2)M (I2 ⊗ΛF (p))

]
,

where

M :=

(
Y N+2D̃N+1,θD̃N,θ −CY N+1D̃N,θ Y N+1D̃N,θDN,ϕ −CY NDN,ϕ

Y N+1D̃N,θDN,ϕ −CY NDN,ϕ Y NDN,ϕDN,ϕ +CY N+1D̃N,θ

)

with C := diag(cos θi)
M
i=1 after a corresponding sorting. Hence, the multiplication of

the first part (4.12) and second one (4.13) of the Hessian with a vector can be realized
in a fast way by applying (4.14) and (4.9).

We summarize our findings (4.12)–(4.15) in the following corollary.

Corollary 4.6 (efficient vector multiplication with HEN (p)). For a given point
p ∈ XM and given ŵl, l = 1, . . . , dN , the multiplication of a vector with the Hessian
HEN (p) can be computed with the arithmetic complexity given in Proposition 4.3.

4.2. Nonlinear CG algorithm. Among the various minimization strategies
for weighted least squares functionals as the method of steepest descent, the Newton
method, the Levenberg–Marquardt algorithm, and the nonlinear CG algorithm we
restrict ourselves to the latter one. The reason for the choice of the CG method is
that for large numbers of points it provides a reasonable tradeoff between computa-
tional effort and convergence towards a local minimizer. More precisely, using the
CG method only matrix-vector multiplications with the Hessian are needed instead
of solving a huge linear equation system. Furthermore, in the neighborhood of a local
minimizer superlinear convergence is proved for the CG method under relative mild
regularity assumptions; cf. [51]. As an example for the suitability of the nonlinear
CG algorithm we refer to [26], where numerical spherical designs for high polynomial
degrees are computed with quadrature error near machine precision. Since we mainly
follow the lines of [26] we only briefly sketch the approach for our halftoning setting.
For X = S1 and X = T2 we apply the CG algorithm in the Euclidean space. A good
survey for various nonlinear CG methods in Euclidean space is given in [29].

Algorithm. CG algorithm in the Euclidean space RdM .

Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0), k := 0.

For r = 0, 1, . . . repeat until a convergence criterion is reached:

1. Determine the step size αr > 0 by the search of a minimizer along p(r)+td(r),
i.e., (d(r))T∇EN (p(r) + αrd

(r)) = 0;

2. p(r+1) := p(r) + αrd
(r);

3. h(r+1) := ∇EN (p(r+1));
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4. Compute

βr :=
〈h(r+1),HEN (p(r+1))d(r)〉
〈d(r),HEN (p(r+1))d(r)〉 ;

5. d(r+1) := −h(r+1) + βrd
(r);

6. If r + 1 ≡ k mod dM or (d(r+1))Th(r+1) ≥ 0, set d(r+1) := −h(r+1), k :=
r + 1.

There exist other variants of the CG algorithm presented here, which differ by the
choice of βr in step 4. The above method is the one for exact conjugacy proposed
by Daniel in [13], which uses the second order derivative information provided by the
Hessian. In contrast, the choices of βk proposed by Fletcher–Reeves or Polak–Ribière
can be considered as finite difference approximations for the Hessian. Furthermore,
the line search in the first step of the generic CG algorithm is idealized and for the
most instances impractically to compute. Hence, usually inexact line search rules
are applied. Since we can incorporate information of the second order derivatives
we approximate the step size by the first one-dimensional Newton step, which is
determined by

(4.16) αr := − 〈d(r),h(r)〉
〈d(r),HEN(p(r))d(r)〉 .

We remark that the CG method with the step size rule (4.16) converges to a local
minimizer with positive definite Hessian if the starting point is sufficiently close to that
minimizer; cf. [14]. Thus, the CG algorithm presented here is just a local optimization
method and global convergence, i.e., convergence for every starting point p(0), is
not necessarily assured. However, in our setting the numerical results indicate the
suitability of the simple CG method given above. For other variants of the CGmethod,
e.g., that of Fletcher–Reeves, global convergence to stationary points is proved if the
step size αr satisfies a Wolfe condition; cf. [29].

In the case X = S2 we use the nonlinear CG algorithm on Riemannian manifolds
M; cf. [19, 51]. In Riemannian geometry the addition of a tangent vector from TxM
to the base point x ∈ M as required in step 2 of the CG algorithm is replaced by the
exponential map expx : TxM → M. Furthermore, the translation of tangent vectors
which is needed in steps 4 and 5 of the CG algorithm is replaced by the concept
of parallel transport of a vector along geodesics. In the particular situation we deal
with M := (S2)M . In the following, we introduce the above concepts on S2 which
generalize in a straightforward way to (S2)M . For x ∈ S2 and v ∈ TxS

2, we consider
the unique geodesic curve gx,v : R → S

2 with gx,v(0) = x and ġx,v(0) = v, which is
given by

gx,v(t) = cos(t‖v‖2)x+ sin(t‖v‖2) v

‖v‖2︸ ︷︷ ︸
ṽ

, t ∈ R.

Note that the vectors ṽ := v
‖v‖2

and x × ṽ form an orthonormal system of TxS
2

and that any w ∈ TxS
2 can be written as w = 〈w, ṽ〉ṽ + 〈w, x × ṽ〉(x × ṽ). The

exponential map expx : TxS
2 → S2 is explicitly parameterized by the geodesic due to

expx(v) = gx,v(1); see [57, p. 19]. Now the parallel transport of a vector w ∈ TxS
2
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along the geodesic gx,v is realized by

Pgx,v(t)(w) := 〈w, ṽ〉 ġx,v(t)‖v‖2 + 〈w, x × ṽ〉
(
gx,v(t)× ġx,v(t)

‖v‖2
)

= 〈w, ṽ〉 (cos(‖v‖2t) ṽ − sin(‖v‖2t)x) + w − 〈w, ṽ〉ṽ, t ∈ R.

In particular, any geodesic gx,v parallel transports its own tangent vectors, i.e.,

Pgx,v(t)(v) = ġx,v(t), t ∈ R.

An illustration of the parallel transport is given in Figure 6. After these preliminaries
the CG algorithm to minimize EN on Riemannian manifolds, e.g., M := (S2)M , reads
as follows.

Algorithm. CG algorithm on (dM)-dimensional Riemannian manifolds.

Initialization: p(0), h(0) := ∇EN (p(0)), d(0) = −h(0), k := 0.
For r = 0, 1, . . . repeat until a convergence criterion is reached:
1. Determine the step size αr > 0 by ġp(r),d(r)(αr)

T∇EN (gp(r),d(r)(αr)) = 0;

2. p(r+1) := expp(r)(αrd
(r));

3. h(r+1) := ∇EN (p(r+1));
4. Compute

βr :=
〈h(r+1),HEN (p(r+1))d̃

(r)〉
〈d̃(r)

,HEN (p(r+1))d̃
(r)〉

, d̃
(r)

:= P g
p(r),d(r) (αr)(d

(r));

5. d(r+1) := −h(r+1) + βrd̃
(r)

;
6. If r + 1 ≡ k mod dM or (d(r+1))Th(r+1) ≥ 0, set d(r+1) := −h(r+1), k :=
r + 1.

For an illustration of a single CG iteration on the sphere S2, see Figure 6. Again,
in our numerical examples, step 1 is replaced by a one-dimensional Newton step,
where the step size αr is determined by an appropriate variant (4.16) on Riemannian
manifolds. Moreover, on the sphere S

2 we prefer the approximate Hessian H̃EN over
the Hessian HEN since this leads to similar results but requires less computational
effort; cf. [26].

Using the results from the previous subsection, we conclude that every CG it-
eration on XM can be realized with the arithmetic complexity given in Proposition
4.3.

For the description of the generic algorithm we leave the stopping criteria open,
since it depends on the specific application. In our first numerical example we show
the efficiency of the proposed method by requiring the norm of the gradient to be
less a given accuracy. In the ensuing examples we just show the results obtained
after a prescribed number of iterations, since this seems to be sufficient for generating
appealing point distributions in the setting of halftoning.

5. Numerical results. In the following, we present some numerical result on
the torus T2 and the sphere S2. We apply the nonlinear CG methods on the functional
EN (p) for randomly distributed starting points p(0) ∈ XM . For the evaluation of the
functional EN (p), its gradient ∇EN (p), and the matrix times vector multiplication
with its Hessain HEN (p) we have to determine the Fourier coefficients ŵl and λl of the
function w : X → [0,∞) (cf. (4.1)) and the bandlimited kernel KN : X × X → R (cf.
(4.2)), respectively. If the Fourier coefficients ŵl are not given explicitly, we compute
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Fig. 6. An iteration step of the nonlinear CG method on the sphere S2.

them approximately by well-known quadrature rules on X . More precisely, we sample
the function w on sampling points x := (xi)

L
i=1 ∈ XL and obtain approximate Fourier

coefficients

(5.1) ŵl :=
L∑

i=1

ωiw(xi)ψl(xi), l = 1, . . . , dN ,

where the weights ωi are given such that

∫
X
f(x)dx =

L∑
i=1

ωif(xi), f ∈ ΠN (X ).

We recall that the above sums can be evaluated in an efficient way by fast Fourier
transforms.

The proposed algorithms are implemented in MATLAB R2010a, where the mex-
interface to the NFFT library [34] is used. The internal parameters in this library
are set as follows. In both routines NFFT for T2 and NFSFT for S2, we set the
cutoff parameter m = 9. In the NFSFT we furthermore set the threshold parameter
κ = 1000 and use the flags PRE PSI and PRE PHI HUT. The computations are
performed on an Intel(R) Core(TM) i7 CPU 920 with 12GB RAM.

Examples on T2. For all test images we determine the Fourier coefficients
ŵl by the above mentioned Gauss quadrature rule. The underlying kernel is given
by the bandlimited version of the approximated discrepancy kernel K̃B with certain
bandwidths; cf. (3.5).

For a comparison of our results with other stippling and dithering methods, we
refer to the extensive experiments provided in [55]. Note that, in contrast to [55], our
assumption of periodic boundary conditions leads to some boundary artifacts.
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Fig. 7. Halftoning results on the torus T2 for the image in Figure 1 with M = 30150 points.
Left: Kernel bandwidth N = 650 after r = 744 iterations. Right: Kernel bandwidth N = 1300 after
r = 21157 iterations.

Our first example deals with the left image of Figure 1, which we aim to ap-
proximate by M = 30150 points. In this example we stop the CG method if the
condition

‖∇EN (p(r+1))‖2/‖∇EN(p(0))‖2 ≤ ε

is fulfilled for some prescribed accuracy ε > 0. We present two halftoning results
for M = 30150 points, which are shown in Figure 7. For comparison reasons we
might consider the optimization procedure as a dynamical system ofM points, which
converge to a local minimizer. Hence, for an increasing number of iterations the
motion of the points decreases and the step length might be a good indicator for
being near a local minimizer, where little progress can be made. The left image in
Figure 7 shows the result for the kernel with bandwidthN = 650, where the prescribed
accuracy ε = 1e-3 is achieved after r = 744 iterations. At this stage the step length is
‖αrd

(r)‖2 ≈ 1e-3. Thus, the point distribution is far from being a local minimizer of
EN , but it is a good halftoning result, and the computation takes about 15 minutes. In
contrast, the right image of Figure 7 shows the result for the kernel with bandwidth
N = 1300 and prescribed accuracy ε = 1e-10 obtained after r = 21157 iterations,
where the step length is ‖αrd

(r)‖2 ≈ 1e-8. In that case the point distribution shows
more regular “hexagonal” patterns which is besides the low norm of the gradient
a further indication to be very close to a local minimizer, where such “regularity
artifacts” seem to occur; cf. [55]. However, in that case the computation takes about
one day. This underlines the difficulty of finding highly accurate (local) minimizers of
such a high dimensional, nonlinear, and nonconvex optimization problem. However,
as the former example indicates, quite appealing point distributions are obtained after
relatively few iterations, compared to the dimension of the problem.

In the second example we consider a Gaussian weight w. Figure 8 depicts our
halftoning result for a kernel of bandwidth N = 1300 after r = 20000 iterations.

Examples on S2. In the following, we will use in our functional EN the ban-
dlimited version of the restricted kernel Φ(x − y) = −2 sin(dS2(x, y)/2), where the
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Fig. 8. Left: Original Gaussian. Right: Halftoning result with M = 10023 points and kernel
bandwidth N = 1300 after r = 20000 iterations.

coefficients (cf. (4.4)) are explicitly given by

λn =
16π

(2n+ 3)(2n+ 1)(2n− 1)
, n ∈ N0.

In the CG algorithm we apply the approximate Hessian of H̃EN ; cf. (4.14).
The first example uses the topography map of the earth from MATLAB. This

map consists of the earth’s elevation data. Since the values range from −7473 to
5731, we have scaled it to the range 0 to 1, in order to avoid negative values. The
data is sampled on the grid x := (x (πi/180, πj/180))

180,360
i=1,j=1. For this grid we compute

nonnegative quadrature weights ωi,j for a polynomial degree N = 179 by the simple
CG algorithm proposed in [25]. After applying the quadrature rule (5.1) we obtain

a polynomial approximation w =
∑179

n=0

∑n
k=−n ŵ

k
nY

k
n of the earth’s topography; see

the left-hand side of Figure 9. We apply our algorithm toM = 200000 random points
p ∈ XM with a kernel of bandwidth N = 1000 and obtain after r = 3600 iterations
the right image in Figure 9. Here an iteration step takes about 1.5 min.

In our second example, we apply our halftoning procedure to three Gaussians on
the sphere. More precisely, the weight function is determined by

w(x) =

3∑
i=1

exp(−5 arccos(x · qi)2),

where qi are three orthonormal vectors. Figure 10, right-hand side, shows the result
with M = 5000 points for a kernel of bandwidth N = 400 after r = 1000 iterations.

The final example is motivated by applications in geoscience. In [23] one is con-
cerned with the problem of solving partial differential equations on the sphere by the
method of radial basis functions. There the authors present an algorithm for placing
sampling nodes adequately for some given partial differential equation in order to
increase the accuracy and stability of the solvers. In a particular test case the nodes
are distributed accordingly to the function

(5.2) w(θ, ϕ) =

{ √
3

2 sin θ sech
2(3 sin θ) tanh(3 sin θ), 0 < θ < π,

3
√
3

2 else
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by a method based on electrostatic repulsion. In Figure 11 we see that our method
produces similar point distributions as in [23]. Again, we compute the Fourier coef-
ficients ŵk

n, n = 0, . . . , 179, k = −n, . . . , n, as in the previous example. The result
for M = 1849 points and kernel bandwidth N = 400 after r = 1000 iterations is
presented in Figure 11.

Fig. 9. Top: Original image of the earth’s topology adapted to our setting. Bottom: Halftoning
result with with M = 200000 points for kernel bandwidth N = 1000 after r = 3600 iterations.
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Fig. 10. Left: Original Gaussians. Right: Halftoning result with M = 1000 points for kernel
bandwidth N = 400 after r = 1000 iterations.

Fig. 11. Left: Original weight w from (5.2). Right: Distribution of M = 1849 points on
the sphere S2 according to this weight function by our halftoning algorithm with kernel bandwidth
N = 400 after r = 1000 iterations.
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