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Abstract. In this paper we present a novel method for computing the
Mutual Information of images using recently developed non-equidistant
fast Fourier-transform (NFFT) techniques. Standard approaches suffer
from the problem that some sort of quantization is needed in order to
apply a fast equidistant FFT-technique. For the new method no quanti-
zation is necessary which on one hand leads to an improved registration
accuracy and on the other hand to a straight forward implementation.
The evaluation is done for MR brain registration as well as for synthetic
examples.

1 Introduction

Image registration is one of today’s most challenging problems in digital imaging.
Given a reference image and a template image the task is to find a geometric
transformation that maps the template onto the reference, such that the images
are similar and corresponding points match.

Particularly in medical imaging the difficulty arises that images are taken
from several different devices, like e.g. Computer Tomography, Magnetic Reso-
nance Imaging, or Ultra Sound scanners. Thus, their intensities cannot be taken
directly to measure the images similarity. Recent studies show that maximizing
the Mutual Information of the images performs very successful for image reg-
istration in a multimodal situation [1,2,3,4]. In order to compute the Mutual
Information one has to estimate in one way or another the intensity distribution
of the given images. This is a tricky problem for discrete digital images. However,
the accuracy of this estimation plays a very important role for the outcome of
the registration as well as for the needed computational effort.

Basically, one has to distinguish between two approaches for estimating the
distribution function. The first one does construct a discrete approximation
whereas the second one deals with continuous intensity distributions. Methods
for constructing discrete distributions are histogram based and therefore are easy
to compute. However, their accuracy is limited by the quantization of the intensi-
ties. Furthermore, since efficient numerical optimization schemes in general make
use of the derivative of the distribution function, they cannot be applied directly



in the discrete setting. Here, the needed derivative has to be approximated which
may slow down the convergence of the overall numerical scheme. For constructing
continuous distribution functions, typically a so-called PARZEN-window estima-
tor is used. Such an estimator is the sum of PARZEN-window-functions, usually
Gaussians that are centered at points of a drawn sample. Its computational com-
plexity is much higher than the one for computing a histogram based estimate
and is directly connected to the sample size. To reduce the computational effort,
the PARZEN-estimator is often constructed from a small number of samples [1].
Its derivative, however, is always known analytically.

In this note we propose a new method for estimating the continuous distri-
bution function. It is based on special band-limited PARZEN-window-functions,
that are approximations of conventional window functions, such as Gaussians or
Cauchy densities. The main point is, that these functions enables one to employ
recently developed fast Fourier transforms at non-equispaced knots (NFFTS)
[5,6]. Using this approach, the computational complexity drops drastically. More
precisely, the computational cost to approximate the PARZEN-estimator con-
structed from M samples at N points reduces from O(NM) to O(N + M)
operations. Thus, we are able to use very large samples, yielding a reliable and
robust density estimate.

2 A variational approach for image registration

Given two d-dimensional images R,T : R? — R, one is interested to find a
displacement « : R¢ — R? that maps the template 7" onto the reference R, such
that T o (I — u) is similar to R on a domain £2 C R%. A common approach is to
minimize the joint-functional (see, for example [7])

JIR,T;u] := D[R, T; u] + aS[u], a>0, (1)

with a distance measure D and a so-called smoother S. The distance measure
D rates the similarity of R and the deformed template T, := T o (I — u). The
smoother S penalizes unwanted deformations. The parameter o weights the sim-
ilarity of the images versus the smoothness of the displacement.

Mutual information as distance measure. We use Mutual Information
to measure the distance of images. Here, one does regard the two images as
random variables R, T}, : {2 — R with the joint intensity density p&7« : Rx R —
R and marginal densities p*, p™» : R — R. The Mutual Information measures the
similarity of R and T, by the KULLBACK-LEIBLER-distance. Then the wanted
distance measure is given by [3,4]

DMIR, T;u) := —MI[R, T,] = — / p™ T (r,t) log 7’1’3% (;’ )
pfi(r)pTu(t)

R2
The smoother. Several smoothers have been proposed in literature. Among
those is the so-called curvature smoother

SCURV[y) = zd:/ (Aue(ac))Qdm, (3)
=179

d(r,t).  (2)



introduced by FISCHER&MODERSITZKI [7], which is used here.

The optimization method. To compute a solution of the minimization
problem (1) we make use of the fact, that the first variation of the joint functional
J has to vanish for a minimizer, which holds if and only if [7,8]

al®u+ f(u) =0 on £, Vug=VAu;, =0 ond, £=1,2,....d, (4)

with the so-called forces

fl@,u(@)) = L% (R(x), T (x — u(x))) - VT'(2 — u(2)), (5)
whereby LT (r t) := B;I;Z?t(;) - a;’,’f;?g; ). Thus a minimizer is a solution of

the boundary value problem (4).

The numerical method. To compute a solution of the boundary value
problem (4) we apply a semi-discrete time-marching method. To approximate
spatial derivatives we use finite difference. This leads to a linear system that can
be efficiently solved within O(N log N) operations [7].

3 Efficient Parzen-window estimation

To evaluate the forces (5) we have to estimate the densities p®7 and pT. There-
fore we use a PARZEN-estimator as proposed in [1]:

M
N 1
pX(z) = MZK(%XJ-), (6)
j=1
whereby X1, Xs, ..., X denote realizations of the random variable X and K

denotes the so-called PARZEN-window. As window function we use a band-limited
approximation of the Gaussian

n/2—1
K(z):= Z ay exp(i27kzx), ay, := exp(—20%72(k/n)?), (7)
k=—n/2
where «y, is the Fourier-coefficient of a Gaussian with the standard deviation o
at the frequency k/n. From (6) and (7) we obtain

n/2—1

M
1
() = i Z ak< eXp(—iQWka)) exp(i2rkz) . (8)
k=—n/2 j=1

NFFTT

NFFT

Using the non-equidistant fast Fourier transform NFFT and its transposed ver-
sion NFFT7 [5] we are able to evaluate ™ (z,), £ = 1,2,..., N with O(nlogn +
M + N) operations, where n is a constant depending on the approximation. The
derivative %ﬁx can be computed along the same lines. In contrast to other fast
algorithms like the discrete Gauss transform [9], our method is easy to imple-
ment and can be adapted to other window functions, e.g. Cauchy densities or

B-splines, by simply choosing different coefficients ay.



Table 1. Timings to evaluate the forces (5) for the NFFT based and the histogram
based method with b the number of bins (AMD Athlon XP 2700+, SuSE Linux 8.2).

N, M NFET b =32 b=064 b=128 b = 256 b =512 b=1024

1287 0.30s 0.03s 0.04s 0.14s 0.77s 3.01s 12.11s
2567 0.91s 0.11s 0.12s 0.22s 0.85s 3.10s 12.20s
5122 3.41s 0.57s 0.58s 0.68s 1.31s 3.56s 12.65s
10242 13.34s 2.27s 2.29s 2.38s 3.02s 5.29s 14.36s

Fig. 1. Registration results; (a) reference; (b) template; (c) NFFT based method;
(d),(e) histogram based method (128 and 256 bins).

(a) (b) (c) (@) (@)

4 Results

In this section we compare our new method with a histogram based method.
To this end, we compute the histogram of a random sample and subsequently
smooth it by convolving it with a discrete Gaussian. The needed derivative is
approximated by standard finite differences. Finally, we evaluate the obtained
estimates by a bilinear interpolation. Using a sample with M points and a his-
togram with b bins, applying a FFT technique the computational complexity of
this method is O(b?logh + M + N), with N the number of pixels (cf. tab. 1).
In contrast to the naive implementation, the NFFT and histogram based meth-
ods reduce the complexity from O(NM) to O(N + M), both. The binning of
intensities leads to inaccurate results for histogram based methods in areas with
low local contrast, because small gray-value changes are not taken into account
if the bin size is chosen too small. The more bins used, the more accurate is the
outcome of the registration. Since our method allows for non-quantized sample
values it is not affected by the binning effect. Fig. 1 shows the registration of
low contrast images with intensities in [0, 25]. To illustrate the binning effect,
the intensity range [0, 255] was discretized with 128 and 256 bins. Our method
leads to a nearly perfect matching (c.f. fig. 1(c)), whereas the histogram-based
methods fail to produce an accurate result (c.f. figs. 1(d),(e)).

In a second experiment we registrated simulated T1/T2 brain images from
the brain-web database. As expected, the histogram based method leads to mis-
registration of regions with low local contrast, e.g. the border between gray and
white matter (c.f. figs. 2(h),(d)).



Fig. 2. Registration results; (a) reference; (e) template; (b) NFFT based; (f) histogram
based (32 bins); (c) reference (detail); (g) template (detail); (d) NFFT based (detail);
(h) histogram based method (detail).
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