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Abstract. The paper deals with the approximation and optimal inter-
polation of functions defined on the bisphere S2 × S2 from scattered data.
We demonstrate how the least square approximation to the function can
be computed in a stable and efficient manner. The analysis of this problem
is based on Marcinkiewicz–Zygmund inequalities for scattered data which
we present here for the bisphere. The complementary problem of optimal
interpolation is also solved by using well-localized kernels for our setting.
Finally, we discuss the application of the developed methods to problems
of texture analysis in material science.

1 Introduction

A typical problem in science is the development of a theoretical model for a hidden
process from observational data. More precisely, we are given a set of measurements
A = X × C = {(xj , fj) : j = 1, . . . ,M}, where we assume that the sampling nodes
X = {xj : j = 1, . . . ,M} are a finite subset of a metric space (X, d). We suppose that
there exists a function p which generated the observed data. This assumption obviously
leads to the equations p(xj) = fj , j = 1, . . . ,M , or, even more realistic, p(xj) ≈ fj
since the data are usually corrupted with noise or measurement errors. The function
p will then be considered as a model for the underlying process. Dealing with real
world problems, we can hardly expect that the sampling nodes are equally spaced.
Indeed, due to experimental constraints, the sampling nodes are frequently scattered
points. Consequently, we have to deal with interpolation respectively approximation
of functions from scattered data. Moreover, we have to make assumptions on the
complexity of our model, i.e., we have to restrict p to a certain function class. Often
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this function class is assumed to be a linear space of finite dimension spanned by an
orthogonal basis φ1, . . . , φN . This means that we suppose p to be a linear combination
of some basis functions,

p(x) =
N∑
k=1

ak φk(x).

At this stage we prefer to be vague on the exact type of basis functions. They could
be, for instance, complex exponentials, orthogonal polynomials or even some other
type of basis functions. The problem we are confronted with is an efficient and stable
computation of the coefficients ak using the (scattered) data A.

In case we are interested in the approximation problem, we look for a solution of
a weighted least square problem. This means we choose the dimension of the space
ΠN := span{φk : k = 1, . . . , N} to be smaller than the number of sampling points M
and determine p according to

M∑
j=1

wj |fj − p(xj)|2
p→ min .

The weights are incorporated in order to compensate for possible clusters in the data
set. This weighted least square problem is equivalent to determine the solution of the
normal equations of the first kind

ΦàWΦa = ΦàWf , (1.1)

where Φ = (φk(xj))j=1,...,M ;k=1,...,N , a = (ak)k=1,...,N , f = (fj)j=1,...,M , and W =
diag(w1, . . . , wM ).

In order to come up with a stable procedure for the computation of the vector a from
(1.1) it is necessary to ensure nonsingularity of ΦàWΦ and, moreover, to have control
on the condition number of this matrix. This can be achieved by applying the so-called
Marcinkiewicz–Zygmund inequalities (MZ inequalities for short) which establish an
equivalence between the Lr-norm of p and the weighted norm

∑M
j=1 wj |p(xj)|r. In the

most important case of L2, the MZ inequality reads as

A‖p‖2 ≤
M∑
j=1

wj |p(xj)|2 ≤ B‖p‖2.

This inequality immediately leads to the following estimate on the condition number
of ΦàWΦ:

cond(ΦàWΦ) ≤ B

A
.

The constants A and B depend on the degree N , the mesh norm δX = maxx∈X d(x,X )
of the set X , and on the system {φk}.
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If it is necessary to interpolate the data, one might first think of choosing the
parameter N such that the dimension of ΠN is equal to M . For this choice, we get a
linear system Φa = f with Φ ∈ CM×M . Even if we assume Φ to be nonsingular, it
turns out that this procedure is usually ill-conditioned. To overcome this obstacle, we
choose N to be greater than M and look for a solution of the optimization problem

min
p∈ΠN

N∑
k=1

|ak|2

ŵk
subject to p(xj) = fj , j = 1, . . . ,M.

Certainly, we are not completely free in choosing the weights ŵk but they have to be
related in a certain sense to properties of the set of sampling nodes. How this can be
done becomes understandable by the following observations. First of all, we see that
the optimization problem is equivalent to the normal equation of second kind, i.e.,

ΦŴΦàf̃ = f , p̂ = ŴΦàf̃ , (1.2)

where now Ŵ = diag(ŵ1, . . . , ŵN ). Secondly, an easy computation shows that the
matrix entries (ΦŴΦà)j,l are given in the form P (xj , xl), where

P (x, y) =
N∑
k=1

ŵk φk(x)φk(y).

Note that due to the assumption ŵk > 0, the kernel P is positive definite. Now it is easy
to understand how to choose the weights ŵk in order to assure that p̂ can be computed
in a stable manner from (1.2). Indeed, with a judicious choice of ŵk’s, we can achieve
an excellent localization of the kernel P around the diagonal, i.e., P (x, x) = 1 and
P (x, y) being small away from the diagonal (see Kunis (2006); Mhaskar and Prestin
(2009); Filbir et al. (2008)). Since our goal is to ensure P (xj , xl) to be sufficiently
small for j 6= l, the localization of P , and therefore the ŵk’s, have to be chosen accord-
ing to the separation distance qX = minj 6=l d(xj , xl) of the set X . Now we can expect
to obtain reasonable estimates for the eigenvalues of ΦŴΦà by using Gerschgorin’s
theorem.

As one might expect, we have to restrict ourselves to concrete settings in order
to carry out the program described above. This restriction stems from several facts.
Firstly, the MZ inequalities for scattered data with concrete bounds A and B are
not available in general. Secondly, it is not easy to come up with well-localized ker-
nels, and, thirdly, algorithms for the fast matrix-vector multiplication are not always
available. The methods were successfully applied in several concrete situations like
d-dimensional torus Gröchenig (1992); Bass and Gröchenig (2004); Kunis (2006) or
the unit sphere Mhaskar et al. (2001); Filbir and Themistoclakis (2008); Keiner et al.
(2007); Kunis (2009). Recently, some progress was made in order to establish the
theoretical foundation in case of the rotation group SO(3), see Erb and Filbir (2008);
Schmid (2008); Gräf and Kunis (2008).
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The motivation for the present paper stems from a problem arising in crystallogra-
phy. In order to get information on the polycrystalline structure of a material, one
applies X-ray tomography. The mathematical problem now consists in the inversion
of the Radon transform on SO(3). This is usually an ill-posed problem and has rarely
been studied with mathematical rigor even though there are several ad hoc methods
most of which originate in material science, cf. Bunge (1982); Matthies et al. (1987);
Randle and Engler (2000); Kocks et al. (1998). Hielscher et al. (2008) presented a
novel approach for this problem. Overall the problem reads as follows. We are given
a sampling set A = {(xj ,yj , fj) : j = 1, . . . ,M} ⊂ S2 × S2 × C, and we have to
construct a suitable polynomial defined on S2 × S2. The aim of the paper is to give
a mathematical foundation to this problem in the sense described above in order to
explain the numerical observations in Hielscher et al. (2008).

We have organized the paper in the following way. In Section 2 we collect all
basic material on the harmonic analysis on S2 × S2. Section 3 explains shortly the
basics for fast computation on S2 × S2. Subsequently, we focus in Section 4 on the
approximation and interpolation of scattered data in our setting. More precisely, we
are able to prove the MZ inequality in Theorem 4.5, and hence we are able to estimate
the condition number for the normal equation in Corollary 4.6. Furthermore, we focus
on the optimal interpolation problem in Theorem 4.10 and estimate the condition
number for the normal equation in Corollary 4.11. Finally, Section 5 provides a brief
account on the texture analysis problem.

2 Prerequisites

In this section we will collect some basic material as far as it is necessary to understand
the paper. Let S2 := {x ∈ R3 : |x|2 = 1} be the two-dimensional unit sphere embedded
in R3, where | · |2 denotes the Euclidean norm on R3. The surface measure on S2 is
denoted by σ, and we assume it is normalized so that∫

S2
dσ = 4π. (2.1)

The spaces Lr(S2) := Lr(S2, σ), 1 ≤ r ≤ ∞, corresponding are defined in the usual
manner. The inner product on the Hilbert space L2(S2) is given by

〈f, g〉 =
∫

S2
f(x) g(x) dσ(x), f, g ∈ L2(S2). (2.2)

Throughout the paper we adopt the convention to denote the vectors in boldface type
and the scalars in R in simple type.

Using polar coordinates for a representation of the sphere S2, for a point x ∈ S2,
we have the coordinate relation x = (sinϑ sinϕ, sinϑ cosϕ, cosϑ)>, where (ϑ, ϕ) ∈
[0, π]× [−π, π). According to this parametrization, the surface measure is given by

dσ(x) = sinϑ dϕdϑ, ϕ ∈ [−π, π), ϑ ∈ [0, π], (2.3)
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or, equivalently, by setting t = cosϑ

dσ(x) = −dϕdt ϕ ∈ [−π, π) , t ∈ [−1, 1]. (2.4)

For any function φ ∈ L1([−1, 1]) and any y ∈ S2, we have∫
S2
φ(x · y) dσ(x) = 2π

∫ 1

−1

φ(t) dt. (2.5)

Here and in what follows, x · y denotes the usual inner product on R3.
Let n ≥ 0 be a fixed integer. The restriction of a harmonic homogeneous polynomial

of degree N to the unit sphere S2 is called a spherical harmonic polynomial of degree
N . By ΠN we denote the space of all spherical polynomials of degree at most N and
Hn denotes the space of spherical polynomials of precise degree n. The spaces Hn
are mutually orthogonal, and we obviously have ΠN = ⊕Nn=0Hn. Moreover, it is well
known that

L2(S2) = c`⊕∞n=0 Hn. (2.6)

An orthonormal basis for the space Hn can be constructed in a concrete form using
Legendre polynomials. Let (Rn)n∈N0 be the sequence of Legendre polynomials defined
by

Rn(x) = F

(
−n, n+ 1, 1;

1− x
2

)
, (2.7)

where F (a, b, c;x) is the Gaussian hypergeometric function. Note that Rn(1) = 1
and, moreover,

∫ 1

−1
Rn(t)Rm(t) dt = 2 (2n + 1)−1δn,m. The closely related Legendre

functions Rkn, k, n ∈ N0, n ≤ k, are defined as

Rkn(t) =

√
(n− k)!
(n+ k)!

(1− t2)k/2
dk

dtk
Rn(t), k ≤ n. (2.8)

We now define Yn,k : S2 → C by

Yn,k(x) = Yn,k(ϑ, ϕ) =

√
2n+ 1

4π
R|k|n (cosϑ) eikϕ, n ∈ N0, |k| ≤ n. (2.9)

These functions are simply called spherical harmonics. The set {Yn,k : k = −n, . . . , n}
is an orthonormal basis of the space Hn. This fact and (2.6) give∫

S2
Yn,k(x)Ym,l(x) dσ(x) =

∫ π

−π

∫ π

0

Yn,k(ϑ, ϕ))Ym,l(ϑ, ϕ) dϑ dϕ = δn,mδk,l. (2.10)

Consequently we obtain dimHn = 2n+ 1 and dim ΠN = (N + 1)2.
The following addition formula is of fundamental importance. It relates the spherical

harmonics and the Legendre polynomials in the following way

n∑
k=−n

Yn,k(x)Yn,k(y) =
2n+ 1

4π
Rn(x · y). (2.11)
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We consider the product space S2 × S2 with product measure σ × σ. To keep the
notation simple we will also often use the symbol τ for the product measure σ × σ.
The Lr-spaces are defined accordingly and we have Lr(S2 × S2) = Lr(S2) ⊗ Lr(S2),
where ⊗ denotes the tensor product. For the Hilbert space L2(S2 × S2) we have the
orthonormal basis

Yn1,k1 ⊗ Yn2,k2(x,y) = Yn1,k1(x)Yn2,k2(y), n1, n2 ∈ N0, |k1| ≤ n1, |k2| ≤ n2. (2.12)

To keep the notation simple we write Sn,k for Yn1,k1 ⊗ Yn2,k2 with n = (n1, n2) and
k = (k1, k2). Throughout this paper the function Sn,k will be called tensor spherical
harmonics. We obviously have the following orthogonality relation∫

S2×S2
Sn,k(x,y)Sm,l(x,y) dτ(x,y) = δn1,n2δk1,k2δm1,m2δl1,l2 . (2.13)

Throughout the paper we will follow the convention that boldface indices are elements
of N2 resp. Z2. Corresponding to (2.13) the spaces

Hn := Hn1 ⊗Hn2 = span{Sn,k : |ki| ≤ ni, i = 1, 2}

respectively

ΠN := ΠN1 ⊗ΠN2 = span{Sn,k : n1 ≤ N1, n2 ≤ N2, |ki| ≤ ni, i = 1, 2}

contain the tensor spherical polynomials of total degree |n| = n1 + n2 respectively of
total degree at most |N | = N1 +N2.

For the dimension of these spaces we obtain dimHn = (2n1 + 1)(2n2 + 1) resp.
dim ΠN = (N1 + 1)2 (N2 + 1)2. To keep the notational effort in reasonable bounds we
introduce the following abbreviations for index sets

IN = {(n,k) ∈ N2
0 × Z2 : n1 ≤ N1, n2 ≤ N2, |k1| ≤ n1, |k2| ≤ n2},

I∞ = {(n,k) ∈ N2
0 × Z2 : |k1| ≤ n1, |k2| ≤ n2}.

(2.14)

For a function f ∈ L1(S2 × S2) the Fourier coefficients w.r.t. the tensor spherical
harmonics are given by

f̂n,k =
∫

S2×S2
f(x,y)Sn,k(x,y) dτ(x,y), (n,k) ∈ I∞. (2.15)

and hence
f ∼

∑
(n,k)∈I∞

f̂n,k Sn,k. (2.16)

Clearly, for p ∈ ΠN we have p(x,y) =
∑

(n,k)∈IN

p̂n,k Sn,k(x,y). The projection of

f ∈ L2(S2 × S2) onto Hn is given by

Pnf(x,y) =
n1∑

k1=−n1

n2∑
k2=−n2

[∫
S2×S2

f(u,v)Sn,k(u,v) dτ(u,v)
]
Sn,k(x,y). (2.17)
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As an easy consequence of (2.11) we get

n1∑
k1=−n1

n2∑
k2=−n2

Sn,k(x,y)Sn,k(u,v) =
(2n1 + 1)(2n2 + 1)

16π2
Rn1(x · u)Rn2(y · v) (2.18)

which in turn allows us to write the projection operator (2.17) in the form

Pnf(x,y) =
(2n1 + 1)(2n2 + 1)

16π2

∫
S2

∫
S2
f(u,v)Rn1(x · u)Rn2(y · v) dσ(u) dσ(v).

(2.19)
The projection of f onto ΠN is given by

SNf(x,y) =
N1∑
n1=1

N2∑
n2=1

Pnf(x,y)

=
1

4π2

∫
S2

∫
S2
f(u,v)KN1(x · u, 1)KN2(y · v, 1) dσ(u) dσ(v),

(2.20)

where

Kn(s, t) =
n∑
k=0

‖Rk‖−2
2 Rk(s)Rk(t) (2.21)

is the Darboux kernel corresponding to the Legendre polynomials. In the following we
will simply write Kn(s) for Kn(s, 1). Using the formulas (4.5.3) and (4.1.1) in Szegő
(1975), we have

Kn(s) =
(n+ 1)2

2
R(1,0)
n (s), (2.22)

where R(1,0)
n are the Jacobi polynomials with respect to the weight (1−s). From (2.22)

we get that Kn(1) = (n+1)2

2 .
Since we are dealing with scattered data on S2 × S2, it is necessary to introduce a

metric on the set S2×S2. In order to attain this, we start with the canonical metric on
the sphere S2 which is defined by the geodesic distance. More precisely, for x,y ∈ S2,
the geodesic distance between these points is given by d0(x,y) = arccos(x · y). The
geodesic distance is related to the Euclidean distance of the points x,y by |x− y|2 =
2− 2 cos(d0(x,y)). A family of product metrics on S2 × S2 can be defined by

d(s)((x,y), (u,v)) =
(
d0(x,u)s + d0(y,v)s

)1/s

, 1 ≤ s <∞,

d(∞)((x,y), (u,v)) = max{d0(x,u), d0(y,v)}.
(2.23)

Note that d(1) is the Riemannian metric on the product manifold S2 × S2 and,
obviously, d(1)((x,y), (u,v)) ≤ d(∞)((x,y), (u,v)).

Now let X = {(xj ,yj) ∈ S2 × S2 : j = 1, . . . ,M} be a finite subset of points. In
order to measure how uniform the points of X are distributed on S2×S2, we introduce
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the terms mesh norm δX and separation distance qX according to (2.23). They are
defined respectively as

δ
(s)
X := max

(x,y)∈S2×S2
min

j=1,...,M
d(s)((x,y), (xj ,yj)),

q
(s)
X := min

j 6=l
d(s)((xj ,yj), (xl,yl)) .

(2.24)

Since we will work here mostly with the case s = ∞, we will ignore the superscript
and write simply δX resp. qX instead of δ(∞)

X resp. q(∞)
X .

There is a natural decomposition of S2 × S2 coming along with the set X . This
decomposition consists of a finite collection R of closed regions Rk ∈ S2 × S2, k =
1, . . . ,M, with no common interior point, covering S2×S2, and with exactly one point
from X in every single Rk. We will refer to such a decomposition as an admissible
decomposition of S2×S2 w.r.t. X . The partition s-norm of an admissible decomposition
of S2 × S2 is defined as

‖R‖s := max
R∈R

[
max

(x,y),(u,v)∈R
d(s)((x,y), (u,v))

]
(2.25)

In the case s =∞, we simply write ‖R‖.

3 Discrete spherical tensor Fourier transform on S2 × S2

In the present section we describe briefly the mathematical background of the dis-
crete tensor Fourier transform and its fast realization. We consider a tensor spherical
polynomial p ∈ ΠN , i.e.,

p(x,y) =
∑

(n,k)∈IN

p̂n,k Sn,k(x,y). (3.1)

and a finite set of points X = {(xj ,yj) : j = 1, . . . ,M}. Assume that the Fourier
coefficients p̂n,k ∈ C, (n,k) ∈ IN , are given. Then the discrete Fourier transform is
defined by

p(xj ,yj) =
∑

(n,k)∈IN

p̂n,k Sn,k(xj ,yj), j = 1, . . . ,M. (3.2)

If we define the tensor spherical Fourier matrix by

Y :=
(
Sn,k

(
xj ,yj

))
j=1,...,M ;(n,k)∈IN

=
(
Yn1,k1 (xj)Yn2,k2

(
yj
))
j=1,...,M ;(n,k)∈IN

∈ CM×(N1+1)2(N2+1)2 ,

and the vectors p = (p(xj ,yj))j=1,...,M , p̂ = (p̂n,k(n,k)∈In
), then (3.2) can be written

as
p = Y p̂. (3.3)
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This establishes a linear map from C(N1+1)2(N2+1)2 to CM . Its adjoint map CM →
C(N1+1)2(N2+1)2 defined as

c̃ = Y àc
is called adjoint discrete tensor spherical Fourier transform.

A naive implementation of the discrete spherical tensor Fourier transform and of
its adjoint transform for M ∈ N arbitrary nodes and for polynomial degree N =
(N1, N2) ∈ N2 requires O(N2

1N
2
2M) floating point operations. Fortunately, this can

be done in a much more efficient way.
Let

gk(t) :=
N∑
n=k

f̂n,kR
|k|
n (t)

for k even and

gk(t) :=
1√

1− t2

N∑
n=k

f̂n,kR
|k|
n (t)

for k odd. Note that gk is a polynomial of degree N or N − 1, respectively. Now we
perform a change of basis via fast polynomial transform (see Potts et al. (1998)) to
obtain the representation

gk(cosϑ) =
N∑

n=−N
cn,keikϑ, (3.4)

with coefficients cn,k ∈ C and t = cos(ϑ). This transform takes only O(N log2N)
arithmetical operations. Now we consider (3.2) again. Rearranging the summation
and using (2.9) gives us

p(xj ,yj) =
N1∑

k1=−N1

N1∑
n1=|k1|

N2∑
k2=−N2

N2∑
n2=|k2|

p̂n1,n2,k1,k2

×
√

2n1 + 1
4π

√
2n2 + 1

4π
R|k1|n1

(cos θj)eik1φjR|k2|n2
(cosϑj)eik2ϕj ,

(3.5)

where xj = (sin θj sinφj , sin θj cosφj , cos θj)>,yj = (sinϑj sinϕj , sinϑj cosϕj , cosϑj)>.
After rearranging the summation again, we apply the change of basis as described
above two times to arrive at

p(xj ,yj) =
N1∑

k1=−N1

N1∑
n1=−N1

N2∑
k2=−N2

N2∑
n2=−N2

cn1,n2,k1,k2ein1θj eik1φj ein2ϑj eik2ϕj . (3.6)

An evaluation of the coefficients cn1,n2,k1,k2 from the coefficients p̂n1,n2,k1,k2 can be
realized by the fast polynomial transform and takes only O(N2

1N
2
2 (log2N1 + log2N2))

arithmetical operations. Finally, the evaluation of p(xj ,yj), j = 1, . . . ,M , can be
realized by the NFFT algorithm with O(N2

1N
2
2 (logN1 + logN2) + log4(1/ε)M) arith-

metical operations, where ε is a prescribed accuracy. We refer to this algorithm as
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the nonequispaced fast spherical tensor Fourier transform. A fast algorithm for the
adjoint transform, i.e., for the fast matrix-vector multiplication for Y àc follows in a
straightforward way as suggested in case of the sphere S2, see Keiner and Potts (2008).

Algorithm 3.1. Input: p̂n,k ∈ C Fourier coefficients, X grid
1. Compute from the given values p̂n,k ∈ C, (k,n) ∈ IN1,N2 , the coefficients cn1,n2,k2,k2 ∈
C in (3.6) with the fast polynomial transform in O(N2

1N
2
2 (log2N1 + log2N2)).

2. Compute, for j = 1, . . . ,M , the values p(xj ,yj) ∈ C by the NFFT inO(N2
1N

2
2 (logN1+

logN2) + log4(1/ε)M).
Output: p(xj ,yj) ∈ C, j = 1, . . . ,M .

4 Approximation and interpolation from scattered data

We are now going to consider the main problem of the algorithmic construction of a
polynomial model for a given data set. This means that we try to find, for a given
data set A = {(xj ,yj , fj) ∈ S2 × S2 × C : j = 1, . . . ,M}, a polynomial p ∈ ΠN

which approximates (p(xj ,yj) ≈ fj) or interpolates (p(xj ,yj) = fj) the data. This
is obviously equivalent to the problem of computing the Fourier coefficients using the
data set A. Applying the notation of the previous section, the problem consists of
finding a vector p̂ with Yp̂ = f , where f = (fj)j=1,...,M . Clearly the solvability of this
problem depends on the relation between the number of data points and the degree of
the polynomial (which reflects the complexity of our model). In case M > dim ΠN =
(N1 + 1)2(N2 + 1)2, the problem is overdetermined, and our aim is in general not
achievable. The best we can do is to find an approximation, i.e., we are looking for
a polynomial with p(xj ,yj) ≈ fj or, equivalently, Yp̂ ≈ f . In the underdetermined
case M < dim ΠN = (N1 + 1)2(N2 + 1)2, we will look for an interpolation as described
above. In the following we investigate both cases and give conditions for Y to have
full rank. In both cases we study the condition numbers of the problem related to the
normal equation.

4.1 Least square approximation

In the first part we concentrate on the overdetermined case of the problem, i.e., M >
(N1 + 1)2(N2 + 1)2. In general the given data f ∈ CM can only be approximated up
to some residual r := f −Yp̂. In order to compensate for clusters in the sampling set
X it is also useful to incorporate weights wj > 0 into our problem. This means that
we consider the weighted least squares problem

‖f −Yp̂‖2W =
M∑
j=1

wj |fj − p(xj ,yj)|2
p̂→ min, (4.1)

where W := diag(wj)j=1,...,M ∈ RM×M .
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Lemma 4.1. The least squares problem (4.1) is equivalent to the normal equation of
first kind

Y àWYp̂ = Y àWf . (4.2)

This assertion is due to (Björck, 1996, Thm. 1.1.2) for the matrix W 1/2Y .

The stability analysis of the problem is based on the MZ inequalities. Roughly speak-
ing, MZ inequalities compare continuous r-norms with discrete r-norms of a function.
In case of scattered sampling points on the unit sphere in Rd, MZ inequalities were
first established by Mhaskar, Narcowich, and Ward in Mhaskar et al. (2001). Based on
this work, a closer inspection was presented in Filbir and Themistoclakis (2008) which
leads to concrete bounds of the MZ constants. We will show in the following presen-
tation how to derive the Marcinkiewicz–Zygmund inequalities in the tensor product
case. Although the main ideas are similar to the classical case, the constants differ
slightly. Moreover, we present the material to keep the paper self-contained.

A fundamental role in our considerations will be played by certain kernels. We will
now give the construction principle for those kernels. In case of univariate polynomial
approximation on the unit interval [−1, 1], these kernels have been studied before in
Filbir and Themistoclakis (2004, 2008). We will present the material here in a slightly
modified form suitable for our purposes in connection with fast algorithms on S2×S2.

We start with a reproducing kernel of de la Vallée Poussin type in the univariate
case (see Filbir and Themistoclakis (2008)). For n,m ∈ N0 with m ≤ n let

V nm(t) = 2
Kn(t)Km(t)
Km(1)

, (4.3)

where Kn(t) = Kn(t, 1) and Kn(·, ·) is the Darboux kernel as defined in (2.21). Now
let n,m ∈ N2

0, n = (n1, n2),m = (m1,m2), with m1 ≤ n1, m2 ≤ n2 and define a
tensor version of (4.3) in the usual way by

V n
m(s, t) = V n1

m1
(s)V n2

m2
(t) = 4

Kn1(s)Km1(s)
Km1(1)

Kn2(t)Km2(t)
Km2(1)

.

The following estimates are now an easy consequence of the inequalities presented in
Section 3.1 in Filbir and Themistoclakis (2008).

Theorem 4.2. For all n,m ∈ N2
0, with m1 ≤ n1, m2 ≤ n2, we have

(i) ‖V n
m‖1 ≤ 4 (n1+1)(n2+1)

(m1+1)(m2+1)

√
m1!m2!
n1!n2!

(ii) max
|s|,|t|≤1

|V n
m(s, t)| ≤ (n1 + 2)2 (n2 + 2)2.

In order to construct an operator sequence for approximating functions defined on
S2× S2 we make the following choices for the parameters n,m ∈ N2

0. For Ni ∈ N, i =
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1, 2, let

ni =


3Ni

2 if Ni even,

3Ni−1
2 if Ni odd,

mi =


Ni

2 if Ni even,

Ni−1
2 if Ni odd,

(4.4)

and define
vN (s, t) = vN1(s) vN2(t), N = (N1, N2), (4.5)

where vNi(x) = 1
4π V

ni
mi

(x), i = 1, 2. Clearly, vNi
is a polynomial of degree 2Ni − χNi

for i = 1, 2, where χNi is 0 if Ni is even and 1 if Ni is odd. Thus, we get

vN (s, t) =
1

16π2

2N1−χN1∑
k=0

2N2−χN2∑
l=0

aN1,kaN2,l‖RN1‖−2
2 ‖RN2‖−2

2 RN1(s)RN2(t). (4.6)

The coefficients aN1,k resp. aN2,l can be calculated explicitly, see Filbir and Themis-
toclakis (2008). From (Filbir and Themistoclakis, 2008, equations (3.13), (3.14)), we
obtain

‖vN‖1 = ‖vN1‖1 ‖vN2‖1 ≤
9

4π2
for all N , (4.7)

and

max
|s|,|t|≤1

|vN (s, t)| ≤ max
|s|≤1

|vN1(s)| max
|t|≤1
|vN2(t)| ≤ N2

1 N
2
2

π2
≤ Ñ4

π2
, for all Ñ ≥ 4,

(4.8)
where Ñ = max{N1, N2}.

Corresponding to vN we define the operator

VNf(x,y) =
∫

S2×S2
f(u,v) vN (x · u,y · v) dτ(u,v), (4.9)

which is the tensor version of the generalized de la Vallée Poussin operator studied in
Filbir and Themistoclakis (2008). The tensor de la Vallée Poussin operator has the
following properties.

Theorem 4.3. (i) For all N ∈ N2
0 we have

VNp = p for every p ∈ ΠN .

(ii) For all N ∈ N2
0 and any 1 ≤ r ≤ ∞, we have

‖VNf‖r ≤ 9‖f‖r for all f ∈ Lr(S2 × S2).

The proofs follow easily from (Filbir and Themistoclakis, 2008, Proposition 3.4 resp.
Theorem 3.5.).

We now make use of the de la Vallée Poissin operator in order to establish the MZ
inequalities for scattered points on S2 × S2. Let again X = {(xj ,yj) ∈ S2 × S2 : j =

12



1, . . . ,M} be a set of sampling points with corresponding tensor decomposition R.
The appropriate discrete r-norms of a function f : S2 × S2 → C are defined as

‖f‖X ,r :=



 M∑
j=1

|f(xj ,yj)|r τ(Rj)

1/r

if 1 ≤ r <∞,

max
j=1,...,M

|f(xj ,yj)| if r =∞.

(4.10)

The τ(Rj) is referred to as the weight of the region Rj and will be later on also denoted
by wj .

For the proof of the MZ inequalities, we need the following lemma which establishes
a Markov-type inequality for polynomials from ΠN .

Lemma 4.4. Let p ∈ ΠN . Then for (x,y), (u,v) ∈ S2 × S2 and s = 1 or s = ∞ we
have

|p(x,y)− p(u,v)| ≤ (2− δ1,s)Ñ d(s)((x,y), (u,v)) ‖p‖S2×S2,∞, (4.11)

where δ1,s denotes the delta function which is 1 at s = 1 and 0 otherwise.

Proof. The proof follows from the Markov inequality for spherical polynomials Q on
S2, see Jetter et al. (1999). For q ∈ ΠN and x,u ∈ S2 this inequality reads as follows

|q(x)− q(u)| ≤ N d0(x,u) ‖q‖S2,∞. (4.12)

Now let p ∈ ΠN . Then for fixed y ∈ S2, the polynomial py(x) = p(x,y) is a spherical
polynomial of degree N1, and the Markov inequality (4.12) applies to it. Clearly, the
analogous statement holds for pu(y) = p(u,y) for fixed u ∈ S2 and N2 instead of N1.
For (x,y), (u,v) ∈ S2 × S2, we obtain

|p(x,y)− p(u,v)| = |p(x,y)− p(u,y)|+ |p(u,y)− p(u,v)|

≤ |py(x)− py(u)|+ |pu(y)− pu(v)|

≤ N1 d0(x,u)‖py‖S2,∞ +N2 d0(y,v)‖pu‖S2,∞

≤ (N1 d0(x,u) +N2 d0(y,v))‖p‖S2×S2,∞

≤ (2− δ1,s)Ñ d(s)((x,y), (u,v)) ‖p‖S2×S2,∞.

We are now prepared to formulate the main result of this section.
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Theorem 4.5. Let N ∈ N2, and let R be an admissible decomposition of S2 × S2

according to a sampling set X such that

‖R‖1 ≤
η

21 Ñ
, (4.13)

where η ∈ (0, 1) is arbitrarily fixed. Then for r = 1 or r = ∞ and any p ∈ ΠN , we
have

(1− η) ‖p‖S2×S2,r ≤ ‖p‖X ,r ≤ (1 + η) ‖p‖S2×S2,r. (4.14)

Proof. We start with the case r =∞. For proving the left-hand side, let (x,y) ∈ S2×S2

an arbitrary fixed point and assume that (u,v) ∈ X is a point with d((x,y), (u,v)) =
d((x,y),X ) = δX . We conclude by Lemma 4.4

|p(x,y)| ≤ |p(x,y)− p(u,v)|+ |p(u,v)|

≤ 2Ñ d ((x,y), (u,v)) ‖p‖S2×S2,∞ + max
j=1,...,M

|p(xj ,yj)| .

Taking the maximum over (x,y) ∈ S2×S2, we obtain, by using the fact d((x,y), (u,v)) =
d((x,y),X ) ≤ ‖R‖1, the L∞-MZ inequality

(
1− 2Ñ‖R‖1

)
‖p‖S2×S2,∞ ≤ max

j=1,...,M

∣∣p(ξj ,ηj)∣∣ ≤ (1 + 2Ñ‖R‖1
)
‖p‖S2×S2,∞.

(4.15)
This, in combination with (4.13), provides inequality (4.14) for r =∞.
For r = 1, we are going to show both inequalities of (4.14) simultaneously by proving

∣∣∣‖p‖S2×S2,1 − ‖p‖X ,1
∣∣∣ ≤ η ‖p‖S2×S2,1.
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Using Theorem 4.3(i), we obtain∣∣∣∣∣∣
∫

S2×S2
|p(x,y)| dτ(x,y)−

M∑
j=1

|p(xj ,yj)| τ(Rj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
j=1

∫
Rj

|p(x,y)| − |p(xj ,yj)| dτ(x,y)

∣∣∣∣∣∣
≤

M∑
j=1

∫
Rj

|p(x,y)− p(xj ,yj)| dτ(x,y)

≤
M∑
j=1

∫
Rj

|VNp(x,y)− VNp(xj ,yj)| dτ(x,y)

≤ sup
(u,v)∈S2×S2

 M∑
j=1

∫
Rj

|vN (x · u,y · v)− vN (xj · u,yj · v)| dτ(x,y)


×
∫

S2×S2
|p(u,v)| dτ(u,v).

It suffices to show that

sup
(u,v)∈S2×S2

 M∑
j=1

∫
Rj

|vN (x · u,y · v)− vN (xj · u,yj · v)| dτ(x,y)

 ≤ η. (4.16)

To this end, we use spherical coordinates for the spheres with respect to the point
(u,v) ∈ S2 × S2. This leads to x · u = cos ξ, y · v = cos η. We obtain

Σ :=
M∑
j=1

∫
Rj

|vN (x · u,y · v)− vN (xj · u,yj · v)| dτ(x,y)

=
M∑
j=1

∫
Rj

|vN1(cos ξ) vN2(cos η)− vN1(cos ξj) vN2(cos ηj)| dτ(x,y)

=
M∑
j=1

∫
Rj

[
|vN2(cos η)|

∫ ξ

ξj

∣∣∣∣ d
dt
vN1(cos t)

∣∣∣∣ dt+ |vN1(cos ξj)|
∫ η

ηj

∣∣∣∣ d
dt
vN2(cos t)

∣∣∣∣ dt

]
×dτ(x,y).

For further estimation of the above expression, we introduce a partition of S2 × S2

in the following way. Let L =
⌊

π
‖R‖1

⌋
and define Iν = [(ν−1)πL−1, (ν+1)πL−1], ν =

1, . . . , L− 1. For `1, `2 ∈ {1, . . . , L− 1} let

B`1,`2 :=
{

(x,y) ∈ S2 × S2 : (ξ, η) ∈ I`1 × I`2
}
.
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LetBν = {x ∈ S2 : ξ ∈ Iν}. We then haveB`1,`2 = B`1×B`2 ,
⋃L−1
`1,`2=1B`1,`2 = S2×S2,

and B`1,`2 ∩ B`′1,`′2 = ∅ if `1 > `′1 + 2 or `1 < `′1 − 2, and `2 > `′2 + 2 or `2 < `′2 − 2.
This provides a decomposition of S2 × S2 into overlapping regions. Let us denote by
ξ−j , η

−
j and ξ+

j , η
+
j the minimal resp. maximal value of the coordinates ξ resp. η of the

region Rj . Since

max{ξ+
j − ξ

−
j , η

+
j − η

−
j } ≤ diam(Rj) ≤ ‖R‖1 ≤ πL−1,

the region Rj is contained completely in at least one B`1,`2 with `1, `2 ∈ {1, . . . , L−1}.
Accordingly, we have

Σ ≤
L−1∑
`1=1

L−1∑
`2=1

∑
Rj⊂B`1,`2

∫
Rj

|vN2(cos η)|
∫ ξ

ξ−j

∣∣∣∣ d
dt
vN1(cos t)

∣∣∣∣ dt dτ(x,y)

+
L−1∑
`1=1

L−1∑
`2=1

∑
Rj⊂B`1,`2

∫
Rj

|vN1(cos ξj)|
∫ η

η−j

∣∣∣∣ d
dt
vN2(cos t)

∣∣∣∣ dt dτ(x,y) .

We denote the first sum on the right-hand side of the above inequality by Σ(1) and the
second sum by Σ(2). Now we have to distinguish between different cases. These cases
are

(1.1) : `1 = 1 ∧ {`2 = 1 ∨ `2 = L− 1}, (1.2) : `1 = L− 1 ∧ (`2 = 1 ∨ `2 = L− 1,

(1.3) : `2 = 1 ∧ (`1 = 1 ∨ `1 = L− 1), (1.4) : `2 = L− 1 ∧ (`1 = 1 ∨ `1 = L− 1);

(2.1) : `1 = 1 ∧ `2 ∈ {2, . . . , L− 2}, (2.2) : `1 = L− 1 ∧ `2 ∈ {2, . . . , L− 2},

(2.3) : `2 = 1 ∧ `1 ∈ {2, . . . , L− 2}, (2.4) : `2 = L− 1 ∧ `1 ∈ {2, . . . , L− 2};

(3) : `1 ∈ {2, . . . , L− 2} ∧ `2 ∈ {2, . . . , L− 2}

A detailed analysis of all these cases for both sums Σ(1) and Σ(2) finally gives us the
following result (see Filbir and Potts (2009) for details):

Σ ≤ 8832Ñ3 ‖R‖3 + 9216Ñ5 ‖R‖5 (4.17)

Assume that ‖R‖1 ≤ η

C eN . Then we obtain

Σ ≤
(

8832
1
C3

+ 9216
1
C5

)
η (4.18)

A short computation shows that for C = 21, the first factor in (4.18) is less than 1.
This shows the desired result.

For our purposes, we need the MZ inequality for the case r = 2. Since the polynomial
spaces ΠN are finite-dimensional, we cannot get the desired inequalities by applying
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the Riesz–Thorin interpolation theorem. Alternatively, we can observe that if we
consider instead of p the polynomial p2 ∈ Π2N , the MZ inequality holds for L2 with
2N instead of N . This leads to a constant which is two times the constant in Theorem
4.5. Applying this idea, we have the following result for the case r = 2.

Corollary 4.6. Let X = {(xj ,yj) : j = 1, . . . ,M} ⊂ S2 × S2 be a sampling set with
corresponding tensor decomposition R. Let W = diag(wj)j=1,...,M be the diagonal

matrix of the corresponding tensor weights. If Ñ = max{N1, N2} satisfies

42Ñ‖R‖1 ≤ 1, (4.19)

then for every polynomial p ∈ ΠN , N = (N1, N2), the weighted norm estimate(
1− 42Ñ‖R‖1

)
‖p‖2S2×S2,2 ≤

M∑
j=1

wj |p(xj ,yj)|2 ≤
(

1 + 42Ñ‖R‖1
)
‖p‖S2×S2,2 (4.20)

holds.
Moreover, for the condition number of the matrix Y àWY , we have

cond(Y àWY) ≤ 1 + 42Ñ‖R‖1
1− 42Ñ‖R‖1

. (4.21)

Proof. According to the remark above, we get

1− 42Ñ‖R‖1 ≤ ‖SX p‖2S2×S2,2 ≤ 1 + 42Ñ‖R‖1 .

Due to p = Yp̂ and Parseval’s identity ‖p̂‖2 = ‖p‖S2×S2,2, inequality (4.20) is equiva-
lent to

1− 42Ñ‖R‖1 ≤
p̂àY àWYp̂

p̂àp̂
≤ 1 + 42Ñ‖R‖1,

from which (4.21) follows.

4.2 Optimal interpolation

In this section, we focus on the underdetermined case M < (N1 + 1)2(N2 + 1)2. As
described at the beginning of Section 4, we will interpolate the data A = {(xj ,yj , fj) ∈
S2 × S2 × C : j = 1, . . . ,M}. Instead of only asking for a polynomial p(x,y) =∑

(n,k)∈IN
p̂n,kSn,k(x,y) which satisfies p(xj ,yj) = fj , j = 1, . . . ,M , we will try to

find an optimal interpolating polynomial, i.e., we try to find a polynomial which is a
solution to

min
p∈ΠN

∑
(n,k)∈IN

|p̂n,k|2

ŵn1ŵn2

subject to p(xj ,yj) = fj , j = 1, . . . ,M, (4.22)

where ŵn1 , ŵn2 , n1 = 0, . . . , N1, n2 = 0, . . . , N2, are given positive real numbers.
Whereas for the least square problem the mesh norm was the critical parameter, this

role is now played by the separation distance q of the set X = {(xj ,yj) : j = 1, . . . ,M}.
The weights ŵn1 , ŵn2 have to be chosen according to this parameter. Problem (4.22)
can be equivalently restated in the following matrix form (see, (Björck, 1996, Thm.
1.1.2)).
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Proposition 4.7. The optimal interpolation problem (4.22) is equivalent to the normal
equations of second kind

YŴY àf̃ = f , p̂ = ŴY àf̃ , (4.23)

where the weighting matrix is given by Ŵ := diag(ŵ) ∈ R(N1+1)2(N2+1)2×(N1+1)2(N2+1)2

for the vector ŵ = (ŵn,k)(n,k)∈IN
with ŵn1,n2,k1,k2 = ŵn1ŵn2 , (n,k) ∈ IN .

It is the crucial observation that the matrix entry (YŴY à)j;l can be expressed as
a product of certain polynomial kernels. Indeed, we have used the addition formula
(2.18) and obtain(

YŴY à
)
j;l

=
∑

(n,k)∈IN

ŵn1ŵn2Sn,k(xj ,yj)Sn,k(xl,yl)

=
N1∑
n1=0

n1∑
k1=−n1

N2∑
n2=0

n2∑
k2=−n2

ŵn1ŵn2Yn1,k1(xj)Yn1,k1(xl)

×Yn2,k2(yj)Yn2,k2(yl)

=
N1∑
n1=0

N2∑
n2=0

2n1 + 1
4π

2n2 + 1
4π

ŵn1ŵn2Rn1(xj · xl)Rn2(yj · yl)

= PN1(xj · xl) PN2(yj · yl) ,

where

PN1(t) :=
N1∑
n1=0

2n1 + 1
4π

ŵn1Rn1 (t) , PN2(t) :=
N2∑
n2=0

2n2 + 1
4π

ŵn2Rn2 (t) . (4.24)

Corresponding to this observation we introduce the shorter notation P for the matrix
YŴY à. Note that the positivity assumption on the coefficients ŵn1 , ŵn2 ensures the
positive definiteness of PN1 resp. PN2 . For convenience let us further assume that the
kernels (4.24) are normalized, i.e.,

PN1(1) = 1, PN2(1) = 1.

This normalization obviously does not change the type of the problem. The aim is
now to give an estimate on the eigenvalues of the matrix P . To this end we use the
Gerschgorin circle theorem. Consider (x1,y1) ∈ X and let us assume without loss of
generality that (x1,y1) =

(
(0, 0, 1)>, (0, 0, 1)>

)
. Due to the structure of the matrix

P , for the eigenvalues λ(P ), we obtain the estimate

|λ(P )− 1| ≤
M∑
j=2

P j,1 =
M∑
j=2

PN1(x1 · xj)PN2(y1 · yj).

Our aim is to make this estimate more precise and finally to get from this a criterion
for the matrix Y to have full row rank. In order to do so, we first have to examine the
set X more precisely and, secondly, to construct well-localized kernels.
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We define a partition of the sampling nodes X into “rings” with increasing distance
from the node (x1,y1) ∈ S2 × S2. Let the separation distance of X satisfy q ≤ π. For
0 ≤ m < bπq−1c, let

Sq,m :=
{

(x,y) ∈ S2 × S2 : mq ≤ d ((x1,y1), (x,y)) < (m+ 1) q
}

and

Sq,bπq−1c :=
{

(x,y) ∈ S2 × S2 :
⌊
πq−1

⌋
q ≤ d ((x1,y1), (x,y)) ≤ π

}
.

Their restrictions to the set of sampling nodes is SX ,q,m := Sq,m ∩X . The cardinality
of these sets will be denoted by |SX ,q,m|.

The next proposition provides an estimate for the cardinality of the set SX ,q,m, i.e.,
we give an upper bound for the number of q-separated sampling points which can be
placed within a certain distance to (x1,y1). In contrast to (Narcowich et al., 1998,
Thm. 2.3), our estimate relies solely on the index m but no longer on the separation
distance q. We follow the lines in (Keiner et al., 2007, Lemma 4.3).

Proposition 4.8. Let X be a set of q-separated sampling nodes with q ≤ π/3. Then
for m = 1, . . . , bπq−1c, we have

|SX ,q,m| ≤ 128m3 + 192m2 + 224m+ 80 .

Proof. We use a packing argument from (Narcowich et al., 1998, Thm. 2.3), which
states that for each node in SX ,q,m, the centered cap of colatitude q/2 around it is
contained in the larger ring S̃q,m = Sq,m− 1

2
∪Sq,m+ 1

2
and has no interior points common
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with the cap of another node. Hence, for m = 1, . . . , bπq−1c − 2, we estimate

|SX ,q,m| ≤

∫
S̃q,m

dτ (x,y)∫
Sq/2,0

dτ (x,y)

=

∫
S̃(m+ 3

2 )q,0

dτ (x,y)−
∫
S̃(m− 1

2 )q,0

dτ (x,y)∫
Sq/2,0

dτ (x,y)

=

∫ (m+ 3
2 )q

0

sin θdθ
∫ (m+ 3

2 )q

0

sinϑdϑ−
∫ (m− 1

2 )q

0

sin θdθ
∫ (m− 1

2 )q

0

sinϑdϑ∫ q
2

0

sin θdθ
∫ q

2

0

sinϑdϑ

=

(
1− cos

(
(2m+3)q

2

))2

−
(

1− cos
(

(2m−1)q
2

))2

(
1− cos q2

)2
=

cos
(
(2m− 1) q2

)
− cos

(
(2m+ 3) q2

)
1− cos q2

×

(
1− cos

(
(2m+ 3) q2

)
1− cos q2

+
1− cos

(
(2m− 1) q2

)
1− cos q2

)
(4.25)

Using an identity for the trigonometric de la Vallée Poussin kernel, see, e.g. (Prestin
and Selig, 2001, equation (3.4) and (3.5)), we estimate the first term in (4.25) as in
(Keiner et al., 2007, Lemma 4.3) by

cos
(
(2m− 1) q2

)
− cos

(
(2m+ 3) q2

)
1− cos q2

=
sin
(
(2m+ 1) q2

)
sin
(
2 q2
)

sin2 q
4

= 4 + 8
2m−1∑
l=1

cos lq2 + 6 cos 2mq
2 + 4 cos (2m+1)q

2 + 2 cos (2m+2)q
2

≤ 8 (2m+ 1) . (4.26)

We estimate the second terms in (4.25) by using the Dirichlet kernel

1− cos
(
(2m+ 3) q2

)
1− cos q2

=

(
sin
(
(2m+ 3) q4

)
sin q

4

)2

=

(
1 + 2

m+1∑
k=1

cos
(
k
q

2

))2

≤ (1 + 2(m+ 1))2 = 4m2 + 12m+ 9 (4.27)
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and, similarly,

1− cos
(
(2m− 1) q2

)
1− cos q2

=

(
sin
(
(2m− 1) q4

)
sin q

4

)2

=

(
1 + 2

m−1∑
k=1

cos
(
k
q

2

))2

≤ (1 + 2(m− 1))2 = 4m2 − 4m+ 1 . (4.28)

Combining (4.25) – (4.28), we obtain the assertion.

We now give a construction of well-localized kernels. Our approach is based on
B-spline kernels and is strongly related to the construction given by Kunis (Kunis,
2006, Definition 2.15). Recall that for β ∈ N the cardinal B-spline Nβ+1 is defined
recursively by

Nβ+1 (z) =
∫ z

z−1

Nβ (τ) dτ, N1 (z) =

{
1 0 < z < 1,
0 otherwise.

The normalized B-spline of order β ∈ N is defined as gβ : [− 1
2 ,

1
2 ] → R, gβ(z) :=

βNβ(βz + β
2 ). By using sample values of these functions we obtain a well-localized

kernel as follows. For β,N ∈ N let Bβ,N : [−1, 1]→ R be given by

Bβ,N (t) :=
1

‖gβ‖1,N

N∑
l=0

(2− δl,0) gβ

(
l

2 (N + 1)

)
cos(l arccos t), (4.29)

where ‖ · ‖1,N denotes the discrete norm

‖gβ‖1,N :=
N∑

l=−N

gβ

(
l

2 (N + 1)

)
.

The kernel Bβ,N is called the B-spline kernel. The next proposition shows the
localization property of the B-spline kernel. Based on (Kunis, 2006, Theorem 2.35), a
proof was presented in (Keiner et al., 2007, Lemma 4.6).

Proposition 4.9. The B-spline kernel Bβ,N obeys for N ≥ β − 1 and t ∈ [−1, 1) the
localization property

|Bβ,N (t)| ≤ cβ |(N + 1) arccos (t)|−β , cβ :=

(
2β − 1

)
ζ (β)ββ

2β−1 − ζ (β)π−β
. (4.30)

Moreover, it is normalized by Bβ,N (1) = 1 and can be represented as

Bβ,N (t) =
N∑
n=0

2n+ 1
4π

ŵnRn (t)

with positive Fourier–Legendre coefficients

ŵn = 2π
∫ 1

−1

Rn (t)Bβ,N (t) dt, n = 0, . . . , N.
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We now turn to our main result, i.e., the estimate for the eigenvalues of the matrix
P . To get this estimate, we make use of the localization of the B-spline kernel (4.30)
and the cardinality estimate of Proposition 4.8. Finally we will obtain an answer to
our initial question on the stability of the optimal interpolation problem (4.22).

Theorem 4.10. Let X = {(xj ,yj) : j = 1, . . . ,M} be a sampling set of S2 × S2 with
separation distance q. For N1, N2, β ∈ N, N1, N2 ≥ β ≥ 5 let P = (Pj,l)j;l=1,...,M with
Pj,l = Bβ,N1(xj · xl)Bβ,N2(yj · yl). Then, for every eigenvalue λ(P ) of P , we have

|λ(P )− 1| < cβ (128 ζ (β − 3) + 192 ζ (β − 2) + 224 ζ (β − 1) + 80 ζ (β))
(N ′ + 1)β qβ

, (4.31)

where cβ is given in (4.30) and N ′ = min{N1, N2}.
Proof. We apply the Gershgorin circle theorem where we assume without loss of gen-
erality that x1 = (0, 0, 1)> and y1 = (0, 0, 1)>. Using Proposition 4.8, the localization
property in Proposition 4.9, and maxt∈[−1,1] |Bβ,N (t)| ≤ 1, we obtain the estimate

|λ(P )− 1| ≤
M∑
j=2

∣∣Bβ,N1 (x1 · xj)Bβ,N2

(
y1 · yj

)∣∣
<

bπq−1c∑
m=1

|SX ,q,m| max
(x,y)∈Sq,m

|Bβ,N1 (x1 · x) Bβ,N2 (y1 · y)|

<

bπq−1c∑
m=1

|SX ,q,m|
cβ

((N ′ + 1)mq)β

<
cβ

(N ′ + 1)βqβ

bπq−1c∑
m=1

128m3 + 192m2 + 224m+ 80
mβ

<
cβ (128 ζ (β − 3) + 192 ζ (β − 2) + 224 ζ (β − 1) + 80 ζ (β))

(N ′ + 1)βqβ

Although estimate (4.31) looks complicated at first glance, it allows us to give con-
crete conditions that ensure the stability of our optimal interpolation problem. More
precisely, we have

Corollary 4.11. Under the conditions of Theorem 4.10 and by choosing β = 5 in
(4.31), for the eigenvalues of the matrix P = YŴY à, we obtain the estimate

|λ(P )− 1| <
(

22
(N ′ + 1)q

)5

.

Moreover, let (N ′ + 1)q > 22. Then the matrix Y has full row rank M , and the
conjugate gradient method applied to (4.23) converges linearly, i.e.,

‖êl‖Ŵ−1 ≤ 2
(

22
(N ′ + 1)q

)5l

‖ê0‖Ŵ−1 (4.32)
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with the initial error ê0 := ŴY àP−1f and the error êl := f̂ l − ŴY àP−1f .

Proof. Applying the standard estimate for the convergence of the conjugate gradient
method, see, e.g., (Björck, 1996, p. 289), yields assertion (4.32).

5 An Application to Texture Analysis

As pointed out in the introduction, the paper is motivated by an application. The
Radon transform on SO(3) is of central importance for the analysis of crystallographic
preferred orientations, the technical term of which is texture analysis, cf. Wenk (1985).
It establishes a relationship between the so-called orientation density function (ODF)
f : SO(3)/G → R, which models the distribution of crystal orientations within a poly-
crystalline specimen, and the so-called pole density function (PDF) P : S2/G×S2 → R,
which models the distribution of crystallographic lattice planes within the specimen.
Here G ⊂ SO(3) denotes a finite subgroup of SO(3) which represents the crystal
symmetries. In terms of the Radon transform R, the relationship between the ODF
f ∈ L2(SO(3)/G) and the PDF P ∈ L2(S2/G × S2) of a specimen reads as

P (x,y) =
1
2
(
Rf(x,y) +Rf(−x,y)

)
. (5.1)

PDFs can be experimentally sampled by diffraction techniques like X-ray, neutron,
or synchrotron diffraction, whereas ODFs cannot directly be measured by these tech-
niques. A central problem in texture analysis is the estimation of the ODF of a speci-
men, given its measured PDF, cf. Bunge (1982); Schaeben and v.d. Boogaart (2003);
v.d. Boogaart et al. (2007); Hielscher (2007). Of particular importance are the lower-
order Fourier coefficients of the ODF since they characterize the macroscopic properties
of the specimen, e.g., the second-order Fourier coefficients characterize thermal expan-
sion, optical refraction index, and electrical conductivity, whereas the fourth-order
Fourier coefficients characterize the elastic properties of the specimen, cf. (Bunge,
1982, sec. 13).

The inversion of the Radon transform R on the rotation group SO(3) is an ill-posed
inverse problem. Hielscher et al. (2008) present a novel approach to the numerical
inversion of the Radon transform on SO(3). Based on a Fourier slice theorem, the
discrete inverse Radon transform of a function sampled on the product space S2 × S2

is determined as the solution of a minimization problem, which is iteratively solved
using fast Fourier techniques for S2 and SO(3). In this application the unknown
function f is a spherical tensor polynomial of the form

f =
N∑
n=0

n∑
k1=−n

n∑
k2=−n

f̂n,k1,k2Yn,k1Yn,k2 . (5.2)

instead of (3.1). Clearly, f ∈ ΠN (S2 × S2) with N = (N,N), and Theorem 4.5 and
Theorem 4.10 hold for the special f in (5.2). Due to the special structure of the
sampling set X in the application (see (Hielscher et al., 2008, Definition 3.3)), the
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authors developed a fast matrix times vector multiplication for the forward transform
(see (Hielscher et al., 2008, Theorem 3.5)). In the iterative reconstruction this faster
method was used instead of Algorithm 3.1. Indeed, it was observed that the optimal
interpolation problem (4.22) is stable solvable with the CGNE method if N2 > M , see
(Hielscher et al., 2008, Figure 4.2 b)) and compare with Corollary 4.11. On the other
hand, the authors could solve the approximation problem (4.1) if the sampling set was
δ dense, i.e., if enough pole figures are available, see (Hielscher et al., 2008, Figure 4.2
a)) and compare with Corollary 4.6. Note that after solving the above approximation
problems, we are able to reconstruct the crystallographic orientation density function
by a fast Fourier transform on SO(3) thanks to the Fourier slice theorem, see (Hielscher
et al., 2008, Theorem 2.7).

6 Conclusions

In this paper we solved the approximation and optimal interpolation of functions de-
fined on the bisphere S2 × S2 from scattered data. We demonstrate that the least
square approximation to the function can be computed in a stable and efficient man-
ner. The analysis of this problem is based on Marcinkiewicz–Zygmund inequalities for
scattered data which we present here for the bisphere. The complementary problem
of optimal interpolation is solved by using well-localized kernels for our setting. Based
on this theoretical findings, we discussed the application and developed methods to
problems from texture analysis in material science. We are able to reconstruct the
crystallographic orientation density function by a fast Fourier transform on SO(3)
thanks to the Fourier slice theorem, see (Hielscher et al., 2008, Theorem 2.7).
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