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1 Introduction

The approximation of high-dimensional functions is a fundamental problem in numerical anal-
ysis. It is a well known fact, that the discretisation of high-dimensional problems often leads
to an exponential growth in the number of degrees of freedom. This is labeled as the curse of
dimensions and the use of sparsity has become a very popular tool for handling such problems.
For a wide range of moderately high-dimensional problems the use of sparse grids and the
approximation of functions using approximants supported on hyperbolic crosses in Fourier
domain has decreased the problem size dramatically from O(Nd) to O(N(logN)d−1) while
hardly deteriorating the approximation error, cf. e.g., [35, 37, 34, 5, 31]. Here d denotes
the underlying problem’s dimensionality and N is the number of nodes in one coordinate
direction on the hyperbolic cross. Of course, an important issue is the adaption of efficient
Fourier algorithms, which realize the map between the spatial domain and the hyperbolic
crosses. Fast algorithms that realize the map between sparse grids in spatial domain and
hyperbolic crosses in Fourier domain are known as the hyperbolic cross fast Fourier trans-
form (HCFFT). Such algorithms were studied in [2, 15, 11, 19]. Recently, sparse grid based
approaches have emerged as useful techniques to tackle higher dimensional problems, see e.g.,
the seminal paper of M. Griebel and J. Hamaekers [12], where the authors used trigonometric
interpolation based on generalized sparse grids, especially so-called energy norm based sparse
grids [4, 5], and developed the related hyperbolic cross fast Fourier transform. For the energy
norm based sparse grids, only CdN degrees of freedom are necessary. Typically, one uses
these techniques for the approximation of functions in periodic Sobolev spaces of generalized
mixed smoothness.

In this paper, we use a sampling scheme based on sampling on rank-1 lattices in spatial
domain and consider functions in subspaces of the Wiener algebra and periodic Sobolev spaces
of generalized mixed smoothness. Lattice rules are well known for the integration of functions
of many variables, cf. e.g., [32, 8] and the extensive reference list therein. Furthermore,
there exist already comprehensive tractability results for numerical integration using rank-1
lattices, see [29].

The main tool of our approximation method is based on the observation that a trigonometric
polynomial p : Td := [0, 1)d → C,

p(x) =
∑
k∈I

p̂k e2πikx, p̂k ∈ C, I ⊂ Zd, |I| <∞, (1.1)

with frequencies supported on an arbitrary index set I of finite cardinality can be fast eval-
uated at a rank-1 lattice by the one-dimensional FFT, cf. [23]. The scalar product xy of
two vectors x = (x1, . . . , xd)

>,y = (y1, . . . , yd)
> ∈ Rd is defined as usual by xy =

∑d
t=1 xtyt.

On the other hand, a trigonometric polynomial p with frequencies supported on the index set
I can be reconstructed from samples on a rank-1 lattice. It follows straightforward that for
convex index sets I, there exists a rank-1 lattice of cardinality M = O(|I|), which allows for
the unique reconstruction of the trigonometric polynomial p with frequencies supported on I.
It is shown in [20] that for hyperbolic crosses as index set I, there exist rank-1 lattices of cardi-
nality M = O(|I|2). We end up with an algorithm with a complexity of O(|I|2 log |I|), which
is very fast and simple, since it based mainly on a single one-dimensional fast Fourier trans-
form. To this end, the first named author developed a component-by-component algorithm
to find such rank-1 lattices, cf. [20]. This method is based on the component-by-component
algorithm original developed for numerical integration in [6]. In contrast to possible stability
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problems when sampling on sparse grids, see [22], our sampling method is perfectly stable.
Furthermore, we develop an algorithm for sampling the multivariate function on a perturbed
rank-1 lattice. The presented method is based on the Taylor approximation and on one-
dimensional fast Fourier transforms, cf. [36]. Using these tools, we are in a position to prove
stability results for such perturbed rank-1 lattices. Earlier work on nonequispaced hyperbolic
cross fast Fourier transform [9] is based on the HCFFT and, hence, may suffer from stability
problems.

The paper is organized as follows: We introduce the necessary notation in Section 2 and
collect some known results. We present methods for the fast evaluation and fast reconstruc-
tion of trigonometric polynomials at a rank-1 lattice, see Subsection 2.2 and Subsection 2.3.
In Subsection 2.4, we introduce subspaces of the Wiener algebra, which are characterized by
its isotropic and dominating mixed smoothness, as well as the related frequency index sets.
In Section 3, we address the problem of approximating the functions from these spaces by
sampling on rank-1 lattices. For that purpose, we present Algorithm 1 and prove in Theorem
3.3 and in Theorem 3.4 the related approximation errors. The aim of Section 4 is twofold. On
the one hand, we show that the fast evaluation and the fast reconstruction of trigonometric
polynomials on perturbed rank-1 lattices is possible using Taylor expansion. To this end, we
prove the stability results in Theorem 4.3. We remark that the complexity of the suggested
algorithm depends exponentially on the dimension d and is therefore only practicable for
moderate dimensions d. On the other hand, the theoretical results show the stability for our
sampling scheme even for large dimensions d. In Section 5, we present the results for approx-
imating the functions from the subspaces of the Wiener algebra by sampling on perturbed
rank-1 lattices, see Theorem 5.1. Finally, we present extensive numerical tests in Section 6 in
order to illustrate the theoretical results and we give some concluding remarks in Section 7.

2 Prerequisite

2.1 Reconstruction of trigonometric polynomials from sampling values

Let a frequency index set I ⊂ Zd of finite cardinality be given. We want to reconstruct the
Fourier coefficients p̂k, k ∈ I, of a trigonometric polynomial p ∈ ΠI := span{e2πik◦ : k ∈ I}
with frequencies supported on I, p(x) :=

∑
k∈I p̂k e2πikx, from sampling values p(y`), ` =

0, . . . , L− 1. In matrix vector notation, we want to solve the linear system of equations

Ap̂ = p, A := (e2πiky`)`=0,...,L−1; k∈I , p̂ := (p̂k)>k∈I , p := (p(y`))
>
`=0,...,L−1. (2.1)

The sampling nodes y` have to be chosen such that the Fourier matrix A has full column
rank |I|, in particular we infer L ≥ |I|. Then, we consider the system Ap̂ = p as a normal
equation of the first kind,

AHAp̂ = AHp, (2.2)

where AH denotes the adjoint of the matrix A and the square matrix
(
AHA

)
is non-singular,

i.e., a unique solution p̂ ∈ C|I| exists.

If we want to (approximately) solve the linear system of equations (2.2) without further
assumptions, e.g., using a conjugate gradient like method, we have an algorithmic complexity
of Ω(L|I|). In Section 2.3 and 4.3, possibilities to reduce this arithmetic complexity by
sampling at nodes and perturbed nodes of a rank-1 lattice will be discussed.
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2.2 Evaluation of trigonometric polynomials at rank-1 lattice nodes (rank-1
lattice FFT)

Let M ∈ N, z ∈ Zd be given. We define the rank-1 lattice Λ(z,M) ⊂ Td of size M with
generating vector z ∈ Zd by

Λ(z,M) :=

{
xj :=

j

M
z mod 1 : j = 0, . . . ,M − 1

}
.

We consider the evaluation of a trigonometric polynomial p ∈ ΠI , p : Td → C, p(x) :=∑
k∈I p̂k e2πikx, where the Fourier coefficients p̂k ∈ C are given, at rank-1 lattice nodes

xj ∈ Λ(z,M). As presented in [27], we have

p(xj) = p

(
j

M
z mod 1

)
=

M−1∑
l=0

 ∑
k∈I

kz≡l (mod M)

p̂k

 e2πi jl
M

and the outer sum is a one-dimensional discrete Fourier transform of length M . Therefore,
the multivariate trigonometric polynomial p can be evaluated at all rank-1 lattice nodes in
O(M logM + d|I|) arithmetic operations by using a single one-dimensional FFT.

Note that setting the Fourier coefficients p̂k to (2πik)ν p̂k allows the fast evaluation of the
mixed derivativeDνp of the multivariate trigonometric polynomial p at all rank-1 lattice nodes
xj , j = 0, . . . ,M − 1, in O(M logM + d|I|) arithmetic operations using a one-dimensional
FFT.

2.3 Reconstruction of trigonometric polynomials by sampling at rank-1 lattice
nodes

Using a suitable rank-1 lattice Λ(z,M), it is possible to perform an exact and perfectly
stable reconstruction of the Fourier coefficients p̂k ∈ C of a trigonometric polynomial p ∈ ΠI ,
p(x) :=

∑
k∈I p̂k e2πikx, by sampling at rank-1 lattice nodes xj ∈ Λ(z,M), j = 0, . . . ,M − 1,

cf. [23]. To this end, we use a rank-1 lattice Λ(z,M), M ≥ |I|, such that the Fourier matrix

F :=
(

e2πijkz/M
)
j=0,...,M−1; k∈I

has full column rank. In particular F has orthogonal columns, FHF = MI, i.e.,

1

M

(
FHF

)
h,k

=
1

M

M−1∑
j=0

e2πij(k−h)z/M =

{
1 for k = h,

0 for k 6= h,
∀k,h ∈ I. (2.3)

This is the case if and only if

kz 6≡ hz (mod M) ∀k,h ∈ I,k 6= h, (2.4)

see [21, Section 2]. Introducing the difference set D(I) for the index set I, D(I) := {k −
h : k,h ∈ I}, we can rewrite the above conditions to

mz 6≡ 0 (mod M) ∀m ∈ D(I) \ {0}. (2.5)
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A rank-1 lattice Λ(z,M) which fulfills one of the equivalent reconstruction properties (2.3),
(2.4) or (2.5) for a given frequency index set I will be called reconstructing rank-1 lattice for I
and denoted by Λ(z,M, I). Using the nodes of such a reconstructing rank-1 lattice Λ(z,M, I)
as sampling nodes, we obtain the Fourier coefficients p̂k, k ∈ I, by

p̂k =
1

M

M−1∑
j=0

p

(
j

M
z mod 1

)
e−2πijkz/M ,

i.e., we have the exact solution for the linear system of equations (2.1). Consequently, the
Fourier coefficients p̂k, k ∈ I, can be computed in O(M logM + d|I|) arithmetic operations
by using a single one-dimensional FFT of length M and by computing the scalar products
kz for k ∈ I.

One of the main difficulties is to determine reconstructing rank-1 lattices Λ(z,M, I) for a
given frequency index set I. During the last years a lot of papers deal with (fast) component-
by-component constructions of rank-1 lattices which are suitable for different quality mea-
surements, cf. e.g., [33, 7, 6, 20]. In short, one determines a suitable lattice size M and
constructs a corresponding generating vector z component–by–component. Based on [6], we
developed algorithms in order to find reconstructing rank-1 lattices for arbitrary frequency
index sets of finite cardinality, cf. [21].

Theorem 2.1. For a given frequency index set I ⊂ Zd, 4 ≤ |I| < ∞, there always exists a

reconstructing rank-1 lattice Λ(z,M, I) of size |D(I)|
2 ≤M ≤ |D(I)| if I ⊂ Zd∩(−M/2,M/2)d.

The generating vector z can be constructed using a component-by-component approach, see
[21], and the construction requires no more than 2 d2 |I|M ≤ 2 d2 |I|3 arithmetic operations if
I ⊂ Zd ∩ (−M/2,M/2)d.

Proof. This existence is a consequence from [21, Corollary 1] and Bertrand’s postulate.
When searching for the component zt, t ∈ {1, . . . , d}, of the generating vector z in the
component-by-component step t, the tests for the reconstruction property (2.4) for a given
component zt take no more than t |I| multiplications, (t−1) |I| additions as well as |I| modulo
operations, and this yields 2 t |I| many arithmetic operations. Due to this and since each
component zt, t ∈ {1, . . . , d}, of the generating vector z can only have M − 1 different

values modulo M , we obtain that the construction requires no more than 2 d(d+1)
2 |I|(M −

1) ≤ 2 d2 |I|M arithmetic operations in total. Due to M ≤ |D(I)| ≤ |I|2, this yields the
assertion.

In the numerical examples of this paper, we use the following simple strategy to determine
reconstructing rank-1 lattices Λ(z,M, I) for a given frequency index set I, which is discussed
in [21]. We set M0 = 1 and search for small Ms such that Λ(z = (M0, . . . ,Ms−1)>,M = Ms) is
a reconstructing rank-1 lattice for the frequency index set {(kj)sj=1 ∈ Zs : (kj)

d
j=1 ∈ I}. This

approach guarantees that the result Λ(z = (M0, . . . ,Md−1)>,M = Md) is a reconstructing
rank-1 lattice for I. However, the resulting reconstructing rank-1 lattice is neither necessarily
optimal nor is the upper bound M ≤ |I|2 for the rank-1 lattice size from Theorem 2.1
guaranteed.
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2.4 Function spaces and frequency index sets

This paper focuses on the approximation of functions f : Td → C belonging to certain function
spaces by sampling at rank-1 lattice nodes. We consider the subspaces

Aα,β,γ(Td) :=

f ∈ L1(Td) : ‖f |Aα,β,γ(Td)‖ :=
∑
k∈Zd

ωα,β,γ(k)|f̂k| <∞


of the Wiener algebra and the periodic Sobolev spaces of generalized mixed smoothness

Hα,β,γ(Td) :=

f ∈ L1(Td) : ‖f |Hα,β,γ(Td)‖ :=

√∑
k∈Zd

ωα,β,γ(k)2|f̂k|2 <∞


with β ≥ 0, α > −β, where the weights ωα,β,γ(k) are defined by

ωα,β,γ(k) := max(1, ‖k‖1)α
d∏
s=1

max(1, γ−1
s |ks|)β, k :=

(
k1
...
kd

)
, γ :=

(
γ1
...
γd

)
∈ (0, 1]d. (2.6)

The parameter α characterizes the isotropic smoothness and the parameter β the dominating
mixed smoothness. Moreover, the parameter γ moderates the dependencies and importances
of the different variables. We remark that one can use various equivalent weights which have
different approximation properties for large dimensions d, cf. [25]. In general, functions from
the subspaces Aα,β,γ(Td) of the Wiener algebra have continuous representatives and we always
apply our sampling methods on these.

In the whole paper, we use embeddings of the function spaces Aα,β,γ(Td) and Hα,β,γ(Td)
that are proved by the next lemma.

Lemma 2.2. Let a function f ∈ Aα,β,γ(Td) be given, where α, β ∈ R, β ≥ 0, α > −β,
and γ as stated in (2.6). Then, we have ‖f |Hα,β,γ(Td)‖ ≤ ‖f |Aα,β,γ(Td)‖. For a function
f ∈ Hα,β+λ,γ(Td), where α, β ∈ R and λ > 1/2, we have

‖f |Aα,β,γ(Td)‖ ≤ (1 + 2ζ(2λ))
d
2 ‖f |Hα,β+λ,γ(Td)‖, (2.7)

where we denote by ζ the Riemann zeta function.

Proof. We infer ‖f |Hα,β,γ(Td)‖2 ≤

∑
k∈Zd

ωα,β,γ(k) |f̂k|

2

= ‖f |Aα,β,γ(Td)‖2. For arbitrary

λ > 1/2, we apply the Cauchy-Schwarz inequality and obtain

‖f |Aα,β,γ(Td)‖ =
∑
k∈Zd

ω0,λ,γ(k)

ω0,λ,γ(k)
ωα,β,γ(k)

∣∣∣f̂k∣∣∣
≤

∑
k∈Zd

1

ω0,λ,γ(k)2

 1
2
∑
k∈Zd

ωα,β+λ,γ(k)2
∣∣∣f̂k∣∣∣2

 1
2

=

(
d∏
s=1

∑
l∈Z

1

max(1, |l|)2λ

) 1
2

‖f |Hα,β+λ,γ(Td)‖

= (1 + 2ζ(2λ))
d
2 ‖f |Hα,β+λ,γ(Td)‖.
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We are interested in the approximation of functions contained in Aα,β,γ(Td) or Hα,β,γ(Td)
using trigonometric polynomials with frequencies supported on suitable frequency index sets
I. Hence, let a parameter T ∈ (−∞, 1), a refinement N ≥ 1 and a weight γ as specified in

(2.6) be given. We define the weighted frequency index set Id,T,γN by

Id,T,γN :=

{
k ∈ Zd : ω−T,1,γ(k) = max(1, ‖k‖1)−T

d∏
s=1

max(1, γ−1
s |ks|) ≤ N1−T

}
. (2.8)

As a natural extension for T = −∞, we define the weighted frequency index set Id,−∞,γN as
the d-dimensional `1-ball of size N ,

Id,−∞,γN :=
{
k ∈ Zd : max(1, ‖k‖1) ≤ N

}
. (2.9)

Later on, we need some embeddings of the weighted frequency index sets Id,T,γN . First, we
prove the embeddings into l∞ balls, depending on the parameter T .

Lemma 2.3. Let N ∈ R, N ≥ 1, γ as stated in (2.6), and T ∈ [−∞, 1) be given. The
following inclusions hold

Id,T,γN ⊂

{
Zd ∩ [−N,N ]d, for T ≤ 0,

Zd ∩ [−d
T

1−T N, d
T

1−T N ]d, for 0 < T < 1.
(2.10)

Proof. In order to prove the inclusions, we use

max(1, ‖k‖∞) ≤
d∏
s=1

max(1, γ−1
s |ks|) (2.11)

and max(1, ‖k‖∞) ≤ max(1, ‖k‖1) ≤ dmax(1, ‖k‖∞). (2.12)

For k ∈ Id,T,γN and T ∈ (−∞, 1), we infer

N ≥

(
d∏
s=1

max(1, γ−1
s |ks|)

) 1
1−T

max(1, ‖k‖1)−
T

1−T

≥ max(1, ‖k‖∞)
1

1−T

{
max(1, ‖k‖∞)−

T
1−T for − T

1−T ≥ 0,

d−
T

1−T max(1, ‖k‖∞)−
T

1−T for − T
1−T < 0.

Similarly, we estimate N ≥ max(1, ‖k‖1) ≥ max(1, ‖k‖∞) for k ∈ Id,−∞,γN . Thus, we have

max(1, ‖k‖∞) ≤

{
N for T ≤ 0

d
T

1−T N for 0 < T < 1

}
and this yields the assertion.

Next, we show embeddings into “thicker” weighted frequency index sets Id,T̃ ,γN , i.e., for
parameters T̃ ≤ T .
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Lemma 2.4. Let N ∈ R, N ≥ 1, γ as stated in (2.6), and −∞ ≤ T̃ ≤ T < 1 be given. Then,
the following upper bound holds

max
k∈Id,T,γN

ω
− T̃

1−T̃
, 1

1−T̃
,γ

(k) ≤

d
T−T̃

(1−T )(1−T̃ )N for T̃ > −∞,
d

1
(1−T )N, for T̃ = −∞,

where we define ∞
1+∞ := 1 and 1

1+∞ := 0. This implies the following inclusion

Id,T,γN ⊂

{
Id,T̃ ,γ
d(T−T̃ )/(1−T )/(1−T̃ )N

for T̃ > −∞,
Id,−∞,γ
d1/(1−T )N

for T̃ = −∞.

Proof. We observe by (2.8) that

Id,T,γN =

{
k ∈ Zd : max(1, ‖k‖1)−

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

1
1−T ≤ N

}
. (2.13)

Let T̃ > −∞ and k ∈ Id,T,γN . We estimate

N ≥ ω−
T

1−T ,
1

1−T ,γ(k) = ω
− T

1−T + T−T̃
(1−T )(1−T̃ )

, 1
1−T −

T−T̃
(1−T )(1−T̃ )

,γ
(k)ω

− T−T̃
(1−T )(1−T̃ )

, T−T̃
(1−T )(1−T̃ )

,γ
(k)

= ω
− T̃

1−T̃
, 1

1−T̃
,γ

(k)

(∏d
s=1 max(1, γ−1

s |ks|)
max(1, ‖k‖1)

) T−T̃
(1−T )(1−T̃ )

.

Due to T−T̃
(1−T )(1−T̃ )

≥ 0 and using the inequalities (2.11) and (2.12), we continue

N ≥ ω
− T̃

1−T̃
, 1

1−T̃
,γ

(k)

( ∏d
s=1 max(1, γ−1

s |ks|)
d
∏d
s=1 max(1, γ−1

s |ks|)

) T−T̃
(1−T )(1−T̃ )

and obtain d
T−T̃

(1−T )(1−T̃ )N ≥ ω
− T̃

1−T̃
, 1

1−T̃
,γ

(k). This yields k ∈ Id,T̃ ,γ
d(T−T̃ )/(1−T )/(1−T̃ )N

.
In order to prove all inclusions from the assertion above, we have to deal separately with
T̃ = −∞. Obviously, for T = T̃ = −∞, the inclusion from above holds. So, let us assume
−∞ = T̃ < T < 1. Due to the inequalities (2.11) and (2.12), we estimate for k ∈ Id,T,γN and
T ∈ (−∞, 1)

N ≥

(
d∏
s=1

max(1, γ−1
s |ks|)

) 1
1−T

max(1, ‖k‖1)−
T

1−T

≥
(
d−1 max(1, ‖k‖1)

) 1
1−T max(1, ‖k‖1)−

T
1−T = d−

1
1−T max(1, ‖k‖1)

and obtain k ∈ Id,−∞,γ
d

1
1−T N

. The upper bound in the Lemma then follows.
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Remark 2.5. If the weights γ are chosen γ = 1 := (1, . . . , 1)>, the definition of the weighted

frequency index set Id,T,γN is related to the one of the index sets

Ĩd,TN :=

{
k ∈ Zd : (1 + ‖k‖∞)−T

d∏
s=1

(1 + |ks|) ≤ (1 +N)1−T

}
, T ∈ (−∞, 1), and

Ĩd,−∞N :=
{
k ∈ Zd : ‖k‖∞ ≤ N

}
,

which was treated in [24, Section 3.3].

In order to estimate the cardinalities of the frequency index sets defined in (2.8) we show
some useful embeddings.

Lemma 2.6. Let a refinement N ∈ R, N ≥ 1, be given. In the case 0 ≤ T < 1, we have the
inclusions

Id,T,1
(N+1)d−T/(1−T )2−d/(1−T ) ⊂ Ĩ

d,T
N ⊂ Id,T,1

(N+1)2T/(1−T ) .

For T < 0, we have the inclusions

Id,T,1
(N+1)2(T−d)/(1−T ) ⊂ Ĩ

d,T
N ⊂ Id,T,1

(N+1)d−T/(1−T ) .

Proof. For arbitrary d ∈ N and k ∈ Zd, we have the inequalities

d−1 max(1, ‖k‖1) ≤ 1 + ‖k‖∞ ≤ 2 max(1, ‖k‖1) (2.14)

and
∏d
s=1 max(1, |ks|) ≤

∏d
s=1(1 + |ks|) ≤ 2d

∏d
s=1 max(1, |ks|). Let 1 > T ≥ 0, we obtain

2−T max(1, ‖k‖1)−T
d∏
s=1

max(1, |ks|) ≤ (1 + ‖k‖∞)−T
d∏
s=1

(1 + |ks|)

≤ dT max(1, ‖k‖1)−T 2d
d∏
s=1

max(1, |ks|).

In the case of −∞ < T < 0, the inequality

dT max(1, ‖k‖1)−T
d∏
s=1

max(1, |ks|) ≤ (1 + ‖k‖∞)−T
d∏
s=1

(1 + |ks|)

≤ 2−T max(1, ‖k‖1)−T 2d
d∏
s=1

max(1, |ks|)

arises. Finally, the assertion for the case T = −∞ follows directly from (2.14).

In the following lemma, we give an asymptotic upper bound for the cardinality |Id,T,γN | of

the weighted frequency index set Id,T,γN .
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Lemma 2.7. The cardinality of the weighted frequency index set Id,T,γN is bounded by

|Id,T,γN | ≤


O(Nd) for T = −∞,
O(N

T−1
T/d−1 ) for −∞ < T < 0,

O(N logd−1N) for T = 0,

O(N) for 0 < T < 1.

Proof. Due to γ ∈ (0, 1]d, the inequality
∏d
s=1 max(1, |ks|) ≤

∏d
s=1 max(1, γ−1

s |ks|) and the
embeddings

Id,T,γN ⊂ Id,T,1N ⊂ Id,T,1N+1 ⊂

{
Ĩd,T

2(d−T )/(1−T )N
for −∞ ≤ T ≤ 0,

Ĩd,T
NdT/(1−T )2d/(1−T ) for 0 < T < 1

hold. Due to [13, Section 3.2 Lemma 1] and as stated in [24, Section 3.3 Lemma 2], the

cardinality of the weighted frequency index set Ĩd,TN is bounded by the terms indicated by the
assertion.

An alternative upper bound for the cardinality of the weighted symmetric hyperbolic crosses
Id,0,γN incorporating the weights γ is given by |Id,0,γN | ≤ N τ

∏d
s=1(1 + 2ζ(τ)γτs ) for all τ > 1,

cf. [6], where ζ is the Riemann zeta function.

Figure 2.1 illustrates examples for weighted frequency index sets Id,T,γN in the two-dimen-
sional case for N = 32. For increasing parameter T and decreasing weights γ, the weighted
frequency index sets Id,T,γN become “thinner”. In particular, the index sets Id,0,γN are weighted
symmetric hyperbolic crosses.

3 Approximate reconstruction by sampling at rank-1 lattice nodes

As usual, we denote the Fourier coefficients

f̂k :=

∫
Td
f(x)e−2πikxdx, k ∈ Zd (3.1)

for functions f ∈ Aα,β,γ(Td) or f ∈ Hα,β,γ(Td), and formally approximate f by the Fourier
partial sum

SIf :=
∑
k∈I

f̂k e2πik◦,

where I ⊂ Zd is a frequency index set of finite cardinality. In general, we only compute

approximations
ˆ̃
fk of the Fourier coefficients f̂k from (3.1) for all k ∈ I. For this, we sample

the function f at nodes xj := j
M z mod 1, j = 0, . . . ,M − 1, of a rank-1 lattice Λ(z,M). We

compute the approximated Fourier coefficients
ˆ̃
fk by applying the lattice rule to the integrand

in (3.1),

ˆ̃
fk :=

1

M

M−1∑
j=0

f

(
j

M
z mod 1

)
e−2πijkz/M , k ∈ I, (3.2)

in O(M logM + d|I|) arithmetic operations using a single one-dimensional FFT of length M ,
cf. Algorithm 1. Then, we define an approximation of the function f by the approximated

10



−32 0 32
−32

0

32

(a) T = −∞

−32 0 32
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0

32

(b) T = −5, γ = 1

−32 0 32
−32

0

32

(c) T = 0, γ = 1

−32 0 32
−32

0

32

(d) T = 1
4
, γ = 1

−32 0 32
−32

0

32

(e) T = 1
2
, γ = 1

−32 0 32
−32

0

32

(f) T = 0, γ = 0.5

Figure 2.1: Weighted frequency index sets I2,T,γ
32 for various parameters T and γ.

Algorithm 1 Approximate reconstruction of a function f ∈ Aα,β,γ(Td) or f ∈ Hα,β,γ(Td)
from sampling values on a reconstructing rank-1 lattice Λ(z,M, I).

Input: I ⊂ Zd frequency index set of finite cardinality
Λ(z,M, I) reconstructing rank-1 lattice for I of size M

with generating vector z ∈ Zd

f =
(
f
(
jz
M mod 1

))M−1

j=0
function values of

f ∈ Aα,β,γ(Td) or f ∈ Hα,β,γ(Td)

ĝ = FFT 1D(f)
for each k ∈ I do

ˆ̃
fk = 1

M ĝkz mod M

end for

Output:
ˆ̃
f =

(
ˆ̃
fk

)
k∈I

approximated Fourier coefficients of
f ∈ Aα,β,γ(Td) or f ∈ Hα,β,γ(Td)

Complexity: O (M logM + d|I|)

Fourier partial sum

S̃If :=
∑
k∈I

ˆ̃
fk e2πik◦. (3.3)
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Lemma 3.1. Let a function f ∈ C(Td) ∩ Aα,β,γ(Td), a frequency index set I ⊂ Zd and
a rank-1 lattice Λ(z,M) with nodes xj := j

M z mod 1, j = 0, . . . ,M − 1, be given, where

α, β ∈ R, β ≥ 0 and α > −β. The approximated Fourier coefficients
ˆ̃
fk, k ∈ I, computed

by applying the lattice rule (3.2), are aliased versions of the original Fourier coefficients f̂k of

the function f ,
ˆ̃
fk =

∑
h∈Zd

hz≡0 (mod M)

f̂k+h, k ∈ I, and the aliasing error is given by

S
Id,T,γN

f − S̃
Id,T,γN

f = −
∑

k∈Id,T,γN

∑
h∈Zd\{0}

hz≡0 (mod M)

f̂k+h e2πik◦. (3.4)

Proof. Since we have f( j
M z mod 1) =

∑
h∈Zd f̂h e2πijhz/M , we obtain

ˆ̃
fk =

1

M

M−1∑
j=0

∑
h∈Zd

f̂h e−2πi
j(k−h)z

M =
∑
h∈Zd

f̂h
1

M

M−1∑
j=0

e−2πi
j(k−h)z

M =
∑
h∈Zd

hz≡0 (mod M)

f̂k+h

and the assertion follows.

In order to avoid aliasing error within the frequency index set I, we use a reconstructing
rank-1 lattice Λ(z,M, I) and this yields

{
h ∈ Zd \ {0} : hz ≡ 0 (mod M)

}
∩D(I) = ∅ due to

the reconstruction property (2.5). Therefore, we only have aliasing from Fourier coefficients
f̂k with k ∈ Zd \ I.

We consider the approximation error f − S̃
Id,T,γN

f in different norms in the next sections.

Preparing the statements therein, we estimate the maximum of the weight function of specific
index sets in the following

Lemma 3.2. Let β̃ ≥ 0, α̃ > −β̃ and a weighted frequency index set Id,T,γN be given, where
N ≥ 1, T ∈ [−∞, 1) and γ ∈ (0, 1]d. Then, we have

max
k∈Zd\Id,T,γN

ω−α̃,−β̃,γ(k) ≤ N−(α̃+β̃)



(
Nd−1

∏d
s=1 γ

−1
s

)T β̃+α̃
d−T

for T > − α̃

β̃
,

1 for T = − α̃

β̃
,

d−
T β̃+α̃
1−T for T < − α̃

β̃
.

Proof. We observe by (2.13) that

Zd \ Id,T,γN =

{
k ∈ Zd : max(1, ‖k‖1)

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

− 1
1−T < N−1

}
.

Let T > − α̃

β̃
. We estimate dominating mixed smoothness by isotropic smoothness. Due to

d∏
s=1

max(1, γ−1
s |ks|) ≤ max(1, ‖k‖∞)d

d∏
s=1

γ−1
s ≤ max(1, ‖k‖1)d

d∏
s=1

γ−1
s for k ∈ Zd, we obtain

12



for all k ∈ Zd \ Id,T,γN

ω−α̃,−β̃,γ(k) = max(1, ‖k‖1)−α̃
d∏
s=1

max(1, γ−1
s |ks|)

−β̃−T β̃+α̃
d−T +T β̃+α̃

d−T

≤

(
d∏
s=1

γ
−T β̃+α̃

d−T
s

)
max(1, ‖k‖1)−α̃+dT β̃+α̃

d−T

d∏
s=1

max(1, γ−1
s |ks|)

−β̃−T β̃+α̃
d−T

=

(
d∏
s=1

γ
−T β̃+α̃

d−T
s

)(
max(1, ‖k‖1)

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

− 1
1−T

)α̃+β̃− d−1
d−T (T β̃+α̃)

.

Consequently, we infer max
k∈Zd\Id,T,γN

ω−α̃,−β̃,γ(k)
(2.13)

≤
(∏d

s=1 γ
−T β̃+α̃

d−T
s

)
N−(α̃+β̃)+ d−1

d−T (T β̃+α̃).

Let T ≤ − α̃

β̃
and β̃ > 0. We estimate isotropic smoothness by dominating mixed smoothness.

Using the inequalities (2.11) and (2.12), we obtain for all k ∈ Zd \ Id,T,γN

ω−α̃,−β̃,γ(k) = max(1, ‖k‖1)−α̃−
−α̃−T β̃
1−T +−α̃−T β̃

1−T

d∏
s=1

max(1, γ−1
s |ks|)−β̃

≤ d
−α̃−T β̃
1−T max(1, ‖k‖1)−α̃−

−α̃−T β̃
1−T

d∏
s=1

max(1, γ−1
s |ks|)

−α̃−T β̃
1−T −β̃

= d−
T β̃+α̃
1−T

(
max(1, ‖k‖1)

T
1−T

d∏
s=1

max(1, γ−1
s |ks|)

− 1
1−T

)α̃+β̃

.

Thus, we infer max
k∈Zd\Id,T,γN

ω−α̃,−β̃,γ(k)
(2.13)

≤ d−
T β̃+α̃
1−T N−(α̃+β̃).

Let T = −∞ and β̃ = 0. We have Zd \ Id,−∞,γN =
{
k ∈ Zd : max(1, ‖k‖1)−1 < N−1

}
due to

(2.9) and thus, we infer max
k∈Zd\Id,−∞,γN

ω−α̃,0,γ(k) = max
k∈Zd\Id,−∞,γN

max(1, ‖k‖1)−α̃ ≤ N−α̃.

The next three subsections treat different kinds of approximation errors for functions f
from the subspaces Aα,β,γ(Td) of the Wiener algebra. In Subsection 3.1 we consider the
approximation error in the L∞(Td) norm. Subsection 3.2 presents upper bounds on the ap-
proximation error in the norm of the periodic Sobolev spaces of generalized mixed smoothness
Hα,β,γ(Td). The last Subsection 3.3 specifies a strategy to extend the approximation to an
interpolation with similar error estimates.

3.1 Subspaces Aα,β,γ(Td) of the Wiener algebra

In this section, we estimate the approximation error ‖f − S̃
Id,T,γN

f |L∞(Td)‖ for functions f

from the subspaces Aα,β,γ(Td) of the Wiener algebra.

Theorem 3.3. Let a function f ∈ C(Td) ∩Aα,β,γ(Td), a weighted frequency index set Id,T,γN

and a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given, where N ≥ 1, β ≥ 0, α > −β,
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T ∈ [−∞, 1) and γ as stated in (2.6). Then, the approximation error is bounded by

‖f − S̃
Id,T,γN

f |L∞(Td)‖

≤ 2N−(α+β) ‖f |Aα,β,γ(Td)‖


(
Nd−1

∏d
s=1 γ

−1
s

)Tβ+α
d−T

for T > −α
β ,

1 for T = −α
β ,

d−
Tβ+α
1−T for T < −α

β .

(3.5)

Proof. Applying the triangle inequality in the L∞(Td) norm, we estimate the approximation
error by ‖f − S̃

Id,T,γN
f |L∞(Td)‖ ≤ ‖f − S

Id,T,γN
f |L∞(Td)‖ + ‖S

Id,T,γN
f − S̃

Id,T,γN
f |L∞(Td)‖,

where the first term on the right hand side of this inequality is called truncation error and
the second term is called aliasing error. Next, we estimate the truncation error. We have
f − S

Id,T,γN
f =

∑
k∈Zd\Id,T,γN

f̂k e2πik◦. Using the weights ωα,β,γ(k), we obtain

‖f − S
Id,T,γN

f |L∞(Td)‖

≤
∑

k∈Zd\Id,T,γN

|f̂k| =
∑

k∈Zd\Id,T,γN

max(1, ‖k‖1)−α
d∏
s=1

max(1, γ−1
s |ks|)−β ωα,β,γ(k) |f̂k|

≤ max
k∈Zd\Id,T,γN

(
max(1, ‖k‖1)−α

d∏
s=1

max(1, γ−1
s |ks|)−β

) ∑
k∈Zd\Id,T,γN

ωα,β,γ(k) |f̂k|.

Applying Lemma 3.2 with α̃ := α and β̃ := β yields

‖f − S
Id,T,γN

f |L∞(Td)‖

≤ N−(α+β)
∑

k∈Zd\Id,T,γN

ωα,β,γ(k) |f̂k|


(
Nd−1

∏d
s=1 γ

−1
s

)Tβ+α
d−T

for T > −α
β ,

1 for T = −α
β ,

d−
Tβ+α
1−T for T < −α

β .

(3.6)

Last, we estimate the aliasing error. Due to (3.4), we infer

‖S
Id,T,γN

f − S̃
Id,T,γN

f |L∞(Td)‖ ≤
∑

k∈Id,T,γN

∑
h∈Zd\{0}

hz≡0 (mod M)

|f̂k+h|.

Due to the reconstruction property (2.5), we have

{k + h ∈ Zd : k ∈ Id,T,γN ,h ∈ Zd \ {0},hz ≡ 0 (mod M)} ⊂ Zd \ Id,T,γN . (3.7)

Consequently, we obtain ‖S
Id,T,γN

f − S̃
Id,T,γN

f |L∞(Td)‖ ≤
∑
k∈Zd\Id,T,γN

|f̂k| and proceed as in

the estimate of the truncation error. This yields the assertion.

As a consequence of Theorem 3.3, we can derive three cases for the relationship between
the parameter T of a weighted frequency index set Id,T,γN and the smoothness parameters α, β.
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(I) The weighted frequency index set Id,T,γN is “thinner” than required by the isotropic and
dominating mixed smoothness parameters α and β, i.e., T > −α/β.

(II) The weighted frequency index set Id,T,γN fits the isotropic and dominating mixed smooth-
ness parameters α and β, i.e., the parameter T = −α/β.

(III) The weighted frequency index set Id,T,γN is “thicker” than required by the isotropic and
dominating mixed smoothness parameters α and β, i.e., T < −α/β. Choosing the
parameter T smaller than −α/β does not improve the estimate for the approximation
error from the case (II).

3.2 Periodic Sobolev spaces of generalized mixed smoothness Hα,β,γ(Td)

Next, we estimate the approximation error f−S̃
Id,T,γN

f of a continuous function f ∈ Aα,β,γ(Td) ⊂
Hα,β,γ(Td) in the norm of the periodic Sobolev spaces of generalized mixed smoothness.

Theorem 3.4. Let parameters r, t, α, β ∈ R, a function f ∈ C(Td) ∩ Aα,β,γ(Td), a weighted

frequency index set Id,T,γN and a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) be given, where
N ≥ 1, β ≥ t ≥ 0, α+β > r+t, α > −β, γ as stated in (2.6) and T ∈ [− r

t , 1) with − r
t := −∞

for t = 0. Then, the approximation error is bounded by

‖f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖ ≤ N−(α−r+β−t)

·

‖f |Hα,β,γ(Td)‖


(
Nd−1

∏d
s=1 γ

−1
s

)T (β−t)+α−r
d−T

for T > −α−r
β−t

d−
T (β−t)+α−r

1−T for T ≤ −α−r
β−t


+‖f |Aα,β,γ(Td)‖

 d
Tt+r
1−T

(
Nd−1

∏d
s=1 γ

−1
s

)Tβ+α
d−T

for T > −α
β

d−
T (β−t)+α−r

1−T for T ≤ −α
β


 . (3.8)

Proof. For a function f ∈ Aα,β,γ(Td) ⊂ Hα,β,γ(Td), we have f−S
Id,T,γN

f =
∑
k∈Zd\Id,T,γN

f̂k e2πik◦.

Using the weights ωα,β,γ(k), we obtain

‖f − S
Id,T,γN

f |Hr,t,γ(Td)‖2 =
∑

k∈Zd\Id,T,γN

ωr,t,γ(k)2 ω
α,β,γ(k)2

ωα,β,γ(k)2
|f̂k|2

≤ max
k∈Zd\Id,T,γN

ω−(α−r),−(β−t),γ(k)2
∑

k∈Zd\Id,T,γN

ωα,β,γ(k)2 |f̂k|2.

Next, we apply Lemma 3.2 with α̃ := α− r and β̃ := β − t. This yields the first summand in
(3.8), since we have

∑
k∈Zd\Id,T,γN

ωα,β,γ(k)2 |f̂k|2 ≤ ‖f |Hα,β,γ(Td)‖2.
For the aliasing error of a function f ∈ C(Td)∩Aα,β,γ(Td), we have (3.4) and, in consequence
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of the concaveness of the square root function, we conclude

‖S
Id,T,γN

f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖ ≤

 ∑
k∈Id,T,γN

∣∣∣∣∣∣∣∣∣
∑

h∈Zd\{0}
hz≡0 (mod M)

ωr,t,γ(k) f̂k+h

∣∣∣∣∣∣∣∣∣
2

1
2

≤
∑

k∈Id,T,γN

∣∣∣∣∣∣∣∣∣
∑

h∈Zd\{0}
hz≡0 (mod M)

ωr,t,γ(k) f̂k+h

∣∣∣∣∣∣∣∣∣ (3.9)

≤ max
k∈Id,T,γN

ωr,t,γ(k)
∑

k∈Id,T,γN

∑
h∈Zd\{0}

hz≡0 (mod M)

∣∣∣f̂k+h

∣∣∣ .

Since we have max
k∈Id,T,γN

{
ωr,t,γ(k)

}
=

 max
k∈Id,T,γN

{
ω

r/t
1+r/t

, 1
1+r/t

,γ
(k)

}(1+r/t)t

for t > 0

max
k∈Id,T,γN

{
ω1,0,γ(k)

}r
for t = 0


and by applying Lemma 2.4 with T̃ = − r

t , we estimate

max
k∈Id,T,γN

{
ωr,t,γ(k)

}
≤
{

(d(T+ r
t
)/(1−T )/(1+ r

t
)N)t+r for t > 0

(d1/(1−T )N)r for t = 0

}
= d(Tt+r)/(1−T )N r+t.

(3.10)
Due to the reconstruction property (2.5), the inclusion (3.7) follows. Thus, we infer

‖S
Id,T,γN

f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖ ≤ d
Tt+r
1−T N r+t

∑
k∈Zd\Id,T,γN

ωα,β,γ(k)

ωα,β,γ(k)

∣∣∣f̂k∣∣∣
≤ d

Tt+r
1−T N r+t max

k∈Zd\Id,T,γN

1

ωα,β,γ(k)
‖f |Aα,β,γ(Td)‖.

Applying Lemma 3.2 with α̃ := α and β̃ := β yields the second summand in (3.8).

Using the inequality (2.7) we obtain the statement of Theorem 3.4 with the Hα,β+λ,γ(Td)
norm on the right hand side for functions f ∈ C(Td) ∩Hα,β+λ,γ(Td) ⊂ Aα,β,γ(Td), λ > 1/2.

3.3 Approximate reconstruction by interpolation

Let a frequency index set Id,T,γN , N ≥ 1, T ∈ [−∞, 1), γ ∈ (0, 1]d, and a reconstructing rank-1

lattice Λ(z,M, Id,T,γN ) be given. When we approximate a function f ∈ Aα,β,γ(Td) or f ∈
Hα,β,γ(Td) by the approximated Fourier partial sum S̃

Id,T,γN
f(x) from (3.3), an interpolation

condition f(xj) = S̃
Id,T,γN

f(xj), xj ∈ Λ(z,M, Id,T,γN ), j = 0, . . . ,M − 1, does not hold in

general and we only have f(xj) ≈ S̃
Id,T,γN

f(xj), j = 0, . . . ,M − 1. However, we can expand

the frequency index set Id,T,γN to an interpolation frequency index set Ĩ ⊃ Id,T,γN using a slightly
modified version of the approach presented in [28] and obtain the interpolation condition

f(xj) = S̃
Ĩ
f(xj), xj ∈ Λ(z,M, Id,T,γN ), j = 0, . . . ,M − 1.

16



The method for constructing the interpolation frequency index set Ĩ consists of the following
steps.

1. Start with the index set Ĩ := Id,T,γN .

2. For l = 0, . . . ,M − 1, if @k ∈ Ĩ : kz ≡ l (mod M), add a frequency k′ ∈ Zd : k′ z ≡ l
(mod M) to the index set Ĩ.

We have several possibilities for choosing k′ in step 2. Subsequent to the following Theorem
3.5, we suggest a special choice.

After applying the two steps mentioned above, we have constructed an interpolation
frequency index set Ĩ, which has the properties Id,T,γN ⊂ Ĩ, |Ĩ| = M and |{k ∈
Ĩ : kz ≡ l (mod M)}| = 1 for all l = 0, . . . ,M − 1. Due to this, the Fourier matrix

F :=
(
e2πijkz/M

)M−1

j=0; k∈Ĩ is a square matrix and identical to the one-dimensional Fourier ma-

trix F̃ :=
(
e2πijl/M

)M−1

j,l=0
except for column permutations. Therefore, we compute the approx-

imated Fourier coefficients
ˆ̃
fk, k ∈ Ĩ, by

(
ˆ̃
fk

)
k∈Ĩ

= 1
M FH (f(xj))

M−1
j=0 in O(M(logM + d))

arithmetic operations using a single one-dimensional FFT as described in Section 2.3.

The following theorem states that we have identical error estimates as in Section 3.1,
Theorem 3.3 and Section 3.2, Theorem 3.4.

Theorem 3.5. Let parameters r, t, α, β ∈ R, a function f ∈ C(T d) ∩ Aα,β,γ(Td), a weighted

frequency index set Id,T,γN , a reconstructing rank-1 lattice Λ(z,M, Id,T,γN ) and an interpolation

frequency index set Ĩ ⊃ Id,T,γN be given, where N ≥ 1, β ≥ t ≥ 0, α + β > r + t, α > −β, γ

as stated in (2.6), and |{k ∈ Ĩ : kz ≡ l (mod M)}| = 1 for all l = 0, . . . ,M − 1. Then, the
approximation error is bounded by (3.5) for T ∈ [−∞, 1) and by (3.8) for T ∈ [− r

t , 1) with
− r
t := −∞ for t = 0.

Proof. We use the inclusion Zd \ Ĩ ⊂ Zd \ Id,T,γN and proceed as in the proofs of Theorem 3.3
and Theorem 3.4.

In step 2 of the method for constructing the interpolation frequency index set Ĩ, we
suggest choosing k′ as a smallest frequency index with respect to the weight ω−T,1,γ(k),
k′ = arg min k∈Zd

kz≡l (mod M)

ω−T,1,γ(k), since this may reduce the approximation error ‖f −

S̃
Id,T,γN

f |L∞(Td)‖ or ‖f − S̃
Ĩ
f |Hr,t,γ(Td)‖ for a function f ∈ C(Td) ∩ Aα,β,γ(Td) in general.

4 Fast evaluation and reconstruction of trigonometric polynomials
using Taylor expansion and rank-1 lattices

We have already discussed the fast and exact evaluation of a trigonometric polynomial p with
frequencies supported on an index set I at rank-1 lattice nodes xj in Section 2.2 as well as the
fast, exact and perfectly stable reconstruction of a trigonometric polynomial p by sampling at
rank-1 lattice nodes xj in Section 2.3. Based on these two results, we consider the case where
the sampling values are not given exactly at the rank-1 lattice nodes xj but at perturbed
rank-1 lattice nodes. We are especially interested in the evaluation error and the stability of
the reconstruction as a function of the perturbation parameter ε.
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First, we consider in Section 4.1 the fast evaluation of a trigonometric polynomial p. As
presented in [36] and based on the ideas in [1, 26], we evaluate a trigonometric polynomial p at
nodes y` ∈ Td, ` = 0, . . . , L−1, using a Taylor expansion at a closest rank-1 lattice node xj′ ∈
Λ(z,M) for each node y`. For evaluating the trigonometric polynomial p and its derivatives
at the rank-1 lattice nodes, one-dimensional FFTs are used as described in Section 2.2. In
Section 4.2, we develop error estimates for the approximation of the trigonometric polynomial
p by the Taylor expansion. Then, we investigate the reconstruction of the trigonometric
polynomial p from sampling values at perturbed rank-1 lattice nodes in Section 4.3. Thereby,
we consider the stability of the reconstruction in dependence of the perturbation and prove
upper bounds for the reconstruction error.

4.1 Fast evaluation of trigonometric polynomials using Taylor expansion and
rank-1 lattices

We approximate a trigonometric polynomial p : Td → C by

p(x) ≈ sm(x) :=
∑

0≤|ν|<m

Dνp(a)

ν!
(x− a)ν ,

where m ∈ N, D0p := p, Dνp := ∂ν1
∂x1ν1

. . . ∂νd
∂xd

νd p, x := (x1, . . . , xd)
>, ν := (ν1, . . . , νd) ∈ Nd0,

|ν| := |ν1|+ . . .+ |νd|, ν! := ν1! · . . . · νd!, xν := x1
ν1 · . . . · xdνd . For a trigonometric polyno-

mial p ∈ ΠI , we have Dνp(x) =
∑
k∈I (2πik)ν p̂k e2πikx and thus,

sm(x) =
∑

0≤|ν|<m

(x− a)ν

ν!

∑
k∈I

(2πik)ν p̂k e2πika. (4.1)

Let a frequency index set I ⊂ Zd of finite cardinality and a rank-1 lattice Λ(z,M) ⊂ Td of
size M with generating vector z ∈ Zd be given. Furthermore, we define the metric ρ(x,y) :=
minh∈Zd ‖x−y+h‖∞ for x,y ∈ Td. For the expansion point a ∈ Td in (4.1), we use a closest
rank-1 lattice point xj′ ∈ Λ(z,M), xj′ := arg minxj∈Λ(z,M) ρ(x,xj), for each x ∈ Td, and we

approximate the trigonometric polynomial p(x) :=
∑
k∈I p̂k e2πikx by (4.1).

Assuming that the index µ` ∈ {0, . . . ,M − 1} of a closest rank-1 lattice node
xµ` = arg minxj∈Λ(z,M) ρ(y`,xj) is known for each sampling node y`, ` = 0, . . . , L− 1,
the approximation of the trigonometric polynomial p by sm can be realized in
O
(
md(L+M logM + d|I|)

)
arithmetic operations for L sampling nodes y`.

We write the evaluation of sm(x) at sampling nodes y`, ` = 0, . . . , L− 1, in matrix-vector
notation as

(sm(y`))
L−1
`=0 = Am−1p̂ =

∑
0≤|ν|≤m−1

BνFDν p̂, (4.2)

where p̂ := (p̂k)k∈I ∈ C|I| is the vector of the Fourier coefficients,

Dν := diag
(
((2πik)ν)k∈I

)
∈ C|I|×|I| is a diagonal matrix, F :=

(
e2πijkz/M

)M−1

j=0; k∈I ∈ CM×|I|

is the Fourier matrix from Section 2.3, and Bν ∈ RL×M is a sparse matrix with at most one

non-zero entry
(y`−xµ` )

ν

ν! at column µ` in each row ` = 0, . . . , L− 1.
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4.2 Error estimates for the evaluation of trigonometric polynomials at perturbed
rank-1 lattice nodes

In this section, we establish error bounds for the approximate evaluation of a trigonometric
polynomial p ∈ ΠI by a Taylor expansion sm from (4.1) for nodes y ∈ Yε from the set of
admissible evaluation nodes Yε := {x ∈ Td : ∃xj′ ∈ Λ(z,M) such that ρ(x,xj′) ≤ ε} with
perturbation parameter ε ≥ 0. The results for the error bounds in Theorem 4.1 are similar to
the ones in [36, Theorem III.1]. However, in the latter one, we allowed arbitrary evaluation
nodes x ∈ Td and used the so-called mesh norm δ, whereas we restrict the evaluation nodes y
here to the set Yε, i.e., to those nodes from Td which are close to the rank-1 lattice Λ(z,M)
with respect to the perturbation parameter ε.

Theorem 4.1. Let a weighted frequency index set Id,T,γN and a trigonometric polynomial

p : Td → C supported on Id,T,γN , p(x) :=
∑
k∈Id,T,γN

p̂k e2πikx, be given by its Fourier coeffi-

cients p̂k ∈ C, where N ≥ 1, T ∈ [−∞, 1) and γ ∈ (0, 1]d. Furthermore, let Λ(z,M) be
a rank-1 lattice and Yε be a special set of admissible evaluation nodes for a perturbation
parameter ε ≥ 0. Additionally, let a parameter m ∈ N, a dominating mixed smoothness
parameter β ≥ 0 and an isotropic smoothness parameter α be given, where 0 ≤ α + β ≤ m.
Then, for the approximate evaluation of the trigonometric polynomial p by a truncated Taylor

series sm(y) :=
∑m−1
|ν|=0

Dνp(xj′ )

ν! (y−xj′)ν of degree m− 1 at nodes y ∈ Yε, where m ∈ N and

xj′ = arg minxj∈Λ(z,M) ρ(y,xj), the remainder Rm := p− sm is bounded by

|Rm(y)| ≤ (2π)m

m!
d
m−α−Tβ

1−T εmNm−α−β
∑

k∈Id,T,γN

|p̂k| ωα,β,γ(k).

Proof. First we show |Rm(y)| ≤ (2π)m

m! εm
∑
k∈Id,T,γN

|p̂k| ‖k‖m1 for all y ∈ Yε and therefor,

we follow the major steps of the proof of [36, Theorem III.1]. Let ξ(t) := xj′ + t(y − xj′),
t ∈ [0, 1]. The remainder Rm(y) can be written in the form

Rm(y) = m

∫ 1

0
(1− t)m−1

∑
|ν|=m

Dνp(ξ(t))
(y − xj′)ν

ν!
dt

and we estimate |Rm(y)| ≤ maxt∈[0,1]

∑
|ν|=m

∣∣∣∑k∈Id,T,γN
(2πik)ν p̂k e2πik(ξ(t))

∣∣∣|(y−xj′ )ν |ν! . Since

we have ρ(y,xj′) ≤ ε and by applying the multinomial theorem, we get

|Rm(y)| ≤ max
t∈[0,1]

∑
|ν|=m

ε|ν|

ν!

∑
k∈Id,T,γN

|(2πik)ν | |p̂k| |e2πik(ξ(t))|

≤ 2mπmεm
∑

k∈Id,T,γN

|p̂k|
∑
|ν|=m

|k1|ν1 · . . . · |kd|νd
ν!

=
2mπm

m!
εm

∑
k∈Id,T,γN

|p̂k| ‖k‖m1

for arbitrary y ∈ Yε.
Next, we remark that ‖k‖m1 ≤ max(1, ‖k‖1)m = ωm,0,γ(k), m > 0, follows directly from
definition. Furthermore, we estimate parts of the isotropic smoothness in terms of the dom-

inating mixed smoothness, ω
m−α−Tβ

1−T ,0,γ(k) ≤ d
m−α−Tβ

1−T ω0,m−α−Tβ
1−T ,γ(k) for all k ∈ Zd, using
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the inequalities (2.11) and (2.12). Therefore, we have

ωm,0,γ(k) = ωm−α−
m−α−Tβ

1−T ,−β,γ(k) ω
m−α−Tβ

1−T ,0,γ(k) ωα,β,γ(k)

≤ ωm−α−
m−α−Tβ

1−T ,−β,γ(k) d
m−α−Tβ

1−T ω0,m−α−Tβ
1−T ,γ(k) ωα,β,γ(k)

= d
m−α−Tβ

1−T ω−
T

1−T (m−α−β), 1
1−T (m−α−β),γ(k) ωα,β,γ(k)

for k ∈ Z. Consequently, we infer

|Rm(y)| ≤ (2π)m

m!
d
m−α−Tβ

1−T εm max
k∈Id,T,γN

(
ω−

T
1−T ,

1
1−T ,γ(k)

)m−α−β ∑
k∈Id,T,γN

ωα,β,γ(k) |p̂k|. (4.3)

Due to (2.13), we obtain max
k∈Id,T,γN

(
ω−

T
1−T ,

1
1−T ,γ(k)

)m−α−β
≤ Nm−α−β and this yields the

assertion.

As a consequence of Theorem 4.1, we have several possibilities to ensure a small approxi-
mation error for fixed Taylor expansion degree m− 1 and increasing refinement N .

(I) Choose the perturbation parameter ε like ∼ 1/N
m−α−β

m or smaller and restrict evalua-
tion nodes to the set Yε, i.e., permit only relatively small perturbations to the nodes
xj of the rank-1 lattice.

(II) Allow arbitrarily chosen evaluation nodes x ∈ Td and use trigonometric polynomials
with a certain decay of the Fourier coefficients p̂k. For instance, choose α+β = m and
ensure that the Fourier coefficients p̂k decay at least like ∼ 1/ωα,β,γ(k) or faster.

4.3 Approximate reconstruction of trigonometric polynomials by sampling at
perturbed rank-1 lattice nodes

Let a frequency index set I ⊂ Zd ∩ [−N,N ]d, N ≥ 1, be given. In addition, let a reconstruct-
ing rank-1 lattice Λ(z,M, I) of size M ≥ |I| be given that allows for an exact and perfectly
stable reconstruction of the Fourier coefficients p̂k ∈ C of a trigonometric polynomial p ∈ ΠI ,
p(x) :=

∑
k∈I p̂k e2πikx, i.e., condition (2.3) is fulfilled.

Our aim is now to approximately reconstruct the Fourier coefficients p̂k, k ∈ I, from
sampling values p(y`), ` = 0, . . . , L− 1, using the approach from Section 4.1. In the matrix-
vector notation this problem reads as follows: Solve the linear system of equations Am−1

ˆ̃p =
p in the least-squares sense,

ˆ̃p := arg min

ĝ∈C|I
d,T,γ
N |

‖Am−1 ĝ − p‖2, (4.4)

where Am−1 :=
∑
|ν|≤m−1BνFDν ∈ CM×|I| is the approximated Fourier matrix, see (4.2),

ˆ̃p := (ˆ̃pk)
k∈Id,T,γN

is the vector of approximated Fourier coefficients and p := (p(y`))`=0,...,L−1

is the vector of sampling values. Assuming that the approximated Fourier matrix Am−1 has
full column rank, we expect a unique solution of (4.4) solving the normal equation of the first
kind, AH

m−1Am−1
ˆ̃p = AH

m−1 p.

In the following, we investigate the condition number κ(Am−1) := σ1(Am−1)
σ|I|(Am−1) of the approx-

imated Fourier matrix Am−1, where σ1(Am−1) and σ|I|(Am−1) are the largest and smallest
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singular values of κ(Am−1), respectively. We assume that the number L of sampling nodes y`
is equal to the rank-1 lattice size M and that each rank-1 lattice node xj is a closest one for
the sampling node yj , j = 0, . . . ,M − 1. Then, the sparse matrix Bν from (4.2) is a diagonal
matrix,

Bν = diag

([
(yj − xj)ν

ν!

]
j=0,...,M−1

)
∈ RM×M , ν ∈ Nd0. (4.5)

Theorem 4.2. Let a frequency index set I ⊂ Zd ∩ [−N,N ]d, N ≥ 1, and a corresponding
reconstructing rank-1 lattice Λ(z,M, I) be given as well as a parameter m ∈ N. Let the sparse
matrixBν from (4.2) be a diagonal matrix of form (4.5) and ‖yj−xj‖∞ ≤ ε, j = 0, . . . ,M−1,

for fixed perturbation parameter ε, 0 ≤ ε < ln2
2πdN . Then, the condition number κ(Am−1) can

be estimated by

κ(Am−1) ≤
1 +

∑m−1
r=1

(2πdNε)r

r!

1−
∑m−1

r=1
(2πdNε)r

r!

≤ e2πdNε

2− e2πdNε
.

Proof. For the case m = 1, we obtain AH
0A0 = DH

0F
HBH

0B0FD0. Since D0 = I |I| and

B0 = IM are identity matrices, it follows from condition (2.3) that AH
0A0 = FHF = MIM

and thus, all singular values σ1(A0) = . . . = σ|I|(A0) =
√
M . Therefore, the condition

number κ(A0) = σ1(A0)
σ|I|(A0) = 1. In the following, we consider the case m > 1. For the largest

singular value σ1(Am−1), we have

σ1(Am−1) ≤ ‖B0FD0‖2 +

∥∥∥∥∥∥
∑

1≤|ν|≤m−1

BνFDν

∥∥∥∥∥∥
2

=
√
M + σ1

 ∑
1≤|ν|≤m−1

BνFDν

 .

(4.6)

Next, we show an upper bound for σ1

(∑
1≤|ν|≤m−1BνFDν

)
. We have

σ1

 ∑
1≤|ν|≤m−1

BνFDν

 ≤
∑

1≤|ν|≤m−1

‖BνFDν‖2 ≤
∑

1≤|ν|≤m−1

‖Bν‖2‖F ‖2‖Dν‖2

=
∑

1≤|ν|≤m−1

σ1(Bν)σ1(F )σ1(Dν). (4.7)

Since Bν = diag

([
(yj−xj)ν

ν!

]
j=0,...,M−1

)
∈ RM×M , F ∈ CM×|I| has orthogonal columns and

Dν = diag ([(2πik)ν ]k∈I) ∈ C|I|×|I|, we obtain σ1(Bν) ≤ ε|ν|

ν! , σ1(F ) =
√
M and σ1(Dν) ≤

(2πN)|ν|. Due to this fact and by applying the multinomial theorem

(ξ1 + . . .+ ξd)
r =

∑
|ν|=r

r!

ν!
ξν , ξ := (ξ1, . . . , ξd)

>,

21



on
∑
|ν|=r

1|ν|

ν! =
∑
|ν|=r

(1,...,1)ν

ν! = dr

r! , we infer

σ1

 ∑
1≤|ν|≤m−1

BνFDν

 (4.7)

≤
∑

1≤|ν|≤m−1

(2πNε)|ν|

ν!

√
M =

√
M

m−1∑
r=1

(2πNε)r
∑
|ν|=r

1|ν|

ν!

=
√
M

m−1∑
r=1

(2πdNε)r

r!
≤
√
M (e2πdNε − 1).

With (4.6), we obtain σ1(Am−1) ≤
√
M +

√
M
∑m−1

r=1
(2πdNε)r

r! ≤
√
Me2πdNε.

Next, we estimate the smallest singular values σ|I|(Am−1). Therefor, we use the well-known in-
equality for the singular values (cf. [18, Theorem 3.3.16]) for arbitrary matrices E,G ∈ Cr×s,

σp+q−1(E +G) ≤ σp(E) + σq(G) if p+ q − 1 ≤ min(r, s).

Setting E := Am−1 =
∑
|ν|≤m−1BνFDν , G := −

∑
1≤|ν|≤m−1BνFDν , p = |I| and q = 1,

this yields

σ|I| (Am−1) ≥ σ|I| (B0FD0)− σ1

− ∑
1≤|ν|≤m−1

BνFDν


≥
√
M −

√
M

m−1∑
r=1

(2πdNε)r

r!
≥
√
M
(

2− e2πdNε
)
. (4.8)

The condition ε < ln2
2πdN guarantees σ1

(∑
1≤|ν|≤m−1BνFDν

)
<
√
M for all m > 1 and thus,

we have σ|I|(Am−1) > 0. Altogether, this yields the assertion.

Similar statements can be found in [14, 10, 30] with the same maximal and minimal singular
values. However, in these papers, the approximated Fourier coefficients ˆ̃p are not the solution
of the (unweighted) optimization problem (4.4) but of a weighted problem. Furthermore, they
assume that the so called mesh-norm of the sampling set {y`}L−1

`=0 has the upper bound ln2
2πdN ,

while we assume in Theorem 4.2 that the perturbation parameter ε has this upper bound.
Based on the evaluation error of (4.2) and based on the stability results from Theorem 4.2,

we consider the error for the fast and approximate reconstruction of trigonometric polynomials
p ∈ Π

Id,T,γN
by sampling at perturbed nodes yj , j = 0, . . . ,M − 1, of a reconstructing rank-1

lattice Λ(z,M, Id,T,γN ). The following theorem states that we obtain a similar error bound as in
Theorem 3.4 for the trigonometric polynomial p with the additional constant C(d, T, α, β,m)
and the additional stability term 1

2−e
2π

(
d
1+max(0, T

1−T )
)
Nε

in the aliasing error. The truncation

error is now zero since we have a trigonometric polynomial with frequencies supported on
the index set Id,T,γN . We will use Theorem 4.3 later to show an error bound for functions
f ∈ Aα,β,γ(Td) in the proof of Theorem 5.1.

Theorem 4.3. Let a weighted frequency index set Id,T,γN and a trigonometric polynomial
p ∈ Π

Id,T,γN
, p(x) :=

∑
k∈Id,T,γN

p̂k e2πikx, be given by its Fourier coefficients p̂k ∈ C, where N ≥
1, T ∈ [−∞, 1) and γ ∈ (0, 1]d. Furthermore, let a parameter m ∈ N, a reconstructing rank-1

lattice Λ(z,M, Id,T,γN ) and a set of sampling nodes Y = {yj}M−1
j=0 be given, where ‖yj−xj‖∞ ≤
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ε, j = 0, . . . ,M−1, for fixed perturbation parameter ε, 0 ≤ ε <
(
2π
(
d1+max(0, T

1−T ))N)−1
ln2.

Then, the error of the approximation S̃
Id,T,γN

p(x) =
∑
k∈Id,T,γN

ˆ̃pke2πikx of the trigonometric

polynomial p with
(

ˆ̃pk

)
k∈Id,T,γN

:= arg min

ĝ∈C|I
d,T,γ
N |

‖Am−1 ĝ − p‖2 and p := p(yj)
M−1
j=0 is bounded

by

‖p− S̃
Id,T,γN

p|L2(Td)‖ ≤ C(d, T, α, β,m)

2− e2π
(
d
1+max(0, T

1−T ))Nε N−(α+β)
∑

k∈Id,T,γN

ωα,β,γ(k) |p̂k|,

where the constant C(d, T, α, β,m) := d
min(0,Tm)−α−Tβ

1−T (ln2)m

m! and the parameters α, β ∈ R,
β ≥ 0, 0 < α+ β ≤ m.

Proof. By Parseval’s identity, we have ‖p − S̃
Id,T,γN

p|L2(Td)‖ =
∥∥∥(p̂k − ˆ̃pk)

k∈Id,T,γN

∥∥∥
2
. Based

on the normal equation AH
m−1Am−1

(
ˆ̃pk

)
k∈Id,T,γN

= AH
m−1p, we obtain

AH
m−1Am−1

(
ˆ̃pk − p̂k

)
k∈Id,T,γN

= AH
m−1

(
p−Am−1 (p̂k)

k∈Id,T,γN

)
.

Since we have (2.10) by Lemma 2.3 and ε <
(
2π
(
d1+max(0, T

1−T ))N)−1
ln2, the smallest sin-

gular value σ|I|
(
AH
m−1Am−1

)
= σ|I| (Am−1)2 > 0 by (4.8) in the proof of Theorem 4.2

Consequently, the matrix AH
m−1Am−1 is invertible. Therefore, we obtain(

ˆ̃pk − p̂k
)
k∈Id,T,γN

=
(
AH
m−1Am−1

)−1
AH
m−1

(
p−Am−1 (p̂k)

k∈Id,T,γN

)
.

This yields the estimate∥∥∥(p̂k − ˆ̃pk)
k∈Id,T,γN

∥∥∥
2
≤
∥∥(AH

m−1Am−1)−1AH
m−1

∥∥
2

∥∥∥p−Am−1 (p̂k)
k∈Id,T,γN

∥∥∥
2
. (4.9)

According to [3, Subsection 1.4.3], we have
∥∥(AH

m−1Am−1)−1AH
m−1

∥∥
2

= 1
σ
|Id,T,γ
N

|
(Am−1) . Thus,

we obtain
∥∥(AH

m−1Am−1)−1AH
m−1

∥∥
2
≤ 1

√
M

2−e
2π

(
d
1+max(0, T

1−T )
)
Nε

 by (4.8) in the proof of

Theorem 4.2. Furthermore, we have
∥∥∥p−Am−1 (p̂k)

k∈Id,T,γN

∥∥∥
2
≤
√
M
∥∥∥p−Am−1 (p̂k)

k∈Id,T,γN

∥∥∥
∞

=
√
M
∥∥∥(Rm(yj)

)M−1

j=0

∥∥∥
∞
, where Rm is the remainder from Theorem 4.1. We apply Theorem

4.1 and infer∥∥∥(Rm(yj)
)M−1

j=0

∥∥∥
∞
≤ (2π)m

m!
d
m−α−Tβ

1−T εm Nm−α−β
∑

k∈Id,T,γN

|p̂k| ωα,β,γ(k)

≤ (ln2)m

m!
d
m−α−Tβ

1−T
(
d1+max(0, T

1−T ))−m︸ ︷︷ ︸
=d

min(0,Tm)−α−Tβ
1−T

N−α−β
∑

k∈Id,T,γN

|p̂k| ωα,β,γ(k).

Altogether, this yields the assertion.
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5 Approximate reconstruction of multivariate periodic functions by
sampling at perturbed rank-1 lattice nodes

In Section 4.3, we have dealt with the fast and stable approximate reconstruction of trigono-
metric polynomials by sampling at perturbed nodes yj , j = 0, . . . ,M − 1, of a reconstructing

rank-1 lattice Λ(z,M, Id,T,γN ). Based on these results and the results from Section 3, we
consider the approximate reconstruction of functions f ∈ C(Td) ∩ Aα,β,γ(Td) by sampling at
perturbed rank-1 lattice nodes yj , j = 0, . . . ,M − 1. We compute the approximated Fourier
coefficients

ˆ̃f := arg min

ĝ∈C|I
d,T,γ
N |

‖Am−1 ĝ − f‖2 (5.1)

by solving the normal equation AH
m−1Am−1

ˆ̃
f = AH

m−1f , where
ˆ̃
f :=

(
ˆ̃
fk

)
k∈Id,T,γN

and

f := f(yj)
M−1
j=0 . Using the LSQR algorithm [3] in combination with (4.2) and its ad-

joint version, we obtain an approximation
ˆ̃
h of the approximated Fourier coefficients

ˆ̃
f in

O
(
K md(M logM + d|I|)

)
arithmetic operations, where K is the maximal number of iter-

ations of the LSQR algorithm. Choosing K =
⌈

log(2κ(Am−1))−log δ
log(κ(Am−1)+1)−log(κ(Am−1)−1)

⌉
guarantees a

relative error ‖
ˆ̃f−ˆ̃h‖2
‖ ˆ̃f‖2

≤ δ, cf. [3, Sec. 7.4.4], where κ(Am−1) denotes the condition number

of the approximated Fourier matrix Am−1. If this condition number is unknown, we may use
an upper bound of κ(Am−1), for instance the upper bound from Theorem 4.2. We stress the
fact that the LSQR algorithm [3] in combination with (4.2) and its adjoint version indicates a
fast reconstruction algorithm for moderate dimensionality d and moderate Taylor expansion
degree m.

The following theorem states that we obtain the same error bound as in Theorem 3.4 up
to the additional constant C(d, T,m) and the additional stability term 1

2−e
2π

(
d
1+max(0, T

1−T )
)
Nε

in the aliasing error.

Theorem 5.1. Let r, t, α, β ≥ 0, β ≥ t ≥ 0, α + β > r + t, T ∈ [− r
t , 1) with − r

t := −∞ for

t = 0, a weighted frequency index set Id,T,γN and a reconstructing rank-1 lattice Λ(z,M, Id,T,γN )
be given, where N ≥ 1, 0 < α+β ≤ m ∈ N, and γ ∈ (0, 1]d. Furthermore, let a set of sampling
nodes Y = {yj}M−1

j=0 be given, where ‖yj−xj‖∞ ≤ ε, j = 0, . . . ,M −1, for fixed perturbation

parameter ε, 0 ≤ ε <
(
2π
(
d1+max(0, T

1−T ))N)−1
ln2. Then, the error of the approximation

S̃
Id,T,γN

f(x) =
∑
k∈Id,T,γN

ˆ̃
fk e2πikx of a function f ∈ C(Td)∩Aα,β,γ(Td) with

(
ˆ̃
fk

)
k∈Id,T,γN

from
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(5.1) is bounded by

‖f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖ ≤ N−(α−r+β−t)

·

‖f |Hα,β,γ(Td)‖


(
Nd−1

d∏
s=1

γ−1
s

)T (β−t)+α−r
d−T

for T > −α−r
β−t

d−
T (β−t)+α−r

1−T for T ≤ −α−r
β−t


+

C(d, T,m)

2− e2π
(
d
1+max(0, T

1−T ))Nε ‖f |Aα,β,γ(Td)‖


d
Tt+r
1−T

(
Nd−1

d∏
s=1

γ−1
s

)Tβ+α
d−T

for T > −α
β

d−
T (β−t)+α−r

1−T for T ≤ −α
β


 ,

(5.2)

where C(d, T,M) := 1 +

(
d

T
1−T ln2

)m
m! .

Proof. We apply the triangle inequality on ‖f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖ and estimate the trun-

cation error ‖f − S
Id,T,γN

f |Hr,t,γ(Td)‖ as in the proof of Theorem 3.4.

Next, we estimate the aliasing error ‖S
Id,T,γN

f − S̃
Id,T,γN

f |Hr,t,γ(Td)‖. Based on the normal

equation AH
m−1Am−1

ˆ̃
f = AH

m−1f , we calculate

D
(

ˆ̃
fk − f̂k

)
k∈Id,T,γN

= D
(
AH
m−1Am−1

)−1
AH
m−1

(
f −Am−1

(
f̂k

)
k∈Id,T,γN

)
where D := diag

(
ωr,t,γ(k)

)
k∈Id,T,γN

, Consequently, we obtain

∥∥∥SId,T,γN
f − S̃

Id,T,γN
f |Hr,t,γ(Td)

∥∥∥ =

∥∥∥∥D ( ˆ̃
fk − f̂k

)
k∈Id,T,γN

∥∥∥∥
2

≤ ‖D‖2
∥∥(AH

m−1Am−1)−1AH
m−1

∥∥
2

∥∥∥∥f −Am−1

(
f̂k

)
k∈Id,T,γN

∥∥∥∥
2

and we proceed as in the proof of Theorem 4.3 for
∥∥(AH

m−1Am−1)−1AH
m−1

∥∥
2
. We infer∥∥∥∥f −Am−1

(
f̂k

)
k∈Id,T,γN

∥∥∥∥
2

≤
√
M

∥∥∥∥f −Am−1

(
f̂k

)
k∈Id,T,γN

∥∥∥∥
∞

≤
√
M

(∥∥∥∥f −A(f̂k)k∈Id,T,γN

∥∥∥∥
∞

+

∥∥∥∥(A−Am−1)
(
f̂k

)
k∈Id,T,γN

∥∥∥∥
∞

)
=
√
M

(∥∥∥∥∥
(∑

k∈Zd\Id,T,γN

f̂k e2πikyj

)M−1

j=0

∥∥∥∥∥
∞

+
∥∥∥(Rm(yj)

)M−1

j=0

∥∥∥
∞

)
, (5.3)

where Rm(yj) =
∑
k∈Id,T,γN

f̂k e2πikyj −
∑m−1
|ν|=0

Dν
(∑

k∈Id,T,γ
N

f̂k e2πikxj
)

ν! (y − xj′)ν . Now, we

apply inequality (3.6) from the proof of Theorem 3.3 on the first summand and Theorem
4.1 on the second summand in (5.3). Last, we obtain ‖D‖2 = max

k∈Id,T,γN

{
ωr,t,γ(k)

}
≤

d(r+Tt)/(1−T )N r+t due to (3.10) in the proof of Theorem 3.4. Altogether, this yields the
assertion.
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As in Section 3.2, we may use the inequality (2.7) in order to obtain the statement of
Theorem 5.1 with the Hα,β+λ,γ(Td) norm on the right hand side for functions f ∈ C(Td) ∩
Hα,β+λ,γ(Td), λ > 1/2.

6 Numerical tests

In the following, we verify the theoretical results from Section 3 and Section 5 in numerical
tests. All numerical algorithms were implemented in MATLAB and all numerical tests were
run in MATLAB using double precision arithmetic on a computer with an Intel Xeon X5690
3.47GHz CPU and 144 GB RAM.

Similar to [12], we define the functions g3,4(x) := n3,4(4 + sgn(x− 1/2) sin(2πx)3 + sgn(x−
1/2) sin(2πx)4), where n3,4 denotes a normalization factor such that ‖g3,4|L2(T)‖ = 1 and sgn
denotes the signum function, sgn(x) := x

|x| for x 6= 0 and sgn(0) := 0. In our numerical tests,

we consider the tensor product function Gd3,4 : Td → C, defined by Gd3,4(x) :=
∏d
s=1 g3,4(xs),

The Fourier coefficients of the function gd3,4 are given by

(ĝ3,4)k = n3,4


−12

(k−3)(k−1)(k+1)(k+3)π for k ∈ 2Z \ {0},
48i

(k−4)(k−2)k(k+2)(k+4)π for k odd,

4− 4
3π for k = 0,

and (Ĝ3,4)k 6= 0 for all k ∈ Zd follows. Note, that we have ‖Gd3,4|L2(Td)‖ = 1 and Gd3,4 ∈
H0, 7

2
−ε,1(Td) for ε > 0. Furthermore, as in [12], we define the functions gp : T → C by

gp(x) := np(2 + sgn(x− 1/2) sin(2πx)p), p ∈ N, where np denotes a normalization factor such
that ‖gp|L2(T)‖ = 1. Based on these univariate functions gp, we define the tensor-product

functions Gdp : Td → R by Gdp(x) :=
∏d
s=1 gp(xs). Note, that we have ‖Gdp|L2(Td)‖ = 1 and

Gdp ∈ H0, 1
2

+p−ε,1(Td) for ε > 0, cf. [12]. In our numerical tests, we consider the case p = 3.
The function g3 has the Fourier coefficients

(ĝ3)k = n3


−12

(k−3)(k−1)(k+1)(k+3)π for k ∈ 2Z \ {0},
0 for k odd,

2− 4
3π for k = 0.

This means that only the Fourier coefficients (Ĝd3)k, k ∈ (2Z)d, of the tensor-product function
Gd3 are non-zero. We exploit this property in our numerical tests and use weighted frequency

index sets with “holes”, Id,T,γN,even := Id,T,γN ∩ (2Z)d. Furthermore, we denote the approximated

Fourier coefficients of a function f ∈ {Gd3,4, Gd3} by (
ˆ̃
f)k, k ∈ Id,T,γN .

We generate reconstructing rank-1 lattices for the weighted frequency index sets Id,T,γN as

well as for the weighted frequency index sets with “holes” Id,T,γN,even using the component-by-
component approach, see Section 2.3. In order to make the numerical results reproducible,
which are presented in this section, the refinements N and cardinalities of the frequency index
sets Id,T,γN as well as the generating vector z and rank-1 lattice size M of the reconstructing

rank-1 lattices Λ(z,M, Id,T,γN ) used in the examples can be found in the preprint of this paper.

Additionally, for the frequency index sets Id,0,1N and Id,0,1N,even, this information is shown in Table
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6.2 and 6.3, respectively. The tables of the cardinalities and the reconstructing rank-1 lattices
have the form as demonstrated in Table 6.1. Table 6.1a shows the cardinalities of the index
sets Id,T,γN for the dimensions d = 1, 2, 3 and Table 6.1b shows the used reconstructing rank-

1 lattices Λ(z,M, Id,T,γN ) for the dimensions d = 1, 2, 3. We obtain the parameters for the

generating vector z ∈ Zd and the lattice size M of Λ
(
z = (z1, . . . , zd)

>,M = zd+1, I
d,T,γ
N

)
,

for d = 1, 2, 3 as follows, Λ
(
z = z1,M = z2, I

1,T,γ
N

)
in the one-dimensional case, Λ

(
z =

(z1, z2)>,M = z3, I
2,T,γ
N

)
in the two-dimensional case, and Λ

(
z = (z1, z2, z3)>,M = z4, I

3,T,γ
N

)
in the case d = 3. The entry “-” for d = 5 means that we did not compute z5. For instance,
to obtain the parameters z and M for the weighted frequency index set I3,0,1

64 , we have to use
the entries in the column N = 64 of Table 6.2b and find the parameter for the reconstructing
rank-1 lattice z = (1, 129, 8451)> and M = 47463 in the case d = 3.

N

d=1 |I1,T,γ
N

|
d=2 |I2,T,γ

N
|

d=3 |I3,T,γ
N

|
d=4 -

(a) Cardinalities |Id,T,γN |.

N
d=1 z1
d=2 z2
d=3 z3
d=4 z4
d=5 -

(b) Components zd.

Table 6.1: Example for cardinalities of index sets Id,T,γN and parameters for reconstructing

rank-1 lattices Λ
(
z = (z1, . . . , zd)

>,M = zd+1, I
d,T,γ
N

)
.

N=1 N=2 N=4 N=8 N=16 N=32 N=64 N=128 N=256
d=1 3 5 9 17 33 65 129 257 513
d=2 9 21 49 113 265 605 1377 3093 6889
d=3 27 81 225 593 1577 4021 10113 24869 60217
d=4 81 297 945 2769 8113 22665 61889 164137 426193
d=5 243 1053 3753 12033 38193 115385 338305 958345 2644977
d=6 729 3645 14337 49761 169209 547461 1709857 5137789 14977209
d=7 2187 12393 53217 198369 716985 2465613 - - -
d=8 6561 41553 193185 768609 2935521 10665297 - - -
d=9 19683 137781 688905 2910897 11693889 - - - -
d=10 59049 452709 2421009 10819089 45548649 - - - -

(a) Cardinalities |Id,0,1N | of the unweighted symmetric hyperbolic cross index sets Id,0,1N .

N=1 N=2 N=4 N=8 N=16 N=32 N=64 N=128 N=256
d=1 1 1 1 1 1 1 1 1 1
d=2 3 5 9 17 33 65 129 257 513
d=3 9 23 58 163 579 2179 8451 33283 132099
d=4 27 105 343 1035 3628 11525 47463 176603 753249
d=5 81 479 1911 5727 21944 106703 475829 2244100 10561497
d=6 243 2185 10579 33769 169230 785309 3752318 20645268 136178715
d=7 729 9967 57897 191808 1105193 6897012 31829977 192757285 1400567254
d=8 2187 45465 258113 1059754 7798320 57114640 - - -
d=9 6561 207391 1259193 6027975 49768670 359896131 - - -
d=10 19683 946025 6898038 34112281 320144128 - - - -
d=11 59049 4315343 30780958 194144634 2040484044 - - - -

(b) zd for reconstructing rank-1 lattices Λ
(
z = (z1, . . . , zd)

>,M = zd+1, I
d,0,1
N

)
Table 6.2: Cardinalities of index sets Id,0,1N and parameters for reconstructing rank-1 lattices

Λ(z,M, Id,0,1N ).

Example 6.1. In this example, we verify the theoretical results from Theorem 3.4 in Section
3.2 for r = 0, t = 0. We use the weighted frequency index sets Id,0,1N and reconstructing rank-1

lattices Λ(z,M, Id,0,1N ) from Table 6.2 as well as the weighted frequency index sets Id,0,0.5N and

reconstructing rank-1 lattices Λ(z,M, Id,0,0.5N ). Based on these index sets and reconstructing
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N=1 N=2 N=4 N=8 N=16 N=32 N=64 N=128 N=256 N=512 N=1024
d=1 1 3 5 9 17 33 65 129 257 513 1025
d=2 1 5 13 29 65 145 329 733 1633 3605 7913
d=3 1 7 25 69 177 441 1097 2693 6529 15645 37025
d=4 1 9 41 137 401 1105 2977 7897 20609 52953 133905
d=5 1 11 61 241 801 2433 7073 20073 55873 152713 409825
d=6 1 13 85 389 1457 4865 15241 46069 135905 392717 1112313
d=7 1 15 113 589 2465 9017 30409 97709 304321 925445 -
d=8 1 17 145 849 3937 15713 56961 194353 637697 2034289 -
d=9 1 19 181 1177 6001 26017 101185 366289 1264513 - -
d=10 1 21 221 1581 8801 41265 171785 659085 2391905 - -

(a) Cardinalities |Id,0,1N,even| of the unweighted symmetric hyperbolic cross index sets Id,0,1N,even.

N=1 N=2 N=4 N=8 N=16 N=32 N=64 N=128 N=256 N=512 N=1024
d=1 1 1 1 1 1 1 1 1 1 1 1
d=2 1 3 5 9 17 33 65 129 257 513 1025
d=3 1 5 13 41 145 545 2113 8321 33025 131585 525313
d=4 1 7 29 97 395 1721 5161 21569 85405 359213 1383595
d=5 1 9 49 257 1213 5815 21535 111015 485913 2353599 11148851
d=6 1 11 81 543 3079 14253 78167 404035 2328905 12181705 70968649
d=7 1 13 137 983 6905 34117 226951 1373325 8145033 50770301 293168219
d=8 1 15 183 1643 12543 84845 574275 4068807 27910471 179044805 -
d=9 1 17 255 2895 23375 184859 1248979 11051805 84391053 600266399 -
d=10 1 19 329 4899 43581 392131 3103601 26645547 205723321 - -
d=11 1 21 399 6753 78601 831125 7057695 69268743 493556953 - -

(b) zd for reconstructing rank-1 lattices Λ
(
z = (z1, . . . , zd)

>,M = zd+1, I
d,0,1
N,even

)
Table 6.3: Cardinalities of index sets Id,0,1N,even and parameters for reconstructing rank-1 lattices

Λ(z,M, Id,0,1N,even).

rank-1 lattices, we compute the approximated Fourier coefficients
ˆ̃
fk by applying the lattice

rule (3.2) and Algorithm 1. We compute the relative L2(Td) = H0,0,γ(Td) error, i.e., ‖f −
S̃
Id,T,γN

f |L2(Td)‖/‖f |L2(Td)‖, where

‖f − S̃
Id,T,γN

f |L2(Td)‖ =
(
‖f − S

Id,T,γN
f |L2(Td)‖2 +‖S

Id,T,γN
f − S̃

Id,T,γN
f |L2(Td)‖2

) 1
2

=

(
‖f |L2(Td)‖2 −

∑
k∈Id,T,γN

|f̂k|2 +
∑

k∈Id,T,γN

∣∣∣f̂k − ˆ̃
fk

∣∣∣2) 1
2

.

The relative L2(Td) error corresponds to the error estimate in Theorem 3.4 with r = t = 0
and inequality (2.7) up to the “constant” ‖f |L2(Td)‖/‖f |Hα,β+λ,γ(Td)‖ ≤ 1 since

‖f − S̃
Id,T,γN

f |H0,0,γ(Td)‖

‖f |Hα,β+λ,γ(Td)‖
=

‖f |L2(Td)‖
‖f |Hα,β+λ,γ(Td)‖

‖f − S̃
Id,T,γN

f |L2(Td)‖

‖f |L2(Td)‖
.

Figure 6.1 depicts the relative L2(Td) error with respect to the “degrees of freedom”, i.e.,

the cardinality |Id,T,γN | of the weighted frequency index sets Id,T,γN , for the approximation of

the function Gd3,4 using the weighted frequency index sets Id,0,1N and Id,0,0.5N . The relative

L2(Td) error decreases for increasing degrees of freedom. In the cases d = 1, . . . , 6, using the

index set Id,0,0.5N does not yield better errors compared to using Id,0,1N for similar degrees of

freedom. For the cases d = 7, . . . , 10, the errors are smaller, when the index set Id,0,0.5N is
used. In general, the error decreases slower for larger dimensions d and similar degrees of
freedom. This is especially due to the dependency of the cardinality of the used index sets
on the dimensionality. Therefore, we also consider the relative L2(Td) error as a function
of the refinement N in Figure 6.2. In the case γ = 1 and d = 1, the error decreases like
∼ N−3.45 if we use the error values for the 5 largest refinements N . Since the function
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Gd3,4 ∈ H0, 7
2
−ε,1(Td), ε > 0, but Gd3,4 /∈ H0, 7

2
,1(Td), Theorem 3.4 and inequality (2.7) only

guarantee that the error decreases like ∼ N−3+ε̃, ε̃ > 0, due to the term λ > 1
2 in inequality

(2.7). However, the observed convergence rate is about 1
2 better and we do not observe the

additional term λ. This difference is very likely due to estimate (3.9) in the proof of Theorem
3.4. For d = 2, . . . , 10, the errors are slightly higher and decrease similarly as in the one-
dimensional case. Using the weight parameter γ = 0.5 and d = 1, the error decreases like
∼ N−3.47 if we use the error values for the 5 largest refinements N . For d = 2, 3, the error
decreases like in the one-dimensional case and for d = 4, . . . , 10, the error decreases slower.
The explanation for this slower decrease of the error is that the considered refinements N are
still too small to observe the asymptotic decrease.
Additionally, we study the functions Gd3. As mentioned, we use the index sets with “holes”

Id,T,γN,even. The parameters for the corresponding reconstructing rank-1 lattices are shown in
Table 6.3. The numerical results are depicted in Figure 6.3 We observe a rapid decrease
of the relative L2(Td) error for increasing degrees of freedom in Figure 6.3a. Again, the
order of decrease is slower for higher dimensionality. When we compare using the index sets
with “holes” Id,T,γN,even to the full index sets Id,T,γN , we have almost the same error values for
identical refinements N and therefore smaller error values for similar degrees of freedom when
using the index sets with “holes”, as we see in Figure 6.3b. Figure 6.4 depicts the relative
L2(Td) error as a function of the refinement N . In Figure 6.4a and 6.4b, the results for the

index sets with “holes” Id,T,γN,even and the index sets Id,T,γN are displayed, respectively, which are

(almost) identical. For the function Gd3 in the one-dimensional case, the error decreases like
∼ N−3.49, and similarly for d = 2, . . . , 10. The expected convergence rate from Theorem 3.4
and inequality (2.7) is ∼ N−3+ε̃, ε̃ > 0, since Gd3 ∈ H0, 7

2
−ε,1(Td), ε > 0, and the observed

convergence rate is about 1
2 better as we have seen before.
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Figure 6.1: Relative L2(Td) error and “degrees of freedom” for the approximation of the
function Gd3,4.

Example 6.2. We verify the theoretical results from Theorem 3.4 for r = 1, t = 0 and
inequality (2.7) using Algorithm 1. Here, we consider the relative H1(Td) = H1,0,γ(Td)
error. Similar to Example 6.1, we compute the relative H1(Td) = H1,0,γ(Td) error ‖f −
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Figure 6.2: Relative L2(Td) error and refinement N for the approximation of the function
Gd3,4.
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Figure 6.3: Relative L2(Td) error and “degrees of freedom” for the approximation of the
functions Gd3.

S̃
Id,T,γN

f |H1(Td)‖/‖f |H1(Td)‖ by

(
‖f |H1(Td)‖2 −

∑
k∈Id,T,γN

max(1, ‖k‖1)2|f̂k|2 +
∑
k∈Id,T,γN

max(1, ‖k‖1)2
∣∣∣f̂k − ˆ̃

fk

∣∣∣2) 1
2

‖f |H1(Td)‖
,

where we compute the H1(Td) norm explicitly. We use the unweighted symmetric hyperbolic

cross index sets Id,0,1N and the reconstructing rank-1 lattices from Table 6.2 as well as the

unweighted energy norm based hyperbolic cross index sets I
d, 1

8
,1

N , the unweighted energy norm

based hyperbolic cross index sets I
d, 1

4
,1

N , the weighted symmetric hyperbolic cross index sets

Id,0,0.5N , the unweighted energy norm based hyperbolic cross index sets with “holes” I
d, 1

8
,1

N,even and
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Figure 6.4: Relative L2(Td) error and refinement N for the approximation of the functions
Gd3.

the corresponding reconstructing rank-1 lattices. Figure 6.5 shows the relative H1(Td) error

with respect to the “degrees of freedom”, i.e., the cardinality |Id,T,γN | of the weighted frequency

index sets Id,T,γN , for the approximation of the function Gd3,4. The relative H1(Td) error

decreases for increasing degrees of freedom. For the considered function Gd3,4, using the energy

norm based symmetric hyperbolic cross index sets I
d, 1

8
,1

N and I
d, 1

4
,1

N does not result in smaller
error values for similar degrees of freedom, see Figure 6.5a, 6.5b and 6.5c. Furthermore, in the
cases d = 1, . . . , 6, using the index set Id,0,0.5N does not yield better errors compared to using

Id,0,1N for similar degrees of freedom, see Figure 6.5d. For the cases d = 7, . . . , 10, the errors

are smaller, when the index set Id,0,0.5N is used. In general, the error decreases slower for larger
dimensions d. This is especially due to the dependency of the cardinality of the used index
sets on the dimensionality. We also consider the relative H1(Td) error as a function of the

refinement N in Figure 6.6. For the unweighted symmetric hyperbolic cross index sets Id,0,1N

and the unweighted energy norm based hyperbolic cross index sets I
d, 1

8
,1

N , the error decreases
like ∼ N−2.46 in the one-dimensional case, if we consider the error values for the five largest
refinements, and similarly for d = 2, . . . , 10. In the case T = 0, the observed convergence
rate is about 1

2 better than in the theoretical results from Theorem 3.4 in combination with
inequality (2.7), which state an error decrease of ∼ N−2+ε̃, ε̃ > 0. In the case T = 1/8, the

theoretical results state an error decrease of ∼ N−2+ε̃+ d−1
d−1/8

7
16 , ε̃ > 0, and again, the observed

convergence rate is better than the theoretical estimate. We also consider the function Gd3
and use the frequency index sets with “holes” Id,T,γN,even. Figure 6.7 shows the relative H1(Td)
error as a function of the refinement N . For the unweighted symmetric hyperbolic cross
index sets with “holes” Id,0,1N,even and the unweighted energy norm based hyperbolic cross index

sets I
d, 1

8
,1

N,even, the error decreases like ∼ N−2.45 in the one-dimensional case, if we consider the
error values for the five largest refinements, and similarly for d = 2, . . . , 10. Once more, this
observed error decay is slightly better than the theoretical estimate.

Example 6.3. In this example, we consider the computation time for some of the test cases
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Figure 6.5: Relative H1(Td) error and “degrees of freedom” for the approximation of the
function Gd3,4.

from Example 6.1. The time measurements were performed five times using only one thread
and the average value of the five time measurements was used. We consider the functions
Gd3,4 and Gd3. For the function Gd3,4, we use the unweighted symmetric hyperbolic cross index

sets Id,0,1N and reconstructing rank-1 lattices Λ(z,M, Id,0,1N ) from Table 6.2. For the function

Gd3, we use the unweighted symmetric hyperbolic cross index sets with “holes” Id,0,1N,even and

reconstructing rank-1 lattices Λ(z,M, Id,0,1N,even) from Table 6.3.
As stated in Theorem 2.1, there exists a reconstructing rank-1 lattice Λ(z,M, I) with lattice

size M ≤ |I|2 for each frequency index set I = {Id,T,γN , Id,T,γN,even}. Furthermore, the arithmetic

complexity of computing the approximated Fourier coefficients
ˆ̃
fk, k ∈ I, by applying the

lattice rule (3.2) and Algorithm 1 is O(M logM + d|I|) = O(|I|2 log |I|), if we assume |I| ≥ d
and M ≤ |I|2. Therefore, when we visualize the computation time as a function of the
cardinality |I| of the frequency index set I in a double logarithmic plot, one should observe a
slope of about 2 in each plot independent of the dimensionality d. Figure 6.8a shows the test
results for the functions Gd3,4 and Figure 6.8b for the function Gd3. In both cases, we observe
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Figure 6.6: Relative H1(Td) error and refinement N for the approximation of the function
Gd3,4.
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Figure 6.7: Relative H1(Td) error and refinement N for the approximation of the function
Gd3.

that the plots behave similarly independent of the dimensionality d except for smaller outliers
and a slope of about 2 for larger cardinalities as the theoretical considerations suggest.

Example 6.4. We verify the theoretical results from Theorem 5.1 in Section 5. These
results only differ from the ones of Theorem 3.4 by the additional constant C(d, T,m) and

the additional stability term 1/

(
2− e2π

(
d
1+max(0, T

1−T ))Nε) in the aliasing error. We use the

function Gd3,4 as well as the unweighted symmetric hyperbolic cross index sets Id,0,1N and the

reconstructing rank-1 lattices Λ(z,M, Id,0,1N ) from Table 6.2. For each reconstructing rank-1

lattice Λ(z,M, Id,0,1N ) = {xj}M−1
j=0 , we uniformly randomly choose the sampling nodes yj ,

j = 0, . . . ,M − 1, such that ‖yj −xj‖∞ < ε with ε =
(
2πdN

)−1
ln2. We sample the function
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Figure 6.8: Computation time and “degrees of freedom” for the approximation of the functions
Gd3,4 and Gd3.

Gd3,4 at the sampling nodes yj and compute the approximated Fourier coefficients (
ˆ̃
fk)

k∈Id,T,γN

using the approximate LSQR algorithm (lsqr function from MATLAB) in combination with

(4.2) and its adjoint version. Since Gd3,4 ∈ H0, 7
2
−ε,1(Td), ε > 0, the prerequisites of Theorem

5.1 require to choose m = 4 in order to obtain a guaranteed order of convergence of ∼ N−
7
2

+ε.
Therefore, we run the numerical tests for m = 4. The numerical results for the relative L2(Td)
error are depicted in Figure 6.9c and the observed relative L2(Td) errors are (almost) identical
to those of the unperturbed case, see Figure 6.1a of Example 6.1. Additionally, we consider
the cases m = 2 and m = 3. The corresponding numerical results are shown in Figure 6.9a
and 6.9b. For m = 3, the observed relative L2(Td) errors are (almost) identical to the case
m = 4 and to the unperturbed case. For m = 2, the errors are larger in the cases d = 1, 2, 3 for
higher degrees of freedom and similar for the cases d = 4, . . . , 10. In Figure 6.9d, the results
of the cases m = 2 and m = 3 as well as for the unperturbed case (“R1L”) are compared for
d = 2, 3, 6. In Figure 6.10, the numerical results for the relative H1(Td) error are depicted.
We observe the same behavior as in the case of the relative L2(Td) error when we compare
the relative H1(Td) errors from this example with the results from Example 6.2.

Additionally, we increase the perturbation parameter to ε =
(
2πN

)−1
ln2, i.e., we set it

independently of the dimensionality d, which is larger than the prerequisites of Theorem 5.1
allow. The numerical results are shown in Figure 6.11. We observe almost the same behavior
as with the smaller perturbation in Figure 6.9. Only for low degrees of freedom and higher
dimensionality, we observe a larger relative L2(Td) error.

7 Conclusion

In this paper, we developed a method for the approximation of functions from subspaces of
the Wiener algebra by sampling on rank-1 lattices and on perturbed rank-1 lattices. We
used reconstructing rank-1 lattices which guarantee good approximation properties. Based
on the decay property of the Fourier coefficients of functions, we proved error estimates and
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(c) Gd3,4, T = 0, γ = 1, m = 4
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Figure 6.9: Relative L2(Td) error and “degrees of freedom” for the approximation of the

function Gd3,4 by sampling at perturbed rank-1 lattice nodes (ε =
(
2πdN

)−1
ln2)

and unperturbed rank-1 lattice nodes (“R1L”).

presented numerical results. Our main focus in future research will be the development of good
strategies for finding reconstructing lattice rules, as well as the development of algorithms for
reconstructing trigonometric polynomials with frequencies supported on an index set I by
using only O(|I|) values from a corresponding reconstructing lattice rule. We refer to the
impressive results of the sparse FFT, cf. [17, 16]. The authors present methods which allow
the reconstruction with high probability in O(|I| log |I|). We will combine our rank-1 lattice
approach with these methods. The main advantage is that after using the rank-1 lattice we
have a one-dimensional problem, where in addition the support of the one-dimensional Fourier
transform is known.
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(b) Gd3,4, T = 0, γ = 1, m = 3
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Figure 6.10: Relative H1(Td) error and “degrees of freedom” for the approximation of the

function Gd3,4 by sampling at perturbed rank-1 lattice nodes (ε =
(
2πdN

)−1
ln2)

and unperturbed rank-1 lattice nodes (“R1L”).
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[10] H. G. Feichtinger and K. Gröchenig. Theory and practice of irregular sampling. In
J. Benedetto and M. Frazier, editors, Wavelets: Mathematics and Applications, pages
305 – 363, CRC Press, 1993.

[11] V. Gradinaru. Fourier transform on sparse grids: Code design and the time dependent
Schrödinger equation. Computing, 80:1 – 22, 2007.

[12] M. Griebel and J. Hamaekers. Fast discrete Fourier transform on generalized sparse
grids. In J. Garcke and D. Pflger, editors, Sparse Grids and Applications - Munich 2012,
volume 97 of Lect. Notes Comput. Sci. Eng., pages 75 – 107. Springer International
Publishing, 2014.

[13] M. Griebel and S. Knapek. Optimized Tensor-Product Approximation Spaces. Con-
structive Approximation, 16(4):525–540, 2000.
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