On numerical realizations of Shannon’s
sampling theorem
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In this paper, we discuss some numerical realizations of Shannon’s sampling
theorem. First we show the poor convergence of classical Shannon sampling sums
by presenting sharp upper and lower bounds of the norm of the Shannon sampling
operator. In addition, it is known that in the presence of noise in the samples of
a bandlimited function, the convergence of Shannon sampling series may even
break down completely. To overcome these drawbacks, one can use oversampling
and regularization with a convenient window function. Such a window function
can be chosen either in frequency domain or in time domain. We especially put
emphasis on the comparison of these two approaches in terms of error decay rates.
It turns out that the best numerical results are obtained by oversampling and
regularization in time domain using a sinh-type window function or a continuous
Kaiser—Bessel window function, which results in an interpolating approximation
with localized sampling. Several numerical experiments illustrate the theoretical
results.
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1 Introduction

The classical Whittaker—Kotelnikov—Shannon sampling theorem plays a fundamental role in
signal processing, since it describes the close relation between a bandlimited function and its
equidistant samples. A function f € L?(R) is called bandlimited with bandwidth %, if the
support of its Fourier transform

f(v) = /Rf(t) e Mgt peR,
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is contained in [— %, %] Let the space of all bandlimited functions with bandwidth % be
denoted by

Bpa(R) = {f € I*R): swpp f € [~ §, ]}

Then the sampling theorem states that any function f € By/5(R) can be recovered from its
samples f(%), k € Z,with L > N as

Zf (%) sinc(Lwt — k), teR, (1.1)
keZ

where the sinc function is given by

sinz :x eR\ {0},
sinc x = z v \ 10}
1 cx=0.

It is well known that the series in (1.1) converges absolutely and uniformly on whole R.
Unfortunately, the practical use of this sampling theorem is limited, since it requires infinitely
many samples, which is impossible in practice. Furthermore, the sinc function decays very
slowly such that the Shannon sampling series

Z f(%£)sinc(Lxwt —kr), teR, (1.2)
kEZ

with L > N has rather poor convergence, as can be seen from the sharp upper and lower
bounds of the norm of the Shannon sampling operator (see Theorem 2.2). In addition, it is
known (see [7]) that in the presence of noise in the samples f (%), ¢ € Z, of a bandlimited
function f € By/2(R), the convergence of Shannon sampling series may even break down
completely. To overcome these drawbacks, many applications employ oversampling, i.e., a
function f € L*(R) of bandwidth £ is sampled on a finer grid 1 Z with L > N, where the
oversampling is measured by the oversamplmg parameter X\ = N > 0. In addition, we
consider various regularization techniques, where a so-called wmdow function is used. Since
this window function can be chosen in frequency domain or in spatial domain, we study both
approaches and compare the theoretical and numerical approximation properties in terms of
decay rates.

On the one hand, we investigate the regularization with a window function in frequency
domain (called frequency window function), cf. e.g. [6, 12, 21, 14, 24]. Here we use a suitable
function of the form

1 Dol < &
() =9 x(jo]) 5 <<%,
0 :|v\2é,

where x: [%, %]

function with X(%) =1and X(é) = 0. Applying inverse Fourier transform, we determine the

— [0, 1] is frequently chosen as some monotonously decreasing, continuous

corresponding function ¢ in time domain. Since v is compactly supported, the uncertainty
principle (see [15, Lemma 2.31]) yields supp ¢ = R. Then it is known that the function f can
be represented in the form

Zf% — %), teR.

kEZ

~ \



Using uniform truncation, we approximate a function f € By/o(R) by the T-th partial sum

T

(Porf)) = 3 F(E) Tu(t—%), tel-11].

k=—T

On the other hand, we examine the regularization with a window function in time domain
(called time window function), cf. e.g. [18, 10, 11, 9]. Here a suitable window function
¢: R — [0, 1] with compact support [— z, %] belongs to the set ®,, 1, (as defined in Sec-
tion 4) with some m € N\ {1}. Then we recover a function f € By/3(R) by the regularized
Shannon sampling formula

(Rom f)( Zf% sinc L7rt—7rl<:) ( —%), teR,
kEZ

with L > N. By defining the set ®,, ;, of window functions ¢, only small truncation param-
eters m are needed to achieve high accuracy, resulting in short sums being evaluable very
fast. In other words, this approach uses localized sampling. Moreover, this method is an
interpolating approximation, since for all n, k € Z we have

sinc([mt — 7rk) go(t — %) ’t,ﬂ = Onk -
L
In this paper we propose new estimates of the uniform approximation errors

max ‘f (Pvaf)(t)| and max‘f (%mf)(t)‘,

te[-1,1] teR

where we apply several window functions zﬁ and . It is shown in the subsequent sections that
the uniform approximation error decays algebraically with respect to T', if @ZA) is a frequency
window function. Otherwise, if ¢ € ®,, 1, is chosen as a time window function such as the
sinh-type or continuous Kaiser-Bessel window function, then the uniform approximation error
decays exponentially with respect to m.

To this end, this paper is organized as follows. First, in Section 2 we show the poor con-
vergence of classical Shannon sampling sums and improve results on the upper and lower
bounds of the norm of the Shannon sampling operator. Consequently, we study the different
regularization techniques. In Section 3 we start with the regularization using a frequency
window function. After recapitulating a general result in Theorem 3.3, we consider window
functions of different regularity and present the corresponding algebraic decay results in The-
orems 3.4 and 3.7. Subsequently, in Section 4 we proceed with the regularization using a
time window function. Here we also review the known general result in Theorem 4.1 and
afterwards demonstrate the exponential decay of the considered sinh-type and Kaiser-Bessel
window functions in Theorems 4.2 and 4.3. Finally, in Section 5 we compare the previously
considered approaches from Sections 3 and 4 to illustrate our theoretical results.

2 Poor convergence of Shannon sampling sums

Let Cp(R) denote the Banach space of continuous functions f: R — C vanishing as |t| — oo
with norm

1 fllcom®) = %%}Rxlf(t)\‘



In order to show that the Shannon sampling series (1.2) has rather poor convergence, we
truncate the series (1.2) with 7' € N, and consider the T-th Shannon sampling sum

T

(STf)(t) = Z f(%) sinc(Lwt — km), teR.

k=—T

Obviously, this operator can be formed for each f € Cp(R).

Lemma 2.1. The linear operator Sp: Cy(R) — Cy(R) has the norm

T
= inc(Lwt — km)|. 2.1
I8l =g 3 finc( it k) 1)

Proof. For each f € Cy(R) and ¢t € R we have

T T
((SrHBI< D [f(%)] |sine(Lat — kr)| < > [sinc(Lat — km)| || fllcyr) »
k=—-T

k=—T
such that

T
157 Newewy < s 3, [sine(Emt = k)] Il

By defining the even nonnegative function
T
sp(t) = Z ‘sinc(lﬂrt —km)|, teR,
k=-T

which is contained in Cy(R), and assuming that sp has its maximum in ¢y € R, this yields

|S7(l = sup {17 fllcy®) : [1flcom) =1} < sr(to).
The other way around, we consider the linear spline g € Cy(R) with nodes in %Z, where

k sign(sinc(Lwtg — km)) :k=-T,..., T,
9(z) =

ckezZ\{-T,...,T}.
Obviously, we have [|g[|¢,®) = 1 and

T
(STg)(t) = Z sign (sinc(Lntg — km)) sinc(Lat — km)) < sp(t) < sp(to) .
k=—T
Then
T
(STg)(ty) = Z |sinc(Lwty — kﬂ)} = max st (t) = sp(to)
k=—T
implies

STl > 11STgllco®) = I{lgRXKSTg)(t)}

Sj(to)



and hence (2.1). [ |

Now we show that the norm | S| is unbounded with respect to 7. Here we use Euler’s

constant
"1
= [i ——InT )] =0. 21
0% T%o(kg_lk n > 0.57721566

In the following, we improve a former result of [23, p. 142].

Theorem 2.2. The norm of the operator Sp: Cy(R) — Co(R) can be estimated by

2 1 2 T+2
— | InT +2In2 ————— < ||S7|| < = |InT +2In2 — . (2.2
7 T+ 224 0] = gy < I9rll < 2 T+ 224 9] + Ty - (22)
Proof. As in [23, p. 142] we represent sp(t) in the form
T+1
sr(t) =Y ax(t), teR,
k=1
with
0 ‘SiHC(Lﬂ't - lm)’ + |sinc(L7rt + (k- 1)71')’ ck=1,...,T,
ai(t) ==
g ‘sinc(LTrt+T7r)| ck=T+1.

Since sp(t) is even, we estimate the maximum of sp(t) only for ¢ > 0. For a;(t) with ¢ € (0, 1)
we have by trigonometric identities that

_ sin(Lwt) (1 1 _ sin(Lmt)
a(t) = m <Lt L Lt) CowLt(1—Lt)’ (23)

By Schur’s expansion of sin(mrz), see [4], we know that

=1
sin(Lmt) ; —1on (1—-Lt)", te [O, %] )

with positive coefficients

(n—1)!

Qp =

w/2
/ t" (r—t)" Lsintdt, neN.,
0

Thus, we obtain the expansion

1 o 1 - -
() =1+~ 3 e (L' (1 =L te 0. ]

n=2
Hence, the function ay: [0, %] — R is concave and has its maximum at ¢t = i, i.e., by (2.3)
we compute

4
t)=ai(5r) = —.

iy 0 =) = 2

For ag(t), k=2, ..., T, with t € [O, %] we have
sin(Lt) 1 1 (2k — 1) sin(Lmt)
ag(t) = + = .
7r k—1+Lt k- 1Lt 7 [(k— 1)k + Lt (1 — Lt)]



We define the functions by: [0, 1] = R, k=2, ..., T, via

(Qkfl)a (2) = sin(7x)
i ML ™ k= Dk+a2(1—-2)°

such that b(0) = bi(1) =0 and the symmetry relation by(z) = bx(1 — x) is fulfilled, i.e
each by is symmetric with reference to % Furthermore, by b} (z) >0 for z € [(), %], the
function by is increasing on [0, %] and therefore has its maximum at z = Thus, the
function ay: [0, %} — R has its maximum at t = i, i.e.,

bk(x) = € [07 1]7

N[ =

4
= 71 —_ —
tel[%)l,al)/{L] ak(t) = ax(5r) (2k — )7

Since ar41(t) can be written as

sin(Lt)

)= —
arn(l) = S
for t € [0 L] we obtain

1
0< ma ) < —.
telo, 1)/{1:] ar+1(t) T

In the case T > 1, the function ar41: [0, L] — R has its maximum close to ¢t = 5. Hence,
in summary this yields

4 & iy

- Z 7 <, mex st(t

™ —1 te€l0,1/L] 71'
For t € [%, ] with arbitrary n € N, the sum s7(t) is less than it is for t € [0, 1], since for
eachn € N and ¢ (O, L) we have

i sin(Lmt) - ZT: sin(Lmt)
—  |Lnt — (k — n)m| — |Lnt — k|

and therefore
ST(% + t) < ST(t) .

Thus, for the even function sr(t) we obtain

T T

4 1 4 1 1
- t) < — — .
7Tk_12k—1<rw{le%RX8T()<7T; +

By Lemma 2.1 this can also be written as

T T
4 1 4 1 1
- S - R 2.4
Wz2k—1<” T||<7722k—1+7rT (2:4)
k=1 k=1
Note that for T > 1 the value
T
4 1 2
1
1y _ = 2.5
57(3z) W;2k—1+ﬂ(2T+1) (25)



is a good approximation of the norm ||S7||.

Now we estimate ||.S7|| by In7'. For this purpose we denote the T-th harmonic number by

such that

1 £l 1 1 T 1
ZQk—l:Z<2k—1+2k>_22k:H2T_2HT' (26)

Using Fuler’s constant

the estimates

are known (see [27]). From (2.6) and (2.7) we conclude that

1 1 1 1 1 1

—InT+In24+-y— ——7—~< < H H InT 4+ 1n2 — . (2.8

g MY T ar ) ST T S g e oY (2:8)
Therefore, applying (2.4), (2.6), and (2.8) yields the assertion (2.2). [ ]

We remark that Lemma 2.2 immediately implies

2 4 2
lim (HSTH—IHT) =—mn 2+—7
T—o00 ™

Now let f € By/2(R) be a given bandlimited function with bandwidth % Then this func-
tion possesses a smooth representation, which we will use in the following. Let T € N be
sufficiently large. For given samples f (%) with k € Z and L > N we consider finitely many
erroneous samples

F { fEY+e, k=-T,...,T,
k=
f(%) ke Z\{-T,..., T},
with error terms e, which are bounded by |ex| < e for k=T, ..., T. Then we recon-

struct f(t) by its approximation

T
= Z frsine(Lat — kr) = f(t) + Z epsine(Lnt — k), teR.
keZ k=-T

Note that by (2.3) we are given the upper error bound

c ¥
m

M’ﬂ

I1f = Fllcom) < € I?eaXST
k=1

Next, we present a lower error bound.



Theorem 2.3. Let f € By/2(R) be an arbitrary bandlimited function with bandwidth %
Further let L> N, T € N, and € > 0 be given.
Then for the special error terms

e = esign(sinc(3 — km)) =¢ (-1)**tsign(2k — 1), k=-T,...,T,
we have 5 A 5 )
/- flleom) =€ ( InT+ — In2+ ,Y> > € ( InT + Z) , (2.10)
T 7r m T
such that the Shannon sampling series is not numerically robust.

Proof. Due to the special choice of the error terms ¢ we obtain
T

ft)—f(t)=¢ Z sign(sinc(% — km)) sinc(Lnt — kmr), t€R. (2.11)
k=-T

By (2.5) and (2.8) we conclude that

1F = Flleom = |F(E) — flap)| =< E : [sine(§ — km)| = e s7(5r)
T
4 2¢e 2 4 2~ 2T — 1
=c— InT+ — 1n?2 —
sz —1 T erT n < nh g met >+E(2T—|—1)T7r
2 2
>€< lnT—|— In2 + 7)
T
Note that
4 2y 5
— In2+ — =1.2500093... > 7.
T T
This completes the proof. [ |

By Theorem 2.3 we improve a corresponding remark of [7]. Note that the norm || f — f llco(m)
does not depend on the special choice of the function f. However, since T' € N may be large,
this error behavior is not satisfactory, cf. Figure 2.1. We remark that Figure 2.1 also illustrates
that the norm || f — f |co(r) seems to be independent of the oversampling parameter .

3 Regularization with a frequency window function

To overcome the drawbacks of poor convergence and numerical instability, one can apply reg-
ularization with a convenient window function either in the frequency domain or in the time
domain. Often one employs oversampling, i.e., a bandlimited function f € By/2(R) of band-
width % is sampled on a finer grid % Z with L = N (1 + ), where A > 0 is the oversampling
parameter.

First, together with oversampling, we consider the reqularization with a frequency window
function of the form

R 1 : |v\ < %
) =1 x(p) 5 <l <3, (3.1)
0 Cu| > £

_27



Figure 2.1: The norm || f — flleym) of (2.11) as well as its lower /upper bounds (2.10) and (2.9)
for several L =N(1+ \), A € {0,0.5,1,2}, and T € {1,...,10}, where N = 128
and ¢ = 1073 is chosen.

cf. [6, 14, 24], where x: [%, %] — [0, 1] is frequently chosen as some monotonously decreasing,

continuous function with X(%) =1 and X(%) = 0. Applying the inverse Fourier transform,

we determine the corresponding function in time domain as

L/2
(G

Y(t) = /Riﬁ(v) XVt dy = 2 (v) cos(2mvt)dv. (3.2)

0

Example 3.1. A simple example of a frequency window function is the linear frequency
window function (cf. [6, pp. 18-19] or [14, pp. 210-212])

1 ol <5
lin\%) - L-N -2 2 :
0 Dol > &

Obviously, TZJHH(’U) is a continuous linear spline supported on [— %, %], see Figure 3.1 (a).
By (3.2) we receive i, (0) = 4L For t € R\ {0} we obtain

N/2 L/2 _
Yiin(t) = 2 / cos(2m vt) dv + 2 / <1 _ N> cos(2m vt) dv
0

N/2 L—N
- (L_Nl)(m)Q (cos(Nmt) — cos(Lmt))
- = ]5) o Sin (M2 ) sin (252 )
= VL e (MLt sine( 52 nt) (3.4)

2

This function %wlin is even, supported on whole R, has its maximum at ¢ = 0 such that

24 A

1)
5+ 2n

— L (o) =

co(®R) L

wlin

Iz
L



In addition, + s (t) has a faster decay than sinc(Nrt) for [t| — oo, cf. Figure 3.1 (b). Note
that if A — 0, we have

1
lim  — vn(t) = sinc(Nnt) .

L—+N L
U
L ; ; a 1r _;iHC(Lﬂ'f,)
: g Fom(®
05|
0.5} i 4
[ty : 0 ‘/\/\/\\/\ /\ VAR
O it L;]i[l(U) (RN
L s A
v t
(a) Yin in (3.3) (b) Ly in (3.4)

Figure 3.1: The frequency window function (3.3) and its scaled inverse Fourier transform (3.4).

Remark 3.2. Note that {% 1/)lin( . —%)
i.e., for all f € L?(R) we have

}keZ is a Bessel sequence in L*(R) with the bound 1,

Z |(fs T Yun (- *%))L?(R)F <1 HfH%Q(]R) :
kez

However, {% zphn( . —%) } ez is not an orthonormal sequence and also not a Riesz sequence.
To see this, we consider the 1-periodic function

W(v) = % S (Lo + LE)|®, v eER.
kEZ

By (3.3) we have

1 Dol < ﬁ,

rin(Lv) = ¢ 1 EE2RIEL rax < vl < 3,

0 ol >4,
ie, ¥(v) < % for all v € R and ¥(v) = 0 for v € 3 + Z. Then [5, Theorem 9.2.5] yields the
result. O

Analogous to [6, p. 19] and [14, Theorem 7.2.5], we obtain the following representation
result, see also [24, p. 4].

10



Theorem 3.3. Let f € Byja(R) be a bandlimited function with bandwidth % Using over-

sampling with L = N (1 + X), X > 0, and regularization with a frequency window function 1&
of the form (3.1), the function f can be represented in the form

}jf%

kEZ

kY, teR. (3.5)

=~ \

For instance, using the linear frequency window function (3.3), one obtains the representation

N L
+ Z f % SlnC (7rLt — Wk)) Sinc(% (rLt — 7Tk‘)) , teR. (3.6)
keZ

Proof. Since by assumption f € By/(R), we have supp f C [ - %, %} cl- %, %] and
L

therefore the function f restricted on [— s %] can be represented by its L-periodic Fourier

series
:ch(f)eQﬂ'lkv/L7 = [_%’
kEZ

Nl

], (3.7)

with the Fourier coefficients

R 1 Lz —2mikv
MﬁzL/MJ@erMM-

Using the inverse Fourier transform, we see that
£ 1 £ —2wikv/L 1 k
Ck(f)zz f(v)e dU:Zf(_f)-
R

Hence, we may denote f by (3.7) as

1 .
_ LS pyenmen, e -4 4.
kEZ
Additionally, we have &(v) 1forve [— %, %] by (3.1) as well as supp f C [— %, %] by

/\

assumption, such that f(v) = f(v) ¢ (v) for all v € R, and therefore

N ) L/2 . ] L/2 . X '
= /Rf(y) e27r1tv dv = / f('U) e%rlt” dv = / f(’U) w(v) e?mtv dv

—L/2 —L/2

_Z f% 12}()271-1tk/L dv—Zf%

kGZ —L/2 keZ

v(t=1)-

t~ \

For the linear frequency window function (3.3) the representation (3.6) is obtained by
inserting the inverse Fourier transform (3.4) into (3.5). This completes the proof. [ ]

Note that (3.5) is not an interpolating approximation, since in general we have
1 k
Z (=) |y £ bup, nEEZ.

11



Moreover, since the frequency window function @@ in (3.1) is compactly supported, the un-
certainty principle (see [15, Lemma 2.31]) yields supp ¢ = R, such that (3.5) does not imply
localized sampling for any choice of 1[} In other words, the representation (3.5) still requires
infinitely many samples f (%) Thus, for practical realizations we need to consider a truncated
version of (3.5) and hence for 7' € N we introduce the 7-th partial sum

(Pyrf)(t Z (%) % -5y tel-1,1]. (3.8)

Then for the linear frequency window function (3.3) we show the following convergence
result.

Theorem 3.4. Let f € By/2(R) be a bandlimited function with bandwidth g Using oversam-
pling with L = N (1 + X), A > 0, and regularization with the linear frequency window func-
tion (3.3), the T-th partial sums Py 7f converge uniformly to f on [—1, 1] as T — oco. For
T > L the following estimate holds

2L 4(1+ ) _
o | f(t) = (P f) ()] < 5y (T L+ 21 Fll 2wy - (3.9)

Proof. By (3.5) and (3.8) we have
f@&) = Pz f)®) = > £(£) 7 Lyt — &),
|k|>T

such that Cauchy—Schwarz inequality implies

1/2 1/2
|£(t) = (P2 f)(t (Z 1F(3)] ) (Z !iwlin(t—ﬁ)f) . (3.10)

|k|>T |k|>T

Since f € By/2(R) is bandlimited with bandwidth % and L > N, the Parseval equation

7 Z\f % = ”f”%Q(R)

kEZ
holds and hence
1/2
( Z £(2)] > <VL|flr2@) - (3.11)
|k|>T

It can easily be seen that (3.4) satisfies the decay condition

2
1 -2
‘fwlin(x)‘ﬁmx , xeR\{0},
and thereby
ey o A0+ N)? 4
L

Thus, for T'> L and t € [—1, 1] we obtain

( > 11 bt - f)F)m < 2(1\;—2)‘) ( 3 (Lt—k)—4>1/2

|k|>T |k|>T

12



W2(1+N) [ & )\ 2
<2 (k—L) .
W (2 e)

Using the integral test for convergence of series, we conclude

> (k—L)4§(T—L+1)4+/ (t—L)™*dt
k=T+1 T+1

=(T-L+1)™*+i(T-L+1)P<d(T-L+1)73,
which yields

00 1/2
< > (k:—L)‘4) < Z(T-L+1)72 (3.12)
k=T+1
Therefore, (3.10), (3.11), and (3.12) imply the estimate (3.9). [ |

Example 3.5. Next, we visualize the error bound of Theorem 3.4, i.e., for a given function
f € Bny2(R) with L = N(1+ X), A > 0, we show that the approximation error satisfies (3.9).
For this purpose, the error

T | £(t) = (Pin f)(2)] (3.13)

is estimated by evaluating the given function f as well as its approximation Py, 7 f, cf. (3.8),
at equidistant points ts € [-1, 1], s =1,...,5, with S = 10°. Here we study the function
f(t) = VN sinc(N~t), t € R, such that [ fllz2@®) = 1. We fix N = 128 and consider the error
behavior for increasing 17" € N. More specifically, in this experiment we choose several over-
sampling parameters A € {0.5,1,2} and truncation parameters 7' € {10,20,...,500}. The
corresponding results are depicted in Figure 3.2. Note that the error bound in (3.9) is only
valid for T' > L. Therefore, we have additionally marked the point T'= L for each A as a
vertical dash-dotted line. It can easily be seen that also the error results are much better
when T' > L. Note, however, that increasing the oversampling parameter \ requires a much

larger truncation parameter T' to obtain errors of the same size. O
100 [T ) L |
1072 : 1
1074 1 g s
—-\A=05]
A=1 |
1076 L \+ )\\: 2 I\ | ! | | ]

0 100 200 300 400 500
T

Figure 3.2: Maximum approximation error (3.13) (solid) and error constant (3.9) (dashed)
using the linear frequency window vy, from (3.4) in (3.8) for the test function
f(t) = V/Nsinc(N7t) with N =128, T € {10,20,...,500}, and A € {0.5,1,2}.

In order to obtain convergence rates better than the one in Theorem 3.4, one may consider
frequency window functions (3.1) of higher smoothness.

13



Example 3.6. Next, we construct a continuously differentiable frequency window function
by polynomial interpolation. Since the frequency window function (3.1) is even, it suffices

to consider only y: [%, %] — [0, 1] at the interval boundaries % and % Clearly, the linear

frequency window function ﬁlin in (3.3) fulfills

lim x(v) =1, lim x(v) =0.

v 5 v

Thus, to obtain a smoother frequency window function, we need to additionally satisfy the
first order conditions

lim x'(v) =0, lim x'(v)=0.

v—I v—L

Then the corresponding interpolation polynomial yields the cubic frequency window function

1 Dol < &

~ 2 _

Yeun(v) = o (ol = %) (ol = 25FE) + F <ol < %, (3.14)
0 ol > %,

see Figure 3.3 (a). By (3.2) we see that the inverse Fourier transform of (3.14) is given by

valt) = T —Cnim)) SIS rer o), (15)

and e, (0) = LEY of. Figure 3.3 (b). O
Analogous to Theorem 3.4, the following error estimate can be derived.

Theorem 3.7. Let f € By/a(R) be a bandlimited function with bandwidth % Using over-
sampling with L = N (1 + X), A > 0, and regularization with the cubic frequency window func-
tion (3.14), the T-th partial sums Pey, 7 f converge uniformly to f on [—1, 1] as T — co. For
T > L the following estimate holds

L A)?
(70 = (P 0] < | 220 20 @ L ) . (316)

te[—1,1

Example 3.8. Another continuously differentiable frequency window function is given in [21]
as the raised cosine frequency window function

1 ol < X
Deos(v) = 4 3+ 4 cos () ¥ <ol < £, (3.17)
0 v > %,

see Figure 3.3 (a). By (3.2) the corresponding function in time domain can be determined as

() = PRI teR\ (2 iy}, Ga9)

wcos (iL,lN) = LZN COs (LA,M;\/) )
see Figure 3.3 (b). Note that since Yeos 1D (3.17) possesses the same regularity as Veub

in (3.14), both frequency window functions meet the same error bound (3.16), cf. Figure 5.1.
O
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Figure 3.3: The frequency window functions (3.14) and (3.17), and their scaled inverse Fourier
transforms.

Note that by (3.4) and the convolution property of the Fourier transform, for L > N the
linear frequency window function (3.3) can be written as

R 2
VYlin(v) = IT-N (1(N+L)/4 * 1(L7N)/4)(”) :

Therefore, instead of determining smooth frequency window functions of the form (3.1) by
means of interpolation as in Example 3.6, they can also be constructed by convolution, cf. [12].

Lemma 3.9. Let L > N be given. Assume that p: R — [0, 00) is an even integrable function
with suppp = [ — LN %] and [ p(v)dv = 1.
Then the convolution

Yeonv(v) = (L(nipyja*p)(v), vER, (3.19)
is a frequency window function of the form (3.1).
Proof. By assumptions we have

(N+L)/4 v+(N+L) /4

p(v—w)dw = /_(N+L)/4 p(w)ydw.  (3.20)

zz)conv(v) = (1(N+L)/4 * p) (U) = /

—(N+L)/4

Since the convolution of two even functions is again an even function, it suffices to con-
sider (3.20) only for v > 0. For v € [(), %] we have v — L‘ZN < —LZN < LZN < v+ #
and therefore

R (L=N)/4
d)conv(v) = / p(w) dw=1.

—(L—N)/4

For v € [%, %] we can write

. (L—N)/4
eom () = / p(w)dw > 0,
v—(L+N)/4

15



where @conv(%) =1, @conv(%) =0, and 121001“,: [%, é] — [0, 1] is monotonously non-increasing,
since p(w) > 0 for all w € R by assumption. For v € [%, oo) we have v — # > %, which

implies by assumption supp p = [ — %, %] that
R v4+(L+N) /4
deom(0) = | p(w) dw = 0.
v—(L+N)/4
This completes the proof. |

Note that the frequency window functions (3.14) and (3.17) lack such a convolutional
representation. However, the convolutional approach (3.19) has substantial advantages, since
the smoothness of (3.19) is determined by the smoothness of the chosen function p and the
inverse Fourier transform is known by the convolution property as

N+ L

77Z1c0nv (t) — 9

sinc(N;L mt) p(t) (3.21)

which is especially helpful if the inverse Fourier transform p of p is explicitly known. Since p
is even by assumption, we have p = p with

p(t) = /Rp(v) M qy = 2 /OOO p(v) cos(2mvt)dv.

Example 3.10. For the special choice of p(v) = L%”N Mn(L%”N v) with n € N, where M, is

the centered cardinal B-spline of order n, we have
L—N "
p(t) = (sine(L52 7))
Using n = 1 this again yields (3.4), whereas for n = 2 we obtain

N+ L

7vbconv,Q (t) == 9

sinc (2L 7t) (sinc(LZN mf))z . (3.22)

Note that the frequency window function ﬁconvg, cf. (3.22), possesses the same regularity
as Yeyup 0 (3.14) and tees in (3.17), and therefore they all meet the same error bound (3.16),
cf. Figure 5.1. U

Example 3.11. In [12] the infinitely differentiable function

poolv) = { cop ([(z2%)° =117 c el < 557

0 : otherwise,

with the scaling factor

= ([ ool - )

is considered. The corresponding frequency window function (3.19) is denoted by @ZA)OO. How-
ever, since for this function p., the inverse Fourier transform p., cannot explicitly be stated,
the function (3.21) in time domain can only be approximated, which was done by a piecewise
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rational approximation pp, in [12]. We remark that because of this additional approxima-
tion a numerical decay of the expected rate is doubtful, since the issue of robustness of the
corresponding regularized Shannon series remained unclear. This effect can also be seen in
Figure 5.1, where the corresponding frequency window function (3.19), denoted by ﬂrat, shows
similar behavior as the linear frequency window function ), in (3.3).

A similar comment applies to [24], where an infinitely differentiable window function & is
aimed for as well. Since no such ¢ with explicit inverse Fourier transform (3.2) is known,
in [24] the function 1 in time domain is estimated with some Gabor approximation. Although
an efficient computation scheme via fast Fourier transform (FFT) was introduced in [25], the
numerical nonrobustness by this approximation seems to be neglected in this work. O

Finally, we remark that already in [6, p. 19] it was stated that a faster decay than for @Z;lin
from (3.3) can be obtained by choosing Y in (3.1) smoother, but at the price of a very large
constant. This can also be seen in Figure 5.1, where the results for the window functions IZ)cub
in (3.14), 1[1(305 in (3.17), @convg in (3.22), and @rat from Example 3.11 are plotted as well. For
this reason many authors restricted themselves to the linear frequency window function 1[111n
in (3.3). Furthermore, the numerical results in Figure 5.1 encourage the suggestion that
in practice only algebraic decay rates are achievable for the regularization with a frequency
window function.

4 Regularization with a time window function

To preferably obtain better decay rates, we now consider a second regularization technique,
namely regularization with a convenient window function in the time domain. To this end, for
L > N and any m € N\ {1} with 2m < L, we introduce the set ®,, 1, of all window functions
¢: R — [0, 1] with the following properties:

e Each ¢ € &, 1 is supported on | — 2%, 2*|. Further, ¢ is even and continuous on | — 2%, 1.
¥ : L’ L ¥ L> L
m

e Each ¢ € &, 1, restricted on [O, f] is monotonously non-increasing with ¢(0) = 1.

e For each ¢ € ®,, 1, the Fourier transform

i m/L
ov) = / o(t)e vt dr =2 / p(t) cos(2mut)dt, v eR,
R 0

is explicitly known.
As examples of such window functions we consider the sinh-type window function

ﬁsinh(ﬁ 1—(%)2> te -7, 7, (4.1)

Sosinh(t) = L
0 cteR\ [—2, 2],

with g = M, and the continuous Kaiser—Bessel window function

ity = {7 (V- CT) 1) eel-p (12)
0 :tER\[—%,%],

17



with g = M, where Iy(x) denotes the modified Bessel function of first kind given by
L

JRUE < S S S,
0= 2 T TR

Both window functions are well-studied in the context of the nonequispaced fast Fourier
transform (NFFT), see e.g. [16] and references therein.

A visualization of the continuous Kaiser-Bessel window function (4.2) as well as the cor-
responding regularization pcxp(t) = sinc(Lnt) pcxp(t) of the sinc function can be found in
Figure 4.1. We remark that in contrast to Figure 3.1 here the function p.kxp in time domain
is compactly supported and its Fourier transform p.xp is supported on whole R, where for
the frequency window function (3.3) it is vice versa (see [15, Lemma 2.31]). Note that a
visualization for the sinh-type window (4.1) would look the same as Figure 4.1.

% | B — -imy N 1+ T —sinc(Lnt) |
i ! Y = eexn(®)
: : [\ [ pae
: : AR
i : 0.5 2R :
1 | {
2L | ; ‘r i [
1 L ! | \
i ! |
; ; R B Y
: : iArAAN || APAAA
e V|V
(I —— ! ﬁcKB U) !..- -
L L L L L L
— L L 2m _m m 2m
L -L 0 L L —2m T 0 T m
v t
(a) pckB (b) window function (4.2)

Figure 4.1: The regularized sinc function p.xp(t) = sinc(Lnt) kB (t) using the continuous
Kaiser—Bessel window function (4.2) and its Fourier transform pexp.

Then we recover a bandlimited function f € By 2(R) by the regularized Shannon sampling
formula

(Romf)(t) = > f(¥)sinc(Lrt — k) p(t— %), teR, (4.3)
kEeZ

with L > N. Since by assumption sinc(m(n — k)) = 0,1 for all n, k € Z with the Kronecker
delta 6, 1 and ¢(0) = 1, this procedure is an interpolating approzimation of f, because

sinc(Lwt — k) p(t — %) ‘t_ﬂ = On k-
~ L

Furthermore, the use of the compactly supported window function ¢ € ®,, 1, leads to localized
sampling of the bandlimited function f € By/2(R), i.e., the computation of (R, f)(t) for
teR\ % 7Z requires only 2m + 1 samples f(%), where k € Z fulfills the conditions |k — Lt| < m.
Consequently, for given f € By/o(R) and L > N, the reconstruction of f on the interval [-1, 1]
requires 2m + 2L + 1 samples f(%) withk=—-—m — L, ..., m+ L. In addition, we again em-
ploy oversampling of the bandlimited function f € By/2(R), i.e., f is sampled on a finer grid
1+ Z with L > N.
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This concept of regularized Shannon sampling formulas with localized sampling and over-
sampling has already been studied by various authors. A survey of different approaches for
window functions can be found in [19], while the prominent Gaussian window function was
e.g. considered in [18, 20, 22, 26, 10]. Since this Gaussian window function has also been
studied in [9], where superiority of the sinh-type window function (4.1) was shown, we now
focus on time window functions ¢ € ®,, 1, such as (4.1) and (4.2).

Similar as in [9], for given f € By/»(R) and ¢ € ®,, 1, the uniform approximation error
Ilf — Rpmfllcym) of the regularized Shannon sampling formula can be estimated as follows.

Theorem 4.1. Let f € By/o(R) with N € N, L > N, and m € N\ {1} be given. Further let
(NS q)m,L~
Then the regularized Shannon sampling formula (4.3) satisfies

|f — Rgo,meco(R) < (El(m, N, L) + Ea(m, L)) HfHL?(R) )

with the corresponding error constants

v+L/2
Ei(m,N,L)=VN  max 1 —/ S(u)du |, (4.4)
ve[-N/2,N/2] v—L/2
V2L
E L)y=——¢p(2?). 4.5
2<m> ) m 90( L) ( )
Proof. For a proof of Theorem 4.1 see [9, Thm. 3.2]. [ |

Now we specify the result of Theorem 4.1 for certain window functions. To this end,
assume that f € By/o(R) with N € N and L = (1+ )N, A >0. Additionally, we choose
m € N\ {1}. We demonstrate that for the window functions (4.1) and (4.2) the approximation
error of the regularized Shannon sampling formula (4.3) decreases exponentially with respect
to m. We start with the sinh-type window function (4.1).

Theorem 4.2. Let f € By/2(R) with N € N be given. Assume that L = (1 + X\) N with A > 0

TmA

and m € N\ {1}. Let ¢ginn be the sinh-type window function (4.1) with parameter B = T15.
Then the regularized Shannon sampling formula (4.3) with the sinh-type window function (4.1)
satisfies the error estimate

If = Reinbn fllco@) < VN e ™ MOV £ 12 g (4.6)

Proof. For a proof of Theorem 4.2 see [9, Theorem 6.1]. [ |

Next, we continue with the continuous Kaiser—Bessel window function (4.2).

Theorem 4.3. Let f € By/2(R) with N € N be given. Assume that L = (1 + X\) N with A > 0
and m € N\ {1}. Let p.xp be the continuous Kaiser—Bessel window function (4.2) with pa-
rameter 3 = LL)A\

Then the regularized Shannon formula (4.3) with the continuous Kaiser—Bessel window func-
tion (4.2) satisfies the error estimate

Am

1
1f = RexB,mfllcym) < \/NW <1 + 1+)\> £l 2 (w) - (4.7)
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Proof. By means of Theorem 4.1 we only have to compute the error constants (4.4)
and (4.5). Note that (4.2) implies ¢cxp (%) =0, such that the error constant (4.5) van-

ishes. For computing the error constant (4.4) we introduce the function 7: [— %, %] —-R
given by
L/2+v
n(v) =1- / Pexp(u) du. (4.8)
L/2—v

As known by [13, p. 3, 1.1, and p. 95, 18.31], the Fourier transform of (4.2) has the form

sinh ( Sv1—w? .
2m (ﬂ(ﬁ WQ) - smc(ﬁw)) Dw) < 1,

i 4.9
(Io(B) = 1) L (sinc(Bvw? — 1) — sinc(Bw)) Dw| >1, )

SOCKB( )

2mm

with the scaled frequency w = SL V- Thus, substituting w = QE’L” u in (4.8) yields

L (e
) =1- 2L Bercn (L2 w) du

2mm —a(—v)
with the increasing linear function a(v) := 2”” ( %) By the choice of the parameter

B = TT“/’\\ with A > 0 we have a( — %) =1 and a(v) >1forallve |- %, %] Using (4.9),
we decompose 7(v) in the form

n(w) =m) =), ve[-5, 5],
with
v) = —L 1 sinh(ﬁ 1_w2)—sinc w w
m(v) =1 W(Io(ﬁ)—l)/_< NG (B ))d )

n2(v) = 7r([0(§)—1) </a(1 ) / > sine ,6’\/11)27) — sinc(Bw) )
By [8, 3.997-1] we have

dw

L sinh (8v1 — w?) sinh (8v1 — w?)
/_1 BV1 — w? ﬂ/ V1—w?

= Z /O7r 2sinh(B coss)ds = %LO(B)a

where Lo(z) denotes the modified Struve function given by (see [1, 12.2.1])
0 (z/2)2k+1 2 2k

2~ 2
im0 (C(k+3)) ™o (26 + 1N

Note that the function Io(x) — Lo(z) is completely monotonic on [0, co) (see [3, Theorem 1])
and tends to zero as x — co. Applying the sine integral function

Si(z) :—/ Smwdw—/ sincwdw, zeR,
0 0

w

Lo(x) =
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implies

Hence, we obtain

m(o) =1 2 (1al8) - 2810)) = - (1o9) ~ L) -1+ 25309) ).
Note that for suitable 8 = TT”))\‘ we find [Io(8) — Lo(B8) — 1+ 2Si(8)] € (0, 1), cf. Figure 4.2.

In addition, it is known that Ip(z) > 1, = € R, such that n;(v) > 0.

T Foimimimim immim e §

Figure 4.2: Visualization of [Io(8) — Lo(8) — 1+ 2 Si(8)] € (0, 1) for suitable 3 = F3.

Now we estimate 73(v) for v € [— %, %]

W@Kﬂ%é_n(ggﬁﬂm)

By [17, Lemma 4] we have for |w| > 1 that

‘sinc(ﬁv w2 —1)— sinc(ﬂw)’ < i

w2

by the triangle inequality as

sinc(ﬁM) - sinc(ﬁw)‘ dw.

Thus, we conclude

443 /°° 1 453
n)| < ———mm— —dw=——-——
72(v)] m(lo(B)—1) Ji w? ™ (Io(B) — 1)
and using Figure 4.2 and 8 = TI”T”;\‘ we therefore obtain

1 2 o 46
< o (108) - Lo(8) — 1+ 25i(3) + L)

< 1 <1+4m)\>
_Io(ﬁ)*l 1+X/)°

()] < mv) + |n2(v)
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Since the function e™ Iy(x) is strictly decreasing on [0, co) and tends to zero as z — oo
(see [2]), we have

1 _ e’ _ 1 o/ (14)
I(B)—1 e PILB)—e P e PIB)—e P '

Thus, the approximation error of the regularized Shannon formula (4.3) with the continuous
Kaiser—Bessel window function (4.2) decreases exponentially with respect to m. |

5 Comparison of the two regularization methods

Finally, we compare the behavior of the regularization methods presented in Sections 3 and 4.
For a given test function f € By/o(R) with L = N(1+\), A >0, we consider the approxi-
mation error

Jax |£(t) = (Pyrf) ()] (5.1)

te[—1,1]

for 1 € {Yiin, Yeubs Yeoss Veonv,2, Yrat}, cf. (3.4), (3.15), (3.18), (3.22), and Example 3.11,
as well as the corresponding error constants (3.9) and (3.16). In addition, we study the

approximation error

max |f(t) = (Rpmf)(t)| (5.2)

te[—1,1]

with ¢ € {@sinh, pexB}, cf. (4.1) and (4.2), and the corresponding error constants (4.6)
and (4.7). By the definition of the regularized Shannon sampling formula in (4.3) we have

L+m
(RemH)t) = > f(E)pt—F), tel-1,1], (5.3)
{=—L—m
with the regularized sinc function
p(t) == sinc(Lxt) p(t) . (5.4)

Thus, to compare (5.3) to Py rf from (3.8), we set "= L + m, such that both approxima-
tions use the same number of samples. As in Example 3.5 the errors (5.1) and (5.2) shall
be estimated by evaluating a given function f and its approximation at equidistant points

€[-1,1],s=1,...,8, with S = 10°. Analogous to [13, Section IV, C] we choose the test
function

ft) = \/@ [sinc(Nnt) + $sine(Nw(t —1))] , teR, (5.5)

with || f||2 = 1. We fix N = 256 and consider several values of m € N\ {1} and A € {0.5,1, 2}.

The associated results are displayed in Figure 5.1. Note that for all tested functions the
theoretical error behavior perfectly coincides with the numerical outcomes. Moreover, it can
clearly be seen that for higher oversampling parameter A and higher cut-off parameter m, the
error results using (4.3) get much better than the ones using (3.5), due to the exponential error
decay rate shown for (4.3). This is to say, our numerical results show that regularization with
a time window function performs much better than regularization with a frequency window
function, since an exponential decay can (up to now) only be realized using a time window
function. Furthermore, the great importance of an explicit representation of the regularizing
window function can be seen, c¢f. Example 3.11.
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Figure 5.1: Maximum approximation error (solid) and error constants (dashed) using regu-
larizations (3.5) with several frequency window functions compared to regular-
izations (4.3) with time window functions ¢gn, and ¢ckp, cf. (5.4), for the test
function (5.5) with N =256, m € {2,3,...,10}, and A € {0.5, 1, 2}.
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In summary, we found that the regularized Shannon sampling formula with the sinh-type
time window function is the best, since this approach is the most accurate, easy to compute,
and requires less data (for comparable accuracy) than the regularization with a frequency
window function.
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