
Tab. 1. Measured running times of different correction algo-
rithms per iteration, using comparable parameter settings. 
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Algorithm Running time
Least squares 1530 ms 

Gridding-based 840 ms
Man 1530 ms
Hanning 710 ms

The first of the two sums may then be rewritten as

Thus, its computation requires αN3 times a weighting of the 
magnetization mρ and the calculation of a 2D NFFT, and once a 
local convolution along the t axis. The second sum may be ex-
pressed similarly. 
To assess the resulting algorithm, we incorporated it into a con-
jugate phase and an iterative reconstruction [1,3]. We then ap-
plied it to simulated and measured spiral k-space data, using the 
same Kaiser-Bessel window for ŵ [5] and identical settings for 
α and m for reconstruction and correction. 

Results

Representative simulation results are summarized in Fig. 1. The 
proposed correction algorithm obviously provides a good ap-
proximation. Its accuracy is compared to that of others in Fig. 2 
for α = 1.25 and m = 2. The minimum αN3 is 14 in this example. 
If more than 14 segments are used, the accuracy of the least 
squares and the gridding-based correction algorithms is domin-
ated by that of the reconstruction. Running times of various 
algorithms for a 256 x 256 image matrix are listed in Tab. 1. 
Differences mainly result from the varying locality of the con-
volution along the t axis. Finally, Fig. 3 demonstrates the 
gridding-based correction algorithm on phantom data, for which 
the resonance frequency deviated by ±95Hz. 

Conclusions

For standard oversampling factors α and kernel sizes m, our 
gridding-based approach achieves a similar accuracy as least 
squares methods. It provides a rule for choosing the number of 
segments N3 in the interpolation and allows a balance between 
the accuracy of reconstruction and correction. Additionally, it 
reduces the computational complexity, since the interpolation 
coefficients are simply given by the window function w′ and the 
convolution along the t axis is local. 
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Fig. 1: Results of simulations. Spiral k-space data were calculated for a readout duration of 
32 ms and the two field maps in the first column with off-resonance frequencies in the range 
of –125 Hz and +125 Hz. Standard gridding reconstruction produced the images in the sec-
ond column, and the proposed correction algorithm, integrated into a conjugate phase and 
an iterative reconstruction, those in the third and fourth column, respectively. Two iterations 
were used in case of the continuous field map, and ten iterations in case of the discrete field 
map. 

Fig. 3. Results of phantom experiments. A reference image and a field map obtained with 
Cartesian k-space sampling are presented on the left, and two corresponding uncorrected 
and corrected images acquired with spiral k-space sampling in the middle and on the right. 
The readout duration was 28.5 ms and 56.5 ms, respectively. 

Fig. 2. Comparison of accuracy. The normalized root mean square (RMS) error is plotted as 
function of the number of segments in the interpolation. The left and the right graph show re-
sults of the conjugate phase and the iterative reconstruction, respectively, using the data for 
the continuous field map from Fig. 1. Least-squares [3], Man [2], and Hanning [1] denote 
existing correction algorithms, Gridding-based the proposed new one. 

Abstract

A new algorithm for the compensation of off-resonance effects 
is proposed. It is based on the same approximation as gridding
reconstruction, and it is compatible with direct and iterative ap-
proaches. It achieves a similar accuracy as least squares meth-
ods, while requiring no time-consuming calculation of interpol-
ation coefficients and offering further advantages in terms of 
computational complexity. Moreover, it permits to balance the 
accuracy of reconstruction and correction for non-Cartesian ac-
quisitions. The algorithm is demonstrated in simulations and 
phantom experiments. 

Introduction

Main field inhomogeneity distorts the Fourier encoding used to 
spatially resolve the detected signal and gives rise to image 
artifacts if disregarded in reconstruction. Several algorithms 
have been developed in the past to correct it [1-3]. Especially 
those for non-Cartesian acquisitions generally include an inter-
polation to reduce their computational complexity to an accept-
able level. So far, this interpolation has been introduced inde-
pendent of the approximation that the reconstruction of such 
acquisitions usually relies on. The present work proposes a uni-
fied approach. 

Methods

Gridding and non-equispaced Fast Fourier Transform (NFFT) 
algorithms [4] employ an approximation of the form

where α denotes an oversampling factor, N the number of sam-
ples in the image domain, w′ a window function of kernel size 
2m, w the periodization of w′, and ŵ the Fourier transform of w. 
While originally holding for x = -N/2, …, N/2-1 and k∈ [-π, π], 
it can be shown that this approximation remains valid for real  
x ∈ [-N/2, N/2] if k ∈ [-π+2πm/αN, π-2πm/αN]. 
Most field inhomogeneity correction algorithms for non-Car-
tesian acquisitions, including both direct and iterative ones, in-
volve the computation of

or 

where sκ denotes the estimated signal at position kκ at time tκ, 
mρ the magnetization and ωρ the angular off-resonance fre-
quency at position rρ, N1N2 the number of pixels, M the number 
of samples in the k-space domain, and dκ an optional sampling 
density compensation. In principle, ω and t may be considered 
as additional dimensions in image and k-space, respectively. 
Evaluating one of the sums then amounts to calculating a tri-
variate Fourier transform with non-equispaced sampling in both 
domains. To improve accuracy and efficiency, we suggest in-
stead to apply the above approximation directly to the exponen-
tial function describing the influence of the field inhomogen-
eity. For this purpose, we define

and
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