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Abstract

In this paper we consider an orthonormal basis, generated by a tensor product of Fourier basis
functions, half period cosine basis functions, and the Chebyshev basis functions. We deal with
the approximation problem in high dimensions related to this basis and design a fast algorithm
to multiply with the underlying matrix, consisting of rows of the non-equidistant Fourier matrix,
the non-equidistant cosine matrix and the non-equidistant Chebyshev matrix, and its transposed.
Using this, we derive the ANOVA (analysis of variance) decomposition for functions with partially
periodic boundary conditions through using the Fourier basis in some dimensions and the half
period cosine basis or the Chebyshev basis in others. We consider sensitivity analysis in this setting,
in order to find an adapted basis for the underlying approximation problem. More precisely, we
find the underlying index set of the multidimensional series expansion. Additionally, we test this
ANOVA approximation with mixed basis at numerical experiments, and refer to the advantage of
interpretable results.
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1 Introduction
The approximation of functions is a problem that arises in many scientific fields. As soon as data is
recorded, questions how “Which correlations are in the data?”, “Which variables are dependent on
one another” and “How data can be predicted at other points?” arises.
To formalise these questions we introduce the following. Let X be a set of typically high-dimensional
data points which we refer as nodes. Let f be a continuous function that maps each node x contained
in X to a value f(x). Now the task is to find a model that approximates the function f , which we can
easily evaluate at arbitrary nodes. The second requirement for the model is that it should be possible
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to find out with reasonable effort which combinations of the dimensions of the nodes influence the
values of the model in which way.
There are various algorithms as artificial neural networks or support vector machines for approximating
functions in high dimensions, see e.g. [1, 10]. However, these only reveal the hidden dependencies
in the data if they are examined in detail, which is costly. There are methods that are particularly
well suited to answering the question of hidden connections in the data. We focus on the ANOVA
(analysis of variance) decomposition, cf. [6, 24, 15, 13, 11, 8] and [16, Appendix A]. This method
gave really good results in this task as it is shown in [23, 25]. We build our theory on the foundation
provided by this work.
The classical ANOVA is based on an integral projection operator. We use consequently the series
expansion in various basic functions to define the ANOVA decomposition, cf. [20, 21, 25]. A majority
of real world systems are dominated by low-complexity interactions of their variables. This principle
is known as sparsity-of-effects, see e.g. [29, Section 4.6],[9],[25, Section 4.2]. We use this principle to
truncate the ANOVA decomposition. Since we consider a finite truncation of the series expansion
for approximation, the properties of the basis functions, such as the periodicity, are reflected in the
approximation. It is therefore advantageous if the basis functions have similar properties as the data
of the underlying process. We will combine well known basis functions on [0, 1] like the Fourier basis
functions ϕexp

k := exp(2πik·), k ∈ Z, the half period cosine basis functions ϕcos
k :=

√
2 1−δk,0 cos(πk·),

k ∈ N0, and the Chebyshev basis functions ϕalg
k :=

√
2 1−δk,0 cos(k arccos(2 · −1)), k ∈ N0 in a tensor

product structure to achieve more flexibility what properties are present in which dimensions. We
denote this tensor product basis functions by ϕd

k :=
∏d

j=1 ϕ
dj

kj
. Here d is a vector containing the

information which basis is used in which dimension. We assume that it is known from the application
which base in which dimension should be used. In a nutshell, we use a finite sum of these basis
functions to approximate a function f , i.e. ∑

k∈I
f̂kϕk ≈ f.

In this way we get a model of the data with which we can predict further data. In order to get good
approximations, it is essential to use appropriate index sets I in the approximating sums. The choice
of such an index set is always a trade-off between the number of indices, the number of training data
available, and the needed computation time.
Furthermore, we use another concept of the classical ANOVA, namely the analytic global sensitivity
indices [27, 28, 15]. These tell us which variables are related and how big the influence of these relations
are. Using the coefficients f̂k from our model for the function f , we can calculate approximated
global sensitivity indices. Using these approximated global sensitivity indices, we can truncate
our approximation even further to get better suitable index sets I, which provides us even better
approximations.
To compute such approximations it is important to evaluate finite sums of basis functions

∑
k∈I f̂kϕk(x)

with known index sets I at many scattered nodes xj ∈ [0, 1]d simultaneously. A main focus of this
work is the development of algorithms to evaluate these sums of mixed basis functions ϕd

k. If we
are dealing with the Fourier basis in each dimension, the resulting sums can be evaluated through
algorithms like the non-equidistant fast Fourier transform (NFFT) [12],[18, Chapter 7] combined with
grouped transforms, cf. [3, 21]. Similar things work, if we deal with the cosine basis in each dimension
or the Chebyshev basis in each dimension. We will develop an fast algorithm based on the NFFT to
evaluate these sums at many scattered nodes.
The reason, why we have to evaluate these sums at scattered nodes is, that real world data is rarely
equidistantly sampled. The usage of real world data provides another challenge, because it is typically
not in the domain [0, 1]d. This problem can be solved by rescaling the data, e.g. with a min-max
normalisation. If the source of the data is not bounded, we need to use a different transformation.
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For example, if the data is normally distributed, they can be pre-processed with the error function to
bring them into the domain [0, 1]d, see e.g. [23].
The paper is organized as follows. In Section 2 we set up notion and terminology. Firstly, in Subsection
2.1 we introduce needed function spaces and some of their relations. Subsection 2.2 introduces some
well known orthonormal basis and finally the mixed basis with which we will deal with in the rest
of the paper. In Section 3 we introduce the ANOVA approximation for the mixed basis based
on an approach by Fourier series. Here, Subsection 3.1 deals with the definition of the ANOVA
decomposition and Subsection 3.2 provides a way to compute an ANOVA approximation. We split
this subsection in three parts, firstly we consider useful index sets then we describe a way to compute
the ANOVA approximation for given index sets and to this end we describe how this index sets could
be determined. In Section 4 we develop fast algorithms to evaluate sums of mixed basis functions.
Subsection 4.1 provides through Theorem 4.1 a way to compute such sums through an NFFT which is
summarized in Algorithm 1. In Subsection 4.2 we extend the grouped transform [3] to the mixed
basis using the Algorithm 1. In Section 5 we show with some experiments how this approximation
procedure works. Subsection 5.1 deals with the approximation of a function. There are the steps
shown to find good suitable index sets. In Subsection 5.2 we approximate a function where we only
have access to uniformly sampled nodes. At this point we compare the approximation with a suitable
mixed basis with the approximation with the half period cosine basis and the Fourier basis. Subsection
5.3 presents an approximation on a publicly available benchmark dataset.

2 Preliminaries
This section presents basic definitions for the rest of this paper. In Subsection 2.1 various function
spaces and some of their relations are introduced. We use [25] as reference for this. We use these as
foundations for our later considerations of the ANOVA decomposition. Subsection 2.2 presents some
orthonormal basis. We start by defining some classical one-dimensional basis functions. In the next
step, Definition 2.2, we combine these basis functions for higher dimensions

2.1 Function Spaces

Let D ⊂ {Tm × [0, 1]n | m, n ∈ N0} be a measurable set, where T = R/Z is the torus which we
identify with [0, 1). Moreover, let ω : D→ (0,∞) be a probability measure with

∫
D ω(x) dx = 1. We

define the weighted Lebesgue spaces

Lp(D, ω) :=
{

f : D→ C
∣∣∣∣ ∫

D
|f(x)|p ω(x) dx <∞

}

with the norm ∥f∥Lp(D,ω) := (
∫
D |f(x)|p ω(x) dx)

1
p for p ∈ [1,∞). Furthermore, we define

L∞(D) := {f : D→ C | ess sup
x∈D

|f(x)| <∞}

with the norm ∥f∥L∞(D) := ess supx∈D |f(x)|. The Lebesgue space L2(D, ω) forms a Hilbert space with
the scalar product ⟨f, g⟩L2(D,ω) :=

∫
D f(x)g(x)ω(x) dx. We use the abbreviation Lp(D) := Lp(D, 1).

Let B = (ϕk)k∈K be a basis with an index set K for the Hilbert space L2(D, ω). We define the Wiener
space

A(D, ω) :=

f ∈ L1(D, ω)

∣∣∣∣∣∣
∑
k∈K

∣∣∣⟨f, ϕk⟩L2(D,ω)

∣∣∣ <∞


with the norm ∥f∥A(D,ω) :=

∑
k∈K|⟨f, ϕk⟩L2(D,ω)|.
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Lemma 2.1. Let L2(D, ω) be a weighted Lebesgue space with a basis (ϕk)k∈K with supk∈K∥ϕk∥L∞(D) <
∞. Then every element of the corresponding Wiener space A(D, ω) has a continuous representative.

Proof. See [25, Lemma 2.5].

Remark. Lemma 2.1 provides A(D, ω) ⊆ C(D) := {f : D→ R | f continuous}. Furthermore, we get

∥f∥L∞(D) = ess sup
x∈D

∣∣∣∣∣∣
∑
k∈K
⟨f, ϕk⟩L2(D,ω) ϕk(x)

∣∣∣∣∣∣
≤ sup

k∈K
∥ϕk∥L∞(D)

∑
k∈K

∣∣∣⟨f, ϕk⟩L2(D,ω)

∣∣∣
= sup

k∈K
∥ϕk∥L∞(D) ∥f∥A(D,ω) .

It follows A(D, ω) ⊆ L∞(D) and A(D, ω) ⊆ L2(D, ω).
Due to this Lemma, we define the evaluation of a function f ∈ A(D, ω) at a point x ∈ D as evaluation

of the continuous representative at the point x. Next, we consider partial sums of the function f for
finite subsets of the index set I ⊂ K, e.g. SI(B)f :=

∑
k∈I ⟨f, ϕk⟩L2(D,ω) ϕk. Furthermore, we define

the set of polynomials related to the finite index set I as

TI(B) :=

∑
k∈I

ckϕk

∣∣∣∣∣∣ ck ∈ C

 . (2.1)

2.2 Orthonormal Basis

In this subsection we firstly introduce the one-dimensional basis functions which we use for the mixed
basis. The functions ϕexp

k = exp(2πik·) form the orthonormal Fourier basis of L2(T). Additionally, the
functions ϕcos

k =
√

2 cos(πk·) form together with the constant function with value one the orthonormal
half period cosine basis of L2([0, 1]). The functions ϕalg

k =
√

2 cos(k arccos(2 · −1)) form together with
the constant function with value one the orthonormal Chebyshev basis of L2([0, 1], ω) with the weight
ω : [0, 1] → (0,∞), ω(x) := 1

π
√

x−x2 . In the following we are going to work with tensor products of
these basis functions.

Definition 2.2. Let d be a d-dimensional tuple over the set {exp, cos, alg}. We define the sets

Dd :=
d×

j=1

{
T, dj = exp
[0, 1], dj ̸= exp

and Kd :=
d×

j=1

{
Z, dj = exp
N0, dj ̸= exp

and the mixed functions

ϕd
k : Dd → C, ϕd

k(x) :=
d∏

j=1


1, kj = 0
exp(2πikjxj), dj = exp, kj ̸= 0√

2 cos(πkjxj), dj = cos, kj ̸= 0√
2 cos(kj arccos(2xj − 1)), dj = alg, kj ̸= 0

for k ∈ Kd. Furthermore, we define the weight function

ωd : Dd → (0,∞), ωd(x) :=
d∏

j=1

1, dj ̸= alg
1

π
√

xj−x2
j

, dj = alg .

The mixed functions ϕd
k form a basis of L2(Dd, ωd) because of their tensor product structure and

because their factors are Fourier, half period cosine and Chebyshev basis functions. We name this
basis Bd := {ϕd

k | k ∈ Kd}.
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3 Interpretable ANOVA Approximation
In this section, we define the ANOVA approximation for the mixed basis. We follow the steps in [21].
We do this by writing a function as a series expansion and splitting it into parts. We than define
sensitivity indices for the parts to determine how important they are and use them to truncate the
series expansion. We start in Subsection 3.1 with defining the ANOVA decomposition, see [6, 15, 13,
8] and [16, Appendix A], in the way like [20, 21] through a series expansion. We apply this to our
setting with the mixed basis. Furthermore, we define analytic global sensitivity indices [27, 28, 15].
In Subsection 3.2 we describe the procedure of ANOVA approximation [20, 21, 22], and we deduce a
way to compute it numerically.

3.1 ANOVA Decomposition

Let f be an L2(Dd, ωd) function. Since ϕd
k with k ∈ Kd form an orthonormal basis of L2(Dd, ωd), f

can be written as

f =
∑

k∈Kd

cd
k(f)ϕd

k

with coefficients cd
k(f) := ⟨f, ϕd

k⟩L2(Dd,ωd). Furthermore, we get the Parseval equality

∥f∥2L2(Dd,ωd) =
∑

k∈Kd

|cd
k(f)|2,

from the fact that Bd is a basis of L2(Dd, ωd). Next, we decompose the function f into ANOVA
terms. We denote subsets of coordinate indices with small boldface letters u ∈ P([d]). For every
subset of indices u we define the ANOVA term

fu(x) :=
∑

k∈Kd
supp k=u

cd
k(f)ϕd

k(x).

Note that such an ANOVA term fu(x) is independent of xj if j /∈ u. We point out, that ANOVA
terms fu of a function f may be smoother than the function f itself, see [GrKuSl10, 15, 25]. These
ANOVA terms fu, u ⊆ [d] decompose the function f uniquely into

f =
∑

k∈Kd

cd
k(f)ϕd

k =
∑

u∈P([d])
fu.

This follows since {{k ∈ Kd | supp k = u} | u ∈ P([d])} is a partition of the set Kd. Additionally, we
define the variance of a function f as σ2(f) =

∫
Dd |f(x)− cd

0 (f)|2ωd(x) dx, which is equivalent to
σ2(f) = ∥f∥2L2(Dd,ωd) − |c

d
0(f)|2. The Parseval equality states

σ2(f) =
∑

k∈Kd\{0}
|cd

k(f)|2.

Furthermore, we get the variance of ANOVA terms fu through

σ2(fu) =
∑

k∈Kd\{0}
|cd

k(fu)|2 =
∑

k∈Kd
supp k=u

|cd
k(fu)|2 = ∥fu∥2L2(Dd,ωd) .

Finally, we define the analytic global sensitivity indices (GSI) like [28] through

ρ(u, f) := σ2(fu)
σ2(f) .
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The analytic GSI’s have values in [0, 1], and the closer an analytic GSI ρ(u, f) is to 1, the more
important is the corresponding ANOVA term fu for reconstructing the function f . We use this
information for the construction of good suitable index sets. We point out that the analytic GSIs
depend on the weight ωd. Next we truncate the ANOVA decomposition. We use a set of subsets of
indices U ⊆ P([d]) for this truncation. We define

TU f(x) =
∑
u∈U

fu(x).

To find this set U , we choose the ANOVA terms fu with the highest GSI’s to get TU f ≈ f . In order
to do this, we choose a threshold θ ∈ [0, 1) and set U = {u ⊂ [d] | ρ(u, f) > θ}.

3.2 Numerical ANOVA Approximation

In this section our aim is to approximate a function f ∈ A(Dd, ωd). We are given a set of M ∈ N
nodes X ⊂ Dd, |X | = M and the corresponding function values (f(x))x∈X := f ∈ CM . We aim to
find a mixed polynomial

fd : Dd → C, fd(x) :=
∑
k∈I

f̂d
k ϕd

k(x), f̂d
k ∈ C

for which f ≈ fd holds, i.e. ∥f − fd∥L2(Dd,ωd) is small and I is a finite subset of Kd. In the next
Subsection 3.2.1 we consider some ways to choose I. The next Subsection 3.2.2 presents a way to
find the mixed polynomial fd which minimizes the L2(Dd, ωd) norm of f − fd for a given index set I
and nodes X . To this end we show in Subsection 3.2.3 how to choose and refine the truncation set U .

3.2.1 Grouped Index Sets

We present some index sets that are important for this paper. Since these index sets contain
frequencies for the mixed basis we call them frequency sets. We begin with frequency sets which are
full d-dimensional hypercubes, but since their size grows exponential in the dimension d we introduce
better controllable frequency sets. We start with the frequency sets which are full d-dimensional
hypercubes, i.e.

Id
N :=

d×
j=1

Z ∩
[
−Nj

2 ,
Nj

2

)
, dj = exp

N0 ∩
[
0,

Nj

2

)
, dj ̸= exp

(3.1)

for a vector of bandwidths N = (Nj)d
j=1 ∈ (2N0)d. These sets have the cardinality

|Id
N| =

d∏
j=1

{
Nj , dj = exp
Nj

2 , dj ̸= exp
. (3.2)

Next, we define frequency sets that can be adjusted more precisely. We use them to construct thinner
frequency sets. In detail these frequency sets should have a high bandwidth along the coordinate
axes, less bandwidth along the coordinate planes and so on. For this purpose we define the following
frequency sets Ĩd

N with bandwidths N = (Nj)d
j=1 ∈ (2N0)d. Here if Nj is zero the set Ĩd

N should
only contain the frequency zero, when it is projected onto the dimension j. If Nj is not zero the
projection onto the dimension j should not contain the frequency zero, because it is contained in a
lower dimensional set. This is being done by the frequency set

Ĩd
N :=

d×
j=1


{0}, Nj = 0
Z ∩

[
−Nj

2 ,
Nj

2

)
\ {0}, dj = exp and Nj ̸= 0

N0 ∩
[
0,

Nj

2

)
\ {0}, dj ̸= exp and Nj ̸= 0

. (3.3)
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These frequency sets Ĩd
N have the cardinality

|Ĩd
N| =

d∏
j=1


1, Nj = 0
Nj − 1, dj = exp and Nj ̸= 0
Nj

2 − 1, dj ̸= exp and Nj ̸= 0
. (3.4)

Since these frequency sets are disjoint, if the bandwidths have different support, we can form the union
of them to derive a new frequency set. We choose for every u ∈ U a bandwidth Nu = (Nu

j )d
j=1 ∈ (2N)d

with Nu
j ̸= 0 for j ∈ u and Nu

j = 0 for j /∈ u and define the frequency set

I(U) :=
⋃

u∈U

Ĩd
Nu . (3.5)

At this point we have a look at special sets U. We choose a superposition dimension ds < d and define
the superposition set Uds which contains only subsets u of the size up to |u| ≤ ds ∈ N, i.e.

Uds
:= {u ⊆ [d] | |u| ≤ ds}. (3.6)

In other words, we focus on the interactions of ds or less dimensions. Mixed polynomials TI(Uds )(Bd)
consist of basis functions which have only up to the superposition dimension ds many interactions
between the variables xj . Approximating functions with such basis functions of only low-order
interactions is a common problem, see [11, 25, 30, 14]. Next we consider the cardinality of the
superposition set Uds .

Lemma 3.1. Let ds be the superposition dimension and Uds the corresponding superposition set, see
(3.6). Furthermore let the entries of Nu be bounded for all u ∈ Uds , i.e. maxu∈Uds

i∈[d]
Nu

i ≤ Nmax. Then

|I(Uds)| ≤ ds(dNmax)ds (3.7)

holds for d ≥ 2ds.

Proof. We have a look at the cardinality of the frequency set I(Uds) and using the fact that the sets
Ĩd

Nu are disjoint we get |I(U)| = |
⋃

u∈Uds
| =

∑
u∈Uds

|Ĩd
Nu |. In the first part we show |Ĩd

Nu | ≤ (Nmax)ds

and in the second part |Uds | ≤ dsdds .
Since u ∈ Uds has at most ds entries, Nu has at most ds non-zero entries and using (3.4) we get
|Ĩd

Nu | ≤ (Nmax)ds .
We can estimate the cardinality of the truncation set Uds as

|Uds | ≤ |{u ⊂ [d] | |u| ≤ ds}| =
ds∑

i=1

(
d

i

)
≤ ds

(
d

ds

)
≤ dsdds .

This gives us |I(Uds)| =
∑

u∈Uds
|Ĩd

Nu | ≤
∑

u∈Uds
(Nmax)ds ≤ dsdds(Nmax)ds = ds(dNmax)ds

The Equation (3.7) shows that the frequency set I(Uds), with a superposition set Uds containing
only subsets u of the size up to |u| ≤ ds ∈ N, grows only polynomially with the power ds, which is an
improvement over the exponentially growing full d-dimensional hypercubes Id

N.

Example. We show in Figure 1 a typical example for such a set I(U), where d =
( exp

alg
cos

)
and

U = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}}. Here we use the bandwidths N{1} =
( 18

0
0

)
, N{2} =

( 0
16
0

)
,

N{3} =
( 0

0
10

)
, N{1,2} =

( 10
8
0

)
, and N{2,3} =

( 0
6
8

)
. The parts Ĩd

Nu of this frequency set I(U) are shown
in different colors. The set Ĩd

N{1} is shown in green, Ĩd
N{2} in blue, Ĩd

N{3} in red, Ĩd
N{1,2} in cyan, and

Ĩd
N{2,3} in magenta.
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x2

x1

x3

Figure 1: Frequency set I(U) for d =
( exp

alg
cos

)
and U = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}} with N{1} =( 18

0
0

)
, N{2} =

( 0
16
0

)
, N{3} =

( 0
0
10

)
, N{1,2} =

( 10
8
0

)
, and N{2,3} =

( 0
6
8

)
. The frequency set

Ĩd
N{1} is shown in green, Ĩd

N{2} in blue, Ĩd
N{3} in red, Ĩd

N{1,2} in cyan, and Ĩd
N{2,3} in magenta.

3.2.2 Approximation

In this section we assume that the set U and the bandwidths Nu are known. For a way to choose
them we refer to Subsection 3.2.3. Now, we approximate the truncated function TU f with a mixed
polynomial fd ∈ TI(U)(Bd), where the set of polynomials TI(U)(Bd) is defined in (2.1). As result, we
get f ≈ TU f ≈ fd.
The mixed polynomial is completely determined by finitely many mixed coefficients (cd

k(fd))k∈I(U) ∈
C|I(U)|. Now it is our goal to find an approximation f̂d ≈ (cd

k(fd))k∈I(U) to this mixed coefficients.
To achieve this, we compute the least squares solution

∥f − fd∥2L2(Dd,ωd) =
∫
Dd
|f(x)− fd(x)|2ωd(x) dx.

We approximate this integral by evaluating the function |f(x)− fd(x)|2 at the M = |X | given nodes
X , where we know the values f = (f(x))x∈X . For this approximation we assume that the nodes in X
are distributed in Dd with the density ωd. We get

∥f − fd∥2L2(Dd,ωd) ≈
1

M

∑
x∈X
|f(x)− fd(x)|2

= 1
M
∥f − (fd(x))x∈X ∥22

= 1
M
∥f −Φ(X , I(U))f̂d∥22,

where Φ(X , I(U)) is the matrix (ϕd
k(x))x∈X , k∈I(U) ∈ CM×|I(U)|. Now we choose f̂d such that the

distance between the function f and the approximation fd is as small as possible, i.e.

f̂d := arg min
ĥd∈C|I(U)|

∥f −Φ(X , I(U))ĥd∥22. (3.8)

We solve the minimization problem (3.8) with the LSQR algorithm [17]. This algorithm multiplies
in every iteration step with the matrix Φ(X , I(U)) and its adjoint Φ(X , I(U))∗. In Section 4 we
develop fast algorithms to multiply with this kind of matrices Φ(X , I(U)) and Φ(X , I(U))∗. We
point out that the number of iterations of the LSQR algorithm depends on the condition number of
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the underlying matrix. This condition number is in many applications much better than the worst
case estimation, see e.g. [5, 4].
We obtain the approximation

fd : Dd → C, fd(x) :=
∑

k∈I(U)
f̂d

k ϕd
k(x)

for the function f . Let Xtest ⊂ Dd, |Xtest| = Mtest be a set with Mtest ∈ N nodes, where we evaluate
the approximation fd. Then (fd(x))x∈Xtest = Φ(Xtest, I(U))f̂d holds.

3.2.3 How to choose the truncation set U?

We choose U in two steps, firstly we choose a large superposition set Uds . Then, we calculate the
mixed coefficients f̂d according to this set Uds for the approximating mixed polynomial fd. In this way
we get approximated global sensitivity indices ρ(u, fd) for every u ∈ Uds . Using these approximated
GSIs we can refine the set Uds to the final set U .
Firstly, we choose a superposition dimension ds < d and use the corresponding superposition set Uds

which contains only subsets u of the size up to |u| ≤ ds ∈ N, see (3.7). Then we choose appropriate
bandwidths Nu. It is good to choose the bandwidths in a way that we have an oversampling, i.e.
|I(Uds)| < M with |I(Uds)| =

∑
u∈Uds

|Ĩd
Nu |. For |Ĩd

Nu | we refer to (3.4). At this point we refer to
Lemma 3.1, which states that ds gives an upper bound on the growth rate of I(Uds), i.e. if ds = 2 the
cardinality of the set I(Uds) grows quadratically with the value of the largest bandwidth.
As the next step we calculate the mixed coefficients f̂d for the approximating mixed polynomial fd in
the way we described it in the previous part. Using these mixed coefficients f̂d = (f̂d

k )k∈I(Uds ) we
calculate the approximated global sensitivity indices ρ(u, fd) for the mixed polynomial fd for all
u ∈ Uds through

ρ(u, fd) = σ2(fd
u )

σ2(fd) =

∑
k∈Kd

supp k=u

|f̂d
k |2

∑
k∈Kd\{0}

|f̂d
k |2

=

∑
k∈Ĩd

Nu

|f̂d
k |2

∑
k∈I(Uds )\{0}

|f̂d
k |2

.

Since the mixed polynomial fd approximates the function f , the approximated GSI ρ(u, fd) should
approximate the analytic GSI ρ(u, f).
To this end we choose a threshold θ > 0 and define the set

Uθ := {u ∈ Uds | ρ(u, fd) > θ}. (3.9)

With this set Uθ we do the approximating procedure again. At this stage, we optimize the bandwidths
to avoid overfitting and underfitting we do this through cross-validation.

4 Fast Evaluation of Mixed Polynomials
In this section, we develop a fast algorithm for evaluating sums of the mixed basis functions ϕd

k, i.e.

fd :=
∑
k∈I

f̂d
k ϕd

k (4.1)

with arbitrary coefficients f̂d
k ∈ C on a finite index sets I ⊆ Kd at M ∈ N nodes X ⊂ Dd, |X | = M

simultaneously. This evaluation is equivalent to the matrix-vector multiplication of the non-equidistant
mixed matrix

Φ(X , I) := (ϕd
k(x))x∈X ,k∈I (4.2)
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with the vector f̂d = (f̂d
k )k∈I , where X is the set of the nodes at which we are interested to evaluate

the mixed polynomial fd. This algorithm is the missing component to do the numerical ANOVA
approximation fast with mixed basis functions. In the Subsection 4.1 we consider the index set
I = Id

N, defined in (3.1). Since we will use the thinner index sets I = I(U), defined in (3.5), we will
introduce in Subsection 4.2 an algorithm for this case which will rely on the algorithm in Subsection
4.1.

4.1 Non-Equidistant Fast Mixed Transform

In this subsection, we present a method with a computational cost of only O(|Id
N| log|Id

N|+ |log ϵ|dM)
for the evaluation of mixed polynomials fd with the frequency set Id

N. This is faster than the straight-
forward matrix vector multiplication with the matrix Φ(X , Id

N) which takes O(|Id
N|M) arithmetical

operations.
We point out that the mixed polynomial fd with d = (exp, . . . , exp) =: exp is a trigonometric
polynomial, which can be evaluated through the non-equidistant fast Fourier transform (NFFT) [18,
Chapter 7] with a computational cost of O(|Iexp

N | log|Iexp
N | + |log ϵ|dM), where ϵ is the required

precision, |Iexp
N | is the cardinality of the frequency set given in (3.2), and M is the number of nodes

where we evaluate the mixed polynomial fexp. Now, we make use of the NFFT in order to evaluate
arbitrary mixed polynomials fd. We use the identity

N−1∑
k=0

f̂ cos
k

√
2 1−δk,0 cos(πkx)︸ ︷︷ ︸

=ϕcos
k

(x)

=
N−1∑

k=−N+1
2δk,0−1f̂ cos

|k|
√

21−δk,0︸ ︷︷ ︸
=:f̂exp

k

exp(πikx)︸ ︷︷ ︸
=ϕexp

k ( x
2 )

(4.3)

to transform cosine polynomials f cos into trigonometric polynomials f exp. Additionally, we use the
identity

N−1∑
k=0

f̂alg
k

√
2 1−δk,0 cos(k arccos(2x− 1))︸ ︷︷ ︸

=ϕalg
k

(x)

=
N−1∑

k=−N+1
2δk,0−1f̂alg

|k|
√

21−δk,0︸ ︷︷ ︸
=:f̂exp

k

exp(ik arccos(2x− 1))︸ ︷︷ ︸
=ϕexp

k

( arccos(2x−1)
2π

) . (4.4)

to transform algebraic polynomials falg into trigonometric polynomials f exp. It follows, that one
dimensional polynomials of the form f cos and falg can be evaluated through an NFFT. Since our
mixed basis functions ϕd

k have a tensor product structure, we use the identities (4.3) and (4.4) in
every dimension where the half period cosine basis or the Chebyshev basis is used.

Theorem 4.1. Let f̂d = (f̂d
k )k∈Id

N
∈ C|Id

N| be a coefficient vector for a mixed polynomial fd

defined in (4.1) and an arbitrary d ∈ {exp, cos, alg}d and d ∈ N. We define the coefficient vector
f̂exp = (f̂exp

k )k∈Iexp
N
∈ C|Iexp

N | through

f̂exp
k := f̂d

s(k)

d∏
j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else
(4.5)

for all k ∈ Iexp
N , where s is the index transformation

s : Iexp
N → Id

N, s(k) :=




kj , dj = exp
|kj |, dj ̸= exp and kj ̸= −Nj

2
0, dj ̸= exp and kj = −Nj

2


d

j=1

. (4.6)
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Furthermore, we define the function t : Dd → Dexp, t(x) := (tj(xj))d
j=1 with

tj : Ddj → Dexp, tj(x) :=


x, dj = exp
x
2 , dj = cos
arccos(2x−1)

2π , dj = alg
.

Then the identity fd = fexp ◦ t holds.

Proof. We point out that

ϕexp
kj

(tj(xj)) + ϕexp
−kj

(tj(xj)) = (exp(2πikjtj(xj)) + exp(−2πikjtj(xj))) = 2 cos(2πkktj(xj)) (4.7)

holds. Furthermore
√

2 cos(2πkjtj(xj)) = ϕ
dj

kj
(xj) for dj = cos, alg (4.8)

and ϕexp
0 = ϕcos

0 = ϕalg
0 holds by definition. We have a look at the trigonometric polynomial fexp ◦ t

at a node x ∈ Dexp and obtain

fexp(t(x)) =
∑

k∈Iexp
N

f̂exp
k ϕexp

k (t(x))

=
∑

k∈Iexp
N

f̂d
s(k)

d∏
j=1


1ϕexp

kj
(tj(xj)), dj = exp or kj = 0

0ϕexp
kj

(tj(xj)), dj ̸= exp and kj = −Nj

2√
2

2 ϕexp
kj

(tj(xj)), else

=
∑

k∈Iexp
N

f̂d
s(k)

d∏
j=1


ϕexp

kj
(xj), dj = exp

ϕexp
0 (tj(xj)), dj ̸= exp and kj = 0

0, dj ̸= exp and kj = −Nj

2√
2

2 ϕexp
kj

(tj(xj)), else

=
∑

k∈Id
N

f̂d
k

d∏
j=1


ϕexp

kj
(xj), dj = exp

ϕexp
0 (tj(xj)), dj ̸= exp and kj = 0

√
2

2 ϕexp
kj

(tj(xj)) +
√

2
2 ϕexp

−kj
(tj(xj)), else

=
(4.7)

∑
k∈Id

N

f̂d
k

d∏
j=1


ϕexp

kj
(xj), dj = exp

ϕexp
0 (tj(xj)), dj ̸= exp and kj = 0√
2 cos(2πkjtj(xj)), else

=
(4.8)

∑
k∈Id

N

f̂d
k

d∏
j=1

ϕ
dj

kj
(xj)

= fd(x).

Remark. The Theorem 4.1 provides us a decomposition of the non-equidistant mixed matrix Φ(X , Id
N).

For this purpose we define the diagonal matrix

D := diag

 d∏
j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else


k∈Id

N

,
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the canonical map Π := (δk,l)k∈Id
N,l∈Iexp

N
, the projection P := (δk,s(k)), and the non-equidistant

Fourier matrix A = (exp(2πi⟨k, t(x)⟩))x∈X ,k∈Iexp
N

. Then the matrix transformation

Φ(X , Id
N) = AΠ⊤P⊤D (4.9)

follows directly.
We summarize the procedure for the efficient evaluation of the mixed polynomials fd at M arbitrary

nodes as non-equidistant fast mixed transform (NFMT) in Algorithm 1.

Input: Vector d ∈ {exp, cos, alg}d, bandwidths N ∈ (2N)d, coefficients f̂d
k ∈ C for

k ∈ Id
N, nodes X ⊂ Dd, |X | = M

1 Define the coefficients f̂exp
k given in (4.5) for all k ∈ Iexp

N .
2 Compute

s(x) =
∑

k∈Id
N

f̂exp
k exp (2πi ⟨k, x̃⟩)

at the nodes x̃ ∈ {t(x) | x ∈ X} with t : Dd → Dexp defined in Theorem 4.1 using a
d-variate NFFT

Output: s(x) = fd(x) for x ∈ X
Computational cost: O(|Id

N| log|Id
N|+ |log ϵ|dM)

Algorithm 1: NFMT for the fast evaluation of mixed polynomials fd for frequency sets Id
N

defined in (3.1).

In addition we evaluate the sum

h(k) =
∑
x∈X

gxϕd
k(x), gx ∈ C (4.10)

for all k ∈ Id
N. This is equivalent to the matrix vector product of the transposed non-equidistant mixed

matrix Φ(X , Id
N)⊤ with the vector g = (gx)x∈X . We use the factorization (4.9) of the non-equidistant

mixed matrix Φ(X , Id
N) and get directly the Algorithm 2, which provides a method for the fast

evaluation of the sum (4.10).

Remark. • We note that one can extend the non-equidistant fast mixed transformations to other
orthogonal polynomials using [19]. The algorithm known as discrete polynomial transform
provides a fast basis exchange for arbitrary orthogonal polynomials with satisfying a three-term
recurrence into the Chebyshev basis. These Chebyshev polynomials can then be evaluated by
the Algorithms 1 and 2.

• One can also use other transformations, such as the transformation of the unit interval [0,1]
into the real numbers R from [23]. This allows us to handle normally distributed nodes.

It should be noted that these transformations can be performed in each dimension separately due
to the tensor product structure of the basis and the flexibility of the mixed basis.

4.2 Grouped Mixed Transformations

In this section we derive a fast algorithm for the evaluation of mixed polynomials fd =
∑

k∈I(U) f̂d
k ϕd

k
where I(U) is a frequency set defined in (3.5). The theory of grouped transformations for trigonometric
polynomials is well established in [3]. In the following section, we summarise this idea of grouped
transformations and apply it to the case of the mixed polynomials. We denote xu := Πux, where Πu

12



Input: Vector d ∈ {exp, cos, alg}d, bandwidths N ∈ (2N)d, nodes X ⊂ Dd, |X | = M ,
coefficients hx ∈ C for x ∈ X

1 Compute

h̃exp(k) =
∑
x∈X

hx exp (2πi ⟨k, x̃⟩)

with k ∈ Id
N at the nodes x̃ ∈ {t(x) | x ∈ X} with t : Dd → Dexp defined in Theorem

4.1 using a d-variate NFFT⊤

2 Compute

h̃(k) =
∑

l∈Iexp
N

s(l)=k

h̃exp(l)
d∏

j=1


1, dj = exp or kj = 0
0, dj ̸= exp and kj = −Nj

2√
2

2 , else

with s defined in (4.6).
Output: h̃(k) = h(k), see (4.10), for k ∈ Id

N
Computational cost: O(|Id

N| log|Id
N|+ |log ϵ|dM)

Algorithm 2: NFMT⊤ for the fast evaluation of sums of the form (4.10) for frequency sets Id
N

defined in (3.1).

is the canonical map Πu onto the dimensions contained in u.
The evaluation of this sum at the nodes x ∈ X is equivalent to calculate the matrix vector product
fd = Φ(X , I(U))f̂d ∈ CM with the matrix Φ(X , I(U)), defined in (4.2) and the vector f̂d ∈ C|I(U)|.
We follow the steps in [3] and get∑

k∈I(U)
f̂d

k ϕd
k(x) =

∑
u∈U

∑
k∈Ĩd

Nu

f̂d
k ϕd

k(x)

through the structure of the frequency set I(U). In other words, the matrix Φ(X , I(U)) is a block
matrix with horizontally arranged blocks Φ(X , Ĩd

Nu), u ∈ U , i.e. Φ(X , I(U)) = (Φ(X , Ĩd
Nu)⊤)⊤

u∈U .
Thus, we divide the task. For every u ∈ U we multiply the vector f̂d,u := (f̂d

k )k∈Ĩd
Nu

with the block
Φ(X , Ĩd

Nu). We get for these blocks

Φ(X , Ĩd
Nu) = (ϕdu

k (xu))x∈X , k∈Ĩdu
Nu

= Φ({xu | x ∈ X} , Ĩdu
Nu).

We define the vector ĝdu = (ĝdu
k )k∈Idu

Nu
u
∈ C|Idu

Nu
u

|, where now Idu
Nu

u
is a frequency set which we can use

for an NFMT. At this point we would like to clarify that Nu
u are exactly the non-zero entries of Nu.

So Idu
Nu

u
is a set of frequencies k of lower dimension as the frequencies k̃ in Ĩd

Nu . Specifically, k are
the projections of k̃ onto the dimensions contained in u. We set each component of ĝdu which is not
contained in the set Ĩdu

Nu to zero, e.g.

ĝk =
{

f̂k, |supp k| = |u|
0, else

, k ∈ Idu
Nu

u
.

Then we obtain∑
k∈Idu

Nu
u

ĝdu
k ϕdu

k (x) =
∑

k∈Ĩdu
Nu

f̂d
k ϕdu

k (x) +
∑

k∈Idu
Nu

u
\Ĩdu

Nu

0 · ϕdu
k (x) =

∑
k∈Ĩdu

Nu

f̂d
k ϕdu

k (x)
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or in matrix vector form Φ(X , Ĩdu
Nu)f̂d = Φ(X , Idu

Nu
u
)ĝdu . Which is equivalent to the matrix decom-

position Φ(X , Ĩdu
Nu) = Φ(X , Idu

Nu
u
)Π̃⊤ where Π̃ = (δl,k)l∈Ĩdu

Nu ,k∈Idu
Nu

u
∈ R|Ĩdu

Nu |×|Idu
Nu

u
| is a canonical map.

To sum this up, we multiply the matrix Φ(X , I(U)) with the vector f̂d ∈ C|I(U)| through calculating

Φ(X , I(U))f̂d =
∑
u∈U

Φ(X , Id
Nu)f̂d,u

=
∑
u∈U

Φ({xu | x ∈ X} , Ĩdu
Nu)f̂d,u

=
∑
u∈U

Φ({xu | x ∈ X} , Idu
Nu

u
)Π̃⊤f̂d,u.

We calculate the last sum with |U | many NFMT. This leads us to a computational cost of
O(
∑

u∈U (|Idu
Nu

u
| log|Idu

Nu
u
|+ m

|u|
NFFTM)). Additionally, it can be easily parallelized, because every sum-

mand can be computed independently. We summarize the this procedure in Algorithm 3

Input: Vector d ∈ {exp, cos, alg}d, truncation set U , bandwidths Nu ∈ (2N)u for
u ∈ U , coefficients f̂k ∈ C for all k ∈ I(U), nodes X ⊂ Dd, |X | = M

1 f ← 0
2 foreach u ∈ U // This loop can be parallelized
3 do
4 X̃ ← {xu | x ∈ X}

5 ĝk ←
{

f̂k, |supp k| = |u|
0, else

, k ∈ Idu
Nu

u

6 Compute f ← f + Φ(X̃ , Idu
Nu

u
)g using a |u|-variate NFMT

7 end
Output: f = Φ(X , I(U))f̂

Computational cost: O
( ∑

u∈U

(
|Idu

Nu
u
| log|Idu

Nu
u
|+ m

|u|
NFFTM

))
Algorithm 3: Grouped transform for the fast evaluation of mixed polynomials fd with a frequency
set I(U), see (3.5).

Furthermore, the identity

Φ(X , I(U)) =
(
Π̃Φ({xu | x ∈ X} , Idu

Nu
u
)⊤
)⊤

u∈U
(4.11)

holds. This (4.11) leads us to an algorithm for multiplying with the adjoint matrix Φ(X , I(U))∗,
because

Φ(X , I(U))∗ =
(
Π̃Φ({xu | x ∈ X} , Idu

Nu
u
)∗
)

u∈U

holds. Thus, we have a fast algorithm for the evaluation of the sum

k(k) =
∑
x∈X

hxϕm,n
k (x) (4.12)

for coefficients h = (hx)x∈X ∈ CM at the nodes k ∈ I(U), which we summarize as Algorithm 4.
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Input: Vector d ∈ {exp, cos, alg}d, truncation set U , bandwidths Nu ∈ (2N)u for
u ∈ U , nodes X ⊂ Dd, |X | = M , coefficients hx ∈ C for x ∈ X

1 foreach u ∈ U // This loop can be parallelized
2 do
3 X̃ ← {xu | x ∈ X}
4 Compute gu ← Φ(X̃ , Idu

Nu
u
)∗(hx)x∈X using a |u|-variate NFMT⊤

5 fu ← (gu
j )

j∈Idu
Nu

u

6 end
Output: (fu)u∈U = Φ(X , I(U))∗(hx)x∈X

Computational cost: O
( ∑

u∈U

(
|Idu

Nu
u
| log|Idu

Nu
u
|+ m

|u|
NFFT⊤M

))
Algorithm 4: Adjoint grouped transformation for the fast evaluation of the sum (4.12) for
frequency sets I(U) defined in (3.5).

5 Numerical Experiments
In this subsection, we test the ANOVA approximation with the mixed bases on synthetic and real
data. In Subsection 5.1, we show how the approximation procedure works and how we determine the
bandwidths in this case. In Subsection 5.2 we compare the ANOVA approximation with the mixed
bases to the ANOVA approximation with a fully periodic and a fully non-periodic basis, respectively.
Furthermore, we compare analytic global sensitivity indices in Appendix A to approximated ones.
Furthermore, we investigate here the empirical convergence behaviour of the different approximation
methods for this function. In Subsection 5.3 we apply the ANOVA approximation with mixed bases
on a dataset from a real application. We show the improvement of the error in comparison to the
ANOVA approximation with the cosine basis.
We have extended the ANOVAapprox framework [gitNFFT3jl, gitGTjl, 26] with the algorithms
listed in Section 4 and run all the following tests in this framework.
To determine the quality of the ANOVA approximation f̃ for a function f , we consider the mean
squared error (MSE),

MSE(f, f̃ ,Xtest) := 1
|Xtest|

∑
x∈Xtest

∣∣∣f(x)− f̃(x)
∣∣∣2 ,

at the nodes Xtest. We compute the MSE multiple times for randomly chosen training nodes X and
test nodes Xtest. We denote how many times we compute the MSE with NMSE ∈ N. We then average
over the MSEs.

5.1 ANOVA approximation with a mixed basis

In this subsection we approximate a function using the ANOVA approximation with the mixed
basis. A special focus lays in the question, how we determine the truncation set U and the according
bandwidths numerically. The function we are approximating in this section is

f1 : [0, 1]4 → C, f1(x) := exp(sin(2πx1)x2) + cos(πx3)x2
4 + 1

10 sin2(2πx1) + 5
√

x2x4 + 1.

This function f1 is smoothly periodizable in the first dimension, i.e. fper
1 : T× [0, 1]3 → C, fper

1 (x) :=
f1(x) is infinitely differentiable. Furthermore, the function acts in the third dimension only as a
cosine function. This leads us to use the mixed basis ϕd1

k with d1 := (exp, alg, cos, alg)⊤ for k ∈ Kd1
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for approximating the function f1.
For this approximation we restrict us to only 1000 nodes X in Dd1 distributed with the density

ωd1(x) = 1

π2
√

x2 − x2
2

√
x4 − x2

4

.

Furthermore, we are given another 10000 nodes Xtest in Dd1 distributed with the density ωd1 for
evaluating the mean squared error.
We follow the steps from Section 3.2.3. The function has only one dimensional and two-dimensional
interactions between variables. Thus, we set ds = 2 and consider the superposition set
U2 = {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} from (3.6). We choose one band-
width parameter N1 ∈ (2N) for the one-dimensional frequency sets, e.g. every non-zero entry of N{1},
N{2}, N{3} and N{4} is set to N1. Furthermore, we choose another bandwidth parameter N2 ∈ (2N)
for the two-dimensional frequency sets, e.g. every non-zero entry of N{1,2}, N{1,3}, N{1,4}, N{2,3},
N{2,4} and N{3,4} is set to N2. In short form we write this as Nu = (|{i} ∩ u|N|u|)4

i=1 for u ∈ U2. We
call the approximation of the function f1 using the 1000 nodes X and the bandwidth parameters
N1 and N2 f̃N1, N2

1 . We determine the optimal bandwidth parameters N1 and N2 numerically by
minimizing the mean squared error MSE(f1, f̃N1, N2

1 ,Xtest), i.e.

(Ni)2
i=1 = arg min

(Ni)2
i=1∈(2N)2

MSE(f1, f̃N1,N2
1 ,Xtest). (5.1)

In other words, we use cross validation to determine the bandwidth parameters N1 and N2.
We see in Figure 2 the MSE for some choices of N1 and N2. We vary the parameter N1 from

2 to 50 and the parameter N2 from 2 to 12. The colour of each block corresponds to the MSE
of the approximation with the corresponding parameter set. We obtain values for the MSE in
the range [10−7.7133, 10−0.4968]. The minimum is obtained with the parameter set N1 = 12 and
N2 = 10. In Figure 3 the approximated GSIs for the approximation with these parameters are
shown. We show these GSIs on a logarithmic scale because they are of quite different magnitudes.
To this end we choose the threshold θ = 10−2 and find through (3.9) the truncation set Uθ =
{{1}, {2}, {3}, {4}, {1, 2}, {2, 4}, {3, 4}}. Next, we find better bandwidths Nu for Uθ. To do this
we introduce a new set of bandwidth parameters Nu ∈ (2N) for u ∈ Uθ, i.e. one parameter for

16



every bandwidth. We get the bandwidths Nu by setting every non-zero entry to Nu, i.e. Nu =
(|{i} ∩ u|Nu)4

i=1. We optimise these bandwidth parameters one by one, starting with the parameters
corresponding to the two-dimensional bandwidths. We do this through increasing the parameter firstly
bigger until the MSE gets bigger. If the MSE gets bigger in the first step, we decrease the parameter
until the MSE gets bigger. Then we use the parameter which has generated the minimal MSE. As a
starting point we use the bandwidths Nu = (|{i} ∩ u|N|u|)4

i=1 generated by the optimal parameters
N1 = 12 and N2 = 10 of the previous approximation step. In Table 1 we show the parameters we
tried to find the optimal ones.

Step N{1} N{2} N{3} N{4} N{1,2} N{2,4} N{3,4} MSE
1 12 12 12 12 10 10 10 1.31369 · 10−8

2 12 12 12 12 10 10 12 1.36285 · 10−8

3 12 12 12 12 10 10 8 1.25704 · 10−8

4 12 12 12 12 10 10 6 1.2035 · 10−8

5 12 12 12 12 10 10 4 3.97122 · 10−8

6 12 12 12 12 10 12 6 1.24734 · 10−8

7 12 12 12 12 10 8 6 1.15079 · 10−8

8 12 12 12 12 10 6 6 1.13142 · 10−8

9 12 12 12 12 10 4 6 1.10034 · 10−8

10 12 12 12 12 10 2 6 4.68726 · 10−3

11 12 12 12 12 12 4 6 1.20275 · 10−10

12 12 12 12 12 14 4 6 4.27822 · 10−11

13 12 12 12 12 16 4 6 5.42373 · 10−11

14 12 12 12 14 14 4 6 4.28631 · 10−11

15 12 12 12 10 14 4 6 4.2808 · 10−11

16 12 12 14 12 14 4 6 4.29279 · 10−11

17 12 12 10 12 14 4 6 4.26967 · 10−11

18 12 12 8 12 14 4 6 4.25943 · 10−11

19 12 12 6 12 14 4 6 4.24758 · 10−11

20 12 12 4 12 14 4 6 4.25071 · 10−11

21 12 14 6 12 14 4 6 4.24995 · 10−11

22 12 10 6 12 14 4 6 4.23524 · 10−11

23 12 8 6 12 14 4 6 4.17446 · 10−11

24 12 6 6 12 14 4 6 4.35334 · 10−11

25 14 8 6 12 14 4 6 6.80995 · 10−12

26 16 8 6 12 14 4 6 6.58355 · 10−12

27 18 8 6 12 14 4 6 6.5848 · 10−12

Table 1: Mean squared errors for Uθ and bandwidths Nu = (|{i} ∩ u|N|u|)4
i=1 for some choices of the

parameters N1 and N2.

We get the bandwidths Nu = (|{i} ∩ u|Nu)4
i=1 with the parameters N{1} = 16, N{2} = 8, N{3} = 6,

N{4} = 12, N{1,2} = 14, N{2,4} = 4, and N{3,4} = 6. Finally, we repeat the one by one optimizing
procedure again with all parameters for the bandwidths, e.g. we consider every non-zero entry of
each bandwidth as one parameter. As result, we get the bandwidths

N{1} =
( 16

0
0
0

)
, N{2} =

( 0
8
0
0

)
, N{3} =

( 0
0
2
0

)
, N{4} =

( 0
0
0
10

)
,

N{1,2} =
( 16

8
0
0

)
, N{2,3} =

( 0
2
4
0

)
, and N{2,4} =

( 0
8
0
8

)
with a mean squared error of 9.74704 · 10−14. We repeat the procedure NMSE = 100 times with new
randomly distributed data points to account for the variance. We show the resulting MSEs in Figure
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Figure 4: Boxplot of the MSEs for the approximation of f1 with mixed and cosine basis.

4. We use standard box plots in this figure, i.e. the lower and upper boundaries of the box represent
the first and third quantiles and the whiskers have a maximum length of 1.5 times the interquantile
range. We point out that median of the MSEs is 2.45474 · 10−14. All in all, we approximate the
function f1 with a sum of 365 basis functions combined with the same number of coefficients. Next,
we approximate the function with the cosine basis. We do this the same way as it is described above
for the mixed basis. We end up with the same truncation set Uθ. Again we show the MSEs for
NMSE = 100 runs in Figure 4. We obtain an median of 4.68123 · 10−5 which is significantly worse in
comparison to the mixed basis. It should be noted that the approximation with the mixed basis is
orders of magnitude better than the approximation with the cosine basis.

5.2 Comparison of analytic and approximated global sensitivity indices

In this subsection we approximate a function multiple times with different numbers of nodes M . This
time we restrict ourselves to uniformly sampled nodes. This has the advantage that we can compare
the ANOVA approximation with the mixed basis to the Fourier basis and with the half period cosine
basis approximation. We also compare the approximated GSIs with analytically calculated ones. In
order to do this, we consider the function

f2 : [0, 1]4 → C, f2(x1, x2, x3, x4) := (2x1 − 1)2x3 + 10 sin(2πx1)
(

x2 −
1
2

)2
+ exp(x3).

The function f2 does not depend on the variable x4. Furthermore, the function has the same values
at the boundaries in dimension one and two, e.g.

f2(0, x2, x3, x4) = f2(1, x2, x3, x4), ∀x2, x3, x4 ∈ [0, 1] and
f2(x1, 0, x3, x4) = f2(x1, 1, x3, x4), ∀x1, x3, x4 ∈ [0, 1].

Thus, we should use the Fourier basis for the first two coordinates and the half period cosine basis for
the third, i.e. d2 := (exp, exp, cos, cos)⊤. Furthermore, we test two more ANOVA approximations
without mixed bases, namely one with a Fourier basis and one with a half period cosine basis. In the
appendix A we calculate the analytic GSIs of this function f2. The results are

ρ({1}, f2) = 133
59 + 600e− 180e2 ≈ 0.369507,
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M
cos d2 exp

N1 N2 N1 N2 N1 N2
50 4 2 4 2 4 2

100 4 4 4 4 4 4
200 6 4 6 4 14 4
500 12 8 10 8 32 6

1000 18 10 14 10 76 6
2000 28 14 24 14 150 10
5000 56 22 40 22 300 14

10000 70 32 60 32 720 18
20000 170 46 110 46 1962 26
50000 382 76 224 76 6548 40

Table 2: Optimal bandwidths (for M ≤ 10000) Nu = (|{i} ∩ u|N|u|)4
i=1 for U2 for f2 approximated

at M training nodes and (for M > 10000) extrapolated bandwidths.

ρ({3}, f2) = −530 + 1800e− 540e2

177 + 1800e− 540e2 ≈ 0.345259,

ρ({1, 2}, f2) = 100
59 + 600e− 180e2 ≈ 0.277825,

ρ({1, 3}, f2) = 8
177 + 1800e− 540e2 ≈ 0.007409,

and the other analytic GSIs are zero.
We now compare this with the approximated GSIs. For ANOVA approximation we use M =
50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000 and 50000 uniformly distributed nodes X . For this
function f2 we consider the superposition set Uds with ds = 2, since the function f2 has only one-
dimensional and two dimensional interactions between variables. In this example we restrict ourselves
to two bandwidth parameters, N1 for one-dimensional bandwidths and N2 for the two-dimensional
bandwidths. For M ≤ 10000 we determine the bandwidth parameters N1 and N2 numerically like in
(5.1). The results are shown in the Table 2. We obtain the bandwidths for M > 10000 by extrapolating
the previously determined optimal bandwidths.
In Figure 5 we plot the resulting mean squared errors. Here we notice that the error for the
approximation with the Fourier basis decays with the rate M−1 log(M). The error of the approximation
with the mixed basis and the half period cosine basis decays with the rate M− 3

2 log(m)− 3
2 , while the

approximation with the mixed basis gives a better constant.
In the next part we show that the observed decay rate for the approximation with the mixed basis is
optimal. The mixed coefficients of the two-dimensional ANOVA term f{1,3} decay quadratically in
both directions, i.e. |cd2

k (f{1,3})| ≤ Ck−2
1 k−2

2 , C > 0. For the calculation of these mixed coefficients,
see Appendix A. We consider the error of the projection of the ANOVA term f{1,3} onto the set of
polynomials TId3

N
(Bd3) with N := (N, N)⊤ and d3 := (exp, cos)⊤. We obtain

∥∥∥∥∥f{1,3} − PT
Id3

N
(Bd3 )f{1,3}

∥∥∥∥∥
2

L2(Dd3 ,ωd3 )
=

∑
k/∈Id3

N

|cd2
k (f{1,3})|2

≤ C
∑

k/∈Id3
N

(k−2
1 k−2

2 )2

= C
N∑

k1=1

∞∑
k2=N+1

(k−2
1 k−2

2 )2 + C
∞∑

k1=N+1

∞∑
k2=N+1

(k−2
1 k−2

2 )2
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Figure 5: Mean squared errors of the ANOVA
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widths from Table 2 and M training
nodes, evaluated at 10000 nodes.
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= C

 N∑
k1=1

k−4
1

 ∞∑
k2=N+1

k−4
2

+ C

 ∞∑
k=N+1

k−4


= C1N−3 + C2N−6

with constants C1 > 0 and C2 > 0. So the projection error is in O(N−3). Since we need loga-
rithmic oversampling, see [2], we have N2 ∈ O(M log(M)−1) such that we get a projection error
of O(M− 3

2 log(M)
3
2 ). This is an lower bound to the error of the approximation ∥f − f̃∥2L2(Dd2 ,ωd2 ).

Similar calculations show that the decay rates for the errors of the projections of the other ANOVA
terms are faster. Furthermore, the MSE approximates the error ∥f − f̃∥2L2(Dd2 ,ωd2 ) when the test set
Xtest is distributed in Dd2 with the density ωd2 . In short, we see the expected decay rate of the MSE
at the approximation with the mixed basis. For the approximation with the cosine basis hold similar
calculations, since the cosine coefficients of the function ccos

k (f2) decay in a similar way. So we get the
same decay rate for the approximation with the cosine basis. The rate of the approximation with the
Fourier basis is slower because of the Fourier coefficients of the function cexp

k (f2) have lower decay
rate, e.g. |cexp

k (f{3})| = Ck−1, C > 0. So we cannot expect a decay rate better than M−1 log(M).
Next, we use the approximation again with the cosine basis to compare it with the mixed basis. In
Figure 6, we compare the approximated GSIs with the analytic GSIs and see that they converge.
The approximated GSIs using the Fourier basis converge slower than the approximated GSIs using
the mixed basis. In Figure 7 we consider the individual approximated GSIs for different numbers
of training nodes. Here we notice that the approximated GSIs using the Fourier basis performs
particularly poorly in the dimensions where the function f2 is not continuously periodizable, e.g. for
u = {3} we have particularly large deviations from the analytic GSI. Furthermore, we see for example
at u = {1, 2} that the approximated GSIs using the half period cosine basis converge more slowly
towards the analytic GSI than approximated GSIs using the Fourier basis. The approximated GSIs
using the mixed basis combines the positive properties of the other two ANOVA approximations and
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Figure 7: Global sensitivity indices for U2 and bandwidths from Table 2 for f2 trained on M randomly
chosen nodes.

therefore converges much faster.

5.3 Numerical Experiment with Real Data

In this subsection we use the airfoil self-noise dataset. This dataset was used in [22]. In that paper
it was approximated using the ANOVA approximation with the cosine basis and the results were
compared with results from the literature using different machine learning methods. It was found
that the ANOVA approximation gave the best results, and it is interpretable. This dataset is about
NACA airfoils tested in wind tunnels with different wind speeds and angles of attack tested by the
NASA. The goal is to predict the scaled sound pressure level of the self-noise in decibels, see [7]. The
dataset consists of 1503 nodes, each with 5 attributes. We split the data in a training set X of 80%
and a test set Xtest of 20% like it is done in [22] such that we can compare the results. Furthermore,
we normalize the nodes into [0, 1].
We use the same truncation set as [22], namely U = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5},
{2, 3}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}. In each dimension we test the three different bases and choose the
one that gives the smallest error. As result we get the Fourier basis in the first two dimensions, the
Chebyshev basis in the third and fourth dimension and the cosine basis in the last dimension. This is
interpretable, i.e. it shows that the first two dimensions have a more periodic behaviour than the last
dimension, but further interpretation requires more knowledge of the physical background and the
technical details of the experiment. The chosen Chebyshev basis in the third and fourth dimensions
suggests that the density of the sampled points is closer to the Chebyshev density than to the uniform
density. We use bandwidths of the form Nu = (|{i} ∩ u|N|u|)5

i=1 with bandwidth parameters Nu for
u ∈ U . We choose these bandwidth parameters Nu for u ∈ U through cross validation. To this end,
we take 100 random data splits and obtain models for these training sets X . Next, we determine the
error in the models using the corresponding test sets Xtest. We get 3.72 as median of the relative
errors with the model with the mixed basis. In comparison, we get 4.21 as median of the relative
errors with the model as in [22]. This yields an improvement of 11.6%. An boxplot of the results is
shown in Figure 8.
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A Analytic Calculation of Global Sensitivity Indices
In the following we calculate the analytic GSIs for the function

f2 : Dd2 → C,

f2(x1, x2, x3, x4) := (2x1 − 1)2x3 + 10 sin(2πx1)
(

x2 −
1
2

)2
+ exp(x3)

= 4x2
1x3 − 4x1x3 + x3 + 10 sin(2πx1)x2

2 − 10 sin(2πx1)x2 + 5
2 sin(2πx1) + exp(x3)

with d2 = (exp, exp, cos, cos)⊤ using the basis Bd2 . First we calculate the mixed coefficients cd2
k (f2),

exploiting linearity. For this purpose we define

hj : Dd2 → C, j = 1, . . . , 7,

h1(x1, x2, x3, x4) = x2
1x3,

h2(x1, x2, x3, x4) = x1x3,

h3(x1, x2, x3, x4) = x3,

h4(x1, x2, x3, x4) = sin(2πx1)x2
2,

h5(x1, x2, x3, x4) = sin(2πx1)x2,

h6(x1, x2, x3, x4) = sin(2πx1), and
h7(x1, x2, x3, x4) = exp(x3).

and observe

cd2
k (f2) = 4cd2

k (h1)− 4cd2
k (h2) + cd2

k (h3) + 10cd2
k (h4)− 10cd2

k (h5) + 5
2cd2

k (h6) + cd2
k (h7) (A.1)

for all k ∈ Kd2 . We know that, if f ∈ L2(Dd) is a function given as product f(x) =
∏d

j=1 f
dj

j (xj) of
functions f

dj

j ∈ L2(Ddj ), j = 1, . . . , d, then for all k ∈ Kd we can decompose the mixed coefficients,
i.e.

cd
k(f) =

d∏
j=1

c
dj

kj
(fdj

j (xj)).

Thus, we decompose the functions hi into

gexp
j : Dexp → C, j = 1, . . . , 4, gcos

j : Dcos → C, j = 1, . . . , 3,

gexp
1 (x) = 1, gcos

1 (x) = 1,

gexp
2 (x) = x, gcos

2 (x) = x,

gexp
3 (x) = x2, gcos

3 (x) = exp(x),
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gexp
4 (x) = sin(2πx).

Next we calculate the Fourier coefficients and the cosine coefficients of these functions. We observe
cexp

k (gexp
1 ) = δk,0 and ccos

k (gcos
1 ) = δk,0 because of the orthogonality of the basis functions and

ϕexp
0 = ϕcos

0 = 1. We start with the zeroth Fourier coefficients and cosine coefficients and observe

cexp
0 (gexp

2 ) = ccos
0 (gcos

2 ) = 1
2 , cexp

0 (gexp
3 ) = 1

3 and ccos
0 (gcos

3 ) = e− 1

through cexp
0 = ccos

0 =
∫ 1

0 f(x) dx. For the case k ̸= 0 we observe

cexp
k (gexp

2 ) = 1
2πk

i, ccos
k (gcos

2 ) =
√

2(−1)k − 1
π2k2 ,

cexp
k (gexp

3 ) = 1
2π2k2 + 1

2πk
i and ccos

k (gcos
3 ) =

√
2(−1k)e− 1

π2k2 + 1 .

To this end we use the identity gexp
4 (x) = sin(2πx) = 1

2i exp(2πix)− 1
2i exp(−2πix) for the coefficients

cexp
k (gexp

4 ) and get cexp
1 (gexp

4 ) = 1
2i , cexp

−1 (gexp
4 ) = − 1

2i , and the ohter coefficients are zero. Next, we
consider the Fourier cosine coefficients cd2

k of the functions hi, i = 1, . . . , 7 and obtain

cd2
k (h1) =



1
6 , k1, k2, k3, k4 = 0

1
4π2k2

1
+ 1

4πk1
i, k2, k3, k4 = 0, k1 ̸= 0

√
2 (−1)k3 −1

3π2k2
3

, k1, k2, k4 = 0, k3 ̸= 0
√

2 (−1)k3 −1
2π4k2

1k2
3

+
√

2 (−1)k3 −1
2π3k1k2

3
, k2, k4 = 0, k1, k3 ̸= 0

0, else

,

cd2
k (h2) =



1
4 , k1, k2, k3, k4 = 0

1
4πk1

i, k2, k3, k4 = 0, k1 ̸= 0
√

2 (−1)k3 −1
2π2k2

3
, k1, k2, k4 = 0, k3 ̸= 0

1
√

2 (−1)k3 −1
2π3k1k2

3
i, k2, k4 = 0, k1, k3 ̸= 0

0, else

,

cd2
k (h3) =


1
2 , k1, k2, k3, k4 = 0
√

2 (−1)k3 −1
π2k2

3
, k1, k2, k4 = 0, k3 ̸= 0

0, else
,

cd2
k (h4) =



− i
6 , k2, k3, k4 = 0, k1 = 1

i
6 , k2, k3, k4 = 0, k1 = −1

1
4πk1
− 1

2π2k2
1
i, k3, k4 = 0, k1 = 1, k2 ̸= 0

− 1
4πk1

+ 1
2π2k2

1
i, k3, k4 = 0, k1 = −1, k2 ̸= 0

0, else

,

cd2k(h5) =



− i
4 , k2, k3, k4 = 0, k1 = 1

i
4 , k2, k3, k4 = 0, k1 = −1

1
4πk2

, k3, k4 = 0, k1 = 1, k2 ̸= 0
− 1

4πk2
, k3, k4 = 0, k1 = −1, k2 ̸= 0

0, else

,
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cd2
k (h6) =


− i

2 , k2, k3, k4 = 0, k1 = 1
i
2 , k2, k3, k4 = 0, k1 = −1
0, else

, and

cd2
k (h7) =


e− 1, k1, k2, k3, k4 = 0
√

2 (−1)k3 e−1
π2k2

3+1 , k1, k2, k4 = 0, k3 ̸= 0
0, else

.

Finally, using the (A.1) we calculate the Fourier cosine coefficients cd2
k (f2) for the function f2,

cd2
k (f2) =



e− 5
6 , k1, k2, k3, k4 = 0

− 1
π2 − 5

12 i, k2, k3, k4 = 0, k1 = 1
− 1

π2 + 5
12 i, k2, k3, k4 = 0, k1 = −1

1
π2k2

1
, k2, k3, k4 = 0, |k1| ≥ 2

√
2 (−1)k3 −1

π2k2
3

+
√

2 (−1)k
3e−1

π2k2
3+1 , k1, k2, k4 = 0, k3 ̸= 0

− 5
2π2k2

2
i, k3, k4 = 0, k1 = 1, k2 ̸= 0

5
2π2k2

2
i, k3, k4 = 0, k1 = −1, k2 ̸= 0

2
√

2 (−1)k3 −1
π4k2

1k2
3

, k2, k4 = 0, k1, k3 ̸= 0
0, else

.

Furthermore, we consider the norm of the function f2 and observe ∥f2∥L2(Dd2 ) = 103
120 + e2

2 . Using
this we observe the variance σ2(f2) = 59

360 + 5
3e − e2

2 . Next, we consider the ANOVA terms σ2(fu)
for subsets of indices u ⊆ [4] using their series representation σ2(fu) =

∑
k∈Kd2

supp k=u
|cd2

k (f)|2. For the

further calculation we need
∑∞

k=1
1

k4 = π4

90 and
∑∞

k=1
1

(2k−1)4 = π4

96 . Using this we get the variances
σ2(fu) of the ANOVA terms fu,

σ2(f{1}) =
∞∑

k=−∞
k ̸=0

|cd2
ke1
|2 = 2

π4 + 25
72 + 2

∞∑
k=2

1
π4k4 = 133

360

σ2(f{1,2}) =
∞∑

k=−∞
k ̸=0

∞∑
j=−∞

j ̸=0

|cd2
ke1+je2

|2 = 4
∞∑

k=1

25
4π4k4 = 5
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σ2(f{1,3}) =
∞∑

k=−∞
k ̸=0

∞∑
j=1
|cd2

ke1+je3
|2 = 2

∞∑
k=1

∞∑
j=1

8
(
(−1)j − 1

)2
π8k4j4 = 1

135 .

Since the other mixed coefficients except cd2
ke3

(f2) are zero, we get the variance σ2(f{3}) through the
theorem of Parseval,

σ2(f{3}) = σ2(f2)− σ2(f{1})− σ2(f{1,2})− σ2(f{1,3}) = − 53
108 + 5

3e− e2

2 .

Finally, we get the analytic global sensitivity indices

ρ({1}, f2) = 133
59 + 600e− 180e2 ≈ 0.369507,
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ρ({3}, f2) = −530 + 1800e− 540e2

177 + 1800e− 540e2 ≈ 0.345259,

ρ({1, 2}, f2) = 100
59 + 600e− 180e2 ≈ 0.277825, and

ρ({1, 3}, f2) = 8
177 + 1800e− 540e2 ≈ 0.007409.
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