Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices

Lutz Kämmerer

Abstract The approximation of problems in *d* spatial dimensions by trigonometric polynomials supported on known more or less sparse frequency index sets $I \subset \mathbb{Z}^d$ is an important task with a variety of applications. The use of rank-1 lattices as spatial discretizations offers a suitable possibility for sampling such sparse trigonometric polynomials. Given an arbitrary index set of frequencies, we construct rank-1 lattices that allow a stable and unique discrete Fourier transform. We use a component-by-component method in order to determine the generating vector and the lattice size.

1 Introduction

Given a spatial dimension $d \in \mathbb{N}$, we consider Fourier series of continuous functions $f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^d} \hat{f}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$ mapping the *d*-dimensional torus $[0, 1)^d$ into the complex numbers \mathbb{C} , where $\hat{f}_{\mathbf{k}} \in \mathbb{C}$ are the Fourier coefficients. A sequence $(\hat{f}_{\mathbf{k}})_{\mathbf{k} \in \mathbb{Z}^d}$ with a finite number of nonzero elements specifies a trigonometric polynomial. We call the index set of the nonzero elements the frequency index set of the corresponding trigonometric polynomial. For a fixed index set $I \subset \mathbb{Z}^d$ with a finite cardinality |I|, $\Pi_I = \text{span}\{e^{2\pi i \mathbf{k} \cdot \mathbf{x}} : \mathbf{k} \in I\}$ is called the space of trigonometric polynomials with frequencies supported on I.

Assuming the index set *I* is of finite cardinality and a suitable discretization in frequency domain for approximating functions, e.g. functions of specific smoothness, cf. [8, 5], we are interested in evaluating the corresponding trigonometric polynomials at sampling nodes and reconstructing the Fourier coefficients $(\hat{f}_k)_{k \in I}$ from sample values. Accordingly, we consider (sparse) multivariate trigonometric polynomials

Lutz Kämmerer

Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany e-mail: kaemmerer@mathematik.tu-chemnitz.de

Lutz Kämmerer

$$f(\mathbf{x}) = \sum_{\mathbf{k} \in I} \hat{f}_{\mathbf{k}} e^{2\pi i \mathbf{k} \cdot \mathbf{x}}$$

and assume the frequency index set I is given.

For different specific index sets I there has been done some related work using rank-1 lattices as spatial discretizations [7, 4]. A multivariate trigonometric polynomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a one-dimensional fast Fourier transform (FFT) of the length of the cardinality of the rank-1 lattice, cf. [6]. Allowing for some oversampling one can find a rank-1 lattice, which even allows the reconstruction of the trigonometric polynomial from the samples at the rank-1 lattice nodes. A suitable strategy to search for such reconstructing rank-1 lattices can be adapted from numerical integration. In particular, a modification of the component-by-component constructions of lattice rules based on various weighted trigonometric degrees of exactness described in [3] allows one to find adequate rank-1 lattices in a relatively fast way. We already showed the existence and upper bounds on the cardinality of reconstructing rank-1 lattices for hyperbolic crosses as index sets, cf. [4].

In this paper we generalize these results considering arbitrary frequency index sets *I* and suggest some strategies for determining reconstructing rank-1 lattices even for frequency index sets containing gaps. To this end, we present corresponding component–by–component (CBC) algorithms, where the frequency index set *I* is the only input.

In Section 2, we introduce the necessary notation and specify the relation between exact integration of trigonometric polynomials and reconstruction of trigonometric polynomials using rank-1 lattices. Section 3 contains the main results, i.e., a component-by-component algorithm searching for reconstructing rank-1 lattices for given frequency index sets *I* and given rank-1 lattice sizes *M*. In detail, we determine conditions on *M* guaranteeing the existence of a reconstructing rank-1 lattice of size *M* for the frequency index set *I*. The proof of this existence result describes a component-by-component construction of a corresponding generating vector $\mathbf{z} \in \mathbb{N}^d$ of the rank-1 lattice, such that we obtain directly a component-by-component algorithm. In Section 4, we give some simple improvements of the component-bycomponent construction, such that the corresponding algorithms automatically determine suitable rank-1 lattice sizes. Accordingly, the only input is the frequency index set *I* here. Finally, we give some specific examples and compare the results of our different algorithms in Section 5.

2 Rank-1 Lattices

For given $M \in \mathbb{N}$ and $\mathbf{z} \in \mathbb{N}^d$ we define the *rank-1 lattice*

$$\Lambda(\mathbf{z}, M) := \{\mathbf{x}_j = \frac{j\mathbf{z}}{M} \mod 1, j = 0, \dots, M-1\}$$

as discretization in the spatial domain. Following [6], the evaluation of the trigonometric polynomial $f \in \Pi_I$ with frequencies supported on I simplifies to a onedimensional discrete Fourier transform (DFT), i.e.,

$$f(\mathbf{x}_j) = \sum_{\mathbf{k}\in I} \hat{f}_{\mathbf{k}} e^{2\pi \mathbf{i} j \mathbf{k} \cdot \mathbf{z}} = \sum_{l=0}^{M-1} \left(\sum_{\mathbf{k}\cdot\mathbf{z}\equiv l \pmod{M}} \hat{f}_{\mathbf{k}} \right) e^{2\pi \mathbf{i} \frac{jl}{M}}.$$

We evaluate f at all nodes $\mathbf{x}_j \in \Lambda(\mathbf{z}, M)$, j = 0, ..., M - 1, by the precomputation of all $\hat{g}_l := \sum_{\mathbf{k} \cdot \mathbf{z} \equiv l \pmod{M}} \hat{f}_{\mathbf{k}}$ and a one-dimensional (inverse) FFT in $\mathcal{O}(M \log M + d|I|)$ floating point operations, cf. [2], where |I| denotes the cardinality of the frequency index set I.

As the fast evaluation of trigonometric polynomials at all sampling nodes \mathbf{x}_j of the rank-1 lattice $\Lambda(\mathbf{z}, M)$ is guaranteed, we draw our attention to the reconstruction of a trigonometric polynomial f with frequencies supported on I using function values at the nodes \mathbf{x}_j of a rank-1 lattice $\Lambda(\mathbf{z}, M)$. We consider the corresponding Fourier matrix \mathbf{A} and its adjoint \mathbf{A}^* ,

$$\mathbf{A} := \left(e^{2\pi \mathbf{i} \mathbf{k} \cdot \mathbf{x}} \right)_{\mathbf{x} \in \Lambda(\mathbf{z}, M), \, \mathbf{k} \in I} \in \mathbb{C}^{M \times |I|} \text{ and } \mathbf{A}^* := \left(e^{-2\pi \mathbf{i} \mathbf{k} \cdot \mathbf{x}} \right)_{\mathbf{k} \in I, \, \mathbf{x} \in \Lambda(\mathbf{z}, M)} \in \mathbb{C}^{|I| \times M}$$

in order to determine necessary and sufficient conditions on rank-1 lattices $\Lambda(\mathbf{z}, M)$ allowing for a unique reconstruction of all Fourier coefficients of $f \in \Pi_I$. The reconstruction of the Fourier coefficients $\mathbf{\hat{f}} = (\hat{f}_{\mathbf{k}})_{\mathbf{k} \in I} \in \mathbb{C}^{|I|}$ from sampling values $\mathbf{f} = (f(\mathbf{x}))_{\mathbf{x} \in \Lambda(\mathbf{z},M)} \in \mathbb{C}^M$ can be realized by solving the normal equation $\mathbf{A}^* \mathbf{A} \mathbf{\hat{f}} = \mathbf{A}^* \mathbf{f}$, which is equivalent to solve the least squares problem

find
$$\hat{\mathbf{f}} \in \mathbb{C}^{|I|}$$
 such that $\|\mathbf{A}\hat{\mathbf{f}} - \mathbf{f}\|_2 \to \min$,

cf. [1]. Assuming $\mathbf{f} = (f(\mathbf{x}))_{\mathbf{x} \in \Lambda(\mathbf{z}, M)}$ being a vector of sampling values of the trigonometric polynomial $f \in \Pi_I$, the vector \mathbf{f} belongs to the range of \mathbf{A} and we can find a possibly non-unique solution $\hat{\mathbf{f}}$ of $\mathbf{A}\hat{\mathbf{f}} = \mathbf{f}$. We compute a unique solution of the normal equation, iff the Fourier matrix \mathbf{A} has full column rank.

Lemma 1. Let $I \subset \mathbb{Z}^d$ of finite cardinality and $\Lambda(\mathbf{z}, M)$ a rank-1 lattice be given. Then two distinct columns of the corresponding Fourier matrix \mathbf{A} are orthogonal or equal, i.e., $(\mathbf{A}^*\mathbf{A})_{\mathbf{h},\mathbf{k}} \in \{0, M\}$ for $\mathbf{h}, \mathbf{k} \in I$.

Proof. The matrix A^*A contains all scalar products of two columns of the Fourier matrix A, i.e., $(A^*A)_{h,k}$ is the scalar product of column k with column h of the Fourier matrix A. We obtain

$$(\mathbf{A}^*\mathbf{A})_{\mathbf{h},\mathbf{k}} = \sum_{j=0}^{M-1} \left(e^{2\pi \mathbf{i} \frac{(\mathbf{k}-\mathbf{h})\cdot\mathbf{z}}{M}} \right)^j = \begin{cases} M, & \text{for } \mathbf{k} \cdot \mathbf{z} \equiv \mathbf{h} \cdot \mathbf{z} \pmod{M}, \\ \frac{e^{2\pi \mathbf{i} (\mathbf{k}-\mathbf{h})\cdot\mathbf{z}}}{e^{2\pi \mathbf{i} \frac{(\mathbf{k}-\mathbf{h})\cdot\mathbf{z}}{M}} - 1} = 0, & \text{else.} \end{cases}$$

According to Lemma 1 the matrix A has full column rank, iff

Lutz Kämmerer

$$\mathbf{k} \cdot \mathbf{z} \not\equiv \mathbf{h} \cdot \mathbf{z} \pmod{M}$$
, for all $\mathbf{k} \neq \mathbf{h}$; $\mathbf{k}, \mathbf{h} \in I$, (1)

or, equivalent,

$$\mathbf{k} \cdot \mathbf{z} \not\equiv 0 \pmod{M}, \quad \text{for all} \quad \mathbf{k} \in \mathscr{D}(I) \setminus \{\mathbf{0}\}$$
(2)

with $\mathscr{D}(I) := \{\mathbf{h} = \mathbf{l}_1 - \mathbf{l}_2 : \mathbf{l}_1, \mathbf{l}_2 \in I\}$. We call the set $\mathscr{D}(I)$ difference set of the frequency index set *I* and a rank-1 lattice $\Lambda(\mathbf{z}, M)$ ensuring (1) and (2) reconstructing rank-1 lattice for the index set *I*. In particular, condition (2) ensures the exact integration of all trigonometric polynomials $g \in \Pi_{\mathscr{D}(I)}$ applying the lattice rule given by $\Lambda(\mathbf{z}, M)$, i.e., the identity $\int_{\mathbb{T}^d} g(\mathbf{x}) d\mathbf{x} = \frac{1}{M} \sum_{j=0}^{M-1} g(\mathbf{x}_j)$ holds for all $g \in \Pi_{\mathscr{D}(I)}$, cf. [9]. Certainly, $f \in \Pi_I$ and $\mathbf{k} \in I$ implies that $f e^{-2\pi i \mathbf{k} \cdot \circ} \in \Pi_{\mathscr{D}(I)}$ and we obtain

$$\frac{1}{M}\sum_{j=0}^{M-1} f\left(\frac{j\mathbf{z}}{M} \mod \mathbf{1}\right) e^{-2\pi i j \frac{\mathbf{k} \cdot \mathbf{z}}{M}} = \int_{\mathbb{T}^d} f(\mathbf{x}) e^{-2\pi i \mathbf{k} \cdot \mathbf{x}} d\mathbf{x} =: \hat{f}_{\mathbf{k}},$$

where the right equality is the usual definition of the Fourier coefficients.

Another fact, which comes out of Lemma 1, is that the matrix **A** fulfills $\mathbf{A}^*\mathbf{A} = M\mathbf{I}$ in the case of $\Lambda(\mathbf{z}, M)$ being a reconstructing rank-1 lattice for *I*. The normalized normal equation simplifies to

$$\mathbf{\hat{f}} = \frac{1}{M} \mathbf{A}^* \mathbf{A} \mathbf{\hat{f}} = \frac{1}{M} \mathbf{A}^* \mathbf{f},$$

and in fact we reconstruct the Fourier coefficients of $f \in \Pi_I$ applying the lattice rule

$$\hat{f}_{\mathbf{k}} = \frac{1}{M} \sum_{j=0}^{M-1} f(\mathbf{x}_j) e^{-2\pi i \frac{jk\cdot z}{M}} = \frac{1}{M} \sum_{j=0}^{M-1} f(\mathbf{x}_j) e^{-2\pi i \frac{jl}{M}}$$

for all $\mathbf{k} \in I$ and $l = \mathbf{k} \cdot \mathbf{z} \mod M$. In particular, one computes all Fourier coefficients using one one-dimensional FFT and the unique inverse mapping of $\mathbf{k} \mapsto \mathbf{k} \cdot \mathbf{z} \mod M$. The corresponding complexity is given by $\mathscr{O}(M \log M + d|I|)$.

Up to now, we wrote about reconstructing rank-1 lattices without saying how to get them. In the following section, we prove existence results and give a first algorithm in order to determine reconstructing rank-1 lattices.

3 A CBC construction of reconstructing rank-1 lattices

A reconstructing rank-1 lattice for the frequency index set I is characterized by (1) and (2), respectively. Similar to the construction of rank-1 lattices for the exact integration of trigonometric polynomials of specific trigonometric degrees, see [3], we are interested in existence results and suitable construction algorithms for reconstructing rank-1 lattices. In order to prepare the main theorem of this paper, we

Sampling Trigonometric Polynomials along Rank-1 Lattices

define the projection of an index set $I \subset \mathbb{Z}^d$ on \mathbb{Z}^s , $d \ge s \in \mathbb{N}$,

$$I_s := \{ (k_j)_{j=1}^s : \mathbf{k} = (k_j)_{j=1}^d \in I \}.$$
(3)

Furthermore, we call a frequency index set $I \subset \mathbb{Z}^d$ symmetric to the origin iff $I = \{-\mathbf{k} : \mathbf{k} \in I\}$, i.e., $\mathbf{h} \in I$ implies $-\mathbf{k} \in I$ for all $\mathbf{k} \in I$.

Theorem 1. Let $s \in \mathbb{N}$, $d \ge s \ge 2$, $\tilde{I} \subset \mathbb{Z}^d$ be an arbitrary *d*-dimensional set of finite cardinality that is symmetric to the origin, and *M* be a prime number satisfying

$$M \geq \frac{|\{\mathbf{k} \in \tilde{I}_s : \mathbf{k} = (\mathbf{h}, h_s), \mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\} \text{ and } h_s \in \mathbb{Z} \setminus \{\mathbf{0}\}\}|}{2} + 2.$$

Additionally, we assume that each nonzero element of the set of the s-th component of \tilde{I}_s and M are coprime, i.e., $M \nmid l$ for all $l \in \{h_s \in \mathbb{Z} \setminus \{0\} : \mathbf{k} = (\mathbf{h}, h_s) \in \tilde{I}_s, \mathbf{h} \in \tilde{I}_{s-1}\}$, and that there exists a generating vector $\mathbf{z}^* \in \mathbb{N}^{s-1}$ that guarantees

$$\mathbf{h} \cdot \mathbf{z}^* \not\equiv 0 \pmod{M}$$
 for all $\mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\}$.

Then there exists at least one $z_s^* \in \{1, \dots, M-1\}$ such that

$$(\mathbf{h}, h_s) \cdot (\mathbf{z}^*, z_s^*) \not\equiv 0 \pmod{M} \quad for all (\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\}.$$

Proof. We adapt the proof of [3, Theorem 1]. Let us assume that

 $\mathbf{h} \cdot \mathbf{z}^* \not\equiv 0 \pmod{M}$ for all $\mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\}$.

Basically, we determine an upper bound of the number of elements $z_s \in \{1, ..., M-1\}$ with

$$(\mathbf{h}, h_s) \cdot (\mathbf{z}^*, z_s) \equiv 0 \pmod{M}$$
 for at least one $(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{0\}$

or, equivalent,

$$\mathbf{h} \cdot \mathbf{z}^* \equiv -h_s z_s \pmod{M}$$
 for at least one $(\mathbf{h}, h_s) \in I_s \setminus \{0\}$

Similar to [3] we consider three cases:

- $h_s = 0$: With $(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\}$ we have $\mathbf{0} \neq \mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\}$. Consequently, $\mathbf{h} \cdot \mathbf{z}^* \equiv -0z_s \pmod{M}$ never holds because of $\mathbf{h} \cdot \mathbf{z}^* \not\equiv 0 \pmod{M}$ for all $\mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\}$.
- **h** = **0**: We consider $z_s \in \{1, ..., M 1\}$. We required *M* being prime, so z_s and *M* are coprime. Due to $(\mathbf{h}, h_s) \in \tilde{I} \setminus \{\mathbf{0}\}$, we obtain $h_s \neq 0$ and we assumed *M* and $h_s \neq 0$ are coprime. Consequently, we realize $z_s h_s \neq 0$ and $z_s h_s$ and *M* are relatively prime. So $\mathbf{0}\mathbf{z}^* \equiv -h_s z_s \pmod{M}$ never holds for $(\mathbf{0}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\}$ and $z_s \in \{1, ..., M 1\}$.
- else: Since $0 \neq h_s$ and M are coprime and $\mathbf{h} \cdot \mathbf{z}^* \not\equiv 0 \pmod{M}$, there is at most one $z_s \in \{1, \dots, M-1\}$ that fulfills $\mathbf{h} \cdot \mathbf{z}^* \equiv -h_s z_s \pmod{M}$. Due

to the symmetry of the considered index set $\{(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\} : \mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\}$ and $h_s \in \mathbb{Z} \setminus \{\mathbf{0}\}\}$ we have to count at most one z_s for the two elements (\mathbf{h}, h_s) and $-(\mathbf{h}, h_s)$.

Hence, we have at most

$$\frac{|\{(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\} : \mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\} \text{ and } h_s \in \mathbb{Z} \setminus \{\mathbf{0}\}\}|}{2}$$
(4)

elements of $\{1, \ldots, M-1\}$ with

$$\mathbf{h} \cdot \mathbf{z}^* \equiv -h_{sZ_s} \pmod{M}$$
 for at least one $(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\}$.

If the candidate set $\{1, ..., M-1\}$ for z_s^* contains more elements than (4) we can determine at least one z_s^* with

$$\mathbf{h} \cdot \mathbf{z}^* \not\equiv -h_s z_s^* \pmod{M}$$
 for all $(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\}$.

Consequently, the number of elements in $\{1, \ldots, M-1\}$ with

$$|\{1,\ldots,M-1\}| \geq \frac{|\{(\mathbf{h},h_s)\in \tilde{I}_s\setminus\{\mathbf{0}\}:\mathbf{h}\in \tilde{I}_{s-1}\setminus\{\mathbf{0}\}\text{ and }h_s\in\mathbb{Z}\setminus\{\mathbf{0}\}\}|}{2}+1$$

and *M* is prime guarantees that there exists such a z_s^* . Since we assumed *M* being prime and

$$M = |\{1, \dots, M-1\}| + 1$$

$$\geq \frac{|\{(\mathbf{h}, h_s) \in \tilde{I}_s \setminus \{\mathbf{0}\} : \mathbf{h} \in \tilde{I}_{s-1} \setminus \{\mathbf{0}\} \text{ and } h_s \in \mathbb{Z} \setminus \{\mathbf{0}\}\}|}{2} + 2$$

we can find at least one z_s by testing out all possible candidates $\{1, 2, ..., M - 1\}$.

Theorem 1 outlines one step of a component-by-component construction of a rank-1 lattice, guaranteeing the exact integration of trigonometric polynomials with frequencies supported on index sets \tilde{I} which are symmetric to the origin.

We obtain this symmetry of the difference sets $\mathscr{D}(I)_s$

$$\mathbf{h} \in \mathscr{D}(I)_s \Rightarrow \exists \mathbf{k}_1, \mathbf{k}_2 \in I_s \colon \mathbf{h} = \mathbf{k}_1 - \mathbf{k}_2 \Rightarrow -\mathbf{h} = \mathbf{k}_2 - \mathbf{k}_1 \in \mathscr{D}(I)_s.$$

So, our strategy is to apply Theorem 1 to the difference set $\mathscr{D}(I)_s$ of the frequency index set I_s for all $2 \le s \le d$. In order to use Theorem 1, we have to find sufficient conditions on rank-1 lattices of dimension d = 1 guaranteeing that $hz_1 \not\equiv 0 \pmod{M}$ for all $h \in \mathscr{D}(I)_1 \setminus \{0\}$.

Lemma 2. Let $I \subset \mathbb{Z}$ be a one-dimensional frequency index set of finite cardinality and M be a prime number satisfying $M \ge |I|$. Additionally, we assume M and hbeing coprime for all $h \in \mathcal{D}(I) \setminus \{0\}$. Then we can uniquely reconstruct the Fourier coefficients of all $f \in \Pi_I$ applying the one-dimensional lattice rule given by $\Lambda(1,M)$.

Sampling Trigonometric Polynomials along Rank-1 Lattices

Algorithm 1 Component-by-component lattice search

0	1 7	1	
Input:	$M \in \mathbb{N}$ prime	cardinality of rank-1 lattice	
	$I \subset \mathbb{Z}^d$	frequency index set	
$z = \emptyset$ for s = 1 form t search $z = (z$ end for	\dots, d do he set I_s as defined in (2 for one $z_s \in [1, M-1]$ (z_s)	B) $\cap \mathbb{Z}$ with $ \{(\mathbf{z}, z_s) \cdot \mathbf{k} \mod M : \mathbf{k} \in I_s\} = I_s $	
Output:	$\mathbf{z} \in \mathbb{Z}^d$	generating vector	

Proof. Applying the lattice rule given by $\Lambda(1, M)$ to the integrands of the integrals computing the Fourier coefficient $\hat{f}_k, k \in I$, of $f \in \Pi_I$, we obtain

$$\frac{1}{M} \sum_{j=0}^{M-1} f\left(\frac{j}{M}\right) e^{-2\pi i \frac{kj}{M}} = \frac{1}{M} \sum_{j=0}^{M-1} \sum_{h \in I} \hat{f}_h e^{2\pi i \frac{hj}{M}} e^{-2\pi i \frac{kj}{M}}$$
$$= \frac{1}{M} \sum_{h \in I} \hat{f}_h \sum_{j=0}^{M-1} e^{2\pi i \frac{(h-k)j}{M}} = \hat{f}_k = \int_0^1 f(x) e^{-2\pi i kx} dx$$

due to $h - k \in \mathscr{D}(I) \setminus \{0\}$ and *M* are coprime.

We summarize the results of Theorem 1 and Lemma 2 and figure out the following **Corollary 1.** Let $I \subset \mathbb{Z}^d$ be an arbitrary *d*-dimensional index set of finite cardinality and *M* be a prime number satisfying

$$M \ge \max\left(|I_1|, \max_{s=2,\dots,d} \frac{|\{\mathbf{k} \in \mathscr{D}(I)_s : \mathbf{k} = (\mathbf{h}, h_s), \mathbf{h} \in \mathscr{D}(I)_{s-1} \setminus \{\mathbf{0}\} \text{ and } h_s \in \mathbb{Z} \setminus \{\mathbf{0}\}\}|}{2} + 2\right)$$

In addition we assume that $M \nmid l$ for all $l \in \{k = \mathbf{e}_s \cdot \mathbf{h} : \mathbf{h} \in \mathcal{D}(I), s = 1, ..., d\} \setminus \{0\}$, where $\mathbf{e}_s \in \mathbb{N}^d$ is a d-dimensional unit vector with $e_{s,j} = \begin{cases} 0, & \text{for } j \neq s \\ 1, & \text{for } j = s \end{cases}$. Then there exists a rank-1 lattice of cardinality M that allows the reconstruction of all trigonometric polynomials with frequencies supported on I by sampling along the rank-1 lattice. Furthermore, once we determined a suitable M the proof of Theorem I verifies that we can find at least one appropriate generating vector component-by-

component. Algorithm 1 indicates the corresponding strategy.

Once one has discovered a reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M)$ for the index set *I*, the condition

$$\mathbf{k} \cdot \mathbf{z} \neq \mathbf{h} \cdot \mathbf{z}$$
, for all $\mathbf{k} \neq \mathbf{h}$; $\mathbf{k}, \mathbf{h} \in I$,

holds and one can ask for M' < M fulfilling

$$\mathbf{k} \cdot \mathbf{z} \not\equiv \mathbf{h} \cdot \mathbf{z} \pmod{M'}$$
, for all $\mathbf{k} \neq \mathbf{h}$; $\mathbf{k}, \mathbf{h} \in I$.

Algorithm 2 Lattice size decreasing

Input:	$I \subset \mathbb{Z}^d$	frequency index set					
$M_{ ext{max}} \in \mathbb{N}$		cardinality of rank-1 lattice					
	$\mathbf{z} \in \mathbb{N}^d$	$\Lambda(\mathbf{z}, M_{\text{max}})$ is reconstructing rank-1 lattice for <i>I</i>					
for $j = I , \dots, M_{\max}$ do if $ \{\mathbf{z} \cdot \mathbf{k} \mod (j) : \mathbf{k} \in I\} = I $ then							
$M_{\min} = j$							
end if							
end for							
Output:	M_{\min}	reduced lattice size					

For a fixed frequency index set *I* and a fixed generating vector \mathbf{z} we assume the rank-1 lattice $\Lambda(\mathbf{z}, M_{\text{max}})$ being a reconstructing rank-1 lattice. Then, Algorithm 2 computes the smallest lattice size M' guaranteeing the reconstruction property of the rank-1 lattice $\Lambda(\mathbf{z}, M')$.

Finally, we give a simple upper bound on the cardinality of the difference set $\mathcal{D}(I)$ depending on the cardinality of *I*

$$|\mathscr{D}(I)| = |\{\mathbf{k} - \mathbf{h} \colon \mathbf{k}, \mathbf{h} \in I\}| = |\{\mathbf{k} - \mathbf{h} \colon \mathbf{k}, \mathbf{h} \in I, \mathbf{k} \neq \mathbf{h}\} \cup \{\mathbf{0}\}| \le |I|(|I| - 1) + 1.$$

According to this and applying Bertrand's postulate, the prime number *M* from Corollary 1 is bounded from above by $|I|^2$, provided that $|I| \ge 4$.

4 Improvements

There are two serious problems concerning Corollary 1. In general, the computational costs of determining the cardinality of the difference sets $\mathscr{D}(I)_s$, $2 \le s \le d$, has a complexity of $\Omega(d|I|^2)$ and, maybe, the minimal *M* satisfying the assumptions of Corollary 1 is far away from a best possible reconstructing rank-1 lattice size. Accordingly, we are interested in somehow good estimations of the reconstructing rank-1 lattice size for the index set *I*.

In this section, we present another strategy to find reconstructing rank-1 lattices. We search for rank-1 lattices using a component-by-component construction determining the generating vectors $\mathbf{z} \in \mathbb{Z}^d$ and suitable rank-1 lattice sizes $M \in \mathbb{N}$.

Theorem 2. Let $d \in \mathbb{N}$, $d \geq 2$, and $I \subset \mathbb{Z}^d$ of finite cardinality $|I| \geq 2$ be given. We assume that $\Lambda(\mathbf{z}, M)$ with $\mathbf{z} = (z_1, \dots, z_{d-1})^\top$ is a reconstructing rank-1 lattice for the frequency index set $I_{d-1} := \{(h_s)_{s=1}^{d-1} : \mathbf{h} \in I\}$. Then the rank-1 lattice $\Lambda((z_1, \dots, z_{d-1}, M)^\top, MS)$ with

 $S := \min\{m \in \mathbb{N} : |\{h_d \mod m : \mathbf{h} \in I\}| = |\{h_d : \mathbf{h} \in I\}|\}$

is a reconstructing rank-1 lattice for I.

Proof. We assume the rank-1 lattice $\Lambda((z_1, ..., z_{d-1})^{\top}, M)$ is a reconstructing rank-1 lattice for I_{d-1} and $\Lambda((z_1, ..., z_{d-1}, M)^{\top}, MS)$ is not a reconstructing rank-1 lattice for I, i.e., there exist at least two different elements $(\mathbf{h}, h_d), (\mathbf{k}, k_d) \in I$, $(\mathbf{h}, h_d) \neq (\mathbf{k}, k_d)$, such that

$$\mathbf{h} \cdot \mathbf{z} + h_d M \equiv \mathbf{k} \cdot \mathbf{z} + k_d M \pmod{MS}.$$

We distinguish three different possible cases of $(\mathbf{h}, h_d), (\mathbf{k}, k_d) \in I, (\mathbf{h}, h_d) \neq (\mathbf{k}, k_d)$:

• $\mathbf{h} = \mathbf{k}$ and $h_d \neq k_d$ We consider the corresponding residue classes

$$0 \equiv \mathbf{k} \cdot \mathbf{z} + k_d M - \mathbf{h} \cdot \mathbf{z} - h_d M \equiv (k_d - h_d) M \pmod{MS}$$

and obtain $S | (k_d - h_d)$, i.e., $k_d \equiv h_d \pmod{S}$. Thus, we determine the cardinality $|\{h_d \mod S : \mathbf{h} \in I\}| < |\{h_d : \mathbf{h} \in I\}|$, which is in contradiction to the definition of *S*.

• $\mathbf{h} \neq \mathbf{k}$ and $h_d = k_d$ Accordingly, we calculate

$$0 \equiv \mathbf{k} \cdot \mathbf{z} + k_d M - \mathbf{h} \cdot \mathbf{z} - h_d M \equiv (\mathbf{k} - \mathbf{h}) \cdot \mathbf{z} \pmod{MS}$$

and obtain $MS | (\mathbf{k} - \mathbf{h}) \cdot \mathbf{z}$ and $M | (\mathbf{k} - \mathbf{h}) \cdot \mathbf{z}$ as well. According to that, we obtain $\mathbf{h} \cdot \mathbf{z} \equiv \mathbf{k} \cdot \mathbf{z} \pmod{M}$, which is in contradiction to the assumption $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for I_{d-1} .

• $\mathbf{h} \neq \mathbf{k}$ and $h_d \neq k_d$

Due to $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for I_{d-1} we have

 $0 \not\equiv \mathbf{k} \cdot \mathbf{z} - \mathbf{h} \cdot \mathbf{z} \pmod{M}.$

Thus, we can find uniquely specified $a_{\mathbf{k},\mathbf{h}} \in \mathbb{Z}$ and $b_{\mathbf{k},\mathbf{h}} \in \{1,\ldots,M-1\}$ such that $\mathbf{k} \cdot \mathbf{z} - \mathbf{h} \cdot \mathbf{z} = a_{\mathbf{k},\mathbf{h}}M + b_{\mathbf{k},\mathbf{h}}$. We calculate

$$0 \equiv \mathbf{k} \cdot \mathbf{z} + k_d M - \mathbf{h} \cdot \mathbf{z} - h_d M \equiv (a_{\mathbf{k},\mathbf{h}} + k_d - h_d)M + b_{\mathbf{k},\mathbf{h}} \pmod{MS}$$

and obtain $MS | (a_{\mathbf{k},\mathbf{h}}+k_d-h_d)M+b_{\mathbf{k},\mathbf{h}}$. As a consequence, we deduce $M | b_{\mathbf{k},\mathbf{h}}$, which is in conflict with $b_{\mathbf{k},\mathbf{h}} \in \{1,\ldots,M-1\}$.

Extending the reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M)$ for I_{d-1} to $\Lambda((\mathbf{z}, M), MS)$ with *S* as defined above, we actually get a reconstructing rank-1 lattice for the frequency index set $I \subset \mathbb{Z}^d$.

In addition to the strategy provided by Theorem 2 and the corresponding Algorithm 3, we bring the following heuristic into play. We assume small components of the vector \mathbf{z} being better than large ones. Therefore we tune Algorithm 3 and additionally search for the smallest possible component z_s fulfilling

$$|\{(\mathbf{z}, z_s) \cdot \mathbf{h} \mod SM_{s-1} : \mathbf{h} \in I_s\}| = |I_s|.$$

Algorithm 3 Component-by-component lattice search (unknown lattice size M)

Input: $I \subset \mathbb{Z}^d$ frequency index set $M_1 = \min\{m \in \mathbb{N} : |\{k_1 \mod m : \mathbf{k} \in I\}| = |\{k_1 : \mathbf{k} \in I\}|\}$ $z_1 = 1$ for s = 2, ..., d do $S = \min\{m \in \mathbb{N} : |\{k_s \mod m : \mathbf{k} \in I\}| = |\{k_s : \mathbf{k} \in I\}|\}$ $\mathbf{z} = (\mathbf{z}, z_s)$ $z_s = M_{s-1}$ form the set I_s as defined in (3) search for $M_s = \min \{m \in \mathbb{N} : |\{\mathbf{z} \cdot \mathbf{k} \mod m : \mathbf{k} \in I_s\}| = |I_s|\} \le SM_{s-1}$ using Algorithm 2 end for $\mathbf{z} \in \mathbb{N}^d$ Output: generating vector $\mathbf{M} \in \mathbb{N}^d$ rank-1 lattice sizes for dimension $s = 1, \dots, d$

Algorithm 4 Component-by-component lattice search (unknown lattice size *M*, improved)

 $I \subset \mathbb{Z}^d$ Input: frequency index set $M_1 = \min\{m \in \mathbb{N} : |\{k_1 \mod m : \mathbf{k} \in I\}| = |\{k_1 : \mathbf{k} \in I\}|\}$ $z_1 = 1$ for s = 2, ..., d do $S = \min\{m \in \mathbb{N} : |\{k_s \mod m : \mathbf{k} \in I\}| = |\{k_s : \mathbf{k} \in I\}|\}$ form the set I_s as defined in (3) search for the smallest $z_s \in [1, M_{s-1}] \cap \mathbb{Z}$ with $|\{(\mathbf{z}, z_s) \cdot \mathbf{k} \mod SM_{s-1} : \mathbf{k} \in I_s\}| = |I_s|$ $\mathbf{z} = (\mathbf{z}, z_s)$ search for $M_s = \min \{m \in \mathbb{N} : |\{\mathbf{z} \cdot \mathbf{k} \mod m : \mathbf{k} \in I_s\}| = |I_s|\}$ using Algorithm 2 end for $\mathbf{z} \in \mathbb{N}^d$ generating vector Output: $\mathbf{M} \in \mathbb{N}^d$ rank-1 lattice sizes for dimension $s = 1, \ldots, d$

Due to Theorem 2 the integer M_{s-1} is an upper bound for the minimal z_s we can find. Algorithm 4 indicates the described strategy in detail. Algorithms 3 and 4 provide deterministic strategies to find reconstructing rank-1 lattices for a given index set *I*. We would like to point out that in both algorithms the only input we need is the frequency index set *I*.

5 Numerical Examples

Our numerical examples treat frequency index sets of type

$$I_{p,N}^d := \left\{ \mathbf{k} \in \mathbb{Z}^d \colon \|\mathbf{k}\|_p \le N \right\},\,$$

where $\|\cdot\|_p$ is the usual *p*-(quasi-)norm

Sampling Trigonometric Polynomials along Rank-1 Lattices

$$\|\mathbf{k}\|_{p} := \begin{cases} \left(\sum_{s=1}^{d} |k_{s}|^{p}\right)^{1/p} & \text{for } 0$$

In particular, trigonometric polynomials with frequencies supported on the index sets $I_{p,N}^d$ are useful in order to approximate functions of periodic Sobolev spaces $H^{\alpha,p}(\mathbb{T}^d)$ of isotropic smoothness

$$H^{\alpha,p}(\mathbb{T}^d) := \{ f \colon \mathbb{T}^d \to \mathbb{C} | \sum_{\mathbf{k} \in \mathbb{Z}^d} \max(1, \|\mathbf{k}\|_p)^{\alpha} | \hat{f}_{\mathbf{k}} |^2 \},\$$

where $\alpha \in \mathbb{R}$ is the smoothness parameter. In [5], detailed estimates of the approximation error for p = 1, 2 are given. Furthermore, tractability results are specified therein.

According to [5], our examples deal with p = 1, p = 2, and, in addition, p = 1/2, $p = \infty$, see Figures 1a-1d for illustrations in dimension d = 2. We construct corresponding frequency index sets $I_{p,N}^d$ and apply Algorithms 1, 3, and 4 in order to determine reconstructing rank-1 lattices. We have to determine suitable rank-1 lattice sizes M for using Algorithm 1. For this, we compute the minimal prime number M_{Corl} fulfilling Corollary 1. Since this computation is of high costs, we only apply Algorithm 1 to frequency index sets $I_{p,N}^d$ of cardinalities not larger than 20000. We apply Algorithm 1 using the lattice size M_{Corl} and the frequency index set $I_{p,N}^d$ as input. With the resulting generating vector, we apply Algorithm 2 in order to determine the reduced lattice size $M_{\text{Alg1+Alg2}}$. Additionally, we use Algorithms 3 and 4 computing rank-1 lattices $\Lambda(\mathbf{z}_{\text{Alg3}}, M_{\text{Alg3}})$ and $\Lambda(\mathbf{z}_{\text{Alg4}}, M_{\text{Alg4}})$, respectively. For reasons of clarity, we present only the rank-1 lattice sizes M_{Corl} , $M_{\text{Alg1+Alg2}}$, M_{Alg3} , and M_{Alg4} but not the generating vectors $\mathbf{z} \in \mathbb{N}^d$ in our tables.

Fig. 1 two-dimensional frequency index sets $I_{p,16}^2$ and $I_{p,16}^{2,\text{even}}$ for $p \in \{\frac{1}{2}, 1, 2, \infty\}$

First, we interpret the results of Table 1. In most cases, the theoretical result of Corollary 1 give a rank-1 lattice size M_{Cor1} which is much larger than the rank-1 lattice sizes found by applying the different strategies in practice. For $p = \infty$, all our algorithms determined a rank-1 lattice of best possible cardinalities, i.e., $|I_{\infty,N}^d| = M_{\text{Alg1}+\text{Alg2}} = M_{\text{Alg3}} = M_{\text{Alg4}}$. The outputs M_{Alg3} of Algorithm 3 are larger than these of Algorithm 1 in tandem with Algorithm 2 and Algorithm 4, with a few exceptions. Considering the non-convex frequency index sets $I_{\frac{1}{2},N}^d$, Algorithm 3 brings substantially larger rank-1 lattice sizes M_{Alg3} than the two other approaches. Maybe, we observe the consequences of the missing flexibility in choosing the generating vector in Algorithm 3. Moreover, we observe the equality $M_{\text{Alg1}+\text{Alg2}} = M_{\text{Alg4}}$ in all our examples. We would like to point out that Algorithm 1 requires an input lattice size M, which we determined using Corollary 1. However, Algorithm 4 operates without this input.

Since our approach is applicable for frequency index sets with gaps, we also consider frequency index sets $I_{p,N}^{d,\text{even}} := I_{p,N}^d \cap (2\mathbb{Z})^d$. These frequency index sets are suitable in order to approximate functions which are even in each coordinate, i.e., the Fourier coefficients \hat{f}_k are a priori zero for $\mathbf{k} \in \mathbb{Z}^d \setminus (2\mathbb{Z})^d$, cf. Figures 1e – 1h. Certainly, the gaps of the index sets $I_{p,N}^{d,\text{even}}$ are homogeneously distributed. We stress the fact, that the theoretical results and the algorithms can also be applied to strongly inhomogeneous frequency index sets.

Analyzing the frequency index sets $I_{p,N}^{d,\text{even}}$ in detail, we obtain

$$I_{p,N}^{d,\text{even}} = \{2\mathbf{k} \colon \mathbf{k} \in I_{p,N/2}^d\}.$$

We assume $\Lambda(\mathbf{z}, M)$ being a reconstructing rank-1 lattice for $I_{p,N/2}^d$. Accordingly, we know

$$\mathbf{k}_1 \cdot \mathbf{z} - \mathbf{k}_2 \cdot \mathbf{z} \not\equiv 0 \pmod{M}$$

for all $\mathbf{k}_1 \neq \mathbf{k}_2$, \mathbf{k}_1 , $\mathbf{k}_2 \in I_{p,N/2}^d$. We determine $l_{\mathbf{k}_1,\mathbf{k}_2} \in \{1,\ldots,M-1\}$ and $t \in \mathbb{Z}$ such that

$$\mathbf{k}_1 \cdot \mathbf{z} - \mathbf{k}_2 \cdot \mathbf{z} = tM + l_{\mathbf{k}_1, \mathbf{k}_2}$$

and, furthermore,

$$2\mathbf{k}_1 \cdot \mathbf{z} - 2\mathbf{k}_2 \cdot \mathbf{z} = t2M + 2l_{\mathbf{k}_1,\mathbf{k}_2}.$$

This yields

$$2\mathbf{k}_1 \cdot \mathbf{z} - 2\mathbf{k}_2 \cdot \mathbf{z} \equiv 2l_{\mathbf{k}_1, \mathbf{k}_2} \pmod{M},\tag{5}$$

where $2l_{\mathbf{k}_1,\mathbf{k}_2} \in \{2,4,\ldots,2M-2\}$. Assuming *M* being odd, we obtain $2l_{\mathbf{k}_1,\mathbf{k}_2} \neq 0 \pmod{M}$ for all $\mathbf{k}_1 \neq \mathbf{k}_2$, $\mathbf{k}_1,\mathbf{k}_2 \in I^d_{p,N/2}$ and $\Lambda(\mathbf{z},M)$ is a reconstructing rank-1 lattice for $I^{d,\text{even}}_{p,N}$.

In Table 2 we present the reconstructing rank-1 lattice sizes we found for even frequency index sets. Comparing the two tables, we observe the same odd lattice sizes $M_{Alg1+Alg2}$ and M_{Alg4} for $I_{p,N/2}^d$ and $I_{p,N}^{d,even}$. In fact the corresponding generating vectors are also the same. In the case we found even reconstructing lattice sizes for $I_{p,N/2}^d$, we constructed some slightly larger reconstructing rank-1 lattice sizes for $I_{p,N/2}^{d,even}$. In these cases, we cannot use the found reconstructing rank-1 lattices for $I_{p,N/2}^{d,even}$ in order to reconstruct trigonometric polynomials with frequencies supported on $I_{p,N}^{d,even}$. The statement in (5) shows the reason for this observation. There exist at least one pair $\mathbf{k}_1, \mathbf{k}_2 \in I_{p,N}^d, \mathbf{k}_1 \neq \mathbf{k}_2$ with $\mathbf{k}_1 \cdot \mathbf{z} - \mathbf{k}_2 \cdot \mathbf{z} \equiv \frac{M}{2} \pmod{M}$. Consequently, doubling \mathbf{k}_1 and \mathbf{k}_2 leads to $2\mathbf{k}_1 \cdot \mathbf{z} - 2\mathbf{k}_2 \cdot \mathbf{z} \equiv 0 \pmod{M}$ and, hence, $\Lambda(\mathbf{z}, M)$ is not a reconstructing rank-1 lattice for $I_{p,N}^{d,even}$.

The fastest way for determining reconstructing rank-1 lattices is to apply Algorithm 1 with a small and suitable rank-1 lattice size M. As mentioned above, the biggest challenge is to determine this small and suitable rank-1 lattice size M. Consequently, estimating relatively small M using some a priori knowledge about the structure of the frequency index set I or some empirical knowledge, leads to the fastest way to reasonable reconstructing rank-1 lattices. We stress the fact, that this strategy fails if there exists no generating vector \mathbf{z} which can be found using Algorithm 1.

All presented deterministic approaches use Algorithm 2. The computational complexity of Algorithm 2 is bounded by $\mathcal{O}((M_{\text{max}} - |I|)|I|)$. However, some heuristic strategies can decrease the number of loop passes. The disadvantage of this strategy is that one does not find M_{min} but, maybe, an M with $M_{\text{min}} \leq M \ll M_{\text{max}}$. We do not prefer only one of the presented algorithms because the computational complexity mainly depends on the structure of the specific frequency index set and the specific algorithm which is used.

6 Summary

Based on Theorem 1, we determined a lattice size M_{Corl} guaranteeing the existence of a reconstructing rank-1 lattice for a given arbitrary frequency index set *I* in Corollary 1. In order to proof this result, we used a component–by–component argument, which leads directly to the component–by–component algorithm given by Algorithm 1, that computes a generating vector \mathbf{z} such that $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for the frequency index set *I*. Due to difficulties in determining M_{Corl} , we developed some other strategies in order to compute reconstructing rank-1 lattices. The corresponding Algorithms 3 and 4 are also component–by–component algorithms. These algorithms compute complete reconstructing rank-1 lattices, i.e.,

p	N	d	$ I_{p,N}^d $	M _{Cor1}	M _{Alg1+Alg2}	M _{Alg3}	M _{Alg4}
$\frac{1}{2}$	8	10	1241	51679	5 8 9 5	16747	5 8 9 5
$\frac{1}{2}$	8	20	4881	469 841	36927	172642	36927
$\frac{1}{2}$	8	30	10921	1654397	128370	804523	128370
$\frac{1}{2}$	16	5	2561	122 509	16680	23873	16680
$\frac{\overline{1}}{2}$	16	10	21921	-	-	910271	403 799
$\frac{\overline{1}}{2}$	16	15	83 08 1	-	-	9492633	3495885
$\frac{\overline{1}}{2}$	32	3	3 5 2 9	51169	17280	15529	17280
$\frac{\overline{1}}{2}$	32	6	63 577	-	-	1932277	1431875
$\frac{\overline{1}}{2}$	64	3	24993	-	-	113870	99758
1	2	10	221	1 361	369	399	369
1	2	20	841	10723	1 935	2641	1 935
1	2	30	1 861	36 083	5 664	8 2 1 3	5 664
1	4	5	681	4 7 2 1	1 175	1 2 2 5	1 1 7 5
1	4	10	8 361	329 027	36 315	41 649	36315
1	4	15	39 041	-	-	400 143	340 247
1	8	3	833	2729	1113	1169	1113
1	8	6	40081	-	-	126863	126738
1	16	3	6017	21 8 39	8497	8737	8497
2	2	5	221	1 373	356	353	356
2	2	10	4 5 4 1	203 873	21 684	20013	21 684
2	2	15	25 961	3 865079	259 517	280795	259 571
2	2	20	87 481	-	-	1 634 299	1 481164
2	4	3	257	809	346	377	346
2	4	6	23 793	496789	69 065	72776	69 065
2	8	3	2 109	7 639	2 893	3 0 5 0	2 893
2	16	3	17 077	65 309	23 210	23 889	23 210
∞	1	3	27	53	27	27	27
∞	1	6	729	6 2 5 7	729	729	729
∞	1	9	19683	781 271	19 683	19683	19683
∞	2	3	125	331	125	125	125
∞	2	6	15 625	236 207	15 625	15 625	15 625

Table 1 cardinalities of reconstructing rank-1 lattices of index sets $I_{p,N}^d$ found by applying Corollary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4

generating vectors $\mathbf{z} \in \mathbb{N}^d$ and lattice sizes $M \in \mathbb{N}$, for a given frequency index set *I*. All the mentioned approaches are applicable for arbitrary frequency index sets of finite cardinality.

References

Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, USA (1996)

Sampling Trigonometric Polynomials along Rank-1 Lattices

p	Ν	d	$ I_{p,N}^{d,\text{even}} $	M _{Cor1}	M _{Alg1+Alg2}	M _{Alg3}	M _{Alg4}
$\frac{1}{2}$	16	10	1 2 4 1	51679	5895	15345	5895
$\frac{1}{2}$	16	20	4881	469841	36927	176225	36927
$\frac{1}{2}$	16	30	10921	1654397	129013	763 351	129013
$\frac{1}{2}$	32	5	2561	122509	17825	23 873	17825
$\frac{1}{2}$	32	10	21 921	-	-	992 097	403799
$\frac{1}{2}$	32	15	83 0 8 1	-	-	8 848 095	3 495 885
$\frac{1}{2}$	64	3	3 5 2 9	51169	17689	15 529	17689
$\frac{\tilde{1}}{2}$	64	6	63 577	-	-	1 932 277	1 431 875
$\frac{\tilde{1}}{2}$	128	3	24993	-	-	119159	105621
1	4	10	221	1 361	369	399	369
1	4	20	841	10723	1 935	2641	1935
1	4	30	1 861	36 0 8 3	5711	8 2 1 3	5711
1	8	5	681	4721	1 1 7 5	1 2 2 5	1 1 7 5
1	8	10	8 361	329 027	36315	41 649	36315
1	8	15	39 041	-	-	400 143	340 247
1	16	3	833	2 7 2 9	1113	1 169	1113
1	16	6	40 081	-	-	126 863	126 875
1	32	3	6017	21 839	8 497	8737	8 4 97
2	4	5	221	1 373	361	353	361
2	4	10	4541	203 873	22 525	20 0 1 3	22 525
2	4	15	25 961	-	-	280 795	259 571
2	4	20	87 481	-	-	1 634 299	1 497 403
2	8	3	257	809	347	13 309	347
2	8	6	23 793	-	-	72777	69 065
2	16	3	2 109	7 639	2 893	3 0 6 3	2 893
2	32	3	17 077	65 309	23 243	23915	23 243
∞	2	3	27	53	27	27	27
∞	2	6	729	6 2 5 7	729	729	729
∞	2	9	19 683	781 271	19683	19683	19683
∞	4	3	125	331	125	125	125
∞	4	6	15 625	236 207	15 625	15 6 25	15 6 2 5

Table 2 cardinalities of reconstructing rank-1 lattices of index sets $I_{p,N}^{d,\text{even}}$ found by applying Corollary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4

- Cooley, J.W., Tukey, J.W.: An algorithm for machine calculation of complex Fourier series. Math. Comput. 19, 297 – 301 (1965)
- 3. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing lattice rules based on weighted degree of exactness and worst case error. Computing 87, 63 – 89 (2010)
- Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. (2013). URL http://www.tuchemnitz.de/~lkae/paper/Kae2012.pdf. In print
- Kühn, T., Sickel, W., Ullrich, T.: Approximation numbers of Sobolev embeddings sharp constants and tractability. J. Complexity (2013). In print
- Li, D., Hickernell, F.J.: Trigonometric spectral collocation methods on lattices. In: Recent Advances in Scientific Computing and Partial Differential Equations, AMS Series in Contemporary Mathematics, vol. 330, pp. 121 – 132 (2003)

- Munthe-Kaas, H., Sørevik, T.: Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62, 155 – 165 (2012). DOI 10.1016/j.apnum.2011.11.002. URL http://www.sciencedirect.com/science/article/pii/S0168927411002042
- 8. Sickel, W., Ullrich, T.: The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. **13**, 387 425 (2007)
- 9. Sloan, I.H., Joe, S.: Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1994)

16