Reconstructing Multivariate Trigonometric Polynomials from Samples Along Rank-1 Lattices

Lutz Kämmerer

Abstract

The approximation of problems in d spatial dimensions by trigonometric polynomials supported on known more or less sparse frequency index sets $I \subset \mathbb{Z}^{d}$ is an important task with a variety of applications. The use of rank-1 lattices as spatial discretizations offers a suitable possibility for sampling such sparse trigonometric polynomials. Given an arbitrary index set of frequencies, we construct rank-1 lattices that allow a stable and unique discrete Fourier transform. We use a component-by-component method in order to determine the generating vector and the lattice size.

1 Introduction

Given a spatial dimension $d \in \mathbb{N}$, we consider Fourier series of continuous functions $f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\mathbf{k}}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathbf{i} \cdot \mathbf{x} \cdot \mathbf{x}}$ mapping the d-dimensional torus $[0,1)^{d}$ into the complex numbers \mathbb{C}, where $\hat{f}_{\mathbf{k}} \in \mathbb{C}$ are the Fourier coefficients. A sequence $\left(\hat{f}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ with a finite number of nonzero elements specifies a trigonometric polynomial. We call the index set of the nonzero elements the frequency index set of the corresponding trigonometric polynomial. For a fixed index set $I \subset \mathbb{Z}^{d}$ with a finite cardinality $|I|$, $\Pi_{I}=\operatorname{span}\left\{\mathrm{e}^{2 \pi \mathbf{i} \cdot \mathbf{x}}: \mathbf{k} \in I\right\}$ is called the space of trigonometric polynomials with frequencies supported on I.

Assuming the index set I is of finite cardinality and a suitable discretization in frequency domain for approximating functions, e.g. functions of specific smoothness, cf. [8, 5], we are interested in evaluating the corresponding trigonometric polynomials at sampling nodes and reconstructing the Fourier coefficients $\left(\hat{f}_{\mathbf{k}}\right)_{\mathbf{k} \in I}$ from sample values. Accordingly, we consider (sparse) multivariate trigonometric polynomials

[^0]$$
f(\mathbf{x})=\sum_{\mathbf{k} \in I} \hat{f}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathbf{i} \cdot \mathbf{x}}
$$
and assume the frequency index set I is given.
For different specific index sets I there has been done some related work using rank-1 lattices as spatial discretizations [7, 4]. A multivariate trigonometric polynomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a onedimensional fast Fourier transform (FFT) of the length of the cardinality of the rank-1 lattice, cf. [6]. Allowing for some oversampling one can find a rank-1 lattice, which even allows the reconstruction of the trigonometric polynomial from the samples at the rank-1 lattice nodes. A suitable strategy to search for such reconstructing rank-1 lattices can be adapted from numerical integration. In particular, a modification of the component-by-component constructions of lattice rules based on various weighted trigonometric degrees of exactness described in [3] allows one to find adequate rank-1 lattices in a relatively fast way. We already showed the existence and upper bounds on the cardinality of reconstructing rank-1 lattices for hyperbolic crosses as index sets, cf. [4].

In this paper we generalize these results considering arbitrary frequency index sets I and suggest some strategies for determining reconstructing rank-1 lattices even for frequency index sets containing gaps. To this end, we present corresponding component-by-component (CBC) algorithms, where the frequency index set I is the only input.

In Section 2, we introduce the necessary notation and specify the relation between exact integration of trigonometric polynomials and reconstruction of trigonometric polynomials using rank-1 lattices. Section 3 contains the main results, i.e., a component-by-component algorithm searching for reconstructing rank-1 lattices for given frequency index sets I and given rank-1 lattice sizes M. In detail, we determine conditions on M guaranteeing the existence of a reconstructing rank-1 lattice of size M for the frequency index set I. The proof of this existence result describes a component-by-component construction of a corresponding generating vector $\mathbf{z} \in \mathbb{N}^{d}$ of the rank-1 lattice, such that we obtain directly a component-by-component algorithm. In Section 4, we give some simple improvements of the component-bycomponent construction, such that the corresponding algorithms automatically determine suitable rank-1 lattice sizes. Accordingly, the only input is the frequency index set I here. Finally, we give some specific examples and compare the results of our different algorithms in Section 5.

2 Rank-1 Lattices

For given $M \in \mathbb{N}$ and $\mathbf{z} \in \mathbb{N}^{d}$ we define the rank-1 lattice

$$
\Lambda(\mathbf{z}, M):=\left\{\mathbf{x}_{j}=\frac{j \mathbf{z}}{M} \bmod 1, j=0, \ldots, M-1\right\}
$$

as discretization in the spatial domain. Following [6], the evaluation of the trigonometric polynomial $f \in \Pi_{I}$ with frequencies supported on I simplifies to a onedimensional discrete Fourier transform (DFT), i.e.,

$$
f\left(\mathbf{x}_{j}\right)=\sum_{\mathbf{k} \in I} \hat{f}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} j \mathbf{k} \cdot \mathbf{z}}=\sum_{l=0}^{M-1}\left(\sum_{\mathbf{k} \cdot \mathbf{z} \equiv l(\bmod M)} \hat{f}_{\mathbf{k}}\right) \mathrm{e}^{2 \pi \mathrm{i} \frac{\mathrm{j} l}{M}}
$$

We evaluate f at all nodes $\mathbf{x}_{j} \in \Lambda(\mathbf{z}, M), j=0, \ldots, M-1$, by the precomputation of all $\hat{g}_{l}:=\sum_{\mathbf{k} \cdot \mathbf{z} \equiv l}(\bmod M) \hat{f}_{\mathbf{k}}$ and a one-dimensional (inverse) FFT in $\mathscr{O}(M \log M+d|I|)$ floating point operations, cf. [2], where $|I|$ denotes the cardinality of the frequency index set I.

As the fast evaluation of trigonometric polynomials at all sampling nodes \mathbf{x}_{j} of the rank-1 lattice $\Lambda(\mathbf{z}, M)$ is guaranteed, we draw our attention to the reconstruction of a trigonometric polynomial f with frequencies supported on I using function values at the nodes \mathbf{x}_{j} of a rank-1 lattice $\Lambda(\mathbf{z}, M)$. We consider the corresponding Fourier matrix \mathbf{A} and its adjoint \mathbf{A}^{*},

$$
\mathbf{A}:=\left(\mathrm{e}^{2 \pi \mathbf{i} \mathbf{k} \cdot \mathbf{x}}\right)_{\mathbf{x} \in \Lambda(\mathbf{z}, M), \mathbf{k} \in I} \in \mathbb{C}^{M \times|I|} \text { and } \mathbf{A}^{*}:=\left(\mathrm{e}^{-2 \pi \mathbf{i} \mathbf{k} \cdot \mathbf{x}}\right)_{\mathbf{k} \in I, \mathbf{x} \in \Lambda(\mathbf{z}, M)} \in \mathbb{C}^{|I| \times M}
$$

in order to determine necessary and sufficient conditions on rank-1 lattices $\Lambda(\mathbf{z}, M)$ allowing for a unique reconstruction of all Fourier coefficients of $f \in \Pi_{I}$. The reconstruction of the Fourier coefficients $\hat{\mathbf{f}}=\left(\hat{f}_{\mathbf{k}}\right)_{\mathbf{k} \in I} \in \mathbb{C}^{|I|}$ from sampling values $\mathbf{f}=$ $(f(\mathbf{x}))_{\mathbf{x} \in \Lambda(\mathbf{z}, M)} \in \mathbb{C}^{M}$ can be realized by solving the normal equation $\mathbf{A}^{*} \hat{\mathbf{A}}=\mathbf{A}^{*} \mathbf{f}$, which is equivalent to solve the least squares problem

$$
\text { find } \hat{\mathbf{f}} \in \mathbb{C}^{|I|} \text { such that }\|\mathbf{A} \hat{\mathbf{f}}-\mathbf{f}\|_{2} \rightarrow \min
$$

cf. [1]. Assuming $\mathbf{f}=(f(\mathbf{x}))_{\mathbf{x} \in \Lambda(\mathbf{z}, M)}$ being a vector of sampling values of the trigonometric polynomial $f \in \Pi_{I}$, the vector \mathbf{f} belongs to the range of \mathbf{A} and we can find a possibly non-unique solution $\hat{\mathbf{f}}$ of $\mathbf{A} \hat{\mathbf{f}}=\mathbf{f}$. We compute a unique solution of the normal equation, iff the Fourier matrix \mathbf{A} has full column rank.

Lemma 1. Let $I \subset \mathbb{Z}^{d}$ of finite cardinality and $\Lambda(\mathbf{z}, M)$ a rank-1 lattice be given. Then two distinct columns of the corresponding Fourier matrix \mathbf{A} are orthogonal or equal, i.e., $\left(\mathbf{A}^{*} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}} \in\{0, M\}$ for $\mathbf{h}, \mathbf{k} \in I$.

Proof. The matrix $\mathbf{A}^{*} \mathbf{A}$ contains all scalar products of two columns of the Fourier matrix \mathbf{A}, i.e., $\left(\mathbf{A}^{*} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}$ is the scalar product of column \mathbf{k} with column \mathbf{h} of the Fourier matrix A. We obtain

$$
\left(\mathbf{A}^{*} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}=\sum_{j=0}^{M-1}\left(\mathrm{e}^{\left.2 \pi \mathrm{i} \frac{(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}}{M}\right)^{j}=\left\{\begin{array}{ll}
M, & \text { for } \mathbf{k} \cdot \mathbf{z} \equiv \mathbf{h} \cdot \mathbf{z}(\bmod M) \\
\frac{\mathrm{e}^{2 \pi i(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}}-1}{\mathrm{e}^{2 \pi \mathrm{i} \frac{(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}}{M}}-1}=0, & \text { else }
\end{array} .\right.}\right.
$$

According to Lemma 1 the matrix \mathbf{A} has full column rank, iff

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z}(\bmod M), \quad \text { for all } \quad \mathbf{k} \neq \mathbf{h} ; \mathbf{k}, \mathbf{h} \in I \tag{1}
\end{equation*}
$$

or, equivalent,

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z} \not \equiv 0(\bmod M), \quad \text { for all } \quad \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\} \tag{2}
\end{equation*}
$$

with $\mathscr{D}(I):=\left\{\mathbf{h}=\mathbf{l}_{1}-\mathbf{l}_{2}: \mathbf{l}_{1}, \mathbf{l}_{2} \in I\right\}$. We call the set $\mathscr{D}(I)$ difference set of the frequency index set I and a rank-1 lattice $\Lambda(\mathbf{z}, M)$ ensuring (1) and (2) reconstructing rank-1 lattice for the index set I. In particular, condition (2) ensures the exact integration of all trigonometric polynomials $g \in \Pi_{\mathscr{D}(I)}$ applying the lattice rule given by $\Lambda(\mathbf{z}, M)$, i.e., the identity $\int_{\mathbb{T}^{d}} g(\mathbf{x}) \mathrm{d} \mathbf{x}=\frac{1}{M} \sum_{j=0}^{M-1} g\left(\mathbf{x}_{j}\right)$ holds for all $g \in \Pi_{\mathscr{D}(I)}$, cf. [9]. Certainly, $f \in \Pi_{I}$ and $\mathbf{k} \in I$ implies that $f \mathrm{e}^{-2 \pi \mathrm{i} \cdot \circ} \in \Pi_{\mathscr{D}(I)}$ and we obtain

$$
\frac{1}{M} \sum_{j=0}^{M-1} f\left(\frac{j \mathbf{z}}{M} \bmod \mathbf{1}\right) \mathrm{e}^{-2 \pi \mathrm{i} j \frac{\mathbf{k} \cdot \mathbf{z}}{M}}=\int_{\mathbb{T}^{d}} f(\mathbf{x}) \mathrm{e}^{-2 \pi \mathbf{i} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}=: \hat{f}_{\mathbf{k}}
$$

where the right equality is the usual definition of the Fourier coefficients.
Another fact, which comes out of Lemma 1, is that the matrix \mathbf{A} fulfills $\mathbf{A}^{*} \mathbf{A}=$ $M \mathbf{I}$ in the case of $\Lambda(\mathbf{z}, M)$ being a reconstructing rank-1 lattice for I. The normalized normal equation simplifies to

$$
\hat{\mathbf{f}}=\frac{1}{M} \mathbf{A}^{*} \mathbf{A} \hat{\mathbf{f}}=\frac{1}{M} \mathbf{A}^{*} \mathbf{f}
$$

and in fact we reconstruct the Fourier coefficients of $f \in \Pi_{I}$ applying the lattice rule

$$
\hat{f}_{\mathbf{k}}=\frac{1}{M} \sum_{j=0}^{M-1} f\left(\mathbf{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{j \mathbf{k} \cdot \mathbf{z}}{M}}=\frac{1}{M} \sum_{j=0}^{M-1} f\left(\mathbf{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{j l}{M}}
$$

for all $\mathbf{k} \in I$ and $l=\mathbf{k} \cdot \mathbf{z} \bmod M$. In particular, one computes all Fourier coefficients using one one-dimensional FFT and the unique inverse mapping of $\mathbf{k} \mapsto \mathbf{k} \cdot \mathbf{z} \bmod M$. The corresponding complexity is given by $\mathscr{O}(M \log M+d|I|)$.

Up to now, we wrote about reconstructing rank-1 lattices without saying how to get them. In the following section, we prove existence results and give a first algorithm in order to determine reconstructing rank-1 lattices.

3 A CBC construction of reconstructing rank-1 lattices

A reconstructing rank-1 lattice for the frequency index set I is characterized by (1) and (2), respectively. Similar to the construction of rank-1 lattices for the exact integration of trigonometric polynomials of specific trigonometric degrees, see [3], we are interested in existence results and suitable construction algorithms for reconstructing rank-1 lattices. In order to prepare the main theorem of this paper, we
define the projection of an index set $I \subset \mathbb{Z}^{d}$ on $\mathbb{Z}^{s}, d \geq s \in \mathbb{N}$,

$$
\begin{equation*}
I_{s}:=\left\{\left(k_{j}\right)_{j=1}^{s}: \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I\right\} . \tag{3}
\end{equation*}
$$

Furthermore, we call a frequency index set $I \subset \mathbb{Z}^{d}$ symmetric to the origin iff $I=$ $\{-\mathbf{k}: \mathbf{k} \in I\}$, i.e., $\mathbf{h} \in I$ implies $-\mathbf{k} \in I$ for all $\mathbf{k} \in I$.

Theorem 1. Let $s \in \mathbb{N}, d \geq s \geq 2, \tilde{I} \subset \mathbb{Z}^{d}$ be an arbitrary d-dimensional set of finite cardinality that is symmetric to the origin, and M be a prime number satisfying

$$
M \geq \frac{\mid\left\{\mathbf{k} \in \tilde{I}_{s}: \mathbf{k}=\left(\mathbf{h}, h_{s}\right), \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\} \text { and } h_{s} \in \mathbb{Z} \backslash\{0\}\right\} \mid}{2}+2
$$

Additionally, we assume that each nonzero element of the set of the s-th component of \tilde{I}_{s} and M are coprime, i.e., $M \nmid l$ for all $l \in\left\{h_{s} \in \mathbb{Z} \backslash\{0\}: \mathbf{k}=\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s}, \mathbf{h} \in \tilde{I}_{s-1}\right\}$, and that there exists a generating vector $\mathbf{z}^{*} \in \mathbb{N}^{s-1}$ that guarantees

$$
\mathbf{h} \cdot \mathbf{z}^{*} \not \equiv 0(\bmod M) \quad \text { for all } \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\} .
$$

Then there exists at least one $z_{s}^{*} \in\{1, \ldots, M-1\}$ such that

$$
\left(\mathbf{h}, h_{s}\right) \cdot\left(\mathbf{z}^{*}, z_{s}^{*}\right) \not \equiv 0(\bmod M) \quad \text { for all }\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\} .
$$

Proof. We adapt the proof of [3, Theorem 1]. Let us assume that

$$
\mathbf{h} \cdot \mathbf{z}^{*} \not \equiv 0(\bmod M) \text { for all } \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\} .
$$

Basically, we determine an upper bound of the number of elements $z_{s} \in\{1, \ldots, M-$ $1\}$ with

$$
\left(\mathbf{h}, h_{s}\right) \cdot\left(\mathbf{z}^{*}, z_{s}\right) \equiv 0(\bmod M) \text { for at least one }\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{0\}
$$

or, equivalent,

$$
\mathbf{h} \cdot \mathbf{z}^{*} \equiv-h_{s} z_{s}(\bmod M) \text { for at least one }\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{0\}
$$

Similar to [3] we consider three cases:
$h_{s}=0$: With $\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}$ we have $\mathbf{0} \neq \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\}$. Consequently, $\mathbf{h} \cdot \mathbf{z}^{*} \equiv-0 z_{s}(\bmod M)$ never holds because of $\mathbf{h} \cdot \mathbf{z}^{*} \not \equiv 0(\bmod M)$ for all $\mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\}$.
$\mathbf{h}=\mathbf{0}$: We consider $z_{s} \in\{1, \ldots, M-1\}$. We required M being prime, so $z s$ and M are coprime. Due to $\left(\mathbf{h}, h_{s}\right) \in \tilde{I} \backslash\{\boldsymbol{0}\}$, we obtain $h_{s} \neq 0$ and we assumed M and $h_{s} \neq 0$ are coprime. Consequently, we realize $z_{s} h_{s} \neq 0$ and $z_{s} h_{s}$ and M are relatively prime. So $\mathbf{0} \mathbf{z}^{*} \equiv-h_{s} z_{s}(\bmod M)$ never holds for $\left(\mathbf{0}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}$ and $z_{s} \in\{1, \ldots, M-1\}$.
else: \quad Since $0 \neq h_{s}$ and M are coprime and $\mathbf{h} \cdot \mathbf{z}^{*} \not \equiv 0(\bmod M)$, there is at most one $z_{s} \in\{1, \ldots, M-1\}$ that fulfills $\mathbf{h} \cdot \mathbf{z}^{*} \equiv-h_{s} z_{s}(\bmod M)$. Due
to the symmetry of the considered index set $\left\{\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}: \mathbf{h} \in\right.$ $\tilde{I}_{s-1} \backslash\{\mathbf{0}\}$ and $\left.h_{s} \in \mathbb{Z} \backslash\{0\}\right\}$ we have to count at most one z_{s} for the two elements $\left(\mathbf{h}, h_{s}\right)$ and $-\left(\mathbf{h}, h_{s}\right)$.

Hence, we have at most

$$
\begin{equation*}
\frac{\mid\left\{\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}: \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\boldsymbol{0}\} \text { and } h_{s} \in \mathbb{Z} \backslash\{0\}\right\} \mid}{2} \tag{4}
\end{equation*}
$$

elements of $\{1, \ldots, M-1\}$ with

$$
\mathbf{h} \cdot \mathbf{z}^{*} \equiv-h_{s} z_{s}(\bmod M) \text { for at least one }\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\} .
$$

If the candidate set $\{1, \ldots, M-1\}$ for z_{s}^{*} contains more elements than (4) we can determine at least one z_{s}^{*} with

$$
\mathbf{h} \cdot \mathbf{z}^{*} \not \equiv-h_{s} z_{s}^{*} \quad(\bmod M) \text { for all }\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\boldsymbol{0}\} .
$$

Consequently, the number of elements in $\{1, \ldots, M-1\}$ with

$$
|\{1, \ldots, M-1\}| \geq \frac{\mid\left\{\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}: \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\} \text { and } h_{s} \in \mathbb{Z} \backslash\{0\}\right\} \mid}{2}+1
$$

and M is prime guarantees that there exists such a z_{s}^{*}. Since we assumed M being prime and

$$
\begin{aligned}
M & =|\{1, \ldots, M-1\}|+1 \\
& \geq \frac{\mid\left\{\left(\mathbf{h}, h_{s}\right) \in \tilde{I}_{s} \backslash\{\mathbf{0}\}: \mathbf{h} \in \tilde{I}_{s-1} \backslash\{\mathbf{0}\} \text { and } h_{s} \in \mathbb{Z} \backslash\{0\}\right\} \mid}{2}+2
\end{aligned}
$$

we can find at least one z_{s} by testing out all possible candidates $\{1,2, \ldots, M-1\}$.

Theorem 1 outlines one step of a component-by-component construction of a rank1 lattice, guaranteeing the exact integration of trigonometric polynomials with frequencies supported on index sets \tilde{I} which are symmetric to the origin.

We obtain this symmetry of the difference sets $\mathscr{D}(I)_{s}$

$$
\mathbf{h} \in \mathscr{D}(I)_{s} \Rightarrow \exists \mathbf{k}_{1}, \mathbf{k}_{2} \in I_{s}: \mathbf{h}=\mathbf{k}_{1}-\mathbf{k}_{2} \Rightarrow-\mathbf{h}=\mathbf{k}_{2}-\mathbf{k}_{1} \in \mathscr{D}(I)_{s} .
$$

So, our strategy is to apply Theorem 1 to the difference set $\mathscr{D}(I)_{s}$ of the frequency index set I_{s} for all $2 \leq s \leq d$. In order to use Theorem 1, we have to find sufficient conditions on rank-1 lattices of dimension $d=1$ guaranteeing that $h z_{1} \not \equiv 0(\bmod M)$ for all $h \in \mathscr{D}(I)_{1} \backslash\{0\}$.

Lemma 2. Let $I \subset \mathbb{Z}$ be a one-dimensional frequency index set of finite cardinality and M be a prime number satisfying $M \geq|I|$. Additionally, we assume M and h being coprime for all $h \in \mathscr{D}(I) \backslash\{0\}$. Then we can uniquely reconstruct the Fourier coefficients of all $f \in \Pi_{I}$ applying the one-dimensional lattice rule given by $\Lambda(1, M)$.

```
Algorithm 1 Component-by-component lattice search
\(\begin{array}{lll}\text { Input: } & M \in \mathbb{N} \text { prime } & \begin{array}{l}\text { cardinality of rank-1 lattice } \\ \\ \\ I \subset \mathbb{Z}^{d}\end{array} \\ \text { frequency index set }\end{array}\)
    \(\mathbf{z}=\emptyset\)
    for \(s=1, \ldots, d\) do
        form the set \(I_{s}\) as defined in (3)
        search for one \(z_{s} \in[1, M-1] \cap \mathbb{Z}\) with \(\left|\left\{\left(\mathbf{z}, z_{s}\right) \cdot \mathbf{k} \bmod M: \mathbf{k} \in I_{s}\right\}\right|=\left|I_{s}\right|\)
        \(\mathbf{z}=\left(\mathbf{z}, z_{s}\right)\)
    end for
Output: \(\quad \mathbf{z} \in \mathbb{Z}^{d} \quad\) generating vector
```

Proof. Applying the lattice rule given by $\Lambda(1, M)$ to the integrands of the integrals computing the Fourier coefficient $\hat{f}_{k}, k \in I$, of $f \in \Pi_{I}$, we obtain

$$
\begin{aligned}
\frac{1}{M} \sum_{j=0}^{M-1} f\left(\frac{j}{M}\right) \mathrm{e}^{-2 \pi \mathrm{i} \frac{k j}{M}} & =\frac{1}{M} \sum_{j=0}^{M-1} \sum_{h \in I} \hat{f}_{h} \mathrm{e}^{2 \pi \mathrm{i} \frac{\mathrm{~h}^{h}}{M}} \mathrm{e}^{-2 \pi \mathrm{i} \frac{k j}{M}} \\
& =\frac{1}{M} \sum_{h \in I} \hat{f}_{h} \sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} \frac{(h-k) j}{M}}=\hat{f}_{k}=\int_{0}^{1} f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x} d x
\end{aligned}
$$

due to $h-k \in \mathscr{D}(I) \backslash\{0\}$ and M are coprime.
We summarize the results of Theorem 1 and Lemma 2 and figure out the following
Corollary 1. Let $I \subset \mathbb{Z}^{d}$ be an arbitrary d-dimensional index set of finite cardinality and M be a prime number satisfying

$$
M \geq \max \left(\left|I_{1}\right|, \max _{s=2, \ldots, d} \frac{\mid\left\{\mathbf{k} \in \mathscr{D}(I)_{s}: \mathbf{k}=\left(\mathbf{h}, h_{s}\right), \mathbf{h} \in \mathscr{D}(I)_{s-1} \backslash\{\mathbf{0}\} \text { and } h_{s} \in \mathbb{Z} \backslash\{0\}\right\} \mid}{2}+2\right) .
$$

In addition we assume that $M \nmid l$ for all $l \in\left\{k=\mathbf{e}_{s} \cdot \mathbf{h}: \mathbf{h} \in \mathscr{D}(I), s=1, \ldots, d\right\} \backslash\{0\}$,
where $\mathbf{e}_{s} \in \mathbb{N}^{d}$ is a d-dimensional unit vector with $e_{s, j}=\left\{\begin{array}{ll}0, & \text { for } j \neq s \\ 1, & \text { for } j=s .\end{array}\right.$. Then there exists a rank-1 lattice of cardinality M that allows the reconstruction of all trigonometric polynomials with frequencies supported on I by sampling along the rank-1 lattice. Furthermore, once we determined a suitable M the proof of Theorem 1 verifies that we can find at least one appropriate generating vector component-bycomponent. Algorithm 1 indicates the corresponding strategy.

Once one has discovered a reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M)$ for the index set I, the condition

$$
\mathbf{k} \cdot \mathbf{z} \neq \mathbf{h} \cdot \mathbf{z}, \quad \text { for all } \quad \mathbf{k} \neq \mathbf{h} ; \mathbf{k}, \mathbf{h} \in I
$$

holds and one can ask for $M^{\prime}<M$ fulfilling

$$
\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z}\left(\bmod M^{\prime}\right), \quad \text { for all } \quad \mathbf{k} \neq \mathbf{h} ; \mathbf{k}, \mathbf{h} \in I
$$

```
Algorithm 2 Lattice size decreasing
Input: \(\quad I \subset \mathbb{Z}^{d} \quad\) frequency index set
            \(M_{\text {max }} \in \mathbb{N} \quad\) cardinality of rank-1 lattice
            \(\mathbf{z} \in \mathbb{N}^{d} \quad \Lambda\left(\mathbf{z}, M_{\max }\right)\) is reconstructing rank-1 lattice for \(I\)
    for \(j=|I|, \ldots, M_{\max }\) do
        if \(|\{\mathbf{z} \cdot \mathbf{k} \bmod (j): \mathbf{k} \in I\}|=|I|\) then
            \(M_{\text {min }}=j\)
        end if
    end for
Output: \(\quad M_{\text {min }} \quad\) reduced lattice size
```

For a fixed frequency index set I and a fixed generating vector \mathbf{z} we assume the rank-1 lattice $\Lambda\left(\mathbf{z}, M_{\max }\right)$ being a reconstructing rank-1 lattice. Then, Algorithm 2 computes the smallest lattice size M^{\prime} guaranteeing the reconstruction property of the rank-1 lattice $\Lambda\left(\mathbf{z}, M^{\prime}\right)$.

Finally, we give a simple upper bound on the cardinality of the difference set $\mathscr{D}(I)$ depending on the cardinality of I

$$
|\mathscr{D}(I)|=|\{\mathbf{k}-\mathbf{h}: \mathbf{k}, \mathbf{h} \in I\}|=|\{\mathbf{k}-\mathbf{h}: \mathbf{k}, \mathbf{h} \in I, \mathbf{k} \neq \mathbf{h}\} \cup\{\mathbf{0}\}| \leq|I|(|I|-1)+1 .
$$

According to this and applying Bertrand's postulate, the prime number M from Corollary 1 is bounded from above by $|I|^{2}$, provided that $|I| \geq 4$.

4 Improvements

There are two serious problems concerning Corollary 1. In general, the computational costs of determining the cardinality of the difference sets $\mathscr{D}(I)_{s}, 2 \leq s \leq d$, has a complexity of $\Omega\left(d|I|^{2}\right)$ and, maybe, the minimal M satisfying the assumptions of Corollary 1 is far away from a best possible reconstructing rank-1 lattice size. Accordingly, we are interested in somehow good estimations of the reconstructing rank-1 lattice size for the index set I.

In this section, we present another strategy to find reconstructing rank-1 lattices. We search for rank-1 lattices using a component-by-component construction determining the generating vectors $\mathbf{z} \in \mathbb{Z}^{d}$ and suitable rank-1 lattice sizes $M \in \mathbb{N}$.

Theorem 2. Let $d \in \mathbb{N}, d \geq 2$, and $I \subset \mathbb{Z}^{d}$ of finite cardinality $|I| \geq 2$ be given. We assume that $\Lambda(\mathbf{z}, M)$ with $\mathbf{z}=\left(z_{1}, \ldots, z_{d-1}\right)^{\top}$ is a reconstructing rank-1 lattice for the frequency index set $I_{d-1}:=\left\{\left(h_{s}\right)_{s=1}^{d-1}: \mathbf{h} \in I\right\}$. Then the rank-1 lattice $\Lambda\left(\left(z_{1}, \ldots, z_{d-1}, M\right)^{\top}, M S\right)$ with

$$
S:=\min \left\{m \in \mathbb{N}:\left|\left\{h_{d} \bmod m: \mathbf{h} \in I\right\}\right|=\left|\left\{h_{d}: \mathbf{h} \in I\right\}\right|\right\}
$$

is a reconstructing rank-1 lattice for I.

Proof. We assume the rank-1 lattice $\Lambda\left(\left(z_{1}, \ldots, z_{d-1}\right)^{\top}, M\right)$ is a reconstructing rank1 lattice for I_{d-1} and $\Lambda\left(\left(z_{1}, \ldots, z_{d-1}, M\right)^{\top}, M S\right)$ is not a reconstructing rank-1 lattice for I, i.e., there exist at least two different elements $\left(\mathbf{h}, h_{d}\right),\left(\mathbf{k}, k_{d}\right) \in I,\left(\mathbf{h}, h_{d}\right) \neq$ $\left(\mathbf{k}, k_{d}\right)$, such that

$$
\mathbf{h} \cdot \mathbf{z}+h_{d} M \equiv \mathbf{k} \cdot \mathbf{z}+k_{d} M(\bmod M S)
$$

We distinguish three different possible cases of $\left(\mathbf{h}, h_{d}\right),\left(\mathbf{k}, k_{d}\right) \in I,\left(\mathbf{h}, h_{d}\right) \neq\left(\mathbf{k}, k_{d}\right)$:

- $\mathbf{h}=\mathbf{k}$ and $h_{d} \neq k_{d}$

We consider the corresponding residue classes

$$
0 \equiv \mathbf{k} \cdot \mathbf{z}+k_{d} M-\mathbf{h} \cdot \mathbf{z}-h_{d} M \equiv\left(k_{d}-h_{d}\right) M(\bmod M S)
$$

and obtain $S \mid\left(k_{d}-h_{d}\right)$, i.e., $k_{d} \equiv h_{d}(\bmod S)$. Thus, we determine the cardinality $\left|\left\{h_{d} \bmod S: \mathbf{h} \in I\right\}\right|<\left|\left\{h_{d}: \mathbf{h} \in I\right\}\right|$, which is in contradiction to the definition of S.

- $\mathbf{h} \neq \mathbf{k}$ and $h_{d}=k_{d}$

Accordingly, we calculate

$$
0 \equiv \mathbf{k} \cdot \mathbf{z}+k_{d} M-\mathbf{h} \cdot \mathbf{z}-h_{d} M \equiv(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}(\bmod M S)
$$

and obtain $M S \mid(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}$ and $M \mid(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}$ as well. According to that, we ob$\operatorname{tain} \mathbf{h} \cdot \mathbf{z} \equiv \mathbf{k} \cdot \mathbf{z}(\bmod M)$, which is in contradiction to the assumption $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for I_{d-1}.

- $\mathbf{h} \neq \mathbf{k}$ and $h_{d} \neq k_{d}$

Due to $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for I_{d-1} we have

$$
0 \not \equiv \mathbf{k} \cdot \mathbf{z}-\mathbf{h} \cdot \mathbf{z}(\bmod M)
$$

Thus, we can find uniquely specified $a_{\mathbf{k}, \mathbf{h}} \in \mathbb{Z}$ and $b_{\mathbf{k}, \mathbf{h}} \in\{1, \ldots, M-1\}$ such that $\mathbf{k} \cdot \mathbf{z}-\mathbf{h} \cdot \mathbf{z}=a_{\mathbf{k}, \mathbf{h}} M+b_{\mathbf{k}, \mathbf{h}}$. We calculate

$$
0 \equiv \mathbf{k} \cdot \mathbf{z}+k_{d} M-\mathbf{h} \cdot \mathbf{z}-h_{d} M \equiv\left(a_{\mathbf{k}, \mathbf{h}}+k_{d}-h_{d}\right) M+b_{\mathbf{k}, \mathbf{h}}(\bmod M S)
$$

and obtain $M S \mid\left(a_{\mathbf{k}, \mathbf{h}}+k_{d}-h_{d}\right) M+b_{\mathbf{k}, \mathbf{h}}$. As a consequence, we deduce $M \mid b_{\mathbf{k}, \mathbf{h}}$, which is in conflict with $b_{\mathbf{k}, \mathbf{h}} \in\{1, \ldots, M-1\}$.

Extending the reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M)$ for I_{d-1} to $\Lambda((\mathbf{z}, M), M S)$ with S as defined above, we actually get a reconstructing rank-1 lattice for the frequency index set $I \subset \mathbb{Z}^{d}$.

In addition to the strategy provided by Theorem 2 and the corresponding Algorithm 3 , we bring the following heuristic into play. We assume small components of the vector \mathbf{z} being better than large ones. Therefore we tune Algorithm 3 and additionally search for the smallest possible component z_{s} fulfilling

$$
\left|\left\{\left(\mathbf{z}, z_{s}\right) \cdot \mathbf{h} \bmod S M_{s-1}: \mathbf{h} \in I_{s}\right\}\right|=\left|I_{s}\right|
$$

```
Algorithm 3 Component-by-component lattice search (unknown lattice size \(M\) )
Input: \(\quad I \subset \mathbb{Z}^{d} \quad\) frequency index set
    \(M_{1}=\min \left\{m \in \mathbb{N}:\left|\left\{k_{1} \bmod m: \mathbf{k} \in I\right\}\right|=\left|\left\{k_{1}: \mathbf{k} \in I\right\}\right|\right\}\)
    \(z_{1}=1\)
    for \(s=2, \ldots, d\) do
        \(S=\min \left\{m \in \mathbb{N}:\left|\left\{k_{s} \bmod m: \mathbf{k} \in I\right\}\right|=\left|\left\{k_{s}: \mathbf{k} \in I\right\}\right|\right\}\)
        \(\mathbf{z}=\left(\mathbf{z}, z_{s}\right)\)
        \(z_{s}=M_{s-1}\)
        form the set \(I_{s}\) as defined in (3)
        search for \(M_{s}=\min \left\{m \in \mathbb{N}:\left|\left\{\mathbf{z} \cdot \mathbf{k} \bmod m: \mathbf{k} \in I_{s}\right\}\right|=\left|I_{s}\right|\right\} \leq S M_{s-1}\) using Algorithm 2
    end for
Output: \(\quad \mathbf{z} \in \mathbb{N}^{d} \quad\) generating vector
        \(\mathbf{M} \in \mathbb{N}^{d} \quad\) rank-1 lattice sizes for dimension \(s=1, \ldots, d\)
```

```
Algorithm 4 Component-by-component lattice search (unknown lattice size \(M\), im-
proved)
Input: \(\quad I \subset \mathbb{Z}^{d} \quad\) frequency index set
    \(M_{1}=\min \left\{m \in \mathbb{N}:\left|\left\{k_{1} \bmod m: \mathbf{k} \in I\right\}\right|=\left|\left\{k_{1}: \mathbf{k} \in I\right\}\right|\right\}\)
    \(z_{1}=1\)
    for \(s=2, \ldots, d\) do
        \(S=\min \left\{m \in \mathbb{N}:\left|\left\{k_{s} \bmod m: \mathbf{k} \in I\right\}\right|=\left|\left\{k_{s}: \mathbf{k} \in I\right\}\right|\right\}\)
        form the set \(I_{s}\) as defined in (3)
        search for the smallest \(z_{s} \in\left[1, M_{s-1}\right] \cap \mathbb{Z}\) with \(\left|\left\{\left(\mathbf{z}, z_{s}\right) \cdot \mathbf{k} \bmod S M_{s-1}: \mathbf{k} \in I_{s}\right\}\right|=\left|I_{s}\right|\)
        \(\mathbf{z}=\left(\mathbf{z}, z_{s}\right)\)
        search for \(M_{s}=\min \left\{m \in \mathbb{N}:\left|\left\{\mathbf{z} \cdot \mathbf{k} \bmod m: \mathbf{k} \in I_{s}\right\}\right|=\left|I_{s}\right|\right\}\) using Algorithm 2
    end for
Output: \(\quad \mathbf{z} \in \mathbb{N}^{d} \quad\) generating vector
        \(\mathbf{M} \in \mathbb{N}^{d} \quad\) rank-1 lattice sizes for dimension \(s=1, \ldots, d\)
```

Due to Theorem 2 the integer M_{s-1} is an upper bound for the minimal z_{s} we can find. Algorithm 4 indicates the described strategy in detail. Algorithms 3 and 4 provide deterministic strategies to find reconstructing rank-1 lattices for a given index set I. We would like to point out that in both algorithms the only input we need is the frequency index set I.

5 Numerical Examples

Our numerical examples treat frequency index sets of type

$$
I_{p, N}^{d}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}:\|\mathbf{k}\|_{p} \leq N\right\}
$$

where $\|\cdot\|_{p}$ is the usual p-(quasi-)norm

$$
\|\mathbf{k}\|_{p}:= \begin{cases}\left(\sum_{s=1}^{d}\left|k_{s}\right|^{p}\right)^{1 / p} & \text { for } 0<p<\infty \\ \max _{s=1, \ldots, d}\left|k_{s}\right| & \text { for } p=\infty\end{cases}
$$

In particular, trigonometric polynomials with frequencies supported on the index sets $I_{p, N}^{d}$ are useful in order to approximate functions of periodic Sobolev spaces $H^{\alpha, p}\left(\mathbb{T}^{d}\right)$ of isotropic smoothness

$$
H^{\alpha, p}\left(\mathbb{T}^{d}\right):=\left\{f:\left.\mathbb{T}^{d} \rightarrow \mathbb{C}\left|\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \max \left(1,\|\mathbf{k}\|_{p}\right)^{\alpha}\right| \hat{f}_{\mathbf{k}}\right|^{2}\right\},
$$

where $\alpha \in \mathbb{R}$ is the smoothness parameter. In [5], detailed estimates of the approximation error for $p=1,2$ are given. Furthermore, tractability results are specified therein.

According to [5], our examples deal with $p=1, p=2$, and, in addition, $p=$ $1 / 2, p=\infty$, see Figures 1a -1 d for illustrations in dimension $d=2$. We construct corresponding frequency index sets $I_{p, N}^{d}$ and apply Algorithms 1,3, and 4 in order to determine reconstructing rank-1 lattices. We have to determine suitable rank1 lattice sizes M for using Algorithm 1. For this, we compute the minimal prime number $M_{\text {Corl }}$ fulfilling Corollary 1 . Since this computation is of high costs, we only apply Algorithm 1 to frequency index sets $I_{p, N}^{d}$ of cardinalities not larger than 20000. We apply Algorithm 1 using the lattice size $M_{\text {Corl }}$ and the frequency index set $I_{p, N}^{d}$ as input. With the resulting generating vector, we apply Algorithm 2 in order to determine the reduced lattice size $M_{\mathrm{Alg} 1+\mathrm{Alg} 2}$. Additionally, we use Algorithms 3 and 4 computing rank-1 lattices $\Lambda\left(\mathbf{z}_{\mathrm{Alg} 3}, M_{\mathrm{Alg} 3}\right)$ and $\Lambda\left(\mathbf{z}_{\mathrm{Alg} 4}, M_{\mathrm{Alg} 4}\right)$, respectively. For reasons of clarity, we present only the rank-1 lattice sizes $M_{\text {Cor } 1}, M_{\mathrm{Alg} 1+\mathrm{Alg} 2}$, $M_{\mathrm{Alg} 3}$, and $M_{\mathrm{Alg} 4}$ but not the generating vectors $\mathbf{z} \in \mathbb{N}^{d}$ in our tables.

Fig. 1 two-dimensional frequency index sets $I_{p, 16}^{2}$ and $I_{p, 16}^{2, \text { even }}$ for $p \in\left\{\frac{1}{2}, 1,2, \infty\right\}$

First, we interpret the results of Table 1. In most cases, the theoretical result of Corollary 1 give a rank-1 lattice size $M_{\text {Cor } 1}$ which is much larger than the rank-1 lattice sizes found by applying the different strategies in practice. For $p=\infty$, all our algorithms determined a rank-1 lattice of best possible cardinalities, i.e., $\left|I_{\infty, N}^{d}\right|=M_{\mathrm{Alg} 1+\mathrm{Alg} 2}=M_{\mathrm{Alg} 3}=M_{\mathrm{Alg} 4}$. The outputs $M_{\mathrm{Alg} 3}$ of Algorithm 3 are larger than these of Algorithm 1 in tandem with Algorithm 2 and Algorithm 4, with a few exceptions. Considering the non-convex frequency index sets $I_{\frac{1}{2}, N}^{d}$, Algorithm 3 brings substantially larger rank-1 lattice sizes $M_{\mathrm{Alg} 3}$ than the two other approaches. Maybe, we observe the consequences of the missing flexibility in choosing the generating vector in Algorithm 3. Moreover, we observe the equality $M_{\mathrm{Alg} 1+\mathrm{Alg} 2}=M_{\mathrm{Alg} 4}$ in all our examples. We would like to point out that Algorithm 1 requires an input lattice size M, which we determined using Corollary 1. However, Algorithm 4 operates without this input.

Since our approach is applicable for frequency index sets with gaps, we also consider frequency index sets $I_{p, N}^{d, \text { even }}:=I_{p, N}^{d} \cap(2 \mathbb{Z})^{d}$. These frequency index sets are suitable in order to approximate functions which are even in each coordinate, i.e., the Fourier coefficients $\hat{f}_{\mathbf{k}}$ are a priori zero for $\mathbf{k} \in \mathbb{Z}^{d} \backslash(2 \mathbb{Z})^{d}$, cf. Figures $1 \mathrm{e}-1 \mathrm{~h}$. Certainly, the gaps of the index sets $I_{p, N}^{d, \text { even }}$ are homogeneously distributed. We stress the fact, that the theoretical results and the algorithms can also be applied to strongly inhomogeneous frequency index sets.

Analyzing the frequency index sets $I_{p, N}^{d, \text { even }}$ in detail, we obtain

$$
I_{p, N}^{d, \text { even }}=\left\{2 \mathbf{k}: \mathbf{k} \in I_{p, N / 2}^{d}\right\}
$$

We assume $\Lambda(\mathbf{z}, M)$ being a reconstructing rank-1 lattice for $I_{p, N / 2}^{d}$. Accordingly, we know

$$
\mathbf{k}_{1} \cdot \mathbf{z}-\mathbf{k}_{2} \cdot \mathbf{z} \not \equiv 0(\bmod M)
$$

for all $\mathbf{k}_{1} \neq \mathbf{k}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2} \in I_{p, N / 2}^{d}$. We determine $l_{\mathbf{k}_{1}, \mathbf{k}_{2}} \in\{1, \ldots, M-1\}$ and $t \in \mathbb{Z}$ such that

$$
\mathbf{k}_{1} \cdot \mathbf{z}-\mathbf{k}_{2} \cdot \mathbf{z}=t M+l_{\mathbf{k}_{1}, \mathbf{k}_{2}}
$$

and, furthermore,

$$
2 \mathbf{k}_{1} \cdot \mathbf{z}-2 \mathbf{k}_{2} \cdot \mathbf{z}=t 2 M+2 l_{\mathbf{k}_{1}, \mathbf{k}_{2}}
$$

This yields

$$
\begin{equation*}
2 \mathbf{k}_{1} \cdot \mathbf{z}-2 \mathbf{k}_{2} \cdot \mathbf{z} \equiv 2 l_{\mathbf{k}_{1}, \mathbf{k}_{2}}(\bmod M) \tag{5}
\end{equation*}
$$

where $2 l_{\mathbf{k}_{1}, \mathbf{k}_{2}} \in\{2,4, \ldots, 2 M-2\}$. Assuming M being odd, we obtain $2 l_{\mathbf{k}_{1}, \mathbf{k}_{2}} \not \equiv 0$ $(\bmod M)$ for all $\mathbf{k}_{1} \neq \mathbf{k}_{2}, \mathbf{k}_{1}, \mathbf{k}_{2} \in I_{p, N / 2}^{d}$ and $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for $I_{p, N}^{d, \text { even }}$.

In Table 2 we present the reconstructing rank-1 lattice sizes we found for even frequency index sets. Comparing the two tables, we observe the same odd lattice sizes $M_{\mathrm{Alg} 1+\mathrm{Alg} 2}$ and $M_{\mathrm{Alg} 4}$ for $I_{p, N / 2}^{d}$ and $I_{p, N}^{d, \text { even }}$. In fact the corresponding generating vectors are also the same. In the case we found even reconstructing lattice sizes for $I_{p, N / 2}^{d}$, we constructed some slightly larger reconstructing rank-1 lattice sizes for $I_{p, N}^{d, \text { even }}$. In these cases, we cannot use the found reconstructing rank-1 lattices for $I_{p, N / 2}^{d}$ in order to reconstruct trigonometric polynomials with frequencies supported on $I_{p, N}^{d, \text { even }}$. The statement in (5) shows the reason for this observation. There exist at least one pair $\mathbf{k}_{1}, \mathbf{k}_{2} \in I_{p, N}^{d}, \mathbf{k}_{1} \neq \mathbf{k}_{2}$ with $\mathbf{k}_{1} \cdot \mathbf{z}-\mathbf{k}_{2} \cdot \mathbf{z} \equiv \frac{M}{2}(\bmod M)$. Consequently, doubling \mathbf{k}_{1} and \mathbf{k}_{2} leads to $2 \mathbf{k}_{1} \cdot \mathbf{z}-2 \mathbf{k}_{2} \cdot \mathbf{z} \equiv 0(\bmod M)$ and, hence, $\Lambda(\mathbf{z}, M)$ is not a reconstructing rank-1 lattice for $I_{p, N}^{d, \text { even }}$.

The fastest way for determining reconstructing rank-1 lattices is to apply Algorithm 1 with a small and suitable rank- 1 lattice size M. As mentioned above, the biggest challenge is to determine this small and suitable rank-1 lattice size M. Consequently, estimating relatively small M using some a priori knowledge about the structure of the frequency index set I or some empirical knowledge, leads to the fastest way to reasonable reconstructing rank-1 lattices. We stress the fact, that this strategy fails if there exists no generating vector \mathbf{z} which can be found using Algorithm 1.

All presented deterministic approaches use Algorithm 2. The computational complexity of Algorithm 2 is bounded by $\mathscr{O}\left(\left(M_{\max }-|I|\right)|I|\right)$. However, some heuristic strategies can decrease the number of loop passes. The disadvantage of this strategy is that one does not find $M_{\min }$ but, maybe, an M with $M_{\min } \leq M \ll M_{\max }$. We do not prefer only one of the presented algorithms because the computational complexity mainly depends on the structure of the specific frequency index set and the specific algorithm which is used.

6 Summary

Based on Theorem 1, we determined a lattice size $M_{\text {Cor1 }}$ guaranteeing the existence of a reconstructing rank-1 lattice for a given arbitrary frequency index set I in Corollary 1. In order to proof this result, we used a component-by-component argument, which leads directly to the component-by-component algorithm given by Algorithm 1 , that computes a generating vector \mathbf{z} such that $\Lambda(\mathbf{z}, M)$ is a reconstructing rank-1 lattice for the frequency index set I. Due to difficulties in determining $M_{\text {Cor1 }}$, we developed some other strategies in order to compute reconstructing rank-1 lattices. The corresponding Algorithms 3 and 4 are also component-by-component algorithms. These algorithms compute complete reconstructing rank-1 lattices, i.e.,

p	N	d	$\left\|I_{p, N}^{d}\right\|$	$M_{\text {Cor1 }}$	$M_{\text {Alg } 1+\text { Alg2 }}$	$M_{\text {Alg } 3}$	$M_{\text {Alg } 4}$
$\frac{1}{2}$	8	10	1241	51679	5895	16747	5895
$\frac{1}{2}$	8	20	4881	469841	36927	172642	36927
$\frac{1}{2}$	8	30	10921	1654397	128370	804523	128370
$\frac{1}{2}$	16	5	2561	122509	16680	23873	16680
$\frac{1}{2}$	16	10	21921	-	-	910271	403799
$\frac{1}{2}$	16	15	83081	-	-	9492633	3495885
$\frac{1}{2}$	32	3	3529	51169	17280	15529	17280
$\frac{1}{2}$	32	6	63577	-	-	1932277	1431875
$\frac{1}{2}$	64	3	24993	-	-	113870	99758
1	2	10	221	1361	369	399	369
1	2	20	841	10723	1935	2641	1935
1	2	30	1861	36083	5664	8213	5664
1	4	5	681	4721	1175	1225	1175
1	4	10	8361	329027	36315	41649	36315
1	4	15	39041	-	-	400143	340247
1	8	3	833	2729	1113	1169	1113
1	8	6	40081	-	-	126863	126738
1	16	3	6017	21839	8497	8737	8497
2	2	5	221	1373	356	353	356
2	2	10	4541	203873	21684	20013	21684
2	2	15	25961	3865079	259517	280795	259571
2	2	20	87481	-	-	1634299	1481164
2	4	3	257	809	346	377	346
2	4	6	23793	496789	69065	72776	69065
2	8	3	2109	7639	2893	3050	2893
2	16	3	17077	65309	23210	23889	23210
∞	1	3	27	53	27	27	27
∞	1	6	729	6257	729	729	729
∞	1	9	19683	781271	19683	19683	19683
∞	2	3	125	331	125	125	125
∞	2	6	15625	236207	15625	15625	15625

Table 1 cardinalities of reconstructing rank-1 lattices of index sets $I_{p, N}^{d}$ found by applying Corollary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4
generating vectors $\mathbf{z} \in \mathbb{N}^{d}$ and lattice sizes $M \in \mathbb{N}$, for a given frequency index set I. All the mentioned approaches are applicable for arbitrary frequency index sets of finite cardinality.

References

1. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, USA (1996)

p	N	d	$\left\|I_{p, N}^{d, \text { even }}\right\|$	$M_{\text {Cor1 }}$	$M_{\text {Alg } 1+\text { Alg } 2}$	$M_{\text {Alg3 }}$	$M_{\text {Alg } 4}$
$\frac{1}{2}$	16	10	1241	51679	5895	15345	5895
$\frac{1}{2}$	16	20	4881	469841	36927	176225	36927
$\frac{1}{2}$	16	30	10921	1654397	129013	763351	129013
$\frac{1}{2}$	32	5	2561	122509	17825	23873	17825
$\frac{1}{2}$	32	10	21921	-	-	992097	403799
$\frac{1}{2}$	32	15	83081	-	-	8848095	3495885
$\frac{1}{2}$	64	3	3529	51169	17689	15529	17689
$\frac{1}{2}$	64	6	63577	-	-	1932277	1431875
$\frac{1}{2}$	128	3	24993	-	-	119159	105621
1	4	10	221	1361	369	399	369
1	4	20	841	10723	1935	2641	1935
1	4	30	1861	36083	5711	8213	5711
1	8	5	681	4721	1175	1225	1175
1	8	10	8361	329027	36315	41649	36315
1	8	15	39041	-	-	400143	340247
1	16	3	833	2729	1113	1169	1113
1	16	6	40081	-	-	126863	126875
1	32	3	6017	21839	8497	8737	8497
2	4	5	221	1373	361	353	361
2	4	10	4541	203873	22525	20013	22525
2	4	15	25961	-	-	280795	259571
2	4	20	87481	-	-	1634299	1497403
2	8	3	257	809	347	13309	347
2	8	6	23793	-	-	72777	69065
2	16	3	2109	7639	2893	3063	2893
2	32	3	17077	65309	23243	23915	23243
∞	2	3	27	53	27	27	27
∞	2	6	729	6257	729	729	729
∞	2	9	19683	781271	19683	19683	19683
∞	4	3	125	331	125	125	125
∞	4	6	15625	236207	15625	15625	15625

Table 2 cardinalities of reconstructing rank-1 lattices of index sets $I_{p, N}^{d, \text { even }}$ found by applying Corollary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4
2. Cooley, J.W., Tukey, J.W.: An algorithm for machine calculation of complex Fourier series. Math. Comput. 19, 297 - 301 (1965)
3. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing lattice rules based on weighted degree of exactness and worst case error. Computing 87, 63 - 89 (2010)
4. Kämmerer, L.: Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. (2013). URL http://www.tuchemnitz.de/~1kae/paper/Kae2012.pdf. In print
5. Kühn, T., Sickel, W., Ullrich, T.: Approximation numbers of Sobolev embeddings - sharp constants and tractability. J. Complexity (2013). In print
6. Li, D., Hickernell, F.J.: Trigonometric spectral collocation methods on lattices. In: Recent Advances in Scientific Computing and Partial Differential Equations, AMS Series in Contemporary Mathematics, vol. 330, pp. 121 - 132 (2003)
7. Munthe-Kaas, H., Sørevik, T.: Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62, 155 - 165 (2012). DOI 10.1016/j.apnum.2011.11.002. URL http://www.sciencedirect.com/science/article/pii/S0168927411002042
8. Sickel, W., Ullrich, T.: The Smolyak algorithm, sampling on sparse grids and function spaces of dominating mixed smoothness. East J. Approx. 13, 387 - 425 (2007)
9. Sloan, I.H., Joe, S.: Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1994)

[^0]: Lutz Kämmerer
 Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany
 e-mail: kaemmerer@mathematik.tu-chemnitz.de

