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Abstract The approximation of problems in d spatial dimensions by trigonometric
polynomials supported on known more or less sparse frequency index sets I ⊂ Zd is
an important task with a variety of applications. The use of rank-1 lattices as spatial
discretizations offers a suitable possibility for sampling such sparse trigonometric
polynomials. Given an arbitrary index set of frequencies, we construct rank-1 lat-
tices that allow a stable and unique discrete Fourier transform. We use a component-
by-component method in order to determine the generating vector and the lattice
size.

1 Introduction

Given a spatial dimension d ∈N, we consider Fourier series of continuous functions
f (x) = ∑k∈Zd f̂ke2πik·x mapping the d-dimensional torus [0,1)d into the complex
numbers C, where f̂k ∈ C are the Fourier coefficients. A sequence

(
f̂k
)

k∈Zd with
a finite number of nonzero elements specifies a trigonometric polynomial. We call
the index set of the nonzero elements the frequency index set of the corresponding
trigonometric polynomial. For a fixed index set I ⊂ Zd with a finite cardinality |I|,
ΠI = span{e2πik·x : k ∈ I} is called the space of trigonometric polynomials with
frequencies supported on I.

Assuming the index set I is of finite cardinality and a suitable discretization in fre-
quency domain for approximating functions, e.g. functions of specific smoothness,
cf. [8, 5], we are interested in evaluating the corresponding trigonometric polyno-
mials at sampling nodes and reconstructing the Fourier coefficients

(
f̂k
)

k∈I from
sample values. Accordingly, we consider (sparse) multivariate trigonometric poly-
nomials
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f (x) = ∑
k∈I

f̂ke2πik·x

and assume the frequency index set I is given.
For different specific index sets I there has been done some related work using

rank-1 lattices as spatial discretizations [7, 4]. A multivariate trigonometric poly-
nomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a one-
dimensional fast Fourier transform (FFT) of the length of the cardinality of the
rank-1 lattice, cf. [6]. Allowing for some oversampling one can find a rank-1 lat-
tice, which even allows the reconstruction of the trigonometric polynomial from the
samples at the rank-1 lattice nodes. A suitable strategy to search for such recon-
structing rank-1 lattices can be adapted from numerical integration. In particular, a
modification of the component-by-component constructions of lattice rules based
on various weighted trigonometric degrees of exactness described in [3] allows one
to find adequate rank-1 lattices in a relatively fast way. We already showed the ex-
istence and upper bounds on the cardinality of reconstructing rank-1 lattices for
hyperbolic crosses as index sets , cf. [4].

In this paper we generalize these results considering arbitrary frequency index
sets I and suggest some strategies for determining reconstructing rank-1 lattices
even for frequency index sets containing gaps. To this end, we present corresponding
component–by–component (CBC) algorithms, where the frequency index set I is the
only input.

In Section 2, we introduce the necessary notation and specify the relation be-
tween exact integration of trigonometric polynomials and reconstruction of trigono-
metric polynomials using rank-1 lattices. Section 3 contains the main results, i.e.,
a component-by-component algorithm searching for reconstructing rank-1 lattices
for given frequency index sets I and given rank-1 lattice sizes M. In detail, we deter-
mine conditions on M guaranteeing the existence of a reconstructing rank-1 lattice
of size M for the frequency index set I. The proof of this existence result describes a
component-by-component construction of a corresponding generating vector z∈Nd

of the rank-1 lattice, such that we obtain directly a component-by-component al-
gorithm. In Section 4, we give some simple improvements of the component-by-
component construction, such that the corresponding algorithms automatically de-
termine suitable rank-1 lattice sizes. Accordingly, the only input is the frequency
index set I here. Finally, we give some specific examples and compare the results of
our different algorithms in Section 5.

2 Rank-1 Lattices

For given M ∈ N and z ∈ Nd we define the rank-1 lattice

Λ(z,M) := {x j =
jz
M

mod 1, j = 0, . . . ,M−1}
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as discretization in the spatial domain. Following [6], the evaluation of the trigono-
metric polynomial f ∈ ΠI with frequencies supported on I simplifies to a one-
dimensional discrete Fourier transform (DFT), i.e.,

f (x j) = ∑
k∈I

f̂ke2πi jk·z =
M−1

∑
l=0

(
∑

k·z≡l (mod M)

f̂k

)
e2πi jl

M .

We evaluate f at all nodes x j ∈Λ(z,M), j = 0, . . . ,M−1, by the precomputation of
all ĝl :=∑k·z≡l (mod M) f̂k and a one-dimensional (inverse) FFT in O (M logM+d|I|)
floating point operations, cf. [2], where |I| denotes the cardinality of the frequency
index set I.

As the fast evaluation of trigonometric polynomials at all sampling nodes x j of
the rank-1 lattice Λ(z,M) is guaranteed, we draw our attention to the reconstruction
of a trigonometric polynomial f with frequencies supported on I using function
values at the nodes x j of a rank-1 lattice Λ(z,M). We consider the corresponding
Fourier matrix A and its adjoint A∗,

A :=
(

e2πik·x
)

x∈Λ(z,M), k∈I
∈ CM×|I| and A∗ :=

(
e−2πik·x

)
k∈I, x∈Λ(z,M)

∈ C|I|×M,

in order to determine necessary and sufficient conditions on rank-1 lattices Λ(z,M)
allowing for a unique reconstruction of all Fourier coefficients of f ∈ ΠI . The re-
construction of the Fourier coefficients f̂ = ( f̂k)k∈I ∈ C|I| from sampling values f =
( f (x))x∈Λ(z,M) ∈ CM can be realized by solving the normal equation A∗Af̂ = A∗f,
which is equivalent to solve the least squares problem

find f̂ ∈ C|I| such that ‖Af̂− f‖2→min,

cf. [1]. Assuming f = ( f (x))x∈Λ(z,M) being a vector of sampling values of the
trigonometric polynomial f ∈ ΠI , the vector f belongs to the range of A and we
can find a possibly non-unique solution f̂ of Af̂ = f. We compute a unique solution
of the normal equation, iff the Fourier matrix A has full column rank.

Lemma 1. Let I ⊂ Zd of finite cardinality and Λ(z,M) a rank-1 lattice be given.
Then two distinct columns of the corresponding Fourier matrix A are orthogonal or
equal, i.e., (A∗A)h,k ∈ {0,M} for h,k ∈ I.

Proof. The matrix A∗A contains all scalar products of two columns of the Fourier
matrix A, i.e., (A∗A)h,k is the scalar product of column k with column h of the
Fourier matrix A. We obtain

(A∗A)h,k =
M−1

∑
j=0

(
e2πi (k−h)·z

M

) j
=

M, for k · z≡ h · z (mod M),
e2πi(k−h)·z−1

e2πi (k−h)·z
M −1

= 0, else.

ut

According to Lemma 1 the matrix A has full column rank, iff
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k · z 6≡ h · z (mod M), for all k 6= h; k,h ∈ I, (1)

or, equivalent,

k · z 6≡ 0 (mod M), for all k ∈D(I)\{0} (2)

with D(I) := {h = l1− l2 : l1, l2 ∈ I}. We call the set D(I) difference set of the fre-
quency index set I and a rank-1 lattice Λ(z,M) ensuring (1) and (2) reconstructing
rank-1 lattice for the index set I. In particular, condition (2) ensures the exact in-
tegration of all trigonometric polynomials g ∈ ΠD(I) applying the lattice rule given
by Λ(z,M), i.e., the identity

∫
Td g(x)dx = 1

M ∑
M−1
j=0 g(x j) holds for all g ∈ΠD(I), cf.

[9]. Certainly, f ∈ΠI and k ∈ I implies that f e−2πik·◦ ∈ΠD(I) and we obtain

1
M

M−1

∑
j=0

f
(

jz
M

mod 1
)

e−2πi j k·z
M =

∫
Td

f (x)e−2πik·xdx =: f̂k,

where the right equality is the usual definition of the Fourier coefficients.
Another fact, which comes out of Lemma 1, is that the matrix A fulfills A∗A =

MI in the case of Λ(z,M) being a reconstructing rank-1 lattice for I. The normalized
normal equation simplifies to

f̂ =
1
M

A∗Af̂ =
1
M

A∗f,

and in fact we reconstruct the Fourier coefficients of f ∈ΠI applying the lattice rule

f̂k =
1
M

M−1

∑
j=0

f (x j)e−2πi jk·z
M =

1
M

M−1

∑
j=0

f (x j)e−2πi jl
M

for all k ∈ I and l = k ·z mod M. In particular, one computes all Fourier coefficients
using one one-dimensional FFT and the unique inverse mapping of k 7→ k ·z mod M.
The corresponding complexity is given by O (M logM+d|I|).

Up to now, we wrote about reconstructing rank-1 lattices without saying how
to get them. In the following section, we prove existence results and give a first
algorithm in order to determine reconstructing rank-1 lattices.

3 A CBC construction of reconstructing rank-1 lattices

A reconstructing rank-1 lattice for the frequency index set I is characterized by (1)
and (2), respectively. Similar to the construction of rank-1 lattices for the exact in-
tegration of trigonometric polynomials of specific trigonometric degrees, see [3],
we are interested in existence results and suitable construction algorithms for re-
constructing rank-1 lattices. In order to prepare the main theorem of this paper, we
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define the projection of an index set I ⊂ Zd on Zs, d ≥ s ∈ N,

Is := {(k j)
s
j=1 : k = (k j)

d
j=1 ∈ I}. (3)

Furthermore, we call a frequency index set I ⊂ Zd symmetric to the origin iff I =
{−k : k ∈ I}, i.e., h ∈ I implies −k ∈ I for all k ∈ I.

Theorem 1. Let s ∈N, d ≥ s≥ 2, Ĩ ⊂ Zd be an arbitrary d-dimensional set of finite
cardinality that is symmetric to the origin, and M be a prime number satisfying

M ≥ |{k ∈ Ĩs : k = (h,hs),h ∈ Ĩs−1 \{0} and hs ∈ Z\{0}}|
2

+2.

Additionally, we assume that each nonzero element of the set of the s-th component
of Ĩs and M are coprime, i.e., M - l for all l ∈{hs ∈Z\{0} : k=(h,hs)∈ Ĩs,h∈ Ĩs−1},
and that there exists a generating vector z∗ ∈ Ns−1 that guarantees

h · z∗ 6≡ 0 (mod M) for all h ∈ Ĩs−1 \{0}.

Then there exists at least one z∗s ∈ {1, . . . ,M−1} such that

(h,hs) · (z∗,z∗s ) 6≡ 0 (mod M) for all (h,hs) ∈ Ĩs \{0}.

Proof. We adapt the proof of [3, Theorem 1]. Let us assume that

h · z∗ 6≡ 0 (mod M) for all h ∈ Ĩs−1 \{0}.

Basically, we determine an upper bound of the number of elements zs ∈ {1, . . . ,M−
1} with

(h,hs) · (z∗,zs)≡ 0 (mod M) for at least one (h,hs) ∈ Ĩs \{0}

or, equivalent,

h · z∗ ≡−hszs (mod M) for at least one (h,hs) ∈ Ĩs \{0}.

Similar to [3] we consider three cases:

hs = 0: With (h,hs) ∈ Ĩs \ {0} we have 0 6= h ∈ Ĩs−1 \ {0}. Consequently,
h · z∗ ≡−0zs (mod M) never holds because of h · z∗ 6≡ 0 (mod M) for
all h ∈ Ĩs−1 \{0}.

h = 0: We consider zs ∈ {1, . . . ,M− 1}. We required M being prime, so zs
and M are coprime. Due to (h,hs) ∈ Ĩ \ {0}, we obtain hs 6= 0 and we
assumed M and hs 6= 0 are coprime. Consequently, we realize zshs 6= 0
and zshs and M are relatively prime. So 0z∗ ≡ −hszs (mod M) never
holds for (0,hs) ∈ Ĩs \{0} and zs ∈ {1, . . . ,M−1}.

else: Since 0 6= hs and M are coprime and h · z∗ 6≡ 0 (mod M), there is at
most one zs ∈ {1, . . . ,M−1} that fulfills h · z∗ ≡−hszs (mod M). Due
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to the symmetry of the considered index set {(h,hs) ∈ Ĩs \ {0} : h ∈
Ĩs−1 \{0} and hs ∈ Z\{0}} we have to count at most one zs for the two
elements (h,hs) and −(h,hs).

Hence, we have at most

|{(h,hs) ∈ Ĩs \{0} : h ∈ Ĩs−1 \{0} and hs ∈ Z\{0}}|
2

(4)

elements of {1, . . . ,M−1} with

h · z∗ ≡−hszs (mod M) for at least one (h,hs) ∈ Ĩs \{0}.

If the candidate set {1, . . . ,M− 1} for z∗s contains more elements than (4) we can
determine at least one z∗s with

h · z∗ 6≡ −hsz∗s (mod M) for all (h,hs) ∈ Ĩs \{0}.

Consequently, the number of elements in {1, . . . ,M−1} with

|{1, . . . ,M−1}| ≥ |{(h,hs) ∈ Ĩs \{0} : h ∈ Ĩs−1 \{0} and hs ∈ Z\{0}}|
2

+1

and M is prime guarantees that there exists such a z∗s . Since we assumed M being
prime and

M = |{1, . . . ,M−1}|+1

≥ |{(h,hs) ∈ Ĩs \{0} : h ∈ Ĩs−1 \{0} and hs ∈ Z\{0}}|
2

+2

we can find at least one zs by testing out all possible candidates {1,2, . . . ,M−1}.
ut

Theorem 1 outlines one step of a component-by-component construction of a rank-
1 lattice, guaranteeing the exact integration of trigonometric polynomials with fre-
quencies supported on index sets Ĩ which are symmetric to the origin.

We obtain this symmetry of the difference sets D(I)s

h ∈D(I)s⇒∃k1,k2 ∈ Is : h = k1−k2⇒−h = k2−k1 ∈D(I)s.

So, our strategy is to apply Theorem 1 to the difference set D(I)s of the frequency
index set Is for all 2 ≤ s ≤ d. In order to use Theorem 1, we have to find sufficient
conditions on rank-1 lattices of dimension d = 1 guaranteeing that hz1 6≡ 0 (mod M)
for all h ∈D(I)1 \{0}.

Lemma 2. Let I ⊂ Z be a one-dimensional frequency index set of finite cardinality
and M be a prime number satisfying M ≥ |I|. Additionally, we assume M and h
being coprime for all h ∈D(I)\{0}. Then we can uniquely reconstruct the Fourier
coefficients of all f ∈ΠI applying the one-dimensional lattice rule given by Λ(1,M).
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Algorithm 1 Component-by-component lattice search
Input: M ∈ N prime cardinality of rank-1 lattice

I ⊂ Zd frequency index set

z = /0
for s = 1, . . . ,d do

form the set Is as defined in (3)
search for one zs ∈ [1,M−1]∩Z with |{(z,zs) ·k mod M : k ∈ Is}|= |Is|
z = (z,zs)

end for
Output: z ∈ Zd generating vector

Proof. Applying the lattice rule given by Λ(1,M) to the integrands of the integrals
computing the Fourier coefficient f̂k, k ∈ I, of f ∈ΠI , we obtain

1
M

M−1

∑
j=0

f
(

j
M

)
e−2πi k j

M =
1
M

M−1

∑
j=0

∑
h∈I

f̂he2πi h j
M e−2πi k j

M

=
1
M ∑

h∈I
f̂h

M−1

∑
j=0

e2πi (h−k) j
M = f̂k =

∫ 1

0
f (x)e−2πikxdx

due to h− k ∈D(I)\{0} and M are coprime. ut

We summarize the results of Theorem 1 and Lemma 2 and figure out the following

Corollary 1. Let I ⊂Zd be an arbitrary d-dimensional index set of finite cardinality
and M be a prime number satisfying

M ≥max
(
|I1|, max

s=2,...,d

|{k ∈D(I)s : k = (h,hs),h ∈D(I)s−1 \{0} and hs ∈ Z\{0}}|
2

+2
)
.

In addition we assume that M - l for all l ∈ {k = es ·h : h∈D(I),s= 1, . . . ,d}\{0},

where es ∈ Nd is a d-dimensional unit vector with es, j =

{
0, for j 6= s
1, for j = s.

. Then

there exists a rank-1 lattice of cardinality M that allows the reconstruction of all
trigonometric polynomials with frequencies supported on I by sampling along the
rank-1 lattice. Furthermore, once we determined a suitable M the proof of Theorem
1 verifies that we can find at least one appropriate generating vector component-by-
component. Algorithm 1 indicates the corresponding strategy.

Once one has discovered a reconstructing rank-1 lattice Λ(z,M) for the index set
I, the condition

k · z 6= h · z, for all k 6= h; k,h ∈ I,

holds and one can ask for M′ < M fulfilling

k · z 6≡ h · z (mod M′), for all k 6= h; k,h ∈ I.



8 Lutz Kämmerer

Algorithm 2 Lattice size decreasing
Input: I ⊂ Zd frequency index set

Mmax ∈ N cardinality of rank-1 lattice
z ∈ Nd Λ(z,Mmax) is reconstructing rank-1 lattice for I

for j = |I|, . . . ,Mmax do
if |{z ·k mod ( j) : k ∈ I}|= |I| then

Mmin = j
end if

end for
Output: Mmin reduced lattice size

For a fixed frequency index set I and a fixed generating vector z we assume the
rank-1 lattice Λ(z,Mmax) being a reconstructing rank-1 lattice. Then, Algorithm 2
computes the smallest lattice size M′ guaranteeing the reconstruction property of
the rank-1 lattice Λ(z,M′).

Finally, we give a simple upper bound on the cardinality of the difference set
D(I) depending on the cardinality of I

|D(I)|= |{k−h : k,h ∈ I}|= |{k−h : k,h ∈ I,k 6= h}∪{0}| ≤ |I|(|I|−1)+1.

According to this and applying Bertrand’s postulate, the prime number M from
Corollary 1 is bounded from above by |I|2, provided that |I| ≥ 4.

4 Improvements

There are two serious problems concerning Corollary 1. In general, the computa-
tional costs of determining the cardinality of the difference sets D(I)s, 2 ≤ s ≤ d,
has a complexity of Ω(d|I|2) and, maybe, the minimal M satisfying the assumptions
of Corollary 1 is far away from a best possible reconstructing rank-1 lattice size.
Accordingly, we are interested in somehow good estimations of the reconstructing
rank-1 lattice size for the index set I.

In this section, we present another strategy to find reconstructing rank-1 lattices.
We search for rank-1 lattices using a component-by-component construction deter-
mining the generating vectors z ∈ Zd and suitable rank-1 lattice sizes M ∈ N.

Theorem 2. Let d ∈ N, d ≥ 2, and I ⊂ Zd of finite cardinality |I| ≥ 2 be given.
We assume that Λ(z,M) with z = (z1, . . . ,zd−1)

> is a reconstructing rank-1 lat-
tice for the frequency index set Id−1 := {(hs)

d−1
s=1 : h ∈ I}. Then the rank-1 lattice

Λ((z1, . . . ,zd−1,M)>,MS) with

S := min{m ∈ N : |{hd mod m : h ∈ I}|= |{hd : h ∈ I}|}

is a reconstructing rank-1 lattice for I.
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Proof. We assume the rank-1 lattice Λ((z1, . . . ,zd−1)
>,M) is a reconstructing rank-

1 lattice for Id−1 and Λ((z1, . . . ,zd−1,M)>,MS) is not a reconstructing rank-1 lattice
for I, i.e., there exist at least two different elements (h,hd),(k,kd) ∈ I, (h,hd) 6=
(k,kd), such that

h · z+hdM ≡ k · z+ kdM (mod MS).

We distinguish three different possible cases of (h,hd),(k,kd)∈ I, (h,hd) 6= (k,kd):

• h = k and hd 6= kd
We consider the corresponding residue classes

0≡ k · z+ kdM−h · z−hdM ≡ (kd−hd)M (mod MS)

and obtain S | (kd − hd), i.e., kd ≡ hd (mod S). Thus, we determine the cardi-
nality |{hd mod S : h ∈ I}| < |{hd : h ∈ I}|, which is in contradiction to the
definition of S.
• h 6= k and hd = kd

Accordingly, we calculate

0≡ k · z+ kdM−h · z−hdM ≡ (k−h) · z (mod MS)

and obtain MS | (k−h) ·z and M | (k−h) ·z as well. According to that, we ob-
tain h · z≡ k · z (mod M), which is in contradiction to the assumption Λ(z,M)
is a reconstructing rank-1 lattice for Id−1.
• h 6= k and hd 6= kd

Due to Λ(z,M) is a reconstructing rank-1 lattice for Id−1 we have

0 6≡ k · z−h · z (mod M).

Thus, we can find uniquely specified ak,h ∈ Z and bk,h ∈ {1, . . . ,M− 1} such
that k · z−h · z = ak,hM+bk,h. We calculate

0≡ k · z+ kdM−h · z−hdM ≡ (ak,h + kd−hd)M+bk,h (mod MS)

and obtain MS | (ak,h+kd−hd)M+bk,h. As a consequence, we deduce M | bk,h,
which is in conflict with bk,h ∈ {1, . . . ,M−1}.

Extending the reconstructing rank-1 lattice Λ(z,M) for Id−1 to Λ((z,M),MS) with
S as defined above, we actually get a reconstructing rank-1 lattice for the frequency
index set I ⊂ Zd . ut

In addition to the strategy provided by Theorem 2 and the corresponding Algorithm
3, we bring the following heuristic into play. We assume small components of the
vector z being better than large ones. Therefore we tune Algorithm 3 and addition-
ally search for the smallest possible component zs fulfilling

|{(z,zs) ·h mod SMs−1 : h ∈ Is}|= |Is|.
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Algorithm 3 Component-by-component lattice search (unknown lattice size M)
Input: I ⊂ Zd frequency index set

M1 = min{m ∈ N : |{k1 mod m : k ∈ I}|= |{k1 : k ∈ I}|}
z1 = 1
for s = 2, . . . ,d do

S = min{m ∈ N : |{ks mod m : k ∈ I}|= |{ks : k ∈ I}|}
z = (z,zs)
zs = Ms−1
form the set Is as defined in (3)
search for Ms = min{m ∈ N : |{z ·k mod m : k ∈ Is}|= |Is|} ≤ SMs−1 using Algorithm 2

end for
Output: z ∈ Nd generating vector

M ∈ Nd rank-1 lattice sizes for dimension s = 1, . . . ,d

Algorithm 4 Component-by-component lattice search (unknown lattice size M, im-
proved)
Input: I ⊂ Zd frequency index set

M1 = min{m ∈ N : |{k1 mod m : k ∈ I}|= |{k1 : k ∈ I}|}
z1 = 1
for s = 2, . . . ,d do

S = min{m ∈ N : |{ks mod m : k ∈ I}|= |{ks : k ∈ I}|}
form the set Is as defined in (3)
search for the smallest zs ∈ [1,Ms−1]∩Z with |{(z,zs) ·k mod SMs−1 : k ∈ Is}|= |Is|
z = (z,zs)
search for Ms = min{m ∈ N : |{z ·k mod m : k ∈ Is}|= |Is|} using Algorithm 2

end for
Output: z ∈ Nd generating vector

M ∈ Nd rank-1 lattice sizes for dimension s = 1, . . . ,d

Due to Theorem 2 the integer Ms−1 is an upper bound for the minimal zs we can find.
Algorithm 4 indicates the described strategy in detail. Algorithms 3 and 4 provide
deterministic strategies to find reconstructing rank-1 lattices for a given index set
I. We would like to point out that in both algorithms the only input we need is the
frequency index set I.

5 Numerical Examples

Our numerical examples treat frequency index sets of type

Id
p,N :=

{
k ∈ Zd : ‖k‖p ≤ N

}
,

where ‖ · ‖p is the usual p–(quasi–)norm
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‖k‖p :=

{(
∑

d
s=1 |ks|p

)1/p
for 0 < p < ∞

maxs=1,...,d |ks| for p = ∞.

In particular, trigonometric polynomials with frequencies supported on the index
sets Id

p,N are useful in order to approximate functions of periodic Sobolev spaces
Hα,p(Td) of isotropic smoothness

Hα,p(Td) := { f : Td → C| ∑
k∈Zd

max(1,‖k‖p)
α | f̂k|2},

where α ∈ R is the smoothness parameter. In [5], detailed estimates of the approx-
imation error for p = 1,2 are given. Furthermore, tractability results are specified
therein.

According to [5], our examples deal with p = 1, p = 2, and, in addition, p =
1/2, p = ∞, see Figures 1a – 1d for illustrations in dimension d = 2. We construct
corresponding frequency index sets Id

p,N and apply Algorithms 1, 3, and 4 in order
to determine reconstructing rank-1 lattices. We have to determine suitable rank-
1 lattice sizes M for using Algorithm 1. For this, we compute the minimal prime
number MCor1 fulfilling Corollary 1. Since this computation is of high costs, we
only apply Algorithm 1 to frequency index sets Id

p,N of cardinalities not larger than
20000. We apply Algorithm 1 using the lattice size MCor1 and the frequency index
set Id

p,N as input. With the resulting generating vector, we apply Algorithm 2 in order
to determine the reduced lattice size MAlg1+Alg2. Additionally, we use Algorithms 3
and 4 computing rank-1 lattices Λ(zAlg3,MAlg3) and Λ(zAlg4,MAlg4), respectively.
For reasons of clarity, we present only the rank-1 lattice sizes MCor1, MAlg1+Alg2,
MAlg3, and MAlg4 but not the generating vectors z ∈ Nd in our tables.

−16 0 16
−16

0

16

(a) I2
1
2 ,16

−16 0 16
−16

0

16

(b) I2
1,16

−16 0 16
−16

0

16

(c) I2
2,16

−16 0 16
−16

0

16

(d) I2
∞,16

−16 0 16
−16

0

16

(e) I2,even
1
2 ,16

−16 0 16
−16

0

16

(f) I2,even
1,16

−16 0 16
−16

0

16

(g) I2,even
2,16

−16 0 16
−16

0

16

(h) I2,even
∞,16

Fig. 1 two-dimensional frequency index sets I2
p,16 and I2,even

p,16 for p ∈ { 1
2 ,1,2,∞}
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First, we interpret the results of Table 1. In most cases, the theoretical re-
sult of Corollary 1 give a rank-1 lattice size MCor1 which is much larger than
the rank-1 lattice sizes found by applying the different strategies in practice. For
p = ∞, all our algorithms determined a rank-1 lattice of best possible cardinali-
ties, i.e., |Id

∞,N | = MAlg1+Alg2 = MAlg3 = MAlg4. The outputs MAlg3 of Algorithm
3 are larger than these of Algorithm 1 in tandem with Algorithm 2 and Algo-
rithm 4, with a few exceptions. Considering the non-convex frequency index sets
Id

1
2 ,N

, Algorithm 3 brings substantially larger rank-1 lattice sizes MAlg3 than the two

other approaches. Maybe, we observe the consequences of the missing flexibility in
choosing the generating vector in Algorithm 3. Moreover, we observe the equality
MAlg1+Alg2 = MAlg4 in all our examples. We would like to point out that Algorithm
1 requires an input lattice size M, which we determined using Corollary 1. However,
Algorithm 4 operates without this input.

Since our approach is applicable for frequency index sets with gaps, we also
consider frequency index sets Id,even

p,N := Id
p,N ∩(2Z)

d . These frequency index sets are
suitable in order to approximate functions which are even in each coordinate, i.e.,
the Fourier coefficients f̂k are a priori zero for k ∈ Zd \ (2Z)d , cf. Figures 1e – 1h.
Certainly, the gaps of the index sets Id,even

p,N are homogeneously distributed. We stress
the fact, that the theoretical results and the algorithms can also be applied to strongly
inhomogeneous frequency index sets.

Analyzing the frequency index sets Id,even
p,N in detail, we obtain

Id,even
p,N = {2k : k ∈ Id

p,N/2}.

We assume Λ(z,M) being a reconstructing rank-1 lattice for Id
p,N/2. Accordingly,

we know

k1 · z−k2 · z 6≡ 0 (mod M)

for all k1 6= k2, k1,k2 ∈ Id
p,N/2. We determine lk1,k2 ∈ {1, . . . ,M−1} and t ∈ Z such

that

k1 · z−k2 · z = tM+ lk1,k2

and, furthermore,

2k1 · z−2k2 · z = t2M+2lk1,k2 .

This yields

2k1 · z−2k2 · z≡ 2lk1,k2 (mod M), (5)
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where 2lk1,k2 ∈ {2,4, . . . ,2M− 2}. Assuming M being odd, we obtain 2lk1,k2 6≡ 0
(mod M) for all k1 6= k2, k1,k2 ∈ Id

p,N/2 and Λ(z,M) is a reconstructing rank-1

lattice for Id,even
p,N .

In Table 2 we present the reconstructing rank-1 lattice sizes we found for even
frequency index sets. Comparing the two tables, we observe the same odd lattice
sizes MAlg1+Alg2 and MAlg4 for Id

p,N/2 and Id,even
p,N . In fact the corresponding generat-

ing vectors are also the same. In the case we found even reconstructing lattice sizes
for Id

p,N/2, we constructed some slightly larger reconstructing rank-1 lattice sizes for

Id,even
p,N . In these cases, we cannot use the found reconstructing rank-1 lattices for

Id
p,N/2 in order to reconstruct trigonometric polynomials with frequencies supported

on Id,even
p,N . The statement in (5) shows the reason for this observation. There exist at

least one pair k1,k2 ∈ Id
p,N , k1 6= k2 with k1 ·z−k2 ·z≡ M

2 (mod M). Consequently,
doubling k1 and k2 leads to 2k1 · z− 2k2 · z ≡ 0 (mod M) and, hence, Λ(z,M) is
not a reconstructing rank-1 lattice for Id,even

p,N .
The fastest way for determining reconstructing rank-1 lattices is to apply Algo-

rithm 1 with a small and suitable rank-1 lattice size M. As mentioned above, the
biggest challenge is to determine this small and suitable rank-1 lattice size M. Con-
sequently, estimating relatively small M using some a priori knowledge about the
structure of the frequency index set I or some empirical knowledge, leads to the
fastest way to reasonable reconstructing rank-1 lattices. We stress the fact, that this
strategy fails if there exists no generating vector z which can be found using Algo-
rithm 1.

All presented deterministic approaches use Algorithm 2. The computational
complexity of Algorithm 2 is bounded by O((Mmax−|I|)|I|). However, some heuris-
tic strategies can decrease the number of loop passes. The disadvantage of this strat-
egy is that one does not find Mmin but, maybe, an M with Mmin ≤M� Mmax. We
do not prefer only one of the presented algorithms because the computational com-
plexity mainly depends on the structure of the specific frequency index set and the
specific algorithm which is used.

6 Summary

Based on Theorem 1, we determined a lattice size MCor1 guaranteeing the existence
of a reconstructing rank-1 lattice for a given arbitrary frequency index set I in Corol-
lary 1. In order to proof this result, we used a component–by–component argument,
which leads directly to the component–by–component algorithm given by Algo-
rithm 1, that computes a generating vector z such that Λ(z,M) is a reconstructing
rank-1 lattice for the frequency index set I. Due to difficulties in determining MCor1,
we developed some other strategies in order to compute reconstructing rank-1 lat-
tices. The corresponding Algorithms 3 and 4 are also component–by–component
algorithms. These algorithms compute complete reconstructing rank-1 lattices, i.e.,
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p N d |Id
p,N | MCor1 MAlg1+Alg2 MAlg3 MAlg4

1
2 8 10 1241 51679 5895 16747 5895
1
2 8 20 4881 469841 36927 172642 36927
1
2 8 30 10921 1654397 128370 804523 128370
1
2 16 5 2561 122509 16680 23873 16680
1
2 16 10 21921 - - 910271 403799
1
2 16 15 83081 - - 9492633 3495885
1
2 32 3 3529 51169 17280 15529 17280
1
2 32 6 63577 - - 1932277 1431875
1
2 64 3 24993 - - 113870 99758
1 2 10 221 1 361 369 399 369
1 2 20 841 10 723 1 935 2 641 1 935
1 2 30 1 861 36 083 5 664 8 213 5 664
1 4 5 681 4 721 1 175 1 225 1 175
1 4 10 8 361 329 027 36 315 41 649 36 315
1 4 15 39 041 - - 400 143 340 247
1 8 3 833 2729 1113 1169 1113
1 8 6 40081 - - 126863 126738
1 16 3 6017 21839 8497 8737 8497
2 2 5 221 1 373 356 353 356
2 2 10 4 541 203 873 21 684 20 013 21 684
2 2 15 25 961 3 865079 259 517 280 795 259 571
2 2 20 87 481 - - 1 634 299 1 481164
2 4 3 257 809 346 377 346
2 4 6 23 793 496 789 69 065 72 776 69 065
2 8 3 2 109 7 639 2 893 3 050 2 893
2 16 3 17 077 65 309 23 210 23 889 23 210
∞ 1 3 27 53 27 27 27
∞ 1 6 729 6 257 729 729 729
∞ 1 9 19 683 781 271 19 683 19 683 19 683
∞ 2 3 125 331 125 125 125
∞ 2 6 15 625 236 207 15 625 15 625 15 625

Table 1 cardinalities of reconstructing rank-1 lattices of index sets Id
p,N found by applying Corol-

lary 1, Algorithm 1 and 2, Algorithm 3, and Algorithm 4

generating vectors z ∈ Nd and lattice sizes M ∈ N, for a given frequency index set
I. All the mentioned approaches are applicable for arbitrary frequency index sets of
finite cardinality.
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