Master’s degree programme

Research and development of modern, innovative, and functional materials with pronounced potentials for profound applications in science and technology.
Graphene, an atomically thin sheet of carbon, is a good example for an advanced functional material. It combines mechanical strength with extraordinary flexibility, is highly transparent for light but impermeable for gases, has high electrical and thermal conductivity. These properties render graphene in combination with other advanced materials useful for a large number of prospective applications in sensors, displays, flexible and printed electronics, lightweight composites, and so on.

Prof. Dr. Thomas Seyller, Speaker of the university’s focus area “Intelligent Systems and Materials” and of the DFG priority program 1459 „Graphene“.

What characterises the Master’s degree programme Advanced Functional Materials?

The advanced chemical and physical aspects of modern materials and the transfer of skills in synthesis, development, analysis and manufacturing of functional materials are the key issues of the programme Advanced Functional Materials. The research oriented extension and intensification of physical and chemical knowledge is based on advanced practical training in actual research fields in a modern laboratory environment.
Degree Structure

Basic Modules (1st - 3rd semester)
• Advanced Concepts in Chemistry and Physics
• Synthetic Methods in Chemistry
• Material Characterisation
• Sustainable Chemical Production Technologies
• Surfaces, Thin Films and Interfaces
• Semiconductor Physics – Nano Structures
• Physics of Solar Cells
• Facets of Materials Science

Specialisation Modules (1st - 3rd Semester)
• Research Project
• German as a foreign language or English (depending on language competence level)
• modules must be selected: e. g. Polymer Materials, Colloids & Interfaces, Lab Course Colloids & Interfaces, Circular economy of polymers, Computational Chemistry, Molecular electronics, Sustainable Energy Infrastructure, Introduction to magnetic materials, Sensor Systems, Materials in Micro and Nano Technologies, Modern Battery Materials, Complex Materials for Manufacturing

Module Master Thesis (4th Semester)

Career Opportunities

Current trends on the labor market indicate an increasing demand for graduates, who understand the processes in natural sciences on their transdisciplinary origin. Hence fields of work are for instance:

• Automotive Manufacturer
• Aerospace Industry
• Research Institutes
• Semiconductor Industry
• Chemical Industry
• Pharmaceutical Companies
• Energy Sector
• Life Science Sector

The Master’s degree provides in addition the opportunity for doctoral studies (Ph. D.) at an university or research center, such as Max-Planck Institute or Fraunhofer Gesellschaft.
GENERAL INFORMATION

Admission requirements: in general vocationally-qualifying university Bachelor’s degree in Chemistry or Physics from Chemnitz University of Technology or equivalent degree programme with regard to content, English language proficiency at Level B2 according to the CEFR

Standard period of study: 4 semesters

Degree: Master of Science (M.Sc.)

Start of the degree programme: usually winter semester

Language of tuition: English

FURTHER INFORMATION:

Studying in Chemnitz
www.study-in-chemnitz.com

Online application:
www.tu-chemnitz.de/studienbewerbung

FAQ - Frequently Asked Questions
www.tu-chemnitz.de/studierendenservice/faq.php.en

Student Service Point
Straße der Nationen 62, room A10.043
+49 371 531-12125
admission@tu-chemnitz.de

Central Course Guidance Service
Straße der Nationen 62, room A10.046
+49 371 531-55555
studienberatung@tu-chemnitz.de

Academic Course Guidance
For an overview of all academic counsellors
www.tu-chemnitz.de/studienberater

Postal address
Technische Universität Chemnitz
Studierendenservice und Zentrale Studienberatung
09107 Chemnitz