
Fachbereich Mathematik

Matthias Pester, Sergej Rjasanow

A Parallel Version of the

Preconditioned Conjugate Gradient

Method for Boundary Element

Equations

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

"Scienti�c Parallel Computing"

SPC 93 2 June, 1993

A Parallel Version of the Preconditioned Conjugate Gradient Method for

Boundary Element Equations

MATTHIAS PESTER

Department of Mathematics, Technical University of Chemnitz-Zwickau,

D-09009 Chemnitz, Germany

SERGEJ RJASANOW

Department of Mathematics, University of Kaiserslautern,

D-67653 Kaiserslautern, Germany

ABSTRACT

The parallel version of precondition techniques is developed for matrices arising from the

Galerkin boundary element method for two-dimensional domains with Dirichlet boundary

conditions. Results were obtained for implementations on a transputer network as well as

on an nCUBE-2 parallel computer showing that iterative solution methods are very well

suited for a MIMD computer. A comparison of numerical results for iterative and direct

solution methods is presented and underlines the superiority of iterative methods for large

systems.

Keywords: boundary value problem, boundary element method, iterative method, precon-

ditioning, parallel algorithm

1. Introduction

The boundary elementmethod (BEM) leads to an algebraic system of linear equations

with a full dense matrix [1],[26]. Such a system can be solved e�ciently using pre-

conditioned iterative methods [14],[16],[19], especially the conjugate gradient method

[9],[18]. The number of arithmetical operations is O (h

�2

) in two-dimensional case,

where h denotes the discretization parameter in one space direction.

Such algorithms involve a very high level of parallelism which can be used by a

MIM parallel computer. The typical steps of using the BEM are: generation of

the system of linear equations (matrix and right hand side) and solving this system

numerically, where each step of iteration requires one matrix-vector multiplication

with a full dense matrix, some scalar products, some vector additions and the so-

lution of the preconditioning system. Each of these operations is very well-suited

arallel recon itione or

for implementation on MIM machines (such as transputer systems or the n ube

machine).

nly few authors have considered the implementation of boundary element meth-

ods on parallel computers. Symm [2] and avies [],[6] studied the feasibility of

SIM and MIM computers for BEM. It was shown that both the SIM and MIM

architectures are well-suited to boundary element analysis, especially for generating

the system of equations and calculating internal function values (eld recovery). en-

eral problems in using direct solvers on parallel computers were discussed by Saad

[21],[22]. The feasibility of SIM and MIM computers for solving BEM systems

of linear equations numerically using the aussian elimination algorithm was tested

by eorgiev [] and reienmeyer [11]. anger [12] deals with the parallel iterative

solution of coupled EM and BEM equations for MIM computer with respect to

domain decomposition methods.

In Section 2 we formulate the boundary value problem as well as the correspond-

ing boundary integral equation. e discuss the parallel aler in discretization of

the boundary integral equation in the third section. Section 4 deals with the precon-

ditioned conjugate gradient method and the feasibility of MIM computers for this

method. inally we present some results of our numerical experiments on parallel

computers comparing iterative and direct methods.

. Boundary integral equation

In this paper we consider the irichlet problem for aplace equation in a two-

dimensional bounded, simply connected domain :

u(x) = ; x

u(x) = (x) ; x = :

(1)

If we denote by v(x) the normal derivative of the function u(x)

v(x) =

u(x)

n(x)

; x

then the well- nown reen's third identity for potential theory

1

2

u() = � u(x) �

u

�

(x;)

n

d v(x)u

�

(x;)d (2)

can be used for the numerical solution of the problem (1). ere

u

�

(x;) = �

1

2

ln x�

denotes the fundamental solution of the aplace equation. The identity (2) can be

written in the form

(v)() = (); ; ()

4 . e ter . a ano

where is the single layer potential operator

(v)() = u

�

(x;)v(x)d

and

() =

1

2

u()

u

�

(x;)

n

d :

The properties of the operator are well- nown [],[4]:

: I

s

() I

s

() (4)

u; v = u; v ; u; v I

�

() ; ()

u; u u

2

�

; ; u I

�

() ; (6)

where I

s

() is the Sobolev space on boundary , �; � denotes the duality pairing

between I

s

and I

�s

, i. e. the

2

() inner product

u; v = u(x)v(x)d

and �

s

denotes the Sobolev norm in I

s

().

sing the parametrization of by 1-periodic representation

= x I

2

: x = x(); 1; _x() ;

we rewrite equation () in the form

(v)() = u

�

(x(); x())v()d = (x()); 1 ()

where v() := v(x()) � _x() .

. Galer in method

e begin with the approximation of v() by piecewise B-splines

(); = 1; : : : ;

of degree = ; 1; 2. e divide the interval [; 1) into 1 subintervals

[; 1) = [;) ; = (� 1)h; h =

1

;

arallel recon itione or

and introduce the -dimensional subspace I of 1-periodic functions (see [19])

I = span (); : : : ; () :

The aler in method for equation () leads to:

inding the function v () I such that aler in equations

v ; = ; (8)

are satis ed for all functions I .

Equation (8) is equivalent to the following system of linear equations:

= ; I ; ; I ; (9)

where the elements and are of the following form:

= ; = u

�

(x(); x()) () ()d d ;

= ; = (x()) ()d :

(1)

The numerical computation of matrix and of the right hand side is one of the

most important and time consuming steps in the realization of BEM. The numerical

integration is necessary for the evaluation of integrals in (1). The following idea is

very useful for this purpose (see [1], [19]):

e split operator of equation () as a sum of two operators and

2

with

(v) () = �

1

2

ln sin (�) v()d ;

(

2

v) () = �

1

2

ln

x()� x()

sin (�)

v()d :

The ernel of operator

2

is continuous for all and :

lim �

1

2

ln

x()� x()

sin (�)

= �

1

2

ln _x() ;

and operator describes the principal part of operator . The matrix of system

(9) can also be splitted as a sum of two matrices and

2

= ; ; = 1; 2 ;

6 . e ter . a ano

where the elements of matrix can be computed analytically (is independent

of the special choice of boundary) and the elements of matrix

2

are computed

as follows.

et I denote the matrix with the elements

= u

�

(x(); x())�

1

2

ln sin((�)) ; ; = 1; : : : ; ;

and I denotes the vector with the components

= (x()); = 1; : : : ; :

e compute the approximations for matrix

2

and vector in (9) as follows (see

[1],[19]):

2

= h

2

; = h � ; if = ; (11)

2

= h

2

(()

()

2

()

= h() (); if = 1; 2;

(12)

where the weights ; = ; 1 are given by:

=

6

; =

1

12

2

=

4

;

2

=

1

8

and denotes the simplest circulant matrix

=

1 � � �

1 � � �

.

.

.

.

.

.

.

.

.

� � � 1

1 � � �

I :

bviously, the computations of (11) and (12) can be done parallelly where each

processor has to compute and store only a strip of rows (or columns) of matrix

and the corresponding number of elements of the right-hand side vector as shown in

igure 1. Matrix depends on the boundary information which is ept completely in

the local memories of each processor, after an initial broadcast. This little amount of

redundance leads to a full parallel computation of which requires no interprocessor

communication.

e assume that each processor (= ; : : : ; � 1) has computed a bloc

of rows of the full matrix . In the case of = , matrix can be obtained directly

from using only the locally stored elements on each processor. or = 1 or = 2,

there are two ways of computing . The distributed application of matrix to matrix

arallel recon itione or

requires the last row of bloc

�

computed by processor � 1 and the rst row

of bloc computed by processor 1 (where �1 and 1 are considered

to be operations mod() for a ring numbering of the processors).

The current processor might

(i) compute either two rows of in addition to the local matrix bloc or

(ii) exchange its rst row with the last row of processor � 1 and its last row with

the rst row of processor 1.

ector is treated in the same way having single elements instead of rows (igure 1).

The e�ciency of the method depends on the facilities of the actual parallel computer's

hard- and software. So, the processor ring is appropriate for method (ii), because data

exchanges occur between neighboring processors only.

In our application we preferred the hypercube topology with respect to the later

solution of the system of equations. lthough there is always an embedded ring in a

hypercube (see [2],[1]), we did not use this ring sequence to place the matrix bloc s

at the processors in order to eep some other helpful properties of the original

numbering in the hypercube. Thus two processors and 1 need not be direct

neighbors, and it may be better to use method (i) mentioned above if we do not want

to spend much time on a message routing system. urrently, however, the concept of

virtual channels based on hardware routing will enable both the hypercube and the

ring topology without permutations of processor numbers.

igure 2 shows computation time (in seconds) for parallel generating matrix

and right-hand side vector for di erent problem size and increasing number of

processors (= 1; : : : ; 128). These results were obtained on a -el system of T8

transputers, and by analogy on n ube-2 with a factor of about : in actual times

but with the same behavior in general.

The gure shows an optimal scale-up for both increasing problem size and number

of processors. onsidering the lower right corner of the gure, there is visible the

overhead that occurs for a too small problem size with respect to the large number

of processors.

ig. Data placement on processors.

8 . e ter . a ano

ig. 2 Time for parallel generating the BEM systemmatri .

Dotted lines show a very good scale-up.

. Preconditioned conjugate gradient method

ne of the most e ective iterative solution methods for the symmetric, positive de -

nite system of linear equations

= ; I ; ; I ; = (1)

is the conjugate gradient method [9], where = is a preconditioning matrix.

1. Initial ste I

= �

=

�

=

2. re eat for = ; 1; 2; : : :

= � ; =

(;)

(;)

= �

=

�

= ; =

(;)

(;)

;

arallel recon itione or 9

In order to use this method for our system (9), we have to prove that matrix

is symmetric and positive de nite. The symmetry follows from the property () of

operator . Matrix is positive de nite, because of property (6), and matrix has

the spectral condition number

() = O(h

�

) (14)

because of property (4). The speed of convergence of method depends on the

spectral condition number of the matrix

�

. The optimal preconditioning matrix

for the discrete single layer potential is well- nown (see [26],[14],[16]): it is the

aler in matrix for operator de ned by

(u)() = �

1

2

ln sin (�) u()d :

i.e. is equal to and = . The spectral condition number of matrix

�

is bounded:

(

�

) = O(1): (1)

The bound is independent of h , and the number of iterations would also be inde-

pendent of h. ne step of iterations requires the matrix-vector multiplication with a

full dense matrix (), two scalar products ((;) and (;)), three vector

additions and the solution of the preconditioning system

= : (16)

very e�cient method for the numerical solution of system (16) arises from the spe-

cial properties of matrix . This matrix is symmetric, positive de nite and circulant.

It can be written in the form

=

� �

; (1)

where denotes the matrix of discrete ourier transform

=

� �

; ; = 1; : : : ;

and is a diagonal matrix with the eigenvalues of :

= diag(; : : : ;) = diag() : (18)

ere, = (1; ; : : : ;) denotes the rst column of the unit matrix. The solution

of the system (16) can be given with the help of (1) as

=

�

=

� � �

(19)

and computed using the ast ourier Transform (T) [2],[8].

It is necessary to remar at this place that we are considering only a model problem

(1). The algorithms with circulant matrices seem to be of importance for many other

problems arising from BEM:

1 . e ter . a ano

e can use diag(;) as a preconditioning matrix for the irichlet problem

of linear elasticity in two-dimensional case.

The problem with eumann boundary condition can be solved analogously with

the help of hypersingular operator (see []) where the optimal preconditioner is

a circulant, too.

The problem in a multiple connected domain leads to a system of linear equa-

tions with a bloc system matrix. The matrix diag(; : : : ;) is an optimal

preconditioner for such a problem, where denotes the matrix arising from

for boundary (see [2]).

The three-dimensional irichlet problem on a rotational domain leads to a so

called circulant-bloc matrix (all bloc s are circulant matrices, see [1],[1]).

urthermore, the algorithms with circulant matrices presented in [1] are very

suitable for parallel computers.

The optimal preconditioner based on the theory of circulant matrices is also

very useful for constructing a global preconditioner for coupled BEM- EM dis-

cretization for nonlinear problems with the domain decomposition (see [12]).

. Parallel solution and numerical results

e consider the system of equations (1) to be solved on a parallel computer using

the preconditioned method as described above. In order to ta e full advantage of

the ast ourier Transform as an e�cient preconditioner, we assume a problem size of

= 2 . The parallel computer should be a hypercube of = 2 general purpose

processors (our test computers were microprocessor systems based on transputers or

n ube-2). enerally, we have n , i.e. .

Then the single processor wor s with a bloc of = rows of matrix

and the corresponding parts of all the vectors needed for the algorithm. Thus, we

have a global algorithm wor ing on multiple processors with di erent parts of data.

That means, each of the basic operations of method should be done in parallel

(see [1]):

.1.

The operations of the ind := � () can be completely executed in

parallel by computing the local part := � on each processor .

arallel recon itione or 11

. .

The computation of the inner product of two vectors is split into local partial sums

for each processor and a global sum of those numbers over all processors

(;) = =

�

requiring only n steps of next-neighbor communication within the n-dimensional hy-

percube.

. . -

e assume Matrix to be generated as described in Section , i. e. processor (for

= ; : : : ; � 1) has to compute and store in its local memory the bloc of

rows of the matrix (row numbers � 1; : : : ; (1) �). ow we treat as

an array of square matrix bloc s (= ; : : : ; � 1).

The matrix-vector multiplication can be performed bloc -wise with high e�ciency

by communicating via the processor ring embedded in the hypercube (igure). The

local computation is partitioned into consecutive steps, each of them containing

three () operations:

com ute = x

send and x to the forward ring neighbor

recei e and x from the bac ward ring neighbor

where the meaning of and is exchanged after each step. comparison of di er-

ent implementation methods for this operation is given in [1]. Best results we got

on a transputer system with a standalone ortran compiler (i. e. without operating

system) where the send and recei e tas s were implemented as parallel subthreads

to get full hardware performance. In this case the communication time could be ne-

glected. therwise (sequential operating on each processor) we have to accept the

communication complexity of 2 vector elements caused by sending vector x through

the processor ring in 2 operations ().

x x

ig. Block-wise piped matri -vector multiplication

12 . e ter . a ano

. . -

The well- nown T algorithm to compute = �x for a vector x of length = 2

consists in executing steps of (igure 4) of the ind

s

=

s s

where denotes the decreasing step number (= � 1; : : : ; = x =)

and

1 =

�

: : :

s

1

s�

: : : = (; 2

s

)

=

�

: : :

s s�

: : : = 1� 2

s

=

�

: : :

s

= � 2

�s

The operation itself is performed by computing both

s

and

s

(for

s s

s s

ig. Single T butter y step.

= and = 1). The coe�cients are always the same just for a sub-vector of 2

s

elements. Thus, the butter y operations are considered to be executed on sub-vectors

instead of single elements. In this way, the rst step of T is only butter y

operation for two vectors of length

2

, and the last step is executed by

2

butter y

operations with pairs of single elements (see igure). This binary structure of the

algorithm is appropriate for parallel implementation on a hypercube. If we have stored

the local part of the vector on processor , then the global index =

�

: : :

(; 1) of any element contains the processor number in its rst n binary digits

and the local index in its last � n digits:

=

�

: : :

�

; and =

� �

: : : :

nly a small amount of next-neighbor communication appears within the rst n

steps where processors have to exchange their local vectors. The last �n steps are

executed independently on all processors with full parallelism and a speed-up which

is close to the optimum if (� n) n.

enerally the single ourier transform by T requires some reordering of vector

elements using the - index as shown in igure (rightmost column). Such

arallel recon itione or 1

2

lin lin local local

1

1

11

1

1 1

11

111

1

1 1

1 1

11 1

11

1 11

111

1111

ig. Data ow for T on processors

a reordering of a distributed vector would be very ine�cient because of the global

character of data exchange. n the other hand, in order to apply the preconditioning

operator

�

from (19) we have to execute consecutively:

(i) a ourier transform :=

�

x, which is executed as described above

(ii) a simple element-wise vector multiplication

2

:=

�

and

(iii) a second ourier transform :=

2

.

ithin the intermediate step (ii) we have two vectors diag() from equation

(18) and from step (i) both obtained by T and therefore having the same

bit-swapped index ordering.

ence, there is no reason to reorder the vector elements which would require an

essential amount of global processor communication. The only thing we have to do is

to implement step (iii) in another way di erent from step (i), using the reversed data

ow and corresponding coe�cients, i. e. execute the �n steps locally, and only

the n steps include next-neighbor communication. Thus, the preconditioning

operator has a communication complexity of 4n vector elements which results from

executing the T algorithm twice with 4n single operations () in all.

ow, the total communication complexity of one step of preconditioned it-

eration can be determined as a function of the problem size and the number of

processors = 2 :

2 4n 1

14 . e ter . a ano

ig. Comparing times for iterative and direct solvers for dense linear

systems on a parallel computer computation on nCube-2 .

obviously increasing only with and log .

ue to the constant number of iterations for a given problem (independent of)

caused by the O(1)-property (1), we can state a similar relation for the complete

algorithm. The real behavior, however, depends substantially on the band-

width of the current communication networ and on the relation of the start-up and

transmitting times of the message passing system. In our implementation one step of

reconditioned iteration requires 8n 2 communication steps (i.e. start-ups)

on each processor. Surely, there is an overhead of communication if the problem size

is too small for the number of processors in use. So, for example, we nd a minimum

of total computation time at 2 processors for a problem size = 12.

The communication complexity of the pipelined ring algorithm for aussian elim-

ination does not depend on the number of processors. This result of Saad [21] was

certi ed once more by our numerical experiments. ith respect to the large amount

of processor time needed for this direct solver there is a very good speed-up within

reach. The absolute computation time of this direct solver (processor time plus com-

munication time), however, extremely exceeds that of the preconditioned iterative

method.

igure 6 illustrates some results of our numerical experiments for parallel solving

the dense linear system (1), comparing the with a sim-

ple and the as proposed

by Saad [22].

e should remar that similar results were obtained on di erent parallel comput-

ers of MIM type (transputer, n ube) and also, with substantially higher portion of

arallel recon itione or 1

Table Actual times and percentage of communication for solving dense linear systems

of ma imum si e on processors by di erent methods

T transputer, MByte RAM each

aussian elimination simple algorithm preconditioned

total I total I total I

1
12 2 2 s 8 s 1 . s

4
1 24 416 s . 1 s 2.1 1 . s .4

16
2 48 8 s . 1 s 4. 1 .8 s .

64
4 96 18 9 s 1 .1 196 s 12.4 18.4 s 1 .

communication, on a wor station cluster using M [24].

In order to evaluate the behavior of parallelized algorithms, absolute times are of

less interest than the relations between them. The most valuable result is given by

comparing the time for solving a system of the maximum size that is possible for any

given number of processors with a given memory size (Table 1). nearly constant

time for such a scale-up indicates the very good suitability of the preconditioned

method for parallel computers.

eferences

16 . e ter . a ano

