Fachbereich Mathematik

Matthias Pester, Sergej Rjasanow

A Parallel Version of the
Preconditioned Conjugate Gradient
Method for Boundary Element
Equations

Preprint-Reihe der Chemnitzer DFG-Forschergruppe

”Scientific Parallel Computing”

SPC 93 2 June, 1993

A Parallel Version of the Preconditioned Conjugate Gradient Method for
Boundary Element Equations

MATTHIAS PESTER
Department of Mathematics, Technical University of Chemnitz- Zwickau,
D-09009 Chemnitz, Germany

SERGEJ RJASANOW
Department of Mathematics, University of Kaiserslautern,

D-67653 Kaiserslautern, Germany

ABSTRACT

The parallel version of precondition techniques is developed for matrices arising from the
Galerkin boundary element method for two-dimensional domains with Dirichlet boundary
conditions. Results were obtained for implementations on a transputer network as well as
on an nCUBE-2 parallel computer showing that iterative solution methods are very well
suited for a MIMD computer. A comparison of numerical results for iterative and direct
solution methods is presented and underlines the superiority of iterative methods for large
systems.

Keywords: boundary value problem, boundary element method, iterative method, precon-
ditioning, parallel algorithm

1. Introduction

The boundary element method (BEM) leads to an algebraic system of linear equations
with a full dense matrix [1],[26]. Such a system can be solved efficiently using pre-
conditioned iterative methods [14],[16],[19], especially the conjugate gradient method
[9],[18]. The number of arithmetical operations is O (h™?) in two-dimensional case,
where h denotes the discretization parameter in one space direction.

Such algorithms involve a very high level of parallelism which can be used by a
MIMD parallel computer. The typical steps of using the BEM are: generation of
the system of linear equations (matrix and right hand side) and solving this system
numerically, where each step of iteration requires one matrix-vector multiplication
with a full dense matrix, some scalar products, some vector additions and the so-
lution of the preconditioning system. FEach of these operations is very well-suited

Parallel Preconditioned CG for BEM 3

for implementation on MIMD machines (such as transputer systems or the nCube
machine).

Only few authors have considered the implementation of boundary element meth-
ods on parallel computers. Symm [25] and Davies [5],[6] studied the feasibility of
SIMD and MIMD computers for BEM. It was shown that both the SIMD and MIMD
architectures are well-suited to boundary element analysis, especially for generating
the system of equations and calculating internal function values (field recovery). Gen-
eral problems in using direct solvers on parallel computers were discussed by Saad
[21],[22]. The feasibility of SIMD and MIMD computers for solving BEM systems
of linear equations numerically using the Gaussian elimination algorithm was tested
by Georgiev [7] and Kreienmeyer [11]. Langer [12] deals with the parallel iterative
solution of coupled FEM and BEM equations for MIMD computer with respect to
domain decomposition methods.

In Section 2 we formulate the boundary value problem as well as the correspond-
ing boundary integral equation. We discuss the parallel Galerkin discretization of
the boundary integral equation in the third section. Section 4 deals with the precon-
ditioned conjugate gradient method and the feasibility of MIMD computers for this
method. Finally we present some results of our numerical experiments on parallel
computers comparing iterative and direct methods.

2. Boundary integral equation

In this paper we consider the Dirichlet problem for Laplace equation in a two-
dimensional bounded, simply connected domain €2:

Au(z) = 0, z€9
{ u(z) = g(z) , el =0Q. (1)

If we denote by v(x) the normal derivative of the function u(x)

Ju(x)
= r
o) =) © €
then the well-known Green’s third identity for potential theory
;u(y) = —/u(:z;) . Wd% + /v(:z:)u*(:z;,y)dsx (2)
r v r

can be used for the numerical solution of the problem (1). Here

. 1
w(x,y) = —glnlx—yl

denotes the fundamental solution of the Laplace equation. The identity (2) can be
written in the form

(Av)(y) = f(y), yeT, (3)

4 M. Pester & S. Rjasanow

where A is the single layer potential operator
(Av)(y) = [(e y)o(a)ds,
r

and

o) = yutw) + [P,

The properties of the operator A are well-known [3],[4]:

A THAT) — T (4)
(Au,v), = (u, Av),, Vu,v € IH_%(F), (5)
(Au,u)g =y [[ulls, v >0, Yue H7>(T), (6)

where IH*(T") is the Sobolev space on boundary I, (-,-), denotes the duality pairing
between IH® and IH™*, i. e. the Ly(I') inner product

(u,v), = /u(:z;)v(:z;)dsw

r

and |||, denotes the Sobolev norm in IH*(T").
Using the parametrization of I' by 1-periodic representation

P={reR?*: x=2(t),0<t <1, [i(t) >6> 0},

we rewrite equation (3) in the form

(Av)(r) = /u* (x(t),z(7))v(t)dt = f(x(1)), 0<r<1 (7)
where v(t) 1= v(x(t)) - [2(1)]. &

3. Galerkin method

We begin with the approximation of v(t) by piecewise B-splines
o), I=1,...,N

of degree v = 0,1,2. We divide the interval [0,1) into N > v + 1 subintervals

0,1) = 6 [t tin), ti=(1—1)h, h=

=1

1
N7

Parallel Preconditioned CG for BEM 5

and introduce the N-dimensional subspace [Hy of 1-periodic functions (see [19])

Hy = span (¢§”)(t), e c,o(Ny)(t)))
The Galerkin method for equation (7) leads to:
Finding the function v,(t) € IHx such that Galerkin equations
(v = o)y)
are satisfied for all functions w € Hy.
Equation (8) is equivalent to the following system of linear equations:
Ay=b, ARV y,beRY, (9)

where the elements a;; and b; are of the following form:

v = (A, =
(10)

R (v) _

o= (fel), =

The numerical computation of matrix A and of the right hand side b is one of the
most important and time consuming steps in the realization of BEM. The numerical
integration is necessary for the evaluation of integrals in (10). The following idea is

very useful for this purpose (see [10], [19]):
We split operator A of equation (3) as a sum of two operators A; and Ay with

(Arv) () = —;T [fsinw(t =)| o()dr,

(7)]
(Ax) /ln |sm7r t—T)| o{t)dt

The kernel of operator A, is continuous for all ¢ and 7:

m{_lu“ﬂﬂgz—lmuwu

t—=7 \ 27 |sinw(t — 7)] 27

and operator A; describes the principal part of operator A. The matrix of system
(9) can also be splitted as a sum of two matrices Aﬁ”) and A(Qy)

A(ozy) L= Aa%‘o(‘y)vg‘ogy)) a:1727
(48),, = (Aeg),

6 M. Pester & S. Rjasanow

(v)

where the elements of matrix A;"” can be computed analytically (A; is independent
of the special choice of boundary I') and the elements of matrix A(Qy) are computed
as follows.

Let) € IRV*YN denote the matrix with the elements
1 .
g = u(x(ty), x(t)) — o In|sin(x(ty —)|, k,I=1,...,N,

and f € IRV denotes the vector with the components

fo=fla(ty), k=1,...,N.
(v)

We compute the approximations for matrix A" and vector b in (9) as follows (see

[10],[19]):

AV = p2Q, b=h-f, it v=0, (11)
AV = R Q 4+ Wwe(QI+QIT+HIQ+ITQ) +
+ ()IQI+ITQI+ QT +ITQIT)] (12)
b= h) S + WU+ ITH. it v=12,

()

where the weights w;”’, i = 0,1 are given by:

5 1
w((Jl) = 6’ w?) = 19
3 1
A=t o]
and .J denotes the simplest circulant matrix
010 0
0 1 0
J = : DU e IRN*N,
000 --- 1
100 -0

Obviously, the computations of (11) and (12) can be done parallelly where each
processor has to compute and store only a strip of rows (or columns) of matrix A
and the corresponding number of elements of the right-hand side vector b as shown in
Figure 1. Matrix () depends on the boundary information which is kept completely in
the local memories of each processor, after an initial broadcast. This little amount of
redundance leads to a full parallel computation of () which requires no interprocessor
communication.

We assume that each processor p (p =0,..., P —1) has computed a block Q)
of rows of the full matrix (). In the case of ¥ = 0, matrix A can be obtained directly
from () using only the locally stored elements on each processor. For v =1 or v = 2,
there are two ways of computing A. The distributed application of matrix J to matrix

Parallel Preconditioned CG for BEM 7

() requires the last row of block Q=1 computed by processor p— 1 and the first row
of block Q1) computed by processor p+1 (where "p—1" and "p-+1" are considered
to be operations mod(P) for a ring numbering of the P processors).

The current processor p might

(i) compute either two rows of Q in addition to the local matrix block Q) or

(ii) exchange its first row with the last row of processor p — 1 and its last row with
the first row of processor p + 1.

Vector b is treated in the same way having single elements instead of rows (Figure 1).
The efficiency of the method depends on the facilities of the actual parallel computer’s
hard- and software. So, the processor ring is appropriate for method (ii), because data
exchanges occur between neighboring processors only.

In our application we preferred the hypercube topology with respect to the later
solution of the system of equations. Although there is always an embedded ring in a
hypercube (see [23],[15]), we did not use this ring sequence to place the matrix blocks
Q) at the processors in order to keep some other helpful properties of the original
numbering in the hypercube. Thus two processors p and p + 1 need not be direct
neighbors, and it may be better to use method (i) mentioned above if we do not want
to spend much time on a message routing system. Currently, however, the concept of
virtual channels based on hardware routing will enable both the hypercube and the
ring topology without permutations of processor numbers.

Figure 2 shows computation time (in seconds) for parallel generating matrix A
and right-hand side vector b for different problem size N and increasing number of
processors (p = 1,...,128). These results were obtained on a GC-el system of T805
transputers, and by analogy on nCube-2 with a factor of about 0.5 in actual times
but with the same behavior in general.

The figure shows an optimal scale-up for both increasing problem size and number
of processors. Considering the lower right corner of the figure, there is visible the
overhead that occurs for a too small problem size with respect to the large number
of processors.

Fig. 1: Data placement on processors.

8 M. Pester & S. Rjasanow

100

,,,,,,,, o

Time [sec]

N = 2048

N = 1024

N = 512

N = 128

0,1 T T \ \ T T
1 2 4 8 16 32 64 128

processors

Fig. 2: Time for parallel generating the BEM system matrix.
Dotted lines show a very good scale-up.

4. Preconditioned conjugate gradient method

One of the most effective iterative solution methods for the symmetric, positive defi-
nite system of linear equations

Ay = b, Ae RN ybelRY, A=AT >0 (13)

is the conjugate gradient method [9], where B = BT > 0 is a preconditioning matrix.

1. Initial step: 1y, € IRY;

ro = Ayo— b
wy = B7lry;
Sop = Wo,

2. repeat for £=0,1,2,...

(rk,UJk) X
Ye+1 = Yk — Qgy1Sk, Q41 = T;
(Asg, sp)
Thit = Tk — Qyr Asy;
-1 .
Wg41 = B k415
(Pht1, Whey1)
Sp41 = Wrt1 + Bry1Sk, Bry1 = "

(7k, W)

Parallel Preconditioned CG for BEM 9

In order to use this method for our system (9), we have to prove that matrix A
is symmetric and positive definite. The symmetry follows from the property (5) of
operator A. Matrix A is positive definite, because of property (6), and matrix A has
the spectral condition number

K(A) = O(h™Y) (14)

because of property (4). The speed of convergence of CG method depends on the
spectral condition number of the matrix B~!A. The optimal preconditioning matrix
B for the discrete single layer potential is well-known (see [26],[14],[16]): it is the
Galerkin matrix B for operator B defined by

(Bu)(r) = —;T [fsinw(e =) u(rydr.

i.e. Bis equal to A; and B = Aﬁ”). The spectral condition number of matrix B~1A
is bounded:

K(B™1A) = O(1). (15)

The bound is independent of A, and the number of iterations would also be inde-
pendent of h. One step of iterations requires the matrix-vector multiplication with a
full dense matrix (Asy), two scalar products ((Asg, si) and (rg41, wes1)), three vector
additions and the solution of the preconditioning system

Bwk+1 =Tkt - (16)

A very efficient method for the numerical solution of system (16) arises from the spe-
cial properties of matrix B. This matrix is symmetric, positive definite and circulant.
It can be written in the form

B = NT1'FAF*, (17)
where F' denotes the matrix of discrete Fourier transform
S = ei%ﬁ(k_l)(l_l), kl=1,...,N
and A is a diagonal matrix with the eigenvalues of B:
A = diag(B, ..., y) = diag(F B e;). (18)
Here, e; = (1,0,...,0)" denotes the first column of the unit matrix. The solution

w41 of the system (16) can be given with the help of (17) as
W41 = B_lrk+1 == N_IFA_IF*T]H_l (19)

and computed using the Fast Fourier Transform (FFT) [2],[8].

It is necessary to remark at this place that we are considering only a model problem
(1). The algorithms with circulant matrices seem to be of importance for many other
problems arising from BEM:

10 M. Pester & S. Rjasanow

e We can use diag(B, B) as a preconditioning matrix for the Dirichlet problem
of linear elasticity in two-dimensional case.

e The problem with Neumann boundary condition can be solved analogously with
the help of hypersingular operator (see [3]) where the optimal preconditioner is
a circulant, too.

e The problem in a multiple connected domain leads to a system of linear equa-
tions with a block system matrix. The matrix diag(B, ..., By) is an optimal
preconditioner for such a problem, where B; denotes the matrix arising from

AP for boundary T; (see [20]).

e The three-dimensional Dirichlet problem on a rotational domain leads to a so
called circulant-block matrix (all blocks are circulant matrices, see [13],[17]).
Furthermore, the algorithms with circulant matrices presented in [17] are very
suitable for parallel computers.

e The optimal preconditioner based on the theory of circulant matrices is also
very useful for constructing a global preconditioner for coupled BEM-FEM dis-
cretization for nonlinear problems with the domain decomposition (see [12]).

5. Parallel solution and numerical results

We consider the system of equations (13) to be solved on a parallel computer using
the preconditioned CG method as described above. In order to take full advantage of
the Fast Fourier Transform as an efficient preconditioner, we assume a problem size of
N = 2™ . The parallel computer should be a hypercube of P = 2" general purpose
processors (our test computers were microprocessor systems based on transputers or
nCube-2). Generally, we have n < m, i.e. P < N.

Then the single processor p works with a block A®) of N, = % rows of matrix A
and the corresponding parts of all the vectors needed for the CG algorithm. Thus, we
have a global algorithm working on multiple processors with different parts of data.
That means, each of the basic operations of CG method should be done in parallel
(see [15]):

5.1. Vector additions

The operations of the kind y := y — as ("DAXPY”) can be completely executed in
parallel by computing the local part y® := 4 — s on each processor p.

Parallel Preconditioned CG for BEM 11

5.2. Scalar products

The computation of the inner product of two vectors is split into P local partial sums
for each processor p and a global sum of those numbers over all processors

N P-1 Np
(r,w) = Zriwi = Z (Z rl(»p)wl(»p))
=1

p=0 \:i=1

requiring only n steps of next-neighbor communication within the n-dimensional hy-
percube.

5.3. Matriz-vector multiplication

We assume Matrix A to be generated as described in Section 3, i. e. processor p (for
p=0,...,P —1) has to compute and store in its local memory the block A® of N,
rows of the matrix (row numbers p- N, +1,...,(p+1)- N,). Now we treat A®) as

an array of P N, x N, square matrix blocks A;p) (j=0,...,P—=1).

The matrix-vector multiplication can be performed block-wise with high efficiency
by communicating via the processor ring embedded in the hypercube (Figure 3). The
local computation is partitioned into P consecutive steps, each of them containing

three (parallel executable) operations:
e compute y® =y® 4 A;p)x(j)
e send j and () to the forward ring neighbor

e receive j’ and zU) from the backward ring neighbor

where the meaning of j and j’ is exchanged after each step. A comparison of differ-
ent implementation methods for this operation is given in [15]. Best results we got
on a transputer system with a standalone Fortran compiler (i. e. without operating
system) where the send and receive tasks were implemented as parallel subthreads
to get full hardware performance. In this case the communication time could be ne-
glected. Otherwise (sequential operating on each processor) we have to accept the
communication complexity of 2V vector elements caused by sending vector = through
the processor ring in 2P operations (send/receive).

Fig. 3: Block-wise piped matrix-vector multiplication

12 M. Pester & S. Rjasanow

5.4. FFT - preconditioning

The well-known FFT algorithm to compute y = F'-x for a vector = of length N = 2™
consists in executing m steps of butterfly operations (Figure 4) of the kind

y = fyit 4yt

where s denotes the decreasing step number (s = m — 1,...,0; y™ = z; y(© = y)
and

]1 — jm—l---js—l—lljs—l---jO — OR(],QS)

]0 = jm_l...j5+10j5_1...j0:j1—25
L= Jroreedo = [7-277]

The butterfly operation itself is performed by computing both y](S) and y](i) (for

(s+1) (5)

70 yjo

Jio

(s+1) (s)
yj1 fh y]l

Fig. 4: Single FFT butterfly step.

J =7j0and j = j1). The coefficients f; are always the same just for a sub-vector of 2°
elements. Thus, the butterfly operations are considered to be executed on sub-vectors
instead of single elements. In this way, the first step of FFT is only one butterfly
operation for two vectors of length %, and the last step is executed by % butterfly
operations with pairs of single elements (see Figure 5). This binary structure of the
algorithm is appropriate for parallel implementation on a hypercube. If we have stored
the local part (") of the vector y on processor p, then the global index 5 = §,,_1 ... jo
(7i € {0,1}) of any element contains the processor number p in its first n binary digits

and the local index jj,. in its last m — n digits:

p:jm—l "'jm—Tm and jloc :jm—n—l]0

Only a small amount of next-neighbor communication appears within the first n
steps where processors have to exchange their local vectors. The last m — n steps are
executed independently on all processors with full parallelism and a speed-up which
is close to the optimum if (m — n) > n.

Generally the single Fourier transform by FFT requires some reordering of vector
elements using the bit-swapped index as shown in Figure 5 (rightmost column). Such

Parallel Preconditioned CG for BEM 13

blooo 0[oJo o 0 0[0]o 0 0 0[0] 0000
0o o1 0[p]o 1 0001 oooﬁ:ﬁ 1000
plo1o o)1 0 0 0[do 2 loo1[D 0100
Plo11 ~lofo]1 1 To |0 01 fi 0012:}; 1100
Pt oo 4 0[Lo o 0 1[0]o 01 0[0] 0010
o101 o[fo 1 0 1[0]1 0104 1010
pli1o0 o1 0 1o 1o 2 lo11[0 0110
o111 fo o1 011 s 0112;; 1110
[looo 1[0Jo o 1 0[o]o 10 0[0] 0001
oo 1 1[]o 1 1001 10()%5 1001
o1o 1[0]1 0 1 0[@o 101D 0101
fo11 N 1[0]1 1 Fo |10 fs 10125? 1101
fJLoo fi 1Moo 1 1[0]o 110@2: 0011
o1 1[io 1 1101 11 0[] =+ 1011
i1o 11 0 5 |1 1[0 S 11110 0111
11 1111 111 fr 111252 1111
link 1 link 0 local local

Fig. 5: Data flow for FFT on 4 processors
The emphasized bit of the index value determines the
associated index for the next butterfly operation.

a reordering of a distributed vector would be very inefficient because of the global
character of data exchange. On the other hand, in order to apply the preconditioning
operator B~! from (19) we have to execute consecutively:

i) a Fourier transform y() := F*z, which is executed as described above;
y b ?

(i) a simple element-wise vector multiplication y? := A='y(") and

(iii) a second Fourier transform y := Fy?.

Within the intermediate step (ii) we have two vectors (diag(A) from equation
(18) and y™ from step (i)) both obtained by FFT and therefore having the same
bit-swapped index ordering.

Hence, there is no reason to reorder the vector elements which would require an
essential amount of global processor communication. The only thing we have to do is
to implement step (iii) in another way different from step (i), using the reversed data
flow and corresponding coefficients, i. e. execute the first m —n steps locally, and only
the last n steps include next-neighbor communication. Thus, the preconditioning
operator has a communication complexity of 4n% vector elements which results from
executing the FFT algorithm twice with 4n single operations (send/receive) in all.

Now, the total communication complexity of one step of preconditioned CG it-
eration can be determined as a function of the problem size N and the number of
processors P = 2":

N
ON £ an (142
+"<+P)

14 M. Pester & S. Rjasanow

1.000

N =512

Time [sec]

100 —

AHTIN

7
%
.
%
|
/

?
|
108
1 % Irca
1 % 7ica
1 | M GAuss

1 2 4 8 16 32 64 8 16 32 64
processors

Fig. 6: Comparing times for iterative and direct solvers for dense linear
systems on a parallel computer (computation on nCube-2).

obviously increasing only with NV and log P.

Due to the constant number of iterations for a given problem (independent of N)
caused by the O(1)-property (15), we can state a similar relation for the complete
PCG algorithm. The real behavior, however, depends substantially on the band-
width of the current communication network and on the relation of the start-up and
transmitting times of the message passing system. In our implementation one step of
Preconditioned CG iteration requires 8n 4+ 2P communication steps (i.e. start-ups)
on each processor. Surely, there is an overhead of communication if the problem size
is too small for the number of processors in use. So, for example, we find a minimum
of total computation time at 32 processors for a problem size N = 512.

The communication complexity of the pipelined ring algorithm for Gaussian elim-
ination does not depend on the number of processors. This result of Saad [21] was
certified once more by our numerical experiments. With respect to the large amount
of processor time needed for this direct solver there is a very good speed-up within
reach. The absolute computation time of this direct solver (processor time plus com-
munication time), however, extremely exceeds that of the preconditioned iterative
method.

Figure 6 illustrates some results of our numerical experiments for parallel solving
the dense linear system (13), comparing the preconditioned CG algorithm with a sim-
ple CG method and the pipelined ring algorithm of Gausstan elimination as proposed
by Saad [22].

We should remark that similar results were obtained on different parallel comput-
ers of MIMD type (transputer, nCube) and also, with substantially higher portion of

Parallel Preconditioned CG for BEM 15

Table 1: Actual times and percentage of communication for solving dense linear systems
of maximum size N on P processors by different methods
(T805 transputer, 4 MByte RAM each)

Gaussian elimination | simple CG algorithm | preconditioned CG

P | N total [/O | total [/O | total I/0
1] 512 | 202s — | T8s — | 15.0's —
1024 | 416 s 3.7 % | 103 s 2.1 % | 15.3 s 5.4 %

16 | 2048 | 855 s 7.7 % | 135 s 4.5 % | 15.8 s 7.5 %
64 | 4096 | 1839 s 15.1 % | 196 s 124 % | 184 s 15.0 %

communication, on a workstation cluster using PVM [24].

less

In order to evaluate the behavior of parallelized algorithms, absolute times are of

interest than the relations between them. The most valuable result is given by

comparing the time for solving a system of the maximum size that is possible for any
given number of processors with a given memory size (Table 1). A nearly constant

tim

e for such a scale-up indicates the very good suitability of the preconditioned CG

method for parallel computers.

References

[1]

C. A. Brebbia and S. Walker. Boundary Element Techniques in Fngineering. Newnes—
Butterwords, (1980).

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
Fourier series. Math. Comput., 19 (1965) 297-301.

M. Costabel. Principles of boundary element methods. Comp. Phys. Reports, 6 (1987)
243-274.

M. Costabel and W. L. Wendland. Strong ellipticity of boundary integral operators. J.
Reine Angew. Math., 372 (1986) 34-63.

A. J. Davies. The boundary element method on a transputer network. in C. Brebbia
and G. Gipson (editors), Boundary Elements XIII, pages 985-994. Computational
Mechanics Publications, Southampton Boston, (1991).

A. J. Davies. The implementation of the boundary element method on a network of
transputers. Technical report 241, Hatfiled Polytechnical NOC, (1991).

K. Georgiev and S. Margenov. Boundary element method realization on a computing
system including a systolic processor. Technical report, Center of Informatics and
Computer Technology, Bulgaria, (1988).

P. Henrici. Fast Fourier methods in computational complex analysis. STAM Rev. 21
(1979) 481-527.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. NBS 49 (1952).

16

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M. Pester & S. Rjasanow

G. C. Hsiao, P. Kopp, and W. L. Wendland. A Galerkin collocation method for some
integral equations of the first kind. Computing 25 (1980) 89-130.

M. Kreienmeyer. Zur Parallelisierung der 2D-BEM unter Par(C. Lecture on a workshop
on Boundary Element Methods in Chemnitz, Universitat Hannover, (May 1992).

U. Langer. Parallel iterative solution of symmetric coupled FFE/BE-equations via do-
main decomposition. Preprint 217, TU Chemnitz (1992).

A. Meyer and S. Rjasanow. An effective direct solution method for certain boundary
integral equations in 3D. Math. Methods in Appl. Sciences, 13 (1990) 45-53.

Y. N. Mokin. Direct and iterative methods for solving the integral equations of potential
theory. U.S.S.R. Comput. Maths. Math. Phys., 28 (1989) 29-39.

M. Pester. Implementation und Test paralleler Basisalgorithmen der linearen Alge-
bra, in R. Grebe and C. Ziemann (editors), Parallele Datenverarbeitung mit dem
Transputer. 2. Transputer—-Anwender—Treffen TAT’90, Proceedings X, Informatik—
Fachberichte, vol. 272, pp. 111-118. Springer—Verlag, (1991).

L. Reichel. A method for preconditioning matrices arising from linear integral equations
for elliptic boundary value problems. Computing, 37 (1986) 123-136.

S. Rjasanow. Effective algorithms with circulant-block matrices. to appear in: Linear

Algebra Appl.

S. Rjasanow. CG-Verfahren fir die Randintegralgleichungen. Preprint 61, TU Karl-
Marx-Stadt, (1988).

S. Rjasanow. Vorkonditionierte iterative Auflésung von Randelementgleichungen fiir
die Dirichlet-Aufgabe. Wiss. Schriftenreihe 7, TU Chemnitz, (1990).

S. Rjasanow. Effective iterative solution methods for Boundary Element Fquations, in
C. Brebbia and G. Gipson (editors), Boundary Elements XIII, pp. 889-900. Computa-
tional Mechanics Publications, Southampton, Boston, (1991).

Y. Saad. Communication complezity of the Gaussian elimination algorithm on multi-
processors. Linear Algebra Appl., 77 (1986) 315-340.

Y. Saad. Gaussian elimination on hypercubes, in Proc. Int. Workshop, pp. 5h-17.
Luminy/France, (1986).

Y. Saad and M. H. Schultz. Topological properties of hypercubes. Research Report 389,
Yale University, Dept. Computer Science, (1985).

V. S. Sunderam. PVM: A framework for parallel distributed computing. Technical
report, Oak Ridge National Laboratory, (1992). included in the PVM public domain
package.

G. T. Symm. Boundary elements on a distributed array processor. Engineering Anal-
ysis, 1 (1984) 162-165.

W. L. Wendland. Bemerkungen zu Randelementmethoden und ihren mathematischen
und numerischen Aspekten. Mitteilungen der GAMM, Heft 2 (1986) pp. 3-27.

