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Algorithms for Model Redution of Large Dynamial Systems

Thilo Penzl

Abstrat

Three algorithms for the model redution of large-sale, ontinuous-time, time-

invariant, linear, dynamial systems with a sparse or strutured transition matrix

and a small number of inputs and outputs are desribed. They rely on low rank ap-

proximations to the ontrollability and observability Gramians, whih an eÆiently

be omputed by ADI based iterative low rank methods. The �rst two model redu-

tion methods are losely related to the well-known square root method and Shur

method, whih are balaned trunation tehniques. The third method is a heuris-

ti, balaning-free tehnique. The performane of the model redution algorithms is

studied in numerial experiments.

Keywords: dynamial systems, Lyapunov equation, model redution, balaned

trunation, Shur method, square root method, numerial algorithms, sparse matri-

es.

AMS Subjet Classi�ation: 65F30, 65F50, 93A15, 93A25.

1 Introdution

In this paper we onsider realizations

_x(�) = Ax(�) +Bu(�)

y(�) = Cx(�) +Du(�)

(1)

of ontinuous-time, time-invariant, linear, dynamial systems, where A 2 R

n;n

, B 2 R

n;m

,

C 2 R

q;n

,D 2 R

q;m

, � 2 R, and n is the order of the realization. R and R

n;m

denote the sets

of real numbers and real n-by-m matries, respetively. Together with an initial ondition

x(�

0

) = x

0

, realizations (1) are uniquely desribed by the matrix tuple (A;B;C;D). When

appropriate, we will also use the equivalent notation

�

A B

C D

�

, whih is more ommon in

ontrol theory. The vetor-valued funtions u, x, and y are referred to as input, state,

and output of the system, respetively. In partiular, we fous on realizations with large

state spae dimension (say, n > 1000) and small input spae and output spae dimensions

(say, m; q <

1

100

n). Moreover, we assume that the matrix A is sparse or strutured. An

important soure for suh dynamial systems are paraboli di�erential equations. Their

semidisretization w.r.t. the spae omponent leads to systems of type (1). Usually, the

dimension n depends on the �neness of the disretization and is very large, whereas m

and q are small and independent of the disretization. Large dynamial systems also arise

from iruit simulation; e.g., [1℄.

Often numerial methods for ontroller design or simulation annot be applied to very

large systems beause of their extensive numerial osts. This motivates model redution,

whih is the approximation of the original, large realization by a realization of smaller

This work was supported by the Deutsher Akademisher Austaushdienst, Bonn, Germany.
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order. In this paper we desribe three model redution algorithms for large systems,

whih are numerially inexpensive with respet to both memory and omputation.

The remainder of this paper is organized as follows. In x 2 we give an introdution to

ontinuous-time, algebrai Lyapunov equations (ALEs) and desribe an iterative solution

method. The reason for this is that many important model redution methods for small

and medium systems as well as our methods for large systems are based on ALEs. x 3.1

ontains a brief disussion of model redution in general. xx 3.2 and 3.3 deal with existing

methods for systems of moderate size and large sale systems, respetively. Moreover,

xx 3.1 and 3.2 provide the foundation for the three model redution methods for large

systems desribed in x 4. The eÆieny of these methods is demonstrated by numerial

experiments in x 5. Finally, onlusions are provided in x 6.

2 Numerial solution of Lyapunov equations and the

LR-Smith(l) iteration

Besides model redution several topis in ontrol theory, suh as stability analysis [32℄,

stabilization, optimal ontrol [33, 46℄, solution of algebrai Riati equations [28, 31℄, and

balaning [35℄ involve ALEs. These linear matrix equations usually have the struture

FX +XF

T

= �GG

T

; (2)

where G 2 R

n;t

is a retangular matrix with t � n and the matrix F 2 R

n;n

is stable, i.e.,

�(F ) � C

�

. Here, �(F ) denotes the spetrum of F . C

�

is the open left half of the omplex

plane, i.e., C

�

= fa 2 C j Re a < 0g, where C is the set of the omplex numbers and Re a

is the real part of a. The stability of F is suÆient for the existene of a solution matrix

X 2 R

n;n

, whih is unique, symmetri, and positive semide�nite. If the pair (F;G) is

ontrollable, then X is even positive de�nite. Note that (2) is mathematially equivalent

to a system of linear equations with O(n

2

) unknowns. For this reason, ALEs of order

n > 1000 are said to be of large sale.

The relation between (1) and (2) depends on the partiular problem, but in ontext

with model redution mostly F = A or A

T

and G = B or C

T

. For this reason, we assume

that F is sparse or strutured, whereas G is a matrix with very few olumns. If the latter is

true, the nonnegative eigenvalues of the solutionX tend to deay very fast [38℄. In this ase

the solution matrix an be approximated very aurate by a positive semide�nite matrix

of relatively low rank. This property is essential for our model redution algorithms.

The Bartels-Stewart method [2℄ and the Hammarling method [20℄ are the diret stan-

dard methods for ALEs. Whereas the �rst is appliable to the more general Sylvester

equation, the seond tends to deliver more aurate results in the presene of round-o�

errors. Both methods require the omputation of the Shur form of F . As a onsequene,

they generally annot pro�t by sparsity or other strutures in the equation. The squared

Smith method [48℄ and the sign funtion method [40℄ are iterative methods, whih an-

not exploit sparsity or strutures as well. However, they are of partiular interest when

dense ALEs should be solved on parallel omputers [14, 3℄. The alternating diretion

impliit iteration (ADI) [36, 52℄ is an iterative method whih often delivers good results

for sparse or strutured ALEs. The solution methods mentioned so far have the ompu-

tational omplexity O(n

3

), exept for the ADI method. Its omplexity strongly depends
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on the struture of F and is sometimes better. All methods have the memory omplexity

O(n

2

) beause they generate the dense solution matrix X expliitly. It should be stressed

that often the memory omplexity rather than the amount of omputation is the limiting

fator for the appliability of solution methods to large ALEs.

Low rank methods are the only existing methods whih an solve very large ALEs.

They require that G onsists of very few olumns and they exploit sparsity or strutures

in F . The solution X is not formed expliitly. Instead, low rank fatorizations, whih

approximate X, are omputed. Note that throughout this paper \low rank" stands for

\(resulting in or having) a rank muh smaller than n". (We will later all ertain matries,

whose numbers of olumns are muh smaller than n, low rank fators although their olumn

rank may be full.) Most low rank methods [21, 22, 25, 41℄ are Krylov subspae methods,

whih are based either on the Lanzos proess or on the Arnoldi proess; see, e.g., [17, 42℄.

Furthermore, there are low rank methods [41, 19℄ based on the expliit representation of

the ALE solution in integral form, e.g., [30℄. Two low rank methods related to the ADI

iteration and the Smith method were proposed in [37℄. Here, we desribe the yli low

rank Smith method (LR-Smith(l)), whih is the more eÆient of both methods. Note that

in the following algorithm and the remainder of this paper I

n

denotes the n-by-n identity

matrix.

Algorithm 1 (LR-Smith(l) iteration [37℄)

INPUT: F , G, P = fp

i

g

l

i=1

� C

�

OUTPUT: Z = Z

i

max

l

, suh that ZZ

T

� X

(1. Find a suitable transformation matrix H and transform the equation: F := HFH

�1

,

G := HG.)

2. Z

1

=

p

�2p

1

(F + p

1

I

n

)

�1

G

FOR i = 2; : : : ; l

3. Z

i

=

�

(F � p

i

I

n

)(F + p

i

I

n

)

�1

Z

i�1

p

�2p

i

(F + p

i

I

n

)

�1

G

�

END

4. Z

(l)

= Z

l

FOR i = 1; 2; : : : ; i

max

� 1

5. Z

((i+1)l)

=

 

l

Q

j=1

(F � p

j

I

n

)(F + p

j

I

n

)

�1

!

Z

(il)

6. Z

(i+1)l

=

�

Z

il

Z

((i+1)l)

�

END

(7. Transform the fator of the approximate solution bak: Z

i

max

l

:= H

�1

Z

i

max

l

.)

Numerial aspets of this method are disussed in detail in [37℄. However, some remarks

should be made here. The LR-Smith(l) iteration is mathematially equivalent to the ADI

iteration, where p

1

; : : : ; p

l

are ylially used as shift parameters. Usually, a small number

of di�erent parameters is suÆient to ahieve an almost optimal rate of onvergene (say,

l 2 f10; : : : ; 25g). It is important to use a set P of pairwise distint shift parameters,

whih is losed under omplex onjugation (i.e., if p 2 P, then �p 2 P). This ensures that
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Z is a real matrix. Suh suboptimal shift parameters an be omputed eÆiently by a

heuristi algorithm [37, Algorithm 1℄. In pratial implementations the iteration should be

stopped when round-o� errors start to dominate the di�erene between the exat solution

and the numerially omputed approximate solution ZZ

T

, whih is haraterized by the

stagnation of the normalized residual norms (see also (21)) on a level that is in the viinity

of the mahine preision. Usually, this is the ase for i

max

l 2 f30; : : : ; 100g if ALEs with a

symmetri matrix F are onsidered. For unsymmetri problems i

max

l tends to be larger.

The resulting fator Z onsists of i

max

lt olumns.

Of ourse, the matries (F + p

i

I

n

)

�1

, whih are involved in Steps 2, 3, and 5, are not

formed expliitly. Instead, systems of type (F + p

i

I

n

)x = y are solved. If F is sparse,

this requires omputing and storing l sparse LU fatorizations, whih are repeatedly used

in baksubstitutions. Thus, the omplexity of the method strongly depends on nonzero

pattern and the bandwidth of F in this ase. Therefore, it is often useful to improve this

struture by a transformation of the ALE with the nonsingular matrix H (optional Steps

1 and 7). For example, H an be a permutation matrix for bandwidth redution [5℄ or a

matrix whih transforms F into a tridiagonal matrix [15, 44℄. However, the matrix H is

never formed expliitly and multipliations with H and H

�1

must be inexpensive. Alter-

natively, the shifted systems an be solved by iterative methods, suh as (preonditioned)

Krylov subspae methods; e.g., [42℄. In this ase Steps 1 and 7 an be omitted.

Basially, the model redution algorithms proposed in x 4 an also be used in ombi-

nation with the aforementioned alternative low rank methods for ALEs, whih are mainly

Krylov subspae methods. Our model redution algorithms only require the availability

of approximations to ALE solutions whih have a high auray and a very low rank. In

general, LR-Smith(l) delivers better results than Krylov subspae methods w.r.t. both ri-

teria; see [37, x 6℄. Moreover, the latter often fail for relatively easy problems. Therefore,

we prefer LR-Smith(l) to Krylov subspae methods despite the fat that the omputational

ost of Krylov subspae methods is often lower.

3 Model redution: preliminaries and some existing

methods

3.1 Preliminaries

Assume that we are given a realization (A;B;C;D) of order n. The purpose of model

redution is to �nd a redued realization (

^

A;

^

B;

^

C;

^

D) with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

,

^

D 2 R

q;m

, suh that the input-output behavior of the redued system approximates that

of the original system in some sense. Here, k 2 f1; : : : ; n� 1g is the (arbitrary, but �xed)

order of the redued realization. Many pratially important riteria for assessing the

deviation of the redued system from the original one are based on the di�erene of the

transfer matries G and

^

G on the imaginary axis

�G(|!) = G(|!)�

^

G(|!);

where | =

p

�1, ! 2 R, G(s) = C(sI

n

� A)

�1

B + D, and

^

G(s) =

^

C(sI

k

�

^

A)

�1

^

B +

^

D.

Measuring the di�erene �G(|!) orresponds to omparing the frequeny response of both

systems, i.e., the response y to a sinusoidal input funtion u; see, e.g., [47℄.

There are typially two tasks whih require the redution of the order of a system.
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� Task 1 is the redution of systems of small or moderate size (say, n 2 f5; : : : ; 1000g

depending on the problem). Although numerial algorithms for ontroller design

applied to suh systems mostly require an a�ordable amount of omputation and

deliver satisfatory results, the redution of the model or the ontroller is often

desired beause the pratial implementation of the ontroller (in an eletrial devie,

for example) is too omplex or too expensive. Here, the main goal is to ahieve a

partiular objetive, for example, (sub)minimizing �G(s) w.r.t. the L

2

or L

1

norm

or a frequeny weighted norm. The omplexity of model redution methods for suh

objetives usually prohibits their appliation to large sale problems.

� Task 2 is the redution of systems whih are so large that numerial standard

methods for ontroller design or simulation of the system annot be applied due to

their extensive numerial osts (say, n > 1000). Methods for ontroller design have in

most ases at least the omputational omplexity O(n

3

) and the memory omplexity

O(n

2

). Moreover, they usually annot bene�t from strutures in the system. The

primary objetives of Task 2 are to replae the system by a smaller one, for whih

a ontroller an be designed or whih an be simulated with reasonable numerial

e�ort, and to lose only a very small amount of information by the redution. Ideally,

this loss should be of the same magnitude as the inauraies, that are aused by

round-o� or approximation errors in the subsequent ontroller design or simulation,

and the inherent errors in the model of the underlying real proess.

In pratie, a model redution proess for a very large system an onsist of two steps,

where Task 2 and Task 1 are treated suessively. The model redution methods proposed

in this paper are intended to solve problems related to Task 2.

Modal trunation [6℄, balaned trunation [34, 49, 43, 51℄, singular perturbational

model redution [10℄, frequeny weighted balaned trunation [7℄, optimal Hankel norm

approximation [16℄ are well-known model redution methods for stable systems. All these

methods mainly fous on Task 1. Eah requires the solution of eigenvalue problems of

order n, whih make their standard implementations expensive when large systems should

be redued. However, they are very useful for systems of moderate size. Exept for modal

trunation eah of the above methods is based either expliitly or impliitly on balaned

realizations, the omputation of whih involves the solutions of a pair of ALEs

AX

B

+X

B

A

T

= �BB

T

(3)

A

T

X

C

+X

C

A = �C

T

C: (4)

The solution matries X

B

and X

C

are alled ontrollability and observability Gramians.

They play an important role in input-state and state-output energy onsiderations, whih

provide a motivation for some of the aforementioned model redution methods as well as

the methods proposed in x 4.

In the following theorem [16℄, jjujj

L

2

(a;b)

denotes the L

2

norm of a vetor-valued funtion

u, i.e., jjujj

2

L

2

(a;b)

=

R

b

a

u(�)

T

u(�)d� . A realization (1) is alled minimal if both (A;B) and

(A

T

; C

T

) are ontrollable.

Theorem 1 Let (1) be a minimal realization with a stable matrix A. Then the solutions

X

B

and X

C

of the ALEs (3) and (4), respetively, are positive de�nite and

min

u2L

2

(�1;0); x(0)=x

0

jjujj

2

L

2

(�1;0)

= x

T

0

X

�1

B

x

0

: (5)
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Furthermore, if x(0) = x

0

and u(�) = 0 for � � 0, then

jjyjj

2

L

2

(0;1)

= x

T

0

X

C

x

0

: (6)

Loosely speaking, this means that a large input energy jjujj

L

2

(�1;0)

is required to steer the

system to a (normalized) �nal state x

0

, whih is ontained in an invariant subspae of X

B

related to the smallest eigenvalues of this matrix. Likewise, (normalized) initial states x

0

ontained in an invariant subspae of X

C

related to the smallest eigenvalues deliver little

output energy jjyjj

L

2

(0;1)

and, thus, they hardly have an e�et on the output.

Finally, it should be stressed that all model redution methods in xx 3.2 and 4 belong

to the lass of state spae projetion methods. That means the redued realization of order

k is obtained by a projetion of the state spae to a subspae of dimension k. Assume that

T 2 R

n;n

is a nonsingular matrix suh that the hosen subspae is spanned by the �rst k

olumns of T . Then the redued system orresponds to the �rst k olumns and rows of

the transformed realization

�

T

�1

AT T

�1

B

CT D

�

;

whih is equivalent to (1). Using the MATLAB style olon notation we set

S

B

= T

(:;1:k)

and S

C

= (T

�T

)

(:;1:k)

: (7)

The redued order realization is given by

�

^

A

^

B

^

C

^

D

�

=

�

S

T

C

AS

B

S

T

C

B

CS

B

D

�

; (8)

where

S

T

C

S

B

= I

k

(9)

holds. This means state spae projetion methods di�er in the hoie of matries S

B

,

S

C

2 R

n;k

that ful�ll (9). From the numerial point of view one is interested in attaining

as small a ondition number of S

B

and S

C

as possible.

3.2 Balaned trunation tehniques

The perhaps most popular way to takle model redution problems orresponding to Task

1 is balaned trunation. The basi motivation for this tehnique is provided by Theorem

1 and its subsequent disussion. Unfortunately, the equations (5) and (6) for the input-

state and state-output mapping, respetively, suggest di�erent subspaes for a state spae

projetion. However, both parts an be treated simultaneously after a transformation

of the system (A;B;C;D) with a nonsingular matrix T 2 R

n;n

into a balaned system

(

~

A;

~

B;

~

C;

~

D) = (T

�1

AT; T

�1

B;CT;D); see [35℄. A realization (

~

A;

~

B;

~

C;

~

D) with a stable

matrix

~

A and the orresponding transformed Gramians

~

X

B

= T

�1

X

B

T

�T

and

~

X

C

=

T

T

X

C

T is alled balaned if

~

X

B

=

~

X

C

= diag(�

1

; : : : ; �

n

); (10)

where �

1

� �

2

� : : : � �

n

> 0. The values �

i

are alled Hankel singular values. A

balaned realization exists if (A;B;C;D) is a stable, minimal realization; e.g., [16℄. The



Model redution of large dynamial systems 7

result of the basi balaned trunation algorithm [34℄ is given by (8), where the balaning

transformation matrix T is used to de�ne the matries S

B

and S

C

in (7). If �

k

6= �

k+1

,

the redued order realization is minimal, stable, and balaned. Its Gramians are equal to

diag(�

1

; : : : ; �

k

). One of the main attrations of balaned trunation is the availability of

the following L

1

error bound, whih was independently derived in [7℄ and [16℄,

k�Gk

L

1

= sup

!2R

kG(|!)�

^

G(|!)k � 2

n

X

i=k+1

�

i

: (11)

Here, k�k is the spetral norm of a matrix. Finally, it should be mentioned that there exist

several implementations of balaned trunation model redution algorithms [34, 49, 43, 51℄.

They deliver redued order realizations with idential transfer matries but di�er in their

numerial robustness.

3.3 Methods based on Pad�e approximation and Krylov sub-

spaes

Motivated by appliations in iruit simulation, quite a large number of publiations on

model redution of large systems (Task 2) have appeared in the last few years. The ma-

jority of the proposed algorithms are based on Pad�e approximation and Krylov subspaes.

For this reason, we briey sketh the underlying priniple of these algorithms despite the

fat that the algorithms proposed in x 4 are based on a ompletely di�erent approah.

For simpliity, we only onsider the speial ase, where m = 1, q = 1, and D = 0, in this

setion. See [11℄ for a detailed survey.

Let �u(s) and �y(s) be the Laplae transformed of u(t) and y(t), respetively. It is

well-known that the frequeny domain representation

�y(s) = G(s)�u(s) with G(s) = C(sI

n

� A)

�1

B;

whih maps the transformed input to the transformed output without referene to the

(transformed) state, is mathematially equivalent to the state spae representation (1) of

a dynamial system provided that x(0) = 0. The basi priniple of the Pad�e approximation

based model redution algorithms (Pad�e algorithms) is an expansion of G(s) about a point

s

0

2 C [ f1g. A frequent hoie is s

0

= 1 although other or even multiple expansion

points (e.g., [13℄) an be used. For example, the expansion about in�nity delivers

G(s) =

1

X

i=0

1

s

i+1

M

i

with M

i

= CA

i

B; (12)

whih an be interpreted as a Taylor series, that onverges if jsj is suÆiently large. The

matries M

i

, whih are alled Markov parameters, are system invariants. The leading 2n

parameters determine the system uniquely. Expansions of G(s) about in�nity as well as

other points an be rewritten in terms of a rational funtion in s. More preisely,

G(s) =

 

n�1

(s)

'

n

(s)

;
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where  

n�1

and '

n

are polynomials of degree at most n � 1 and n, respetively. The

redution of the system order is now ahieved by omputing a rational funtion of the

type

^

G(s) =

 

k�1

(s)

'

k

(s)

; (13)

whih orresponds to a realization (

^

A;

^

B;

^

C; 0) of redued order provided that k < n. In

view of the series (12) a sensible hoie of the polynomials  

k�1

and '

k

is that for whih

G(s)�

^

G(s) =

1

X

i=2k

1

s

i+1

M

i

holds. That means, the leading 2k� 1 Markov parameters of G and

^

G oinide. This pro-

edure is known asmoment mathing. The resulting funtion

^

G is alled Pad�e approximant

of G.

In the last deade two basi approahes to ompute the redued system orresponding

to the Pad�e approximant (13) have been pursued although model redution based on Pad�e

approximation was studied muh earlier; e.g., [45℄. The so-alled asymptoti waveform

evaluation (AWE) [39℄ omputes the redued system in a way that involves omputing

the leading Markov parameters of G and the oeÆients of the polynomials  

k�1

and

'

k

expliitly, whih tends to be numerially unstable. The seond approah [8, 12, 9℄,

whih is alled Pad�e via Lanzos (PVL) algorithm, exploits a onnetion between Pad�e

approximation and Krylov subspae proesses [18℄. AWE and PVL are mathematially

equivalent, but PVL turns out to be numerially more robust in general. For this reason,

PVL is usually preferred to AWE in pratial appliations. There exist a number of

variations of the PVL algorithm; see, e.g., [11℄ and referenes therein.

A few general aspets in ontext with Pad�e algorithms should be disussed here. First,

it is not lear, whether they deliver good approximations for values s whih lie far away

from the expansion point. In ontrast to balaned trunation, no L

1

error bounds are

known for Pad�e algorithms. Unlike the algorithms proposed in x 4, the implementation of

suh methods often beomes more ompliated whenm > 1 and q > 1. An essential advan-

tage of Pad�e algorithms is that they are not restrited to systems of type (1). They an be

applied to more general linear, time-invariant, di�erential-algebrai equations. Moreover,

their numerial osts are quite low.

Finally, we want to stress that there exist a few algorithms [23, 24, 26, 27℄, whih are

not diretly motivated by Pad�e approximation and moment mathing, but involve Krylov

subspae tehniques. For example, in [26℄ a Galerkin tehnique is proposed, whereas in

[24℄ an approah related to GMRES (e.g., [42℄) is pursued to generate a redued system.

In both ases low rank approximations to the Gramians X

B

and X

C

are involved. These

approximations are omputed by Krylov subspae methods for ALEs desribed in [41, 22,

25℄. A basi di�erene to the model redution methods proposed in x 4 is that the latter an

use arbitrary, symmetri, positive semide�nite low rank approximations to the Gramians.

In partiular, this inludes approximations generated by Algorithm 1, whih are often

more aurate and of lower rank than those omputed by Krylov subspae methods for

ALEs.
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4 Three model redution methods for large systems

4.1 Low Rank Square Root Method

The original implementation of balaned trunation [34℄ involves the expliit balaning of

the realization (1). This proedure is dangerous from the numerial point of view beause

the balaning transformation matrix T tends to be highly ill-onditioned. Moreover, the

implementation in [34℄ is restrited to minimal realizations. The so-alled square root

method [49℄ (see also [43, 51℄) is an attempt to ope with these problems. It is on-

struted in a way that avoids expliit balaning of the system. The method is based on

the Cholesky fators of the Gramians instead of the Gramians themselves. In [49℄ the use

of the Hammarling method was proposed to ompute these fators, but, basially, any

numerial method that delivers Cholesky fators of the Gramians an be applied. For

example, a ombination of a modi�ed sign funtion iteration for ALEs and the square

root method, whih, in partiular, allows the eÆient model redution of large dense sys-

tems on parallel omputers, has been proposed in [4℄. For large systems with a strutured

transition matrix A, the LR-Smith(l) method an be an attrative alternative beause

the Hammarling method or sign funtion based methods an generally not bene�t from

suh strutures. Algorithm 2, whih we refer to as low rank square root method (LRSRM),

is based on the algorithm proposed in [49℄ and di�ers formally from the implementation

given there only in Step 1. In the original implementation this step is the omputation

of exat Cholesky fators, whih may have full rank. We formally replae these (exat)

fators by (approximating) low rank Cholesky fators to obtain the following algorithm.

Algorithm 2 (Low rank square root method (LRSRM))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fators Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), suh that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respetively.

2. U

C0

�

0

U

T

B0

:= Z

T

C

Z

B

(SVD), U

C

= U

C0

(:;1:k)

; � = �

0

(1:k;1:k)

; U

B

= U

B0

(:;1:k)

3. S

B

= Z

B

U

B

�

�1=2

; S

C

= Z

C

U

C

�

�1=2

4.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

In this algorithm we assume that k � rankZ

T

C

Z

B

. Note further that throughout this paper

singular value deompositions (SVDs) are arranged so that the diagonal matrix ontain-

ing the singular values has the same dimensions as the fatorized matrix and the singular

values appear in noninreasing order. The use of (approximated) low rank fators of the

Gramians redues the omputational ost and the memory requirement of the square root

method signi�antly. Note that we only have to ompute an SVD of an r

C

-by-r

B

matrix,

where r

B

and r

C

are the numbers of olumns in Z

B

and Z

C

, respetively, and r

B

; r

C

<< n.

In ontrast, if exat Gramians (of possibly full rank) were used, the implementation would

involve an SVD of a square matrix of order n. The omplexity of algorithm LRSRM exept

for Step 1 is O(nmaxfr

2

B

; r

2

C

g) w.r.t. omputation and O(nmaxfr

B

; r

C

g) w.r.t. memory.

However, the total omplexity depends on the numerial osts for the LR-Smith(l) iter-
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ations in Step 1 of Algorithm 4, whih in turn strongly depend on the strutural and

algebrai properties of the matrix A.

4.2 Low Rank Shur Method

An alternative to the basi balaned trunation algorithm desribed in x 3.2 and the square

root method is provided by the so-alled Shur method [43℄, whih is (in exat arithmetis)

mathematially equivalent to the �rst two methods in the sense that the transfer matries

of the redued realizations are idential. It has beome quite popular beause it generates

projetion matries S

B

and S

C

, whih have generally muh smaller ondition numbers

ompared to those by the square root method.

Algorithm 3 (Shur method for balaned trunation model redution [43℄)

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Solve (3) and (4).

2. Determine the k largest eigenvalues of X

B

X

C

and ompute orthonormal bases V

B

; V

C

2

R

n;k

for the orresponding right and left, invariant subspaes, respetively, by means of

ordered Shur fatorizations.

3. U

C

�U

T

B

:= V

T

C

V

B

(SVD)

4. S

B

= V

B

U

B

�

�1=2

; S

C

= V

C

U

C

�

�1=2

5.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

Even if the ALEs (3) and (4) in Step 1 an be solved in an inexpensive way, Algorithm

3 annot be applied to large systems beause a dense eigenvalue problem of order n needs

to be solved in Step 2. For this reason we propose the following modi�ation we refer to as

low rank Shur method (LRSM). We solve the ALEs (3) and (4) approximately by applying

Algorithm 1 twie. Assuming that we obtain matries Z

B

2 R

n;r

B

and Z

C

2 R

n;r

C

, suh

that X

B

� Z

B

Z

T

B

=:

�

X

B

, X

C

� Z

C

Z

T

C

=:

�

X

C

, and maxfr

B

; r

C

g << n, we then formally

replae X

B

X

C

by the approximation

�

X

B

�

X

C

in Step 2 of Algorithm 3. The basi idea of

our approah is now to avoid forming

�

X

B

�

X

C

expliitly in this step. Instead, we generate

a low rank fatorization of this matrix produt, whih enables us to ompute V

B

and V

C

in a more eÆient way. Note that r = rank

�

X

B

�

X

C

� minfr

B

; r

C

g << n. Steps 3{5 of

Algorithm 3 remain the same. Our modi�ation of Step 2 should be desribed in detail

now.

First, we determine an \eonomy size" SVD (that means the version of the SVD

where the diagonal matrix ontaining the singular values is square and has full rank) of

the produt

�

X

B

�

X

C

, whih reveals its low rank struture. For this purpose, we ompute

\eonomy size" QR fatorizations Z

B

= Q

B1

R

B

and Z

C

= Q

C1

R

C

with Q

B1

2 R

n;r

B

and

Q

C1

2 R

n;r

C

. After that, an \eonomy size" SVD

R

B

Z

T

B

Z

C

R

T

C

=: Q

B2

DQ

T

C2



Model redution of large dynamial systems 11

with the nonsingular diagonal matrix D 2 R

r;r

is omputed. De�ning Q

B

= Q

B1

Q

B2

and

Q

C

= Q

C1

Q

C2

, we �nally get the desired SVD of

�

X

B

�

X

C

by

�

X

B

�

X

C

= Z

B

Z

T

B

Z

C

Z

T

C

= Q

B1

R

B

Z

T

B

Z

C

R

T

C

Q

T

C1

= Q

B

DQ

T

C

: (14)

By means of this equation we now ompute an orthonormal basis for the right, dominant,

invariant subspae of

�

X

B

�

X

C

. Obviously, the right, invariant subspae related to the

nonzero eigenvalues of

�

X

B

�

X

C

oinides with the range of Q

B

. Beause of

�

X

B

�

X

C

Q

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

= Q

B

DQ

T

C

Q

B

(15)

all nonzero eigenvalues of

�

X

B

�

X

C

are eigenvalues of the matrix DQ

T

C

Q

B

as well. Assuming

that r << n, the merit of our approah is that we have to determine the dominant eigen-

values of the r-by-r matrix DQ

T

C

Q

B

instead of those of the n-by-n matrix

�

X

B

�

X

C

itself.

More preisely, we ompute an ordered Shur fatorization

DQ

T

C

Q

B

=: P

B

T

B

P

T

B

=

�

P

B1

P

B2

�

�

T

B11

T

B12

0 T

B22

�

�

P

B1

P

B2

�

T

; (16)

where the blok T

B11

2 R

k;k

(k � r) orresponds to the k largest eigenvalues of T

B

. The

desired orthonormal basis in the right, dominant, invariant subspae is formed by the

olumns of the matrix V

B

= Q

B

P

B1

beause

�

X

B

�

X

C

V

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

P

B

= Q

B

DQ

T

C

Q

B

P

B

= Q

B

P

B1

T

B11

= V

B

T

B11

;

whih in turn is a onsequene of (15) and (16). An orthonormal basis in the left, dominant,

invariant subspae of

�

X

B

�

X

C

is obtained by an analogous proedure.

Pieing the single steps together we obtain the following algorithm.

Algorithm 4 (Low rank Shur method (LRSM))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fators Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), suh that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respetively.

2. Q

B1

R

B

:= Z

B

; Q

C1

R

C

:= Z

C

(\eonomy size" QR fatorizations)

3. Q

B2

DQ

T

C2

:= R

B

Z

T

B

Z

C

R

T

C

(\eonomy size" SVD)

4. Q

B

= Q

B1

Q

B2

; Q

C

= Q

C1

Q

C2

5. P

B

T

B

P

T

B

:= DQ

T

C

Q

B

; P

C

T

C

P

T

C

:= D

T

Q

T

B

Q

C

(Shur fatorizations with nonin-

reasing ordered eigenvalues on the main diagonals of T

B

and T

C

)

6. V

B

= Q

B

P

B

(:;1:k)

; V

C

= Q

C

P

C

(:;1:k)

7. U

C

�U

T

B

:= V

T

C

V

B

(SVD)

8. S

B

= V

B

U

B

�

�1=2

; S

C

= V

C

U

C

�

�1=2

9.

^

A = S

T

C

AS

B

;

^

B = S

T

C

B;

^

C = CS

B

;

^

D = D

The exeution of Steps 2{9 has the omplexity O(nmaxfr

2

B

; r

2

C

g) w.r.t. omputation and
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O(nmaxfr

B

; r

C

g) w.r.t. memory, whereas the original Algorithm 3 has the omputational

omplexity O(n

3

) and the memory omplexity O(n

2

).

The square root method and the Shur method based on exat Gramians are known

to be mathematially equivalent in the sense that they deliver redued realizations with

idential transfer matries. The analog statement holds also for LRSRM and LRSM. In

the following lemma we assume that in LRSRM and LRSM the same low rank fators Z

B

and Z

C

are used und that both algorithms generate redued realizations of order k.

Lemma 1 Let k < rankZ

T

C

Z

B

and �

1

� �

2

� : : : be the singular values of Z

T

C

Z

B

. If

�

k+1

6= �

k

, LRSRM and LRSM deliver redued realizations, whih have idential transfer

matries.

Proof: Throughout this proof we provide the matries in Algorithm 2 with a tilde (e.g.,

~

�) to distinguish them from the variables that orrespond to Algorithm 4. In Steps 2{6 of

Algorithm 4 we ompute orthonormal bases V

B

and V

C

in the right and left, k-dimensional,

dominant, invariant subspaes of Z

B

Z

T

B

Z

C

Z

T

C

. Observe that

�(Z

B

Z

T

B

Z

C

Z

T

C

)nf0g = �(Z

T

C

Z

B

Z

T

B

Z

C

)nf0g = �(

~

�

0

~

�

T

0

)nf0g;

where eigenvalue multipliities are retained by the equalities. Thus, there exists a nonsin-

gular matrix W

B1

2 R

k;k

, suh that V

B

ful�lls

Z

B

Z

T

B

Z

C

Z

T

C

V

B

W

B1

= V

B

W

B1

~

�

2

:

Note that

~

� and the dominant invariant subspaes are uniquely de�ned beause �

k+1

6= �

k

.

Furthermore, it follows from Step 2 in Algorithm 2 that

Z

B

Z

T

B

Z

C

Z

T

C

~

V

B

=

~

V

B

~

�

2

:

As a onsequene,

~

V

B

= V

B

W

B2

holds for a ertain nonsingular matrix W

B2

2 R

k;k

.

This and a omparison of Step 4 in Algorithm 2 and Step 8 in Algorithm 4 reveal that

a nonsingular matrix W

B3

2 R

k;k

exists, suh that

~

S

B

= S

B

W

B3

. Analogously, it an

be shown that

~

S

C

= S

C

W

C3

holds for a ertain nonsingular matrix W

C3

2 R

k;k

. It is

easy to prove that S

T

C

S

B

=

~

S

T

C

~

S

B

= I

k

, whih leads to W

C3

= W

�T

B3

. Finally, we obtain

~

S

T

C

A

~

S

B

= W

�1

B3

S

T

C

AS

B

W

B3

,

~

S

T

C

B = W

�1

B3

S

T

C

B, and C

~

S

B

= CS

B

W

B3

, from whih the

statement of the lemma follows.

4.3 Dominant Subspaes Projetion Model Redution

The dominant subspaes projetion model redution (DSPMR) is motivated by Theorem

1. As a onsequene of (5) and (6), the invariant subspaes of the Gramians X

B

and X

C

w.r.t. the maximal eigenvalues are the state subspaes whih dominate the input-state

and state-output behavior of the system (1). The subspaes rangeZ

B

and rangeZ

C

an

be onsidered as approximations to these dominant subspaes beause Z

B

Z

T

B

� X

B

and

Z

C

Z

T

C

� X

C

. The straightforward idea is now to use the sum of both subspaes for a

state spae projetion. That means the redued realization is given by (8), where S

B

is

a matrix, suh that rangeS

B

= rangeZ

B

+ rangeZ

C

. More preisely, we hoose S

B

as
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a matrix with orthonormal olumns and set S

B

= S

C

=: S beause this results in an

orthoprojetion, whih is advantageous in view of numerial robustness. The basi version

of our algorithm is given as follows.

Algorithm 5 (Dominant subspaes projetion model redution - basi version (DSPMR-

B))

INPUT: A, B, C, D

OUTPUT:

^

A,

^

B,

^

C,

^

D, k

1. Compute low rank fators Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), suh that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respetively.

2. Compute an orthonormal basis S in rangeZ

B

+ rangeZ

C

, e.g., by an \eonomy size"

(rank-revealing) QR deomposition or an \eonomy size" SVD of the matrix

�

Z

B

Z

C

�

and set k = rankS.

3.

^

A = S

T

AS;

^

B = S

T

B;

^

C = CS;

^

D = D

There exists the following onnetion between LRSRM, LRSM, and DSPMR-B.

Lemma 2 Let k

1

� rankZ

T

B

Z

C

be the order of the redued system generated by LRSRM

and LRSM. Assume that �

k

1

+1

6= �

k

1

, where �

1

; �

2

; : : : are the noninreasingly ordered

singular values of Z

T

B

Z

C

. Denote the left (right) n-by-k

1

matries used for a state spae

projetion (8) in these two algorithms by S

LRSRM

C

(S

LRSRM

B

) and S

LRSM

C

(S

LRSM

B

), re-

spetively. S

DSPMR

2 R

n;k

2

is the matrix S generated in Step 2 of Algorithm 5, where

k

2

= rank

�

Z

B

Z

C

�

� k

1

. Then,

rangeS

LRSRM

C

= rangeS

LRSM

C

� rangeZ

C

� rangeS

DSPMR

; (17)

rangeS

LRSRM

B

= rangeS

LRSM

B

� rangeZ

B

� rangeS

DSPMR

: (18)

Proof: The equalities follow from the proof of Lemma 1. The inlusions are easy to

derive from Algorithms 2, 4, and 5.

In this sense, the state spae projetions of LRSRM and LRSM are ontained in that

of DSPMR, whih, however, generally delivers a redued realization of larger order.

There is only a ase for Algorithm 5 when the rank of S is muh smaller than n.

However, the rank k of this matrix an still be larger than the desired order of the redued

realization. There are at least two ways to ope with this problem. If k is suÆiently small

(say, k < 500), standard implementations of model redution methods for moderately

sized systems (Task 1; see xx 3.1 and 3.2) an be used to redue the system delivered by

Algorithm 5 further. Alternatively, a realization of arbitrary small order an be obtained

by a modi�ation of Algorithm 5. This modi�ation is a heuristi hoie of a suÆiently

small subspae of rangeZ

B

+ rangeZ

C

. We propose to hoose the olumns of S as the k

dominant, left singular vetors of the matrix

Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

: (19)
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The salar fators 1= jjZ

B

jj

F

and 1= jjZ

C

jj

F

are weighting fators with whih we try to attain

an equilibrium of the input-state and state-output relations. In partiular, a saling of the

matries B and C results in a saling of

^

B and

^

C with the same fators, but it does not

a�et the hoie of S.

Algorithm 6 (Dominant subspaes projetion model redution - re�ned version (DSPMR-

R))

INPUT: A, B, C, D, k

OUTPUT:

^

A,

^

B,

^

C,

^

D

1. Compute low rank fators Z

B

and Z

C

by Algorithm 1 (or alternative low rank meth-

ods), suh that Z

B

Z

T

B

and Z

C

Z

T

C

are approximate solutions of (3) and (4), respetively.

2. Z =

h

1

jjZ

B

jj

F

Z

B

1

jjZ

C

jj

F

Z

C

i

3. UEV

T

:= Z (\eonomy size" SVD), S = U

(:;1:k)

4.

^

A = S

T

AS;

^

B = S

T

B;

^

C = CS;

^

D = D

The redued system (

^

A;

^

B;

^

C;

^

D) is stable if A + A

T

< 0. Although instability of the

redued system has not been enountered in our numerial experiments, stability is not

guaranteed in general.

5 Numerial experiments

We demonstrate the performane of LRSRM, LRSM, and DSPMR-R in numerial ex-

periments with three large test examples of dynamial systems (1). These experiments

were arried out on a SUN Ultra 450 workstation at the Department of Mathematis and

Statistis of the University of Calgary. The omputations were performed with MATLAB

5.2 using IEEE double preision arithmeti (mahine preision �

mah

= 2

�52

� 2:2 � 10

�16

).

Our implementation makes use of the data struture for sparse matries o�ered by MAT-

LAB whenever this is pro�table.

Example 1 This example is a simpli�ed linear model of a nonlinear problem arising

from a ooling proess, whih is part of the manufaturing method for steel rails [50℄. The

temperature of the rail is lowered by water sprayed through several nozzles on its surfae.

Sine the problem is \frozen" w.r.t. one spae dimension and symmetri w.r.t. another, it

is suÆient to onsider the problem related to half the ross-setion 
 of the rail, where

homogeneous Neumann boundary onditions are imposed on the arti�ial boundary seg-

ment �

7

(see Figure 1). The pressure of the nozzles an be steered independently for

di�erent setions �

1

; : : : ;�

6

of the surfae. This orresponds to the boundary ontrol of

a two-dimensional instationary heat equation in x = x(�; �

1

; �

2

). The nozzle pressures

provide the input signals u

i

= u

i

(�), whih form the right hand side of the third type

boundary onditions (20). The output signals of this model are given by the temperature

in several interior observation points marked by small irles in Figure 1. After a proper
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saling of the physial quantities we get the paraboli di�erential equation

�

��

x =

�

2

��

2

1

x+

�

2

��

2

2

x (�

1

; �

2

) 2 


x+

�

�~n

x = u

i

(�

1

; �

2

) 2 �

i

; i = 1; : : : ; 6

�

�~n

x = 0 (�

1

; �

2

) 2 �

7

:

(20)

We utilized the MATLAB PDE toolbox to obtain a �nite element disretization of the

problem. Figure 1 shows the initial triangularization. The atual triangularization is the

result of two steps of regular mesh re�nement, i.e., in eah re�nement step all triangles

are split into four ongruent triangles. The �nal result of this proedure is a generalized

dynamial system of the typeM

_

~x = �N ~x+

~

Bu, y =

~

C~x with dimensions n = 3113,m = 6,

and q = 6, where M is the mass matrix and N is the sti�ness matrix of the disretization.

We ompute a Cholesky fatorization U

M

U

T

M

= M of the sparse, symmetri, positive

de�nite, well-onditioned mass matrix. De�ning A = �U

�1

M

NU

�T

M

, B = U

�1

M

~

B, and

C =

~

CU

�T

M

leads to a mathematially equivalent standard system (1). Note that the

matrix A is never formed expliitly beause the result would be a dense matrix. Instead,

we exploit the produt struture.

Γ
1

Γ
2

Γ
3

Γ
4

Γ
5

Γ
6

Γ
7

Figure 1: Example 1. Cross-setion of the steel rail and initial triangularization of 
.

Example 2 This example is a dynamial system with dimensions n = 3600, m = 4, and

q = 2. It was also used as a test example in [37, Example 5℄. The example arises from the

ontrol of a proess in hromatography. See [29℄ for bakground information. The matrix

A is sparse and unsymmetri. It has relatively bad algebrai properties. For example, its

symmetri part is inde�nite and there are eigenvalues of A with dominant imaginary parts.

Suh properties have usually a negative e�et on the onvergene of iterative methods for

ALEs.

The Bode plots of Examples 1 and 2 are quite smooth. For this reason and beause

these examples are MIMO systems (i.e., systems with m; q > 1), we omit printing suh

plots for the �rst two examples. In order to demonstrate that our algorithms are also

appliable to systems with Bode plots whih are not smooth, we inlude a third example.

The Bode magnitude plot of the following Example 3, that is a purely theoretial test
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example, shows three spikes; see Figure 2.

Example 3 The system matries are given as follows, where e

i

2 R

i;1

is the vetor with

eah entry equal to 1.

A =

2

6

6

4

A

1

A

2

A

3

A

4

3

7

7

5

; A

1

=

�

�1 100

�100 �1

�

; A

2

=

�

�1 200

�200 �1

�

;

A

3

=

�

�1 400

�400 �1

�

; A

4

= � diag(1; 2; : : : ; 1000); B =

�

10e

6

e

1000

�

; C = B

T

:

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

ω

| G
( j

 ω
 ) 

|

Figure 2: Example 3. Bode magnitude plot.

In our tests we apply eah model redution method to eah test example three times

(three \runs").

� In Run 1 we ompute the low rank approximations to the Gramians very aurately.

That means we do not terminate the LR-Smith(l) iteration in Step 1 of eah method

before a stagnation of the iteration aused by round-o� errors is observed. Moreover,

we allow a relatively large order of the redued model. In the spirit of Task 2 (see

x 3.1) our goal is to attain as small an approximation error as possible. Ideally, the

magnitude of this error should be in the viinity of the mahine preision.

� In Run 2 we use the same quite aurate low rank fators Z

B

and Z

C

as in Run 1,

but we limit the maximal order of the redued model to a smaller value. This an

be onsidered as an attempt of Task 2 and Task 1 in a single sweep.

� The number of LR-Smith(l) iteration steps is restrited to a small value in Run

3, whih generally leads to relatively inaurate approximations to the Gramians.

Indeed, in a pratial implementation r

B

and r

C

, the numbers of olumns in the

Cholesky fators Z

B

and Z

C

, respetively, whih are proportional to the number of

iteration steps, may be restrited by memory limits. Given suh relative inaurate

approximations, we try to generate as good a redued order model as possible without
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�xing the redued order k a priori. Instead, k is hosen as the numerial rank of

Z

T

C

Z

B

in LRSRM and LRSM, whereas k is the numerial rank of Z given by (19)

for DSPMR. This means that the redued orders of the realizations delivered by

DSPMR are generally larger than those of the realizations by LRSRM and LRSM.

Eah test run of our numerial experiments an be subdivided into two stages. In the

�rst stage we run the LR-Smith(l) iteration twie to ompute the matries Z

B

and Z

C

.

Within this iteration we solve sparse or strutured systems of linear equations diretly

although iterative solvers (see [42℄, for example) ould be used instead. To redue the

numerial osts, the bandwidth of the involved sparse matries (M and N in Example 1, A

in Example 2) is redued by a suitable simultaneous olumn-row reordering, whih is done

by means of the MATLAB funtion SYMRCM. This orresponds to Step 1 in Algorithm 1. We

use l-yli shift parameters p

i

omputed by the algorithm proposed in [37, Algorithm 1℄.

The auray of the approximated ALE solutions is measured by the normalized residual

norm (NRN), whih is de�ned as

NRN(Z) =

�

�

�

�

FZZ

T

+ ZZ

T

F

T

+GG

T

�

�

�

�

F

jjGG

T

jj

F

(21)

with (F;G; Z) = (A;B; Z

B

) or (A

T

; C

T

; Z

C

). The parameter l and the values of r

B

, r

C

,

NRN(Z

B

), and NRN(Z

C

) are shown in Table 1.

Example 1 Example 2 Example 3

system dimensions (n, m, q) (3113, 6, 6) (3600, 4, 2) (1006,1,1)

l 10 20 12

Run 1, 2 r

B

360 480 72

r

C

420 240 72

NRN(Z

B

) 3:4 � 10

�11

1:2 � 10

�11

9:7 � 10

�13

NRN(Z

C

) 1:2 � 10

�12

8:4 � 10

�13

1:2 � 10

�12

Run 3 r

B

60 80 12

r

C

60 40 12

NRN(Z

B

) 2:2 � 10

�3

2:2 � 10

�3

9:0 � 10

�4

NRN(Z

C

) 3:0 � 10

�3

2:2 � 10

�3

9:0 � 10

�4

Table 1: System dimensions and parameters desribing the LR-Smith(l) iterations in Step

1 of LRSRM, LRSM, and DSPMR.

The seond stage onsists of the omputation of the redued order models themselves

by LRSRM, LRSM, and DSPMR. It should be noted that the �rst two methods often

deliver redued models with an unstable matrix

^

A. We believe that this phenomenon

is mainly aused by round-o� errors in Run 1 (where high auray redued realizations

are omputed) and by the use of quite inaurate Gramians in Run 3. However, there

are usually only few slightly unstable modes (i.e., eigenvalues of

^

A with a nonnegative

real part of very small magnitude). Mostly, these unstable modes are hardly ontrollable

and observable. If unstable modes are enountered, we remove them by modal trunation

[6℄. That means the order of the redued system is further dereased by the number of

unstable modes in this kind of optional postproessing. Table 2 displays the order k of the
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redued realizations after postproessing. Furthermore, it is shown whether the redued

realization (before postproessing) is stable or unstable. Note that in our experiments

DSPMR always delivered stable redued realizations.

Example 1 Example 2 Example 3

Run 1 LRSRM 194 (u) 173 (u) 46 (u)

LRSM 197 (u) 196 (u) 50 (s)

DSPMR 200 (s) 200 (s) 50 (s)

Run 2 LRSRM 40 (s) 40 (s) 10 (s)

LRSM 40 (s) 40 (s) 10 (s)

DSPMR 40 (s) 40 (s) 10 (s)

Run 3 LRSRM 54 (u) 38 (u) 12 (s)

LRSM 54 (u) 38 (u) 12 (s)

DSPMR 120 (s) 120 (s) 18 (s)

Table 2: Orders of redued realizations delivered by LRSRM, LRSM, and DSPMR.

DSPMR-R is applied in Runs 1 and 2, whereas DSPMR-B is used in Run 3. It is also

shown whether the redued realization is stable (s) or unstable (u).

Next, we study the numerial osts of the algorithms. Table 3 shows the total number

of oating point operations (\ops", see [17, x 1.2.4℄) required for eah test run. These

values inlude the omputational ost for both omputing of the low rank Cholesky fators

and performing the model redution itself.

Example 1 Example 2 Example 3

Run 1 LRSRM 1:2 � 10

10

2:5 � 10

10

1:8 � 10

8

LRSM 2:6 � 10

10

3:5 � 10

10

3:3 � 10

8

DSPMR 2:7 � 10

10

4:0 � 10

10

3:3 � 10

8

Run 2 LRSRM 9:7 � 10

9

2:2 � 10

10

1:3 � 10

8

LRSM 2:3 � 10

10

3:2 � 10

10

2:8 � 10

8

DSPMR 2:7 � 10

10

3:9 � 10

10

3:3 � 10

8

Run 3 LRSRM 1:1 � 10

9

2:6 � 10

9

4:5 � 10

7

LRSM 2:0 � 10

9

3:3 � 10

9

4:9 � 10

7

DSPMR 1:5 � 10

9

3:2 � 10

9

4:9 � 10

7

Table 3: Total numbers of ops required.

The omputational osts of LRSM and DSPMR are slightly larger than that of LRSRM.

However, eah is muh smaller than the ost of standard implementations of the balaned

trunation method, whih involve the omputation of Shur fatorizations or SVDs of dense

n-by-n matries. A rough estimation of their ost gives 50n

3

ops, whih are 1:5 �10

12

ops

for Example 1 and 2:3 � 10

12

ops for Example 2. Beause of the blok diagonal struture

of A in Example 3, the Gramians ould be diretly omputed within O(n

2

) operations.

However, standard balaned trunation algorithms would still require O(n

3

) ops.

The seond omplexity aspet, whih should briey be disussed here, is the memory

requirement of our methods. It is dominated by the amount of memory needed for storing
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the low rank fators Z

B

and Z

C

and the LU fators arising from the l LU fatorizations of

the matries in the shifted systems of linear equations, whih need to be solved in the ourse

of the LR-Smith(l) method. Of ourse, these quantities strongly depend on the partiular

problem. However, taking into aount that suitably reordered sparse matries often have

a relative small bandwidth (115 for M and N in Example 1, 57 for A in Example 2) and

onsidering the number of olumns in the low rank fators given in Table 1 reveal that our

methods demand onsiderably less memory than standard implementations, whih usually

require storing a few dense n-by-n matries. Of ourse, this demand an be redued even

further by solving the shifted linear systems iteratively.

Finally, we show how aurate the redued order models approximate the original ones.

To this end we ompare the frequeny response of the original system with those of the

redued systems in Figures 3, 4, and 5. There we display the funtion

k�G(|!)k= = kG(|!)�

^

G(|!)k=

for a ertain frequeny range ! 2 [!

min

; !

max

℄. For Examples 1 and 2 we hoose [!

min

; !

max

℄

= [10

�10

; 10

10

℄. For Example 3 we onsider the frequeny range [!

min

; !

max

℄ = [10

1

; 10

4

℄,

whih ontains the three spikes.

The salar parameter , whih we de�ne as

 = max

!2[!

min

;!

max

℄

kG(|!)k ;

is used for a normalization and an be onsidered as an approximation to the L

1

norm

of G. That means, our plots show relative error urves in this partiular sense. It should

be mentioned that, in ontrast to the majority of publiations on model redution, no

simultaneous Bode plots of the original and redued systems are used beause it would be

impossible to distinguish the single urves in that type of plot.
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Figure 3: Example 1. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).

Exept for DSPMR in Run 2 for Example 2, our algorithms generate redued systems

whose approximation properties are quite satisfatory. In partiular, in Run 1 we attain

error norms whih are in the viinity of the given mahine preision. Note that the methods

mentioned in x 3.3 typially deliver onsiderably less aurate redued systems. The



20 Thilo Penzl

10
−10

10
−5

10
0

10
5

10
10

10
−20

10
−15

10
−10

10
−5

10
0

ω

|| 
∆ 

G
( 

j ω
 )

 ||
 / 

c
Run 2: DSPMR

Run 2: LRSRM, LRSM

Run 1: DSPMR

Run 1: LRSM

Run 1: LRSRM

10
−10

10
−5

10
0

10
5

10
10

10
−20

10
−15

10
−10

10
−5

10
0

ω

|| 
∆ 

G
( 

j ω
 )

 ||
 / 

c

Run 3: DSPMR

Run 3: LRSRM,

LRSM

Figure 4: Example 2. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).
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Figure 5: Example 3. Error plots for LRSRM (dashdotted line), LRSM (dashed line), and

DSPMR (solid line).

error urves for the algorithms LRSRM and LRSM, whih are mathematially equivalent

in exat arithmetis, are almost idential. We observed that the ondition numbers of

the projetion matries S

B

and S

C

are onsiderable higher for LRSRM than for LRSM.

Moreover, the number of unstable modes in the redued realization tends to be higher

for LRSRM ompared to LRSM. However, both aspets seem to have no negative e�et

on the approximation error of LRSRM. For Examples 1 and 2 the error urves of both

methods are slightly better for Run 1 and onsiderably better for Run 2 ompared to those

of DSPMR. In Runs 1 and 2 for Example 3 all methods deliver almost idential results.

DSPMR performs generally better in Run 3, whih an be explained by (17) and (18).

Note the superiority of DSPMR in the low-frequeny range for Example 1. However, the

redued order of the realizations delivered by DSPMR is larger than those of the LRSRM

and LRSM realizations in this run.
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6 Conlusions

In this paper we have studied three model redution algorithms for large dynamial sys-

tems. The �rst two methods, LRSRM and LRSM, are modi�ations of the well-known

square root method and Shur method, whih are balaned trunation tehniques for

systems of moderate order. These modi�ations are based on a substitution of the on-

trollability and observability Gramians by low rank approximations. DSPMR, the third

method, is not diretly related to balaned trunation and more heuristi in nature. It

is motivated by input and output energy onsiderations (Theorem 1) and related to the

other two methods by ertain inlusions that hold for the ranges of the orresponding pro-

jetion matries. The availability of relatively aurate low rank approximations to the

system Gramians is of vital importane for eah model redution method. We ompute

these approximations by the LR-Smith(l) iteration, whih is a low rank version of the

well-known ADI iteration. However, alternative methods ould be used.

The performane of the three model redution algorithms has been studied in numer-

ial experiments. The results of LRSRM and LRSM are fairly similar and mostly better

than those for DSPMR. Beause of this and its simpliity, LRSRM should be onsidered

as the method of hoie in general. On the other hand, in situations when the low rank

approximations to the Gramians are not very aurate, DSPMR turns out to be an in-

teresting alternative to LRSRM. Furthermore, DSPMR delivered stable redued systems

in eah of our test runs, whereas the redued systems generated by LRSRM and LRSM

often ontain a few unstable modes, whih must be removed in a postproessing step.

In our opinion the test results of LRSRM, LRSM, and DSPMR are quite promising in

view of the attainable auray of the redued systems and the numerial osts, although

we expet that these osts are in many ases higher than those of model redution methods

based on Pad�e approximation and Krylov subspaes. Nevertheless, our methods an be

applied to very large model redution problems that do not allow the use of standard

tehniques, in whih the Gramians are omputed by the Bartels-Stewart method or the

Hammarling method.
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