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Eigenvalue Decay Bounds for Solutions of Lyapunov Equations:
The Symmetric Case*

Thilo Penzl

Abstract

We present two new bounds for the eigenvalues of the solutions to a class of
continuous-time and discrete-time Lyapunov equations. These bounds hold for Lya-
punov equations with symmetric coefficient matrices and right-hand side matrices
of low rank. They reflect the fast decay of the nonincreasingly ordered eigenvalues
of the solution matrix.

Keywords: Lyapunov equation; eigenvalue decay; eigenvalue bound.

1 Introduction
In this note we mainly focus on the continuous-time algebraic Lyapunov equation (CALE)
AX + XA" = -BB” (1)

where A € R"" and B € R™™. We denote the open left half of the complex plane and that
of the real axis by C_ and R_, respectively. The matrix A is assumed to be c-stable, i.e.,
its spectrum o(A) is a subset of C_. It is well-known that under this assumption a unique
solution X € R™" exists, which is symmetric and positive semidefinite [15]. Consequently,
its eigenvalues are real and nonnegative. Throughout this paper eigenvalues of symmetric
matrices are arranged in a nonincreasing order, e.g., A\{(X) > ... > A\, (X). It follows
from the uniqueness of the solution that X # 0 and A;(X) > 0 if B # 0. In the sequel we
consider the special case of the CALE (1) where the right-hand side has a very low rank.
More precisely, we assume that m < n. Such CALEs arise from large dynamical systems
with a relatively small number of input and output variables. Numerical experiments
(e.g., [13]) show that the eigenvalues of their solution matrices tend to decay very fast.
The purpose of this paper is to give some insight into this phenomenon. In particular, we
are interested in upper bounds for the expression A\, y1(X)/A(X) with k=1,2,... ., n—1.
This issue is closely related to the computation of the best low-rank approximation to
the symmetric, positive semidefinite matrix X, because

IX = X|| _ N (X))

min = : 2
)E'ER"’“,rank)?gk ||X|| /\1(X) ( )
see [3, Theorem 2.5.3.], for example. Here, || - || denotes the spectral norm of a matrix.

Note that || X || = A(X). A motivation for the investigation of the eigenvalue decay and
the corresponding matrix approximation problem is given by several numerical methods
for the solution of very large Lyapunov equations [14, 6, 7, 4, 5, 13, 10] which are based
on similar low-rank approximations.
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In the last two decades a relatively large number of bounds for solutions of Lyapunov
equations have been derived; see [8] for a recent survey. Unfortunately, these bounds are
generally useless if m < n. The only existing nontrivial bound for this case is that by
Mori et al [11]. It is based on the integral representation of the CALE solution, e.g., [9].
However, it is impossible to compute this bound analytically. Its numerical computation
is involved and very expensive. Thus, it does not give much insight into the eigenvalue
decay problem.

In the remainder of this paper we provide eigenvalue decay bounds for CALEs and
their discrete-time counterparts with symmetric coefficient matrices. These bounds are
very inexpensive to compute and reflect the fast decay of the eigenvalues. Furthermore,
a few comments on the unsymmetric case are made.

2 The symmetric, continuous-time case

In this section we consider the special case where the coefficient matrix A of the CALE (1)
is symmetric and negative definite. This case is interesting because several applications
involve dynamical systems with a symmetry structure, which in turn lead to symmetric
CALEs. For example, such systems arise from the semidiscretization of parabolic PDEs
(for example, diffusion problems) and the simulation of circuits, e.g., [1].

The following theorem provides an eigenvalue decay bound, that depends only on
the condition number of the coefficient matrix. The condition number is defined as
k(A) = ||A|IIlIAY|. For symmetric, negative definite matrices A this is equivalent to

R(A) = An(A) /M (A).

Theorem 1 Let A € R"" be a symmetric, negative definite matriz with the condition
number k = Kk(A), B € R"™ a nonzero matriz, and A\;(X) with i = 1,...,n the nonin-
creasingly ordered eigenvalues of X. Then,

. 2
A (X) (g #2700 1
M (X) L /R 4]

(3)

for 1 <mk < n.

The following elementary proof is based on the construction of a rank-mk-approximation
X}, to the solution X of the CALE. For this purpose we apply k steps of the ADI iteration
[12, 17]. The ADI shift parameters are chosen in a manner which is not optimal, but
allows us to compute an upper bound for || X — Xy||/||X]||. Finally, (2) is applied to find
the eigenvalue decay bound.

Proof: Let k > 1 be an arbitrary but fixed number such that mk < n. First, we
introduce the rational functions

p—t -
sp(t) = pti and  sgp, . p}(2) = illspi(t)a

where p, p;,t € R_. Next, we consider the sequence of ADI iterates { X;}2, generated by
an initial matrix X, and

X; = 5p,(A) X;_18p.(A) = 2pi(A+p,I) " BB" (A + p,I)~". (4)
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It is easily verified that the solution X is a stationary point of this mapping (i.e., X; 1 = X
implies X; = X), which gives

X-X; = Spi(A) (X - Xi—l)spi (A)
We choose Xy = 0 and obtain recursively

Due to (4), rank X; < rank X;_; + m and, consequently, rank X; < km. This, together
with (2), results in the left inequality of

A1 (X)) [IX = X | )
< < NS (A2, (6)
M (X) x| (it

whereas the right inequality is an immediate consequence of (5). The norm term on the
right-hand side can be estimated as

||s{p1,---,Pk}(A)|| = maX‘O’(S{ph---,Pk}(A))‘ (7)
= max{[sg,.p)A)] 1 A€ T(A)}
< max{|sg,,.p3AN)] A€ B al}, (8)

with 3 := A\,(A) and « := A;(A). Observe that (7) is valid because s, . ,,1(A4) is a
symmetric matrix.

Before we continue estimating (8), we briefly study the behavior of the rational func-
tion s,(t). Basic analysis reveals that s,(¢) is monotonically increasing in R_ for any
p € R and [s,(t)| < 1 for any p,t € R_. Moreover, let 97,5 € R be two arbitrary
numbers with 3 < & < 0, and define % := /& and p := —(af)"/2. Then,

. ~ Vi -1

0 < —s53(8) = s5(@) = <1

and, because of the monotonicity,

Vi =1
Vi +1

Now we return to (8), where we choose the parameters py, ..., pg. To this end, we first
set 1o := a and t; := to(B/a)* = ter¥/* for i = 0,41, +2,... This is a geometric sequence
with t;41 < t; and t; = , which forms a partitioning of [, @] into k subintervals, i.e.,
[B,a] = UF_,[t;, ti_1]. Next, we define the parameters p; as the geometric center points of
the subintervals [t;,¢;_1]. Note that

Pi = —/ titi 1 = —1/ ti+jti717j

[sp(t)] < for ¢ € [3.4]. (9)

for any j = 0,1,2,... For brevity, we introduce the auxiliary variables
Kk,j = Livj) — @ik
ti-1-j)
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and .
VR — 1 k2liH1)/(2k) _ 1

Nl = K@D/ 41
for j = 0,+1,42,... It follows from (9), where we set § = tiv; and & = t;_y_;, that

rk:,j =

(10)

|8p. ()| <1y for t € [tiyg,tioig] C [y tioiy)]

with ¢ = 1,...,k and 7 = 0,£1,+£2,... Note that the right-hand side of the inequality
does not depend on 7. Multiplying the inequalities for ¢ = 1,...,k and assuming that
t € [t;,t;_1], where [ = 1,... k determines an arbitrary subinterval of [, @], leads to the
left inequality of

k k—1
Sreeay (D] < [ [ rea—s < [ ] res- (11)
i=1 =0

The right inequality holds because
0< Tho < Th—1 = Tg1 < Th—2=TE2 < ...,

which can be verified by considering the monotonic dependence of 74 ; on kj; and that
of ki,; on j. Since the right term in (11) does not depend on [, it is an upper bound for
any t € [3, al. Finally, combining the relations (6), (8), (10), and (11) leads to (3). []

In view of the proof it should be mentioned that Wachspress [16] proposed a procedure
for computing parameters py, ..., pr which are optimal in the sense of minimizing the right
term in (8). However, this procedure is restricted to the special case where k is a power
of 2 and no bound for the minimal value of this term is given.

The right-hand side of (3) is monotonically increasing in &, i.e., enlarging the condition
number of the coefficient matrix results in a slower decay of the bound. Note further that
the right-hand side of (3) does not depend on m. Roughly speaking, this means that the
minimal rank of an approximation to the CALE solution is about proportional to the
rank of the right-hand side, if the coefficient matrix and the desired accuracy of this
approximation are fixed.

Assuming that the condition number of A is given, our bound is very inexpensive to
compute. However, it is not easy see how the right-hand side in (3) depends on x and
k. For this reason we illustrate this dependence in Figure 1. It reveals a fast eigenvalue
decay for magnitudes of x which are typical for many applications.

Finally, we investigate the tightness of our bound using the following test example.

Example 1 [5, Example 4.1] In this example the so-called controllability Gramian of a
dynamical system is computed by solving the CALE (1). The underlying system arises
from the discretization of a one-dimensional heat transfer problem. The matrices are
given as

—_
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Figure 1: The right-hand side term in (3) as a function of x and k.

where h = 1/(n+ 1), n =100, and « ~ 1.6 - 10*.

In Figure 2 the eigenvalue ratio Appy1(X)/A1(X) and the eigenvalue decay bound
are plotted for this example. In other words, we compare the left-hand side and the

right-hand side of (3) in this figure.
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Figure 2: Example 1. Eigenvalue decay bound (right-hand side
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3 Notes on the unsymmetric, continuous-time case

We do not provide bounds for the general case, where A is not necessarily symmetric.
However, we want to discuss some aspects of this case in this section.

The following lemma reveals that it is impossible to find nontrivial eigenvalue decay
bounds (as well as trace or determinant bounds etc.) for CALEs, which only depend on
the eigenvalues or the Jordan structure of A. A matrix pair (A4, B) with A € R™" and
B € R™™ is called controllable if rank [ A-)X B } =n for all A € C.

Lemma 1 Let Nfl € R" be a c-stable matriz for which a matriz B € R™ exists such
that the pair (A, B) is controllable. Then, for any symmetric, positive definite matriz

X € R a nonsingular transformation matriz T € R™" and a nonzero matriz B € Rm1
exist such that X is the solution of (1) where A =TAT™!.

Proof. Because of the stability and controllability assumptions a unique solution X

of
AX + XAT = —BBT (12)
exists, which is symmetric and positive definite. This is an immediate consequence of [2,
Thm. 4]. We define 7" := X'/2X /2 which corresponds to X = TXTT and B := T'B.
Setting A=T AT, B=T"'B,and X =T !XT T in (12) shows that X is indeed the
solution of (1). ]

Next, we consider a test example depending on a parameter which determines the
dominance of the skew-symmetric part of A.

Example 2 In this example with dimensions n = 2d 4+ 1 and m = 1 the matrices in the
CALE are defined as

A= diag(—1, Ay, Ay, ..., As) and B=[1 1 ... 1]",
where /
B -1 jt/d
A= { —jt/d  —1 }
for j = 1,...,d and ¢t > 0 is a real parameter. The eigenvalues of the unsymmetric
blockdiagonal matrix A are located in an interval parallel to the imaginary axis or, more
precisely, Re A\;(A) = —1 and —t < ImA;(A) < ¢ holds for i = 1,...,n. We have

generated three test examples by choosing d = 50 and ¢t = 10, 100, 1000. The condition
numbers of the resulting matrices A are x(A4) = ||A|||| A7 & 10, 100, 1000, respectively.

Figure 3 shows the eigenvalue ratios A,y1(X)/A1(X) as a function of k for the three
different values of ¢. This figure reveals two facts. First, the bound (3) does not hold
for unsymmetric CALEs, which follows from a comparison with Figure 1. Second, the
increasing dominance of the skew-symmetric part of A and the imaginary parts of the
eigenvalues of A tends to slow down the decay of the eigenvalues of X. This can even
lead to nearly constant eigenvalues (see case ¢ = 1000 in Figure 3).
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Figure 3: Example 2. Eigenvalue ratio A\g11(X)/A1(X) as a function of k for three
different values of ¢.

4 The symmetric, discrete-time case

Using the Cayley transformation an eigenvalue decay bound for the discrete-time case can
be derived from the continuous-time case. Here, we consider the discrete-time algebraic
Lyapunov equation (DALE)

DXDT - X = -FEET (13)
with D € R* and E € R™™. The matrix D is assumed to be d-stable, i.e., p(D) < 1,
where p(D) = max |o(D)] is the spectral radius of D. This guarantees the existence of
a unique solution, which is symmetric and positive semidefinite. An eigenvalue decay
bound for DALEs is given by the following corollary, which is derived from Theorem 1.

Corollary 1 If D € R™" is a d-stable, symmetric matriz and E € R"™ is a nonzero
matriz, then (3) with

_ (D) =1)(AM(D) +1)

(D) +1)(M(D) - 1)
holds for the nonincreasing eigenvalues of the solution X of (13).

Proof: The proof is based on the inverse Cayley transformation f(t) = (¢t —1)/(t+1).
We define A = f(D) and B = v/2(D 4 I)™'E. Then it can be proved that (1) and (13)
are equivalent, i.e., both Lyapunov equations have the same solution X. From p(D) < 1
it follows that A is c-stable. Moreover, A is symmetric. Consequently, (3) holds with
k = k(A). Since A is a matrix function in D and f(¢) is monotonically increasing for
t € (—1,1), the relation X\;(A) = f(A\;(D)) holds for i = 1,...,n. We obtain

) = M) T0W(D) _ (ulD) = )0(D) + 1)
M(A) f(D) (D) + D(M(D) — 1)

which completes the proof. H




5 Conclusions

In this paper we have presented eigenvalue decay bounds for the solutions to a class of
CALEs and DALEs. These bounds are restricted to equations with symmetric coefficient
matrices and right-hand side matrices of low rank. Under these assumptions our bounds
reveal the fast decay of the eigenvalues of the solution. This implies that the solution
matrices of large Liyapunov equations tend to be ill-conditioned or even numerically
singular although, under mild conditions, they can be proved to be positive definite.
This in turn explains the numerical difficulties of some algorithms, which involve the
solutions of Lyapunov equations or their inverses, such as certain methods for partial
stabilization of systems. Another consequence of the fast eigenvalue decay is the fact,
that the solution matrices can usually be approximated very well by a product of low-rank
Cholesky factors. The decay rate of our bounds is determined by the condition number
of the coefficient matrix in the continuous-time case and by a simple expression of its
extremal eigenvalues in the discrete-time case. Unfortunately, we are not able to provide
decay bounds which also hold for unsymmetric Lyapunov equations.
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