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Eigenvalue Deay Bounds for Solutions of Lyapunov Equations:

The Symmetri Case

�

Thilo Penzl

Abstrat

We present two new bounds for the eigenvalues of the solutions to a lass of

ontinuous-time and disrete-time Lyapunov equations. These bounds hold for Lya-

punov equations with symmetri oeÆient matries and right-hand side matries

of low rank. They reet the fast deay of the noninreasingly ordered eigenvalues

of the solution matrix.

Keywords: Lyapunov equation; eigenvalue deay; eigenvalue bound.

1 Introdution

In this note we mainly fous on the ontinuous-time algebrai Lyapunov equation (CALE)

AX +XA

T

= �BB

T

(1)

where A 2 R

n;n

and B 2 R

n;m

. We denote the open left half of the omplex plane and that

of the real axis by C

�

and R

�

, respetively. The matrix A is assumed to be -stable, i.e.,

its spetrum �(A) is a subset of C

�

. It is well-known that under this assumption a unique

solutionX 2 R

n;n

exists, whih is symmetri and positive semide�nite [15℄. Consequently,

its eigenvalues are real and nonnegative. Throughout this paper eigenvalues of symmetri

matries are arranged in a noninreasing order, e.g., �

1

(X) � : : : � �

n

(X). It follows

from the uniqueness of the solution that X 6= 0 and �

1

(X) > 0 if B 6= 0. In the sequel we

onsider the speial ase of the CALE (1) where the right-hand side has a very low rank.

More preisely, we assume that m� n. Suh CALEs arise from large dynamial systems

with a relatively small number of input and output variables. Numerial experiments

(e.g., [13℄) show that the eigenvalues of their solution matries tend to deay very fast.

The purpose of this paper is to give some insight into this phenomenon. In partiular, we

are interested in upper bounds for the expression �

k+1

(X)=�

1

(X) with k = 1; 2; : : : ; n�1.

This issue is losely related to the omputation of the best low-rank approximation to

the symmetri, positive semide�nite matrix X, beause

min

~

X2R

n;n

; rank

~

X�k

kX �

~

Xk

kXk

=

�

k+1

(X)

�

1

(X)

; (2)

see [3, Theorem 2.5.3.℄, for example. Here, k � k denotes the spetral norm of a matrix.

Note that kXk = �

1

(X). A motivation for the investigation of the eigenvalue deay and

the orresponding matrix approximation problem is given by several numerial methods

for the solution of very large Lyapunov equations [14, 6, 7, 4, 5, 13, 10℄ whih are based

on similar low-rank approximations.

�

This work was supported by the Deutsher Akademisher Austaushdienst, Bonn, Germany.
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In the last two deades a relatively large number of bounds for solutions of Lyapunov

equations have been derived; see [8℄ for a reent survey. Unfortunately, these bounds are

generally useless if m < n. The only existing nontrivial bound for this ase is that by

Mori et al [11℄. It is based on the integral representation of the CALE solution, e.g., [9℄.

However, it is impossible to ompute this bound analytially. Its numerial omputation

is involved and very expensive. Thus, it does not give muh insight into the eigenvalue

deay problem.

In the remainder of this paper we provide eigenvalue deay bounds for CALEs and

their disrete-time ounterparts with symmetri oeÆient matries. These bounds are

very inexpensive to ompute and reet the fast deay of the eigenvalues. Furthermore,

a few omments on the unsymmetri ase are made.

2 The symmetri, ontinuous-time ase

In this setion we onsider the speial ase where the oeÆient matrix A of the CALE (1)

is symmetri and negative de�nite. This ase is interesting beause several appliations

involve dynamial systems with a symmetry struture, whih in turn lead to symmetri

CALEs. For example, suh systems arise from the semidisretization of paraboli PDEs

(for example, di�usion problems) and the simulation of iruits, e.g., [1℄.

The following theorem provides an eigenvalue deay bound, that depends only on

the ondition number of the oeÆient matrix. The ondition number is de�ned as

�(A) = kAkkA

�1

k. For symmetri, negative de�nite matries A this is equivalent to

�(A) = �

n

(A)=�

1

(A).

Theorem 1 Let A 2 R

n;n

be a symmetri, negative de�nite matrix with the ondition

number � = �(A), B 2 R

n;m

a nonzero matrix, and �

i

(X) with i = 1; : : : ; n the nonin-

reasingly ordered eigenvalues of X. Then,

�

mk+1

(X)

�

1

(X)

�

 

k�1

Y

j=0

�

(2j+1)=(2k)

� 1

�

(2j+1)=(2k)

+ 1

!

2

(3)

for 1 � mk < n.

The following elementary proof is based on the onstrution of a rank-mk-approximation

X

k

to the solution X of the CALE. For this purpose we apply k steps of the ADI iteration

[12, 17℄. The ADI shift parameters are hosen in a manner whih is not optimal, but

allows us to ompute an upper bound for kX �X

k

k=kXk. Finally, (2) is applied to �nd

the eigenvalue deay bound.

Proof: Let k > 1 be an arbitrary but �xed number suh that mk < n. First, we

introdue the rational funtions

s

p

(t) :=

p� t

p+ t

and s

fp

1

;:::;p

k

g

(t) :=

k

Y

i=1

s

p

i

(t);

where p; p

i

; t 2 R

�

. Next, we onsider the sequene of ADI iterates fX

i

g

1

i=0

generated by

an initial matrix X

0

and

X

i

= s

p

i

(A)X

i�1

s

p

i

(A)� 2p

i

(A+ p

i

I)

�1

BB

T

(A+ p

i

I)

�1

: (4)
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It is easily veri�ed that the solutionX is a stationary point of this mapping (i.e.,X

i�1

= X

implies X

i

= X), whih gives

X �X

i

= s

p

i

(A)(X �X

i�1

)s

p

i

(A):

We hoose X

0

= 0 and obtain reursively

X �X

k

= s

fp

1

;:::;p

k

g

(A)Xs

fp

1

;:::;p

k

g

(A): (5)

Due to (4), rankX

i

� rankX

i�1

+m and, onsequently, rankX

k

� km. This, together

with (2), results in the left inequality of

�

mk+1

(X)

�

1

(X)

�

kX �X

k

k

kXk

� ks

fp

1

;:::;p

k

g

(A)k

2

; (6)

whereas the right inequality is an immediate onsequene of (5). The norm term on the

right-hand side an be estimated as

ks

fp

1

;:::;p

k

g

(A)k = max

�

�

�(s

fp

1

;:::;p

k

g

(A))

�

�

(7)

= maxfjs

fp

1

;:::;p

k

g

(�)j : � 2 �(A)g

� maxfjs

fp

1

;:::;p

k

g

(�)j : � 2 [�; �℄g; (8)

with � := �

n

(A) and � := �

1

(A). Observe that (7) is valid beause s

fp

1

;:::;p

k

g

(A) is a

symmetri matrix.

Before we ontinue estimating (8), we briey study the behavior of the rational fun-

tion s

p

(t). Basi analysis reveals that s

p

(t) is monotonially inreasing in R

�

for any

p 2 R

�

and js

p

(t)j < 1 for any p; t 2 R

�

. Moreover, let ~�;

~

� 2 R be two arbitrary

numbers with

~

� < ~� < 0, and de�ne ~� :=

~

�=~� and ~p := �(~�

~

�)

1=2

. Then,

0 < �s

~p

(

~

�) = s

~p

(~�) =

p

~�� 1

p

~� + 1

< 1

and, beause of the monotoniity,

js

~p

(t)j �

p

~�� 1

p

~� + 1

for t 2 [

~

�; ~�℄: (9)

Now we return to (8), where we hoose the parameters p

1

; : : : ; p

k

. To this end, we �rst

set t

0

:= � and t

i

:= t

0

(�=�)

i=k

= t

0

�

i=k

for i = 0;�1;�2; : : : This is a geometri sequene

with t

i+1

< t

i

and t

k

= �, whih forms a partitioning of [�; �℄ into k subintervals, i.e.,

[�; �℄ = [

k

i=1

[t

i

; t

i�1

℄. Next, we de�ne the parameters p

i

as the geometri enter points of

the subintervals [t

i

; t

i�1

℄. Note that

p

i

:= �

p

t

i

t

i�1

= �

p

t

i+j

t

i�1�j

for any j = 0; 1; 2; : : : For brevity, we introdue the auxiliary variables

�

k;j

:=

t

i+jjj

t

i�1�jjj

= �

(2jjj+1)=k

3



and

r

k;j

:=

p

�

k;j

� 1

p

�

k;j

+ 1

=

�

(2jjj+1)=(2k)

� 1

�

(2jjj+1)=(2k)

+ 1

(10)

for j = 0;�1;�2; : : : It follows from (9), where we set

~

� = t

i+j

and ~� = t

i�1�j

, that

js

p

i

(t)j � r

k;j

for t 2 [t

i+j

; t

i�1+j

℄ � [t

i+jjj

; t

i�1�jjj

℄

with i = 1; : : : ; k and j = 0;�1;�2; : : : Note that the right-hand side of the inequality

does not depend on i. Multiplying the inequalities for i = 1; : : : ; k and assuming that

t 2 [t

l

; t

l�1

℄, where l = 1; : : : ; k determines an arbitrary subinterval of [�; �℄, leads to the

left inequality of

�

�

s

fp

1

;:::;p

k

g

(t)

�

�

�

k

Y

i=1

r

k;l�i

�

k�1

Y

j=0

r

k;j

: (11)

The right inequality holds beause

0 < r

k;0

< r

k;�1

= r

k;1

< r

k;�2

= r

k;2

< : : : ;

whih an be veri�ed by onsidering the monotoni dependene of r

k;j

on �

k;j

and that

of �

k;j

on j. Sine the right term in (11) does not depend on l, it is an upper bound for

any t 2 [�; �℄. Finally, ombining the relations (6), (8), (10), and (11) leads to (3).

In view of the proof it should be mentioned that Wahspress [16℄ proposed a proedure

for omputing parameters p

1

; : : : ; p

k

whih are optimal in the sense of minimizing the right

term in (8). However, this proedure is restrited to the speial ase where k is a power

of 2 and no bound for the minimal value of this term is given.

The right-hand side of (3) is monotonially inreasing in �, i.e., enlarging the ondition

number of the oeÆient matrix results in a slower deay of the bound. Note further that

the right-hand side of (3) does not depend on m. Roughly speaking, this means that the

minimal rank of an approximation to the CALE solution is about proportional to the

rank of the right-hand side, if the oeÆient matrix and the desired auray of this

approximation are �xed.

Assuming that the ondition number of A is given, our bound is very inexpensive to

ompute. However, it is not easy see how the right-hand side in (3) depends on � and

k. For this reason we illustrate this dependene in Figure 1. It reveals a fast eigenvalue

deay for magnitudes of � whih are typial for many appliations.

Finally, we investigate the tightness of our bound using the following test example.

Example 1 [5, Example 4.1℄ In this example the so-alled ontrollability Gramian of a

dynamial system is omputed by solving the CALE (1). The underlying system arises

from the disretization of a one-dimensional heat transfer problem. The matries are

given as

A =

1

h

2

6

6

6

4

�1 1

1 �2

.

.

.

.

.

.

.

.

.

1

1 �2

3

7

7

7

5

and B =

1

h

2

6

6

6

4

0

.

.

.

0

1

3

7

7

7

5

;
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Figure 1: The right-hand side term in (3) as a funtion of � and k.

where h = 1=(n+ 1), n = 100, and � � 1:6 � 10

4

.

In Figure 2 the eigenvalue ratio �

mk+1

(X)=�

1

(X) and the eigenvalue deay bound

are plotted for this example. In other words, we ompare the left-hand side and the

right-hand side of (3) in this �gure.
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Figure 2: Example 1. Eigenvalue deay bound (right-hand side in (3)) versus atual

eigenvalue ratios (left-hand side in (3)).
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3 Notes on the unsymmetri, ontinuous-time ase

We do not provide bounds for the general ase, where A is not neessarily symmetri.

However, we want to disuss some aspets of this ase in this setion.

The following lemma reveals that it is impossible to �nd nontrivial eigenvalue deay

bounds (as well as trae or determinant bounds et.) for CALEs, whih only depend on

the eigenvalues or the Jordan struture of A. A matrix pair (A;B) with A 2 R

n;n

and

B 2 R

n;m

is alled ontrollable if rank

�

A� �I B

�

= n for all � 2 C .

Lemma 1 Let

~

A 2 R

n;n

be a -stable matrix for whih a matrix

~

B 2 R

n;1

exists suh

that the pair (

~

A;

~

B) is ontrollable. Then, for any symmetri, positive de�nite matrix

X 2 R

n;n

a nonsingular transformation matrix T 2 R

n;n

and a nonzero matrix B 2 R

n;1

exist suh that X is the solution of (1) where A = T

~

AT

�1

.

Proof. Beause of the stability and ontrollability assumptions a unique solution

~

X

of

~

A

~

X +

~

X

~

A

T

= �

~

B

~

B

T

(12)

exists, whih is symmetri and positive de�nite. This is an immediate onsequene of [2,

Thm. 4℄. We de�ne T := X

1=2

~

X

�1=2

, whih orresponds to X = T

~

XT

T

and B := T

~

B.

Setting

~

A = T

�1

AT ,

~

B = T

�1

B, and

~

X = T

�1

XT

�T

in (12) shows that X is indeed the

solution of (1).

Next, we onsider a test example depending on a parameter whih determines the

dominane of the skew-symmetri part of A.

Example 2 In this example with dimensions n = 2d+1 and m = 1 the matries in the

CALE are de�ned as

A = diag(�1; A

1

; A

2

; : : : ; A

d

) and B =

�

1 1 : : : 1

�

T

;

where

A

j

=

�

�1 jt=d

�jt=d �1

�

for j = 1; : : : ; d and t > 0 is a real parameter. The eigenvalues of the unsymmetri

blokdiagonal matrix A are loated in an interval parallel to the imaginary axis or, more

preisely, Re�

i

(A) = �1 and �t � Im�

i

(A) � t holds for i = 1; : : : ; n. We have

generated three test examples by hoosing d = 50 and t = 10; 100; 1000. The ondition

numbers of the resulting matries A are �(A) = kAkkA

�1

k � 10; 100; 1000, respetively.

Figure 3 shows the eigenvalue ratios �

k+1

(X)=�

1

(X) as a funtion of k for the three

di�erent values of t. This �gure reveals two fats. First, the bound (3) does not hold

for unsymmetri CALEs, whih follows from a omparison with Figure 1. Seond, the

inreasing dominane of the skew-symmetri part of A and the imaginary parts of the

eigenvalues of A tends to slow down the deay of the eigenvalues of X. This an even

lead to nearly onstant eigenvalues (see ase t = 1000 in Figure 3).
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Figure 3: Example 2. Eigenvalue ratio �

k+1

(X)=�

1

(X) as a funtion of k for three

di�erent values of t.

4 The symmetri, disrete-time ase

Using the Cayley transformation an eigenvalue deay bound for the disrete-time ase an

be derived from the ontinuous-time ase. Here, we onsider the disrete-time algebrai

Lyapunov equation (DALE)

DXD

T

�X = �EE

T

(13)

with D 2 R

n;n

and E 2 R

n;m

. The matrix D is assumed to be d-stable, i.e., �(D) < 1,

where �(D) = max j�(D)j is the spetral radius of D. This guarantees the existene of

a unique solution, whih is symmetri and positive semide�nite. An eigenvalue deay

bound for DALEs is given by the following orollary, whih is derived from Theorem 1.

Corollary 1 If D 2 R

n;n

is a d-stable, symmetri matrix and E 2 R

n;m

is a nonzero

matrix, then (3) with

� =

(�

n

(D)� 1)(�

1

(D) + 1)

(�

n

(D) + 1)(�

1

(D)� 1)

holds for the noninreasing eigenvalues of the solution X of (13).

Proof: The proof is based on the inverse Cayley transformation f(t) = (t� 1)=(t+1).

We de�ne A = f(D) and B =

p

2(D + I)

�1

E. Then it an be proved that (1) and (13)

are equivalent, i.e., both Lyapunov equations have the same solution X. From �(D) < 1

it follows that A is -stable. Moreover, A is symmetri. Consequently, (3) holds with

� = �(A). Sine A is a matrix funtion in D and f(t) is monotonially inreasing for

t 2 (�1; 1), the relation �

i

(A) = f(�

i

(D)) holds for i = 1; : : : ; n. We obtain

� = �(A) =

�

n

(A)

�

1

(A)

=

f(�

n

(D))

f(�

1

(D))

=

(�

n

(D)� 1)(�

1

(D) + 1)

(�

n

(D) + 1)(�

1

(D)� 1)

;

whih ompletes the proof.
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5 Conlusions

In this paper we have presented eigenvalue deay bounds for the solutions to a lass of

CALEs and DALEs. These bounds are restrited to equations with symmetri oeÆient

matries and right-hand side matries of low rank. Under these assumptions our bounds

reveal the fast deay of the eigenvalues of the solution. This implies that the solution

matries of large Lyapunov equations tend to be ill-onditioned or even numerially

singular although, under mild onditions, they an be proved to be positive de�nite.

This in turn explains the numerial diÆulties of some algorithms, whih involve the

solutions of Lyapunov equations or their inverses, suh as ertain methods for partial

stabilization of systems. Another onsequene of the fast eigenvalue deay is the fat,

that the solution matries an usually be approximated very well by a produt of low-rank

Cholesky fators. The deay rate of our bounds is determined by the ondition number

of the oeÆient matrix in the ontinuous-time ase and by a simple expression of its

extremal eigenvalues in the disrete-time ase. Unfortunately, we are not able to provide

deay bounds whih also hold for unsymmetri Lyapunov equations.
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