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Eigenvalue De
ay Bounds for Solutions of Lyapunov Equations:

The Symmetri
 Case

�

Thilo Penzl

Abstra
t

We present two new bounds for the eigenvalues of the solutions to a 
lass of


ontinuous-time and dis
rete-time Lyapunov equations. These bounds hold for Lya-

punov equations with symmetri
 
oeÆ
ient matri
es and right-hand side matri
es

of low rank. They re
e
t the fast de
ay of the nonin
reasingly ordered eigenvalues

of the solution matrix.

Keywords: Lyapunov equation; eigenvalue de
ay; eigenvalue bound.

1 Introdu
tion

In this note we mainly fo
us on the 
ontinuous-time algebrai
 Lyapunov equation (CALE)

AX +XA

T

= �BB

T

(1)

where A 2 R

n;n

and B 2 R

n;m

. We denote the open left half of the 
omplex plane and that

of the real axis by C

�

and R

�

, respe
tively. The matrix A is assumed to be 
-stable, i.e.,

its spe
trum �(A) is a subset of C

�

. It is well-known that under this assumption a unique

solutionX 2 R

n;n

exists, whi
h is symmetri
 and positive semide�nite [15℄. Consequently,

its eigenvalues are real and nonnegative. Throughout this paper eigenvalues of symmetri


matri
es are arranged in a nonin
reasing order, e.g., �

1

(X) � : : : � �

n

(X). It follows

from the uniqueness of the solution that X 6= 0 and �

1

(X) > 0 if B 6= 0. In the sequel we


onsider the spe
ial 
ase of the CALE (1) where the right-hand side has a very low rank.

More pre
isely, we assume that m� n. Su
h CALEs arise from large dynami
al systems

with a relatively small number of input and output variables. Numeri
al experiments

(e.g., [13℄) show that the eigenvalues of their solution matri
es tend to de
ay very fast.

The purpose of this paper is to give some insight into this phenomenon. In parti
ular, we

are interested in upper bounds for the expression �

k+1

(X)=�

1

(X) with k = 1; 2; : : : ; n�1.

This issue is 
losely related to the 
omputation of the best low-rank approximation to

the symmetri
, positive semide�nite matrix X, be
ause

min

~

X2R

n;n

; rank

~

X�k

kX �

~

Xk

kXk

=

�

k+1

(X)

�

1

(X)

; (2)

see [3, Theorem 2.5.3.℄, for example. Here, k � k denotes the spe
tral norm of a matrix.

Note that kXk = �

1

(X). A motivation for the investigation of the eigenvalue de
ay and

the 
orresponding matrix approximation problem is given by several numeri
al methods

for the solution of very large Lyapunov equations [14, 6, 7, 4, 5, 13, 10℄ whi
h are based

on similar low-rank approximations.

�

This work was supported by the Deuts
her Akademis
her Austaus
hdienst, Bonn, Germany.
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In the last two de
ades a relatively large number of bounds for solutions of Lyapunov

equations have been derived; see [8℄ for a re
ent survey. Unfortunately, these bounds are

generally useless if m < n. The only existing nontrivial bound for this 
ase is that by

Mori et al [11℄. It is based on the integral representation of the CALE solution, e.g., [9℄.

However, it is impossible to 
ompute this bound analyti
ally. Its numeri
al 
omputation

is involved and very expensive. Thus, it does not give mu
h insight into the eigenvalue

de
ay problem.

In the remainder of this paper we provide eigenvalue de
ay bounds for CALEs and

their dis
rete-time 
ounterparts with symmetri
 
oeÆ
ient matri
es. These bounds are

very inexpensive to 
ompute and re
e
t the fast de
ay of the eigenvalues. Furthermore,

a few 
omments on the unsymmetri
 
ase are made.

2 The symmetri
, 
ontinuous-time 
ase

In this se
tion we 
onsider the spe
ial 
ase where the 
oeÆ
ient matrix A of the CALE (1)

is symmetri
 and negative de�nite. This 
ase is interesting be
ause several appli
ations

involve dynami
al systems with a symmetry stru
ture, whi
h in turn lead to symmetri


CALEs. For example, su
h systems arise from the semidis
retization of paraboli
 PDEs

(for example, di�usion problems) and the simulation of 
ir
uits, e.g., [1℄.

The following theorem provides an eigenvalue de
ay bound, that depends only on

the 
ondition number of the 
oeÆ
ient matrix. The 
ondition number is de�ned as

�(A) = kAkkA

�1

k. For symmetri
, negative de�nite matri
es A this is equivalent to

�(A) = �

n

(A)=�

1

(A).

Theorem 1 Let A 2 R

n;n

be a symmetri
, negative de�nite matrix with the 
ondition

number � = �(A), B 2 R

n;m

a nonzero matrix, and �

i

(X) with i = 1; : : : ; n the nonin-


reasingly ordered eigenvalues of X. Then,

�

mk+1

(X)

�

1

(X)

�

 

k�1

Y

j=0

�

(2j+1)=(2k)

� 1

�

(2j+1)=(2k)

+ 1

!

2

(3)

for 1 � mk < n.

The following elementary proof is based on the 
onstru
tion of a rank-mk-approximation

X

k

to the solution X of the CALE. For this purpose we apply k steps of the ADI iteration

[12, 17℄. The ADI shift parameters are 
hosen in a manner whi
h is not optimal, but

allows us to 
ompute an upper bound for kX �X

k

k=kXk. Finally, (2) is applied to �nd

the eigenvalue de
ay bound.

Proof: Let k > 1 be an arbitrary but �xed number su
h that mk < n. First, we

introdu
e the rational fun
tions

s

p

(t) :=

p� t

p+ t

and s

fp

1

;:::;p

k

g

(t) :=

k

Y

i=1

s

p

i

(t);

where p; p

i

; t 2 R

�

. Next, we 
onsider the sequen
e of ADI iterates fX

i

g

1

i=0

generated by

an initial matrix X

0

and

X

i

= s

p

i

(A)X

i�1

s

p

i

(A)� 2p

i

(A+ p

i

I)

�1

BB

T

(A+ p

i

I)

�1

: (4)
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It is easily veri�ed that the solutionX is a stationary point of this mapping (i.e.,X

i�1

= X

implies X

i

= X), whi
h gives

X �X

i

= s

p

i

(A)(X �X

i�1

)s

p

i

(A):

We 
hoose X

0

= 0 and obtain re
ursively

X �X

k

= s

fp

1

;:::;p

k

g

(A)Xs

fp

1

;:::;p

k

g

(A): (5)

Due to (4), rankX

i

� rankX

i�1

+m and, 
onsequently, rankX

k

� km. This, together

with (2), results in the left inequality of

�

mk+1

(X)

�

1

(X)

�

kX �X

k

k

kXk

� ks

fp

1

;:::;p

k

g

(A)k

2

; (6)

whereas the right inequality is an immediate 
onsequen
e of (5). The norm term on the

right-hand side 
an be estimated as

ks

fp

1

;:::;p

k

g

(A)k = max

�

�

�(s

fp

1

;:::;p

k

g

(A))

�

�

(7)

= maxfjs

fp

1

;:::;p

k

g

(�)j : � 2 �(A)g

� maxfjs

fp

1

;:::;p

k

g

(�)j : � 2 [�; �℄g; (8)

with � := �

n

(A) and � := �

1

(A). Observe that (7) is valid be
ause s

fp

1

;:::;p

k

g

(A) is a

symmetri
 matrix.

Before we 
ontinue estimating (8), we brie
y study the behavior of the rational fun
-

tion s

p

(t). Basi
 analysis reveals that s

p

(t) is monotoni
ally in
reasing in R

�

for any

p 2 R

�

and js

p

(t)j < 1 for any p; t 2 R

�

. Moreover, let ~�;

~

� 2 R be two arbitrary

numbers with

~

� < ~� < 0, and de�ne ~� :=

~

�=~� and ~p := �(~�

~

�)

1=2

. Then,

0 < �s

~p

(

~

�) = s

~p

(~�) =

p

~�� 1

p

~� + 1

< 1

and, be
ause of the monotoni
ity,

js

~p

(t)j �

p

~�� 1

p

~� + 1

for t 2 [

~

�; ~�℄: (9)

Now we return to (8), where we 
hoose the parameters p

1

; : : : ; p

k

. To this end, we �rst

set t

0

:= � and t

i

:= t

0

(�=�)

i=k

= t

0

�

i=k

for i = 0;�1;�2; : : : This is a geometri
 sequen
e

with t

i+1

< t

i

and t

k

= �, whi
h forms a partitioning of [�; �℄ into k subintervals, i.e.,

[�; �℄ = [

k

i=1

[t

i

; t

i�1

℄. Next, we de�ne the parameters p

i

as the geometri
 
enter points of

the subintervals [t

i

; t

i�1

℄. Note that

p

i

:= �

p

t

i

t

i�1

= �

p

t

i+j

t

i�1�j

for any j = 0; 1; 2; : : : For brevity, we introdu
e the auxiliary variables

�

k;j

:=

t

i+jjj

t

i�1�jjj

= �

(2jjj+1)=k

3



and

r

k;j

:=

p

�

k;j

� 1

p

�

k;j

+ 1

=

�

(2jjj+1)=(2k)

� 1

�

(2jjj+1)=(2k)

+ 1

(10)

for j = 0;�1;�2; : : : It follows from (9), where we set

~

� = t

i+j

and ~� = t

i�1�j

, that

js

p

i

(t)j � r

k;j

for t 2 [t

i+j

; t

i�1+j

℄ � [t

i+jjj

; t

i�1�jjj

℄

with i = 1; : : : ; k and j = 0;�1;�2; : : : Note that the right-hand side of the inequality

does not depend on i. Multiplying the inequalities for i = 1; : : : ; k and assuming that

t 2 [t

l

; t

l�1

℄, where l = 1; : : : ; k determines an arbitrary subinterval of [�; �℄, leads to the

left inequality of

�

�

s

fp

1

;:::;p

k

g

(t)

�

�

�

k

Y

i=1

r

k;l�i

�

k�1

Y

j=0

r

k;j

: (11)

The right inequality holds be
ause

0 < r

k;0

< r

k;�1

= r

k;1

< r

k;�2

= r

k;2

< : : : ;

whi
h 
an be veri�ed by 
onsidering the monotoni
 dependen
e of r

k;j

on �

k;j

and that

of �

k;j

on j. Sin
e the right term in (11) does not depend on l, it is an upper bound for

any t 2 [�; �℄. Finally, 
ombining the relations (6), (8), (10), and (11) leads to (3).

In view of the proof it should be mentioned that Wa
hspress [16℄ proposed a pro
edure

for 
omputing parameters p

1

; : : : ; p

k

whi
h are optimal in the sense of minimizing the right

term in (8). However, this pro
edure is restri
ted to the spe
ial 
ase where k is a power

of 2 and no bound for the minimal value of this term is given.

The right-hand side of (3) is monotoni
ally in
reasing in �, i.e., enlarging the 
ondition

number of the 
oeÆ
ient matrix results in a slower de
ay of the bound. Note further that

the right-hand side of (3) does not depend on m. Roughly speaking, this means that the

minimal rank of an approximation to the CALE solution is about proportional to the

rank of the right-hand side, if the 
oeÆ
ient matrix and the desired a

ura
y of this

approximation are �xed.

Assuming that the 
ondition number of A is given, our bound is very inexpensive to


ompute. However, it is not easy see how the right-hand side in (3) depends on � and

k. For this reason we illustrate this dependen
e in Figure 1. It reveals a fast eigenvalue

de
ay for magnitudes of � whi
h are typi
al for many appli
ations.

Finally, we investigate the tightness of our bound using the following test example.

Example 1 [5, Example 4.1℄ In this example the so-
alled 
ontrollability Gramian of a

dynami
al system is 
omputed by solving the CALE (1). The underlying system arises

from the dis
retization of a one-dimensional heat transfer problem. The matri
es are

given as

A =

1

h

2

6

6

6

4

�1 1

1 �2

.

.

.

.

.

.

.

.

.

1

1 �2

3

7

7

7

5

and B =

1

h

2

6

6

6

4

0

.

.

.

0

1

3

7

7

7

5

;
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Figure 1: The right-hand side term in (3) as a fun
tion of � and k.

where h = 1=(n+ 1), n = 100, and � � 1:6 � 10

4

.

In Figure 2 the eigenvalue ratio �

mk+1

(X)=�

1

(X) and the eigenvalue de
ay bound

are plotted for this example. In other words, we 
ompare the left-hand side and the

right-hand side of (3) in this �gure.

0 20 40 60 80 100
10

−10

10
−5

10
0

k

l.h
.s

. a
nd

 r
.h

.s
. i

n 
(3

)

l.h.s. r.h.s.

Figure 2: Example 1. Eigenvalue de
ay bound (right-hand side in (3)) versus a
tual

eigenvalue ratios (left-hand side in (3)).

5



3 Notes on the unsymmetri
, 
ontinuous-time 
ase

We do not provide bounds for the general 
ase, where A is not ne
essarily symmetri
.

However, we want to dis
uss some aspe
ts of this 
ase in this se
tion.

The following lemma reveals that it is impossible to �nd nontrivial eigenvalue de
ay

bounds (as well as tra
e or determinant bounds et
.) for CALEs, whi
h only depend on

the eigenvalues or the Jordan stru
ture of A. A matrix pair (A;B) with A 2 R

n;n

and

B 2 R

n;m

is 
alled 
ontrollable if rank

�

A� �I B

�

= n for all � 2 C .

Lemma 1 Let

~

A 2 R

n;n

be a 
-stable matrix for whi
h a matrix

~

B 2 R

n;1

exists su
h

that the pair (

~

A;

~

B) is 
ontrollable. Then, for any symmetri
, positive de�nite matrix

X 2 R

n;n

a nonsingular transformation matrix T 2 R

n;n

and a nonzero matrix B 2 R

n;1

exist su
h that X is the solution of (1) where A = T

~

AT

�1

.

Proof. Be
ause of the stability and 
ontrollability assumptions a unique solution

~

X

of

~

A

~

X +

~

X

~

A

T

= �

~

B

~

B

T

(12)

exists, whi
h is symmetri
 and positive de�nite. This is an immediate 
onsequen
e of [2,

Thm. 4℄. We de�ne T := X

1=2

~

X

�1=2

, whi
h 
orresponds to X = T

~

XT

T

and B := T

~

B.

Setting

~

A = T

�1

AT ,

~

B = T

�1

B, and

~

X = T

�1

XT

�T

in (12) shows that X is indeed the

solution of (1).

Next, we 
onsider a test example depending on a parameter whi
h determines the

dominan
e of the skew-symmetri
 part of A.

Example 2 In this example with dimensions n = 2d+1 and m = 1 the matri
es in the

CALE are de�ned as

A = diag(�1; A

1

; A

2

; : : : ; A

d

) and B =

�

1 1 : : : 1

�

T

;

where

A

j

=

�

�1 jt=d

�jt=d �1

�

for j = 1; : : : ; d and t > 0 is a real parameter. The eigenvalues of the unsymmetri


blo
kdiagonal matrix A are lo
ated in an interval parallel to the imaginary axis or, more

pre
isely, Re�

i

(A) = �1 and �t � Im�

i

(A) � t holds for i = 1; : : : ; n. We have

generated three test examples by 
hoosing d = 50 and t = 10; 100; 1000. The 
ondition

numbers of the resulting matri
es A are �(A) = kAkkA

�1

k � 10; 100; 1000, respe
tively.

Figure 3 shows the eigenvalue ratios �

k+1

(X)=�

1

(X) as a fun
tion of k for the three

di�erent values of t. This �gure reveals two fa
ts. First, the bound (3) does not hold

for unsymmetri
 CALEs, whi
h follows from a 
omparison with Figure 1. Se
ond, the

in
reasing dominan
e of the skew-symmetri
 part of A and the imaginary parts of the

eigenvalues of A tends to slow down the de
ay of the eigenvalues of X. This 
an even

lead to nearly 
onstant eigenvalues (see 
ase t = 1000 in Figure 3).
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Figure 3: Example 2. Eigenvalue ratio �

k+1

(X)=�

1

(X) as a fun
tion of k for three

di�erent values of t.

4 The symmetri
, dis
rete-time 
ase

Using the Cayley transformation an eigenvalue de
ay bound for the dis
rete-time 
ase 
an

be derived from the 
ontinuous-time 
ase. Here, we 
onsider the dis
rete-time algebrai


Lyapunov equation (DALE)

DXD

T

�X = �EE

T

(13)

with D 2 R

n;n

and E 2 R

n;m

. The matrix D is assumed to be d-stable, i.e., �(D) < 1,

where �(D) = max j�(D)j is the spe
tral radius of D. This guarantees the existen
e of

a unique solution, whi
h is symmetri
 and positive semide�nite. An eigenvalue de
ay

bound for DALEs is given by the following 
orollary, whi
h is derived from Theorem 1.

Corollary 1 If D 2 R

n;n

is a d-stable, symmetri
 matrix and E 2 R

n;m

is a nonzero

matrix, then (3) with

� =

(�

n

(D)� 1)(�

1

(D) + 1)

(�

n

(D) + 1)(�

1

(D)� 1)

holds for the nonin
reasing eigenvalues of the solution X of (13).

Proof: The proof is based on the inverse Cayley transformation f(t) = (t� 1)=(t+1).

We de�ne A = f(D) and B =

p

2(D + I)

�1

E. Then it 
an be proved that (1) and (13)

are equivalent, i.e., both Lyapunov equations have the same solution X. From �(D) < 1

it follows that A is 
-stable. Moreover, A is symmetri
. Consequently, (3) holds with

� = �(A). Sin
e A is a matrix fun
tion in D and f(t) is monotoni
ally in
reasing for

t 2 (�1; 1), the relation �

i

(A) = f(�

i

(D)) holds for i = 1; : : : ; n. We obtain

� = �(A) =

�

n

(A)

�

1

(A)

=

f(�

n

(D))

f(�

1

(D))

=

(�

n

(D)� 1)(�

1

(D) + 1)

(�

n

(D) + 1)(�

1

(D)� 1)

;

whi
h 
ompletes the proof.
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5 Con
lusions

In this paper we have presented eigenvalue de
ay bounds for the solutions to a 
lass of

CALEs and DALEs. These bounds are restri
ted to equations with symmetri
 
oeÆ
ient

matri
es and right-hand side matri
es of low rank. Under these assumptions our bounds

reveal the fast de
ay of the eigenvalues of the solution. This implies that the solution

matri
es of large Lyapunov equations tend to be ill-
onditioned or even numeri
ally

singular although, under mild 
onditions, they 
an be proved to be positive de�nite.

This in turn explains the numeri
al diÆ
ulties of some algorithms, whi
h involve the

solutions of Lyapunov equations or their inverses, su
h as 
ertain methods for partial

stabilization of systems. Another 
onsequen
e of the fast eigenvalue de
ay is the fa
t,

that the solution matri
es 
an usually be approximated very well by a produ
t of low-rank

Cholesky fa
tors. The de
ay rate of our bounds is determined by the 
ondition number

of the 
oeÆ
ient matrix in the 
ontinuous-time 
ase and by a simple expression of its

extremal eigenvalues in the dis
rete-time 
ase. Unfortunately, we are not able to provide

de
ay bounds whi
h also hold for unsymmetri
 Lyapunov equations.
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