Technische Universitat Chemnitz
Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Thomas Apel Frank Milde Uwe Reichel

SPC-PM Po 3D v4.0

Programmer’s Manual
(Part IT)

Preprint SFB393/99-37

Acknowledgement. The package SPC-PM Po 3D has been developed in the Son-
derforschungsbreich 393 of the Technische Universitdt Chemnitz under the supervi-
sion of A. Meyer and Th. Apel. Other main contributors are G. Globisch, G. Kunert,
D. Lohse, F. Milde, M. Pester, U. Reichel, and M. Thef;.

Preprint-Reihe des Chemnitzer SFB 393

SFB393/99-37 December 1999

Authors’ addresses:

Thomas Apel

Technische Universitdt Chemnitz
Fakultat fiir Mathematik

09107 Chemnitz

Germany

email: na.apel@na-net.ornl.gov

Frank Milde

Technische Universitat Chemnitz

Fakultat fiir Naturwissenschaften, Institut fiir Physik
09107 Chemnitz

Germany

email: milde@physik.tu-chemnitz.de

Uwe Reichel

Technische Universitat Chemnitz
Fakultat fiir Mathematik

09107 Chemnitz

Germany

email: reichel@mathematik.tu-chemnitz.de

Contents

1 Overview

1.1 Introduction
1.2 The boundary value problems

Data structure

2.1 General remarks
2.2 Full data structure (FDS)
2.2.1 Volumes e
2.2.2 Faces e
223 Edges . ..
2.2.4 Coordinates of thenodes
2.2.5 Global Crosspoint Names IGLOB
2.2.6 Dirichlet/Neumann data
2.2.7 Kettedata
2.2.8 CHAIN e
2.2.9 REGION e
2.2.10 Hierarchical List
2.2.11 Geometry datao
2212 X Lo
2.2.13 AZONE e
2.2.14 DGRAPH e
2.3 INCLUDE-Files/ COMMON-Blocks
2.3.1 net3ddat.nc
2.3.2 com_prob.nc
2.3.3 filename.inc
2.3.4 standard.nc e
2.3.5 tronet.dnc e e
2.3.6 adapt.inc
Adaptive mesh generation
3.1 General mesh handling L
3.2 User mesh input, main mesh fixing, and mesh distribution
3.2.1 The procedure
3.2.2 Parameters of NET.O
3.2.3 Parameters of SET_.GROBNETZ
3.2.4 Parameters of N.SPLIT it
3.3 Adaptive refinement
3.3.1 The procedure
3.3.2 Parameters of AREFINE

NS

© © 00 17O O UL i W W

= e e e e e e
W W WY~ OO o ©

14

il

CONTENTS

3.4 Parameters of the output tool AUSGABE 20
3.5 Tree structure of the routineso 21
3.5.1 NET_O for generating the user mesh 21
3.5.2 SET_GROBNETZ for the main mesh fixing 22
3.5.3 N_SPLIT for distribution of the mesh 22
3.5.4 A _REFINE for the adaptive mesh refinement 22
3.0.0 AUSGABE e e e 24
3.6 Short description of the routines in libaNetzA.a 24
3.7 Short description of the routines in libaNetzT.a 27
Assembly of the equation system 31
4.1 Changes against version 2.x of SPC-PMPo3D 31
4.1.1 General remarks L 31
4.1.2 Library reorganization 31
4.1.3 Coarse grid matrix L 31
4.2 Tree structures L 31
4.3 Short description of the subroutines 33
4.3.1 Description of the subroutines in libaAssem.a 33
4.3.2 Description of the subroutines in libElem3D.a 33
Solving the problem with the Parallel Preconditioned Conjugate Gradient
Method (PPCG) 35
5.1 The Solver e 35
5.2 The Jacobi preconditioner L 35
5.3 The Yserentant preconditioner 36
5.4 The BPX preconditioner 38
5.5 Tree structure of the routine 0oL 40
5.6 Description of the routines 41
Memory management 43
6.1 Introduction 43
6.2 Basic functions 43
6.3 Getting information on the workspace vector 44
6.4 Changing array sizes 45
6.5 Management in the programo oL 46
6.6 Usageexample 47
Enhanced communication routines 49
7.1 Theconcept 49
7.2 Communication over kettes L 49
7.3 Cube communicationo 51
Auxiliary and tool routines 53
8.1 Preface 53
8.2 Error handling 53
8.3 Auxiliary routines 54
8.3.1 Set special data fields 54
8.3.2 Read special data fields. 56

8.3.3 Tools s, 57

CONTENTS iii

9 Schematic program run 59
Bibliography 61
62

Index

iv

CONTENTS

Chapter 1

Overview

1.1 Introduction

SPC-PM Po 3D is a computer program to solve the Poisson equation or the Lamé system
of linear elasticity over a three-dimensional domain on a MIMD parallel computer.

The historical roots of the program are on the one hand in several parallel programs
for solving problems over two dimensional domains using domain decomposition techniques.
These codes have been developed since about 1988 by A. Meyer, M. Pester, and other
collaborators. On the other hand, Th. Apel developed 1987-89 a sequential program for
the solution of the Poisson equation over three-dimensional domains which was extended
1993-94 together with F. Milde.

The here documented version 4.x of SPC-PM Po 3D includes major changes to the al-
ready documented versions 2/3 [2, 3]. The new features are adaptive mesh refinement
(F. Milde), error estimation (G. Kunert), and dynamic load balancing (U. Reichel). In dif-
ference to the previous versions the new adaptive code can only handle tetrahedral meshes.
An adaptive version for hexahedral meshes is planned.

For an introduction of the capabilities of the program, its installation and utilization
we refer to the User’s Manual for the last version [3]. The aim of this new Programmer’s
Manual for version 4 is to provide a description of the new data structures and to introduce
new routines. It is written for those who are interested in a deeper insight into the code, for
example for improving and extending. The paper is not intended as a stand alone version,
but as an update and extension to [2].

The documentation is organized as follows: In the next section we describe the boundary
value problems that can be solved and the finite elements that are used. Chapter 2 is
concerned with the changed data structure. In Chapters 3, 4 and 5 we describe the adaptive
mesh generation, the assembly and the solving of the system of equations, respectively.
Chapter 6 deals with the memory management routines, a library which should be used
also in other programs. Chapter 7 is devoted to the communication routines. After the
description of auxiliary routines and other tools in Chapter 8 we end this manual with an
explanation of a schematic program run. We point out that there is an index at the end
where all routines, parameters and variables are included.

In this documentation we use slanted style for real existing paths and filenames, italic
style for program parameters, sans serif style to characterize buttons and menu items of
programs with a graphical user interface, and typewriter style for the names of variables.

CHAPTER 1. OVERVIEW

1.2 The boundary value problems

Consider the Poisson problem in the notation

—Au = f
U = Uy
o _
on g
ou
n 0

or the Lamé problem for u = (u™®, u® u(®)T

—puAu+ (A + p) grad divu =

in QcR?
on 0€y,
on BQQ,

on 90\ 00 \ O,

f
(

Ug
g(
0

BN

~.

)
)

in QcR?

on 00, i=1,23,

on 00V, i=1,23,

on 09\ 90\ 00l i=1,2,3,

where t = (tM, 13 13T = S[u] - n is the normal stress, the stress tensor Sfu] = (s;;)%,_; is

defined with z = (2, 22, 2®)T by

Ou®
Sij = M [W

Oud)
+ m] + (SZ])\V *u,

n is the outward normal, and 4;; is the Kronecker delta. The domain Q C R*® must be
bounded. In the present version curved boundaries are treated only by the refinement

procedure.

The boundary value problem is solved by a standard finite element method, using tetra-
hedral elements with linear or quadratic shape functions, see Figure 1.1.

1

Figure 1.1: Finite elements implemented in SPC-PM Po 3D version 4.

Chapter 2

Data structure

2.1 General remarks

The program is working in the SPMD mode, that means single program multiple data.
Consequently, all data described are local data, possibly with different length on every pro-
cessor. The connection between these local data is coded in the arrays IGLOB, KETTE1D, and
KETTE2D, see Subsections 2.2.5 and 2.2.7; this information is sufficient for the communication
(finite element accumulation).

In FORTRANTT7 it is impossible to allocate memory during the run of the program
but there are several large arrays in our FEM program which are used only for a certain
time. So it is necessary to have a dynamic memory management. To solve this problem in
FORTRANTY7 we have a very large workspace vector (as large as possible) in our program
to use parts of it as arrays in the subroutines. There are several pointer variables which
determine the array index on which data start. We developed our own memory management,
and must take care of calculating these pointers to avoid overlaps. For an easier handling the
SPC-PM Po 3D package provides now a large set of functions and routines for the memory
management, see Chapter 6.

Because of the adaptive mesh refinement we use now only the full data structure (FDS,
see 2.2) with its greater variability. The reduced data structure (RDS), known from the
previous versions, does no longer exist.

Another major change to previous versions is the distinction of the user mesh, which is
read in from the net file, and the main mesh, which could be fixed later. So the notation
coarse mesh belongs either to the user mesh or the main mesh depending on the program
state. For a description in more detail see Subsection 3.2.1 and Chapter 9.

There are a few general variables:

NDF number of degrees of freedom per node,
NEN2D number of element nodes per face,
NEN3D number of element nodes per volume.

We describe the arrays in the following general form:
1. general description of the array,

2. name and dimension of the array,

3. structure of a data block of the array,

4. additional information.

4 CHAPTER 2. DATA STRUCTURE

For some arrays there are pointers within the data blocks which determine the positions
of data. Most of the dimensions of the arrays are also variables/parameters which are located
in COMMON blocks in the source files net3ddat.inc and adapt.inc. It is better to use these
variables instead of hard numbers because of possible evolution of the data structure.

To maintain compatibility to previous versions all changes of offset pointers and array
dimensions in version 4.x are made in adapt.inc, see 2.3.6.

2.2 Full data structure (FDS)

In the FDS volumes are represented by a number of faces, faces by a number of edges and
edges by a number of nodes.

All arrays (except the coordinate array and the kette data) have the same structure.
To save memory capacity we keep always only the fine mesh in the following way. After
an adaptive refinement step the parent volume/face/edge is replaced by its children. So all
children of a coarse volume/face/edge are stored in one row. This simplifies the handling of
coupling edges and faces.

For an illustration a short example: In the coarse mesh the data of volume 7 is stored
between the data of volume ¢ — 1 and 7+ 1. Now, only volume 7 is full refined into 8 pieces.
Then between the former volumes ¢ — 1 and ¢ + 1 all 8 children of volume ¢ are stored.

2.2.1 Volumes

1. Each volume is described by its 4 faces, a type, including the volume type and a coarse
element number, and the material name.

2. VOL(DIMVOL,x*) : DIMVOL—=4+2
3. 4 faces

‘rface_l ‘ face_2 ‘ \‘ type ‘ name_of_material ‘
Face_i is a face number.

4. The 32 Bit value type is shared by two 16 Bit values, volume_type and num-
ber_of_coarse_volume. It is not recommended to read/modify these values directly,
but to use the provided routines and functions, see 8.3. The volume_types are used
for the refinement, possible values are:

0 red refined or not refined
1-6 greenl refined; number of refined edge
7-9 green?2 refined; lowest number of refined edges + 6
10-13 green3 refined; number of refined face + 9

All green refinements are necessary to avoid hanging nodes. For an illustration see
Figure 2.1.

The value name_of_material is a pointer into the material parameter list or the name
of a hard coded material.

It is recommended to use the following pointer variables for this dataset:

VOL_TYP position of the type in VOL currently 4 + 1
VOL_REGION position of the name_of_material currently 4 + 2

2.2. FULL DATA STRUCTURE (FDS) bt

Figure 2.1: Refinement types for tetrahedra. Left: greenl, one edge to refine; Middle:
green2, two opposite edges to refine; Right: green3, two/three edges of one face to refine.

AVAYA

Figure 2.2: Possible face refinements. Left: not refined faces with local edge numbering;
Middle: red refined face; Right: green refined face (sample for type 1 or 4).

2.2.2 Faces
1. Each face is described by its 3 edges.

2. FACE(DIMFACE,) : DIMFACE = 3 + 2

3. 3 edges

‘ edge_1 ‘ edge_2 ‘ “ type ‘ data ‘
Edge_: is a edge number

4. The value type is a pointer in the GEOM array and determines the geometry of the face,
see also Subsection 2.2.11. The value data is used twice. Positive values refer to a
refinement type, negative values are the number_of_first_son of full (red) refined faces.
This is only used during refinement within temporary stored father faces. Possible
refinement types are:

< 0 pointer to the first son of this (red) refined face
0 not refined
1-3 green refined outer face; number of refined edge
4-6 green refined inner face; number of refined edge + 3

For an illustration see Figure 2.1 and Figure 2.2.

The faces are sorted in the following way:

‘ coupling faces ‘ other faces ‘

6 CHAPTER 2. DATA STRUCTURE

By our definition, all faces of the coarse mesh and their sons are coupling faces even
if they do not belong to inter-processor boundaries.

It is recommended to use the following pointer variables for this dataset:

FZEIG position of the type in FACE currently 3 + 1
FCHIELD position of the data currently 3 + 2

2.2.3 Edges

1. Each edge is described by its 2 vertices and the middle node (quadratic case only).
2. KANTE (DIMKANTE, %) : DIMKANTE =5

3. | vertex_1 | vertex_2 | middle node | type | data |
Vertex_i is a vertex number.

4. The value type is used for the face types of the face(s) containing this edge. The at
most 2 face types are stored in the upper and lower 16 bits of the 32 bit value type.
This is done by the routine KA_CODE, see 8.3.1.

The value data is shared by the refinement type of the edge and its refinement depth.
To set these values the routine SET_KCHIELD should be used, see 8.3.1. Possible values
for the refinement type are:

< 0 pointer to the first son of this (red) refined edge
0 red/none refined
1 green edge of a greenl volume
2 green inner edge of a green2 volume

Already red refined edges exist temporary during the refinement at the end of the edge
array. Their type value is the name of their first son marked with a negative sign.

The coupling edges are located at the beginning followed by the edges of coupling
faces and the inner edges.

‘ coupling edges ‘ edges on coupling faces ‘ inner edges ‘

By our definition, all edges of the coarse mesh and their sons are coupling edges even
if they do not belong to inter-processor boundaries.

It is recommended to use the following pointer variables for this dataset:

KZEIG position of the type currently 4
KCHIELD position of the data currently 5

2.2.4 Coordinates of the nodes

1. Each node is represented by its three Euclidean coordinates.
2. COOR(D_COOR,*) : D_COOR = 4

3.1 Xi | Yo | Z | fatherhood |

2.2. FULL DATA STRUCTURE (FDS) 7

4. The 32 bit value fatherhood is used bitwise to mark the fatherhood of a node in the

corresponding refinement level. Note that the fatherhood dependencies are reset after
defining the main mesh, and from this time on the main mesh is level 1. Although this
restricts the maximum count of refinement step to 32 there are some other limitations.
The parameter MAX_ALEV , currently set to 25 in adapt.inc, is the official and only
checked restriction. But reaching this limit could already cause problems, because of
the only 25 mantis bits of the REAL*4 node coordinates.

The nodes are placed in COOR in the following way:

‘ cross points ‘ CFE; ‘ CE, ‘ CEs ‘ ‘ CF; ‘ CF, ‘ CF; ‘ ‘ inner nodes ‘
1D ?rkettes 2D ?rkettes

Each 1D kette (C'E;) is a block of nodes which belong to (sons of) a (coupling) edge of
the coarse mesh. By analogy, each 2D kette is a block of interior nodes of a (coupling)
face of the coarse mesh.

The structure of these kettes is quite complicated. It is shown in all details with an
non-adaptive example in [2], Section 3.3.2.

2.2.5 Global Crosspoint Names IGLOB

1.

To identify the local crosspoints their global name is stored.

2. IGLOB(x)

3. IGLOB(I) = global name of the node I (which is an crosspoint), where I is the local

number.

2.2.6 Dirichlet/Neumann data

1.

The Dirichlet/Neumann data are associated with faces. They have both the same
data structure.

. DIR(DVDIR,) : DVDIR = 1+ NDF x (1 + NDIRREAL)

NEUM(DVNEUM,) : DVNEUM = 1 + NDF x (1 + NNEUMREAL)

NDF data blocks

‘ name_of_kette ‘rtype, data (DF_1) ‘ type, data (DF_2) ‘ \‘
DF_k means the k-th degree of freedom.

The boundary condition arrays are build twice. First when the user mesh is read in
and second when the main mesh is fixed. In difference to the previous versions of
SPC-PM Po 3D only boundary conditions of the coarse mesh are stored. The value
name_of kette points now in the array Kette2D, which holds the information about
the refined faces of the coarse face.

The data are NDIRREAL/ NNEUMREAL = 4/5 real parameters (RP) describing the bound-
ary condition.

Possible values of the type of the boundary condition data are :

8 CHAPTER 2. DATA STRUCTURE

0 none
1 constant f=RP(1)
2 linear function f= RP(1)+* X + RP(2)«Y + RP(3)* Z + RP(4)

100 function call f =wu(X,Y,Z) (from ./Bsp/bsp.f)

RP(5) has been planned for the coefficient in boundary conditions of 3™ kind, but
this is not implemented yet.

2.2.7 Kette data

1. The purpose of the kette data is the optimization of the communication. Every cou-
pling face/edge of the coarse mesh is referred in the kette data by its global names of
vertices. All interior nodes of these faces/edges have consecutive numbers and form a
so called kette, see 2.2.4. Thus they can be described by a pointer to the first node
and the number of nodes (length) in this block.

In version 4.x of SPC-PM Po 3D kettes hold also information about edge and faces.
To maintain compatibility the first 7 entries in the kette arrays are the same as in
previous versions, but now their width is 16!

There are two different kette data (KETTE1D for edges and KETTE2D for faces) which
have the same data structure. For more information see [1].

2. KETTE1D (KETDIM,*)/KETTEQD(KETDIM,*) : KETDIM = 16 For compatibility the old
parameters KIDDIM = K2DDIM = 7 in net3ddat.inc exist further, but must not be used!

3. 2 or [3|4] vertices

‘ pointer ‘ length ‘ pathID ‘rvertex_l ‘ vertex_2 ‘ \‘ extended info - - - ‘
Vertex_s is a vertex number.

4. Note that the vertex numbers here are global (crosspoint) names. For an explanation
of pathID see [1].

It is recommended to use the following pointer variables for this dataset:

K_COFF = PKZEIG position of the pointer to COOR currently 1
K_CLEN = PKLENG position of the length in COOR currently 2
K_WID = PWEGID position of the pathID currently 3
K NOD1 = PKDAT position of the data (first node) currently 4
K_NOD2 position of the data (second node) currently 5
K_NOD3 position of the data (third node) currently 6
K_NOD4 position of the data (fourth node) currently 7
K_FOFF position of pointer to FACE (first son) currently 8
K_FLEN position of length in FACE currently 9
K_KOFF position of pointer to KANTE (first son) currently 10
K_KLEN position of length in KANTE currently 11
K_NIK number of new edges (internal use only) currently 12
K_NEWC number of new nodes (internal use only) currently 13
K_0_BPX position of pointer to BPX list LC currently 14
K_L_BPX position of length in BPX list LC currently 15

K_T_BPX not used yet but reserved currently 16

2.2. FULL DATA STRUCTURE (FDS) 9

In the KETTE1D array the space of column K_FOFF and K_FLEN remains unused.

The kette offset parameters K_x and the parameter KETDIM are defined in adapt.inc.
The parameters K1DDIM, K2DDIM, PKZEIG, PKLENG, PWEGID, and PKDAT, defined in
net3ddat.inc exist only for compatibility.

The number of kettes is NanzK which is the sum of NanzK1D and NanzK2D which are
the number of 1D and 2D kettes, respectively. An important fact is that the two kette
arrays are always stored in a continuous way, such that KETTE2D follows immediately
KETTE1D. Therefore it is possible to refer to both kettes as KETTE. At the end of
KETTE2D exists an additional line with the following data:

Position Value

KETTE [K_COFF ,NanzK+1] KETTE [K_COFF,NanzK]+ KETTE[K_CLEN,NanzK]
KETTE[K_FOFF,NanzK+1] KETTE[K_FOFF,NanzK]+ KETTE[K_FLEN,NanzK]
KETTE[K_KOFF ,NanzK+1] KETTE[K_KOFF,NanzK]+ KETTE[K_KLEN,NanzK]
KETTE [K_0_BPX,NanzK+1] | KETTE[K_0_BPX,NanzK]+ KETTE[K_0_BPX,NanzK]

This gives the name of the first inner node, face, and edge and is only for internal use.

2.2.8 CHAIN

The CHAIN array, known from previous versions, does not longer exist. It data is now
integrated in the KETTE2D data.

2.2.9 REGION

The REGION array, known from previous versions, is still supported by the mesh read-
ing routines but does not exist in this version of SPC-PM Po 3D. The material index for
each volume, formerly stored in this array, is now integrated in the VOL array as column
VOL_REGION.

2.2.10 Hierarchical List

1.
2.

The hierarchical list connects all nodes with its father nodes.
LC(LC_LEN,*) : LC_.LEN = 3 + LC_DAT = 9; LC_DAT = 6
LC_DAT
——N—
| node | father_1 | father_2 | data |- - - |

In case of the Yserentant preconditioner only the first position of data (fourth of LC)
is used for a factor. The factor (0 < factor < 1) describes the relative position of the
node at the edge:

COOR(node) = factor * COOR(father_1) + (1 — factor) = COOR(father_2)

In case of the BPX preconditioner 6 entries are made in the data space. The use of
the 6 data values during the BPX is described in 5.4.

The entries in LC are ordered such that the fathers are included before their sons.
Furthermore LC is ordered level-wise, see also 2.2.13. Note that the entries in COOR
are ordered in another way, see [2] Section 3.3. Note that father_1 = father_2 = 0 if
the node is a crosspoint.

10 CHAPTER 2. DATA STRUCTURE

2.2.11 Geometry data

1. The Geometry data is taken from the #FACE_GEQ section in the mesh file and provides
the necessary parameters for all faces types.

2. GEOM(DIMGEQOM,) : DIMGEOM =9
3. | kind_of _face | data_1 | --- | data_8 |

4. At the moment the following values for kind_of_face are possible:

1 plane face, defined by a normal vector and a point on the plane
2 plane face, defined by a point on the plane and a normal vector
11 cylinder face
21 sphere surface
31 cone surface
41 ellipsoid, hyperboloid
51 torus face

For more details see [8]. the required parameters for the geometric correction are
stored in data_1 to data_8.

2.2.12 X

1. The array X stores the previous solution. It is used to compute a good start vector for
the CG in the adaptive mesh refinement.

2. X(x)

3. | solution for node |

2.2.13 AZONE

1. AZONE stores the name of the first and the last node of a refinement level in LC.
2. AZONE(D_AZONE,MAX_ALEV) : D_.AZONE = 2; MAX_ALEV = 25

3. | name_of first_node | name_of_last_node |

2.2.14 DGRAPH

1. DGRAPH stores all data needed for the dynamic load balancing. The data structure
corresponds with the widely used CSR format for storing sparse graphs. The stored
dual graph belongs to the present coarse mesh.

2.3. INCLUDE-FILES/COMMON-BLOCKS

11

2. DGRAPH is a dynamic structure organized as follows:

part

length

description

index vector

partition

NVOL+1

adjacency data | DGRAPH(NVOL+1)-NVOL-1

NVOL

volume weights NVOL

pointer to the first data entry for the
corresponding volume; the last entry
points to the start of the partitioning
data

names of neighbored volumes
number of processor the volume be-
longs to

partitioning weight for of each vol-
ume; the weight is the number of fine
volumes belonging to the coarse vol-
ume

Note: Here, the value NVOL is the number of Volumes of the main mesh.

3. | index | adjacency data | partition data | volume weights |

4. The structure DGRAPH is build by the subroutine make_dgraph and can be viewed with
the subroutine print_dgraph. To get the partition and weight offsets the functions
Get_Part_Off and Get_Wgt_Off (see 8.3.3) should be used. For storing a new par-
titioning the subroutine store_partition exists. All this subroutines and functions
are defined in dgraph.f from the library libaNetzA.a.

2.3 INCLUDE-Files/COMMON-Blocks

There is a number of COMMON-Blocks in our program. Most of them are located in
INCLUDE-Files. Moreover, some parameters are determined in these files.

2.3.1 net3ddat.inc

This INCLUDE-File contains a number of variables/parameters which determines dimen-
sions of data, especially these which depend on the type of the mesh. All variables are in
these COMMON-Blocks:

e /NENXD/

NEN2D number of nodes per face (see 2.1)
NEN3D number of nodes per volume (see 2.1)

e /NETDIM/
DIMVOL
DIMFACE
FCHIELD
FZEIG
SUB
CH_DUMMY
LC_LEN
LC_DAT

e /PROT/

dimension of the array of volumes (see 2.2.1)
dimension of the array of faces (see 2.2.2)

pointer to the number of the first subface (see 2.2.2)
pointer to the type of the face (see 2.2.2)

name of the subdirectory with the meshes

dimension of the hierarchical list (see 2.2.10)
dimension of the data in hierarchical list (see 2.2.10)

12 CHAPTER 2. DATA STRUCTURE

NProt1 dimension 1 of the protocol array (see 7.2)
NProt2 dimension 2 of the protocol array (see 7.2)
Protinfo info variable used in SPC-PM CFD

e /RB/
NDF number of degrees of freedom (see 2.1)
DVDIR dimension of the array of Dirichlet data (FDS) (see 2.2.6)
DRDIR dimension of the array of Dirichlet data (RDS) (obsolete)
DRNODES position of the nodes (RDS) (obsolete)
DRIFG position of IFG (RDS) (obsolete)
DRDAT position of the data (RDS) (obsolete)
DVNEUM dimension of the array of Neumann data (FDS) (see 2.2.6)
DRNEUM dimension of the array of Neumann data (RDS) (obsolete)
NRNODES position of the nodes (RDS) (obsolete)
NRDAT position of the data (RDS) (obsolete)

The subroutine SET_RBCOM sets all these Variables. (NDF, NEN2D and NEN3D must be
correct when calling this routine.)

Moreover, there are the following parameters (via FORTRANT7 parameter statement):

DIMKANTE dimension of the array of edges currently 5
KZEIG position of the type of the edge currently 4
KCHIELD position of the child of the edge currently 5
DIMGEQOM dimension of the array of geometric data currently 9
K1DDIM dimension of the array of 1D kettes (obsolete) currently 7
K2DDIM dimension of the array of 2D kettes (obsolete) currently 7
PKZEIG position of the pointer in the kette data (obsolete) currently 1
PKLENG position of the block length in the kette data (obsolete) currently 2
PWEGID position of the path identifier in the kette data (obsolete) currently 3
PKDAT position of the data in the kette data (obsolete) currently 4
NDIRREAL number of Dirichlet real parameters currently 4
NNEUMREAL number of Neumann real parameters currently 5

2.3.2 com_prob.inc

There is a number of variables with information concerning the mesh.

e /PROBLEM/

Nk number of nodes (local on the processor)
NCrossG number of crosspoints (global)

NCrossL number of crosspoints (local)

NKettSum number of all coupling nodes (local)

NC NKettSum + NCrossL

NI number of interior nodes (local)

NanzK NanzK1D + NanzK2D

NanzK1D local number of 1D kettes

NanzK2D local number of 2D kettes

LinkLevel auxiliary variable for communication
NanzK1DG global number of 1D kettes
NanzK2DG global number of 2D kettes

The subroutine COM_PROB sets most of these variables.

2.3. INCLUDE-FILES/COMMON-BLOCKS 13

2.3.3 filename.inc

e /FILENAME/
File
Length
Nlevl
itri
Lunit
Fullname

name of the standard file (without .std)

length of File

not used

not used

not used

name of the standard file including path and .std

To input the filename from keyboard and to set these variables the subroutine SETFILE

is used.

2.3.4 standard.inc

This INCLUDE-File contains some program control variables which can be changed with
the file control.adapt (equivalent to the previously used control.tet) without recompiling the
program, see [3, Section 2.4].

e /standard/

vertvar
femakkvar
loesvar
Nint2ass

Nint3ass
Nint2error

Nint3error
Epsilon

Iter
NDiag

Verf

lin _quad

2.3.5 trnet.inc

kind of coarse grid partitioning

variant of accumulation of distributed data, see [1]

choice of the preconditioner

number of the quadrature formula used for assembling Neumann
boundary data

number of quadrature formula for 3D elements used in the assembling
as nint2ass, but used in the error estimator for the integration of
the jump of the normal derivatives

as nint3ass, but used for the integration of 3D integrals in the error
calculation

stop criterion for the CG (relative decrease of the norm of the resi-
dual)

maximal number of iterations in the CG algorithm

upper estimate for the number of nonzero entries in any row of the
stiffness matrix

mesh refinement parameter for a certain class of examples, see [3,
Subsection 4.1.7]

kind of shape functions

There are some variables with information concerning the parallel computer, compare [5,

Section 3.1].

e /TrlNet/

NCUBE dimension of the hypercube
ICH number of the processor in the hypercube topology
NODENR internal info when PARIX is used

e /TrRing/

14 CHAPTER 2. DATA STRUCTURE

NPROC number of processors
ICHRING number of the processor in ring topology
Lforw number of the link that leads to the successor within the ring

Lback number of the link that leads to the predecessor within the ring

2.3.6 adapt.inc

All major changes of data structure parameters and additional definitions are include in the
new file adapt.inc. Several special COMMON-blocks are defined:

e /A_NETDIM/
VOL_TYP position of type of the volume
VOL_REGION position of material index of the volume

/A_NETDIM/ provides additional information to /NETDIM/ from net3ddat.inc.

e /A_STD/

MARK_VAR kind of marking for adaptive refinement (see 3.3.1)

MARK_LOG choice if marks should be written to a logfile

TET_ORD choice if tetrahedron should be sorted (see 3.7)

scale factor determining the relation between the maximum estimated error
per volume and the used bound for marking, only used with MARK_VAR=3

min_verf rate of total number of volumes that must be marked (0 <min_verf< 1),
only used with MARK_VAR=3

/A_STD/ provides additional information to /standard/ from standard.inc.

e /A_BPX/

AZONE AZONE array (see 2.2.13)
A_NLEV deepest reached refinement level, starts with 1 at the main mesh
NBPX length of the (extended) array LC within BPX

e /LOESER/
JACOBI choice if Jacobi preconditioning should be used
YSER choice if Yserentant preconditioning should be used
BPX choice if BPX preconditioning should be used
Ivar variant of solver

Delta factor for the simplified coarse grid matrix

e /SEL_COM/
LOC_CUBE hypercube size actually used
N_GROB_T number of main mesh volumes on processor

PROCS_FULL logical value, true if all processors are used

SPLIT_WERT percentage of memory usage before data split between processors

N_JE_PROC minimum amount of volumes per processor required for fixing the
main mesh

ORG_LOESVAR stores the value loesvar until the main mesh is fixed

ORG_MAXADR temporary used during the fixing of the main mesh

N_LC length of index vector of the coarse grid matrix

N_CC length of data vector of the coarse grid matrix

Chapter 3

Adaptive mesh generation

3.1 General mesh handling

Unlike previous versions of SPC-PM Po 3D, version 4.x constructs the mesh in several steps
driven by the solution until the estimated local error of each volume is below a certain
bound. Therefore the mesh generation consists also of several steps.

e Read the user mesh data and generate the user mesh,
e adaptive mesh refinement,

e main mesh fixing,

e mesh distribution,

e further adaptive refinement with load balancing.

The mesh generation and the main mesh fixing is done only once, but the mesh distribution
and of course the adaptive refinement could happen several times.

3.2 User mesh input, main mesh fixing, and mesh dis-
tribution

3.2.1 The procedure

The user mesh is read from a standardized file, compare [3, Section 3.2]. These files are
located in the subdirectory ./mesh3 (tetrahedral meshes). Only processor zero reads the
mesh and generates the data structure. A number of variables and arrays are initialized
with its start values. The user mesh is taken as coarse mesh. An important fact to notice
is that all faces/edges of the coarse mesh are assumed to be coupling faces/edges no matter
if they really connect the sub-meshes of two processors or if they are only within one sub-
mesh. That’s why the kette arrays are defined despite the fact that all further computation
is done only on processor 0. Now the computation starts with solving the problem on the
user mesh. After finding the solution there are two possibilities for the program to proceed,
compare also Figure 9.1 on page 60.

The way depends on the parameter N_JE_PROC read from control.adapt. It determines
the minimal number of volumes per processor which the main mesh should consist of. For
an explanation a short example: If N_.JE_PROC is 20 and the program runs on 8 processors the

15

16 CHAPTER 3. ADAPTIVE MESH GENERATION

mesh on processor 0 must consist of more that 160 volumes before it is fixed as main mesh.
If the number of volumes is too small the program proceeds with an adaptive refinement
step and computes a new solution.

If the desired mesh size is reached the main mesh is fixed, by making the present mesh
the new coarse mesh, and redefining the boundary condition data and kettes. The hierarchy
level of the mesh is set to 1 and the present stiffness matrix is stored as coarse grid matrix.

Now the program checks whether the amount of data on processor 0 exceeds the limit
set by the parameter SPLIT_WERT. This parameter determines the minimal percentage of
used memory on a processor before the problem is split and distributed on 2 processors.
This splitting is going on until the percentage use of memory on each processor is smaller
then SPLIT_WERT or all processor have data.

Finally the program asks how to proceed, offering the possibilities to compute a new so-
lution, adaptively refine the mesh, read in a new mesh, quit, or modify program parameters.

3.2.2 Parameters of NET_0

The procedure NET_O generates the initial mesh. It reads the user mesh from a file and
generates the full data structure.

SUBROUTINE NET_O(A,JCOOR,NUMNP, JDIR,NDIR,JNEUM,NNEUM, JVOL,
NVOL, JKANTE,NKANTE, JFACE ,NFACE, JIGLOB, JKETTE1D,
JKETTE2D, JLC, JGEOM,NGEOM, JX, JDGRAPH, IER)

A I/O workspace vector

JCOOR O pointer to array of node coordinates COOR
NUMNP O NUMber of Nodal Points

JDIR O pointer to the Dirichlet data DIR

NDIR O number of Dirichlet faces

JNEUM O pointer to the Neumann data NEUM

NNEUM O number of Neumann faces

JVOL O pointer to array of volumes VOL

NVOL O Number of VOLumes

JKANTE O pointer to array of edges KANTE

NKANTE O Number of KANTEs (edges)

JFACE O pointer to array of faces FACE

NFACE O Number of FACEs

JIGLOB O pointer to array of global crosspoint names IGLOB
JKETTEID O pointer to array of 1D kette data KETTE1D
JKETTE2D O pointer to array of 2D kette data KETTE2D
JLC O pointer to the hierarchical list

JGEQOM O pointer to array of geometry data GEOM
NGEOM O Number of GEOMetry data sets

JX O pointer to the solution vector X

JDGRAPH O pointer to the dual graph of the mesh DGRAPH
IER O error indicator of the subroutine

To optimize the communication, the nodes which belong to coupling faces/edges have con-
secutive numbers and the order of these points is the same on every processor. They form
a so called kette. To realize this, it is useful to arrange the edges and faces in a certain way.

3.2. USER MESH INPUT, MAIN MESH FIXING, AND MESH DISTRIBUTION 17

3.2.3 Parameters of SET_GROBNETZ

The procedure SET_GROBNETZ sets the the main mesh by defining a new coarse mesh. It
stores the real coarse grid matrix and modifies all relevant arrays, including the boundary
conditions, the kettes, and the hierarchical list.

SUBROUTINE SET_GROBNETZ(A,JLA,JA,J_GLC,J_GCC,JCOOR,NUMNP,JDIR,NDIR,
JNEUM, NNEUM, JVOL ,NVOL , JKANTE ,NKANTE , JFACE,
NFACE, JIGLOB, JKETTE1D, JKETTE2D, JLC, JGEOM,NGEOM,
JX,JDGRAPH, JF,IER)

A I/O workspace vector

JLA I index vector of the present stiffness matrix
JA I data array of the present stiffness matrix
J_GLC [/O index vector of the coarse grid matrix
J_GCC [/O data array of the coarse grid matrix
JCOOR I/O pointer to array of node coordinates COOR
NUMNP O NUMber of Nodal Points

JDIR I/O pointer to the Dirichlet data DIR

NDIR I/O number of Dirichlet faces

JNEUM I/O pointer to the Neumann data NEUM
NNEUM I/O number of Neumann faces

JvoL I/O pointer to array of volumes VOL

NVOL I Number of VOLumes

JKANTE [/O pointer to array of edges KANTE

NKANTE I Number of KANTESs (edges)

JFACE I/O pointer to array of faces FACE

NFACE I Number of FACEs

JIGLOB [/O pointer to array of global crosspoint names IGLOB
JKETTE1D I/O pointer to array of 1D kette data KETTE1D
JKETTE2D [/O pointer to array of 2D kette data KETTE2D

JLC I/O pointer to the hierarchical list

JGEOM I/O pointer to array of geometry data GEOM
NGEOM I Number of GEOMetry data sets

JX [/O pointer to the solution array

JDGRAPH I/O pointer to the dual graph of the mesh
IER O error indicator of the subroutine

3.2.4 Parameters of N.SPLIT

The subroutine N_.SPLIT manages the mesh distribution to the processors. If the amount of
data on a processor is higher then the given bound the routine determines a ’split partner’
and tries to divide the data equally and sends one half of the data to the second processor.
The present version uses only a linear distribution scheme this will be replaced by a parti-
tioner from the ParMetis library in the next version. Note that only (the children belonging
to) coarse mesh tetrahedra are moved between processors.

The data splitting stops, if the data on all processors is below the given bound or if all
processors have data.

SUBROUTINE N_SPLIT(A,JCOOR,NUMNP,JDIR,NDIR,JNEUM,NNEUM, JVOL,NVOL,
JKANTE ,NKANTE, JFACE,NFACE, JIGLOB, JKETTE1D, JKETTE2D,
JLC,JGEOM,NGEOM, JX,J_GLC,J_GCC, JDGRAPH, SCHWELLE, IER)

18

A

JCOOR
NUMNP
JDIR
NDIR
JNEUM
NNEUM
JVOL
NVOL
JKANTE
NKANTE
JFACE
NFACE
JIGLOB
JKETTE1D
JKETTE2D
JLC
JGEOM
NGEOM

JX

J_GLC
J_GCC
JDGRAPH
SCHWELLE
IER

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

1/0
I
0

CHAPTER 3. ADAPTIVE MESH GENERATION

workspace vector

pointer to array of node coordinates COOR
NUMber of Nodal Points

pointer to the Dirichlet data DIR

number of Dirichlet faces

pointer to the Neumann data NEUM
number of Neumann faces

pointer to array of volumes VOL

Number of VOLumes

pointer to array of edges KANTE

Number of KANTEs (edges)

pointer to array of faces FACE

Number of FACEs

pointer to array of global crosspoint names IGLOB
pointer to array of 1D kette data KETTE1D
pointer to array of 2D kette data KETTE2D
pointer to the hierarchical list

pointer to array of geometry data GEOM
Number of GEOMetry data sets

pointer to the solution array

index vector of the coarse grid matrix
data array of the coarse grid matrix
pointer to the dual graph of the mesh
bound for data splitting; defined as SPLIT_WERT
error indicator of the subroutine

3.3 Adaptive refinement

3.3.1 The procedure

In general there are 6 major steps in the adaptive refinement procedure A_REFINE:

1. marking of volumes, faces, or edges to refine by several criteria,

2. prediction of all changes resulting from the initial marking, extend the marking of
volumes, faces, and edges accordingly (red, greenl/2/3, ...),

3. prediction of the expected load imbalance after the refinement and repartitioning if
necessary,

4. calculation of the array lengths needed during the refinement and allocation of memory,

5. refinement including green closure of the mesh,

6. memory usage optimization,

7. restart with step 2 if necessary.

Now we explain the steps in more detail.

3.3. ADAPTIVE REFINEMENT 19

Marking Adaptive refinement means that only selected volumes get refined. To do so the
desired ones have to be marked. The present version of the program offers 3 ways to set
marks for the refinement. They are distinguished by the parameter MARK_VAR.

The first possibility (mark var=0) asks the user for the names of the volumes to refine.
This is especially helpful for development and test reasons.

The second possibility (mark_var=1) sets marks on geometrical criteria programmed
in geo_mark.f. GEO_MARK provides the possibility to mark volumes, faces, edges, and any
mixture.

The third, and in practice most common way (mark_var=2), is the marking based on
an error estimator. We use the Zienkiewicz-Zhu error estimator from a library written by
G. Kunert, see [6]. The selection of the volumes can be influenced by the two parameters
alpha and min verf. min verf is the minimal fraction of volumes to refine and alpha is
the fraction of the maximal estimated error a volume must have to be marked.

Mark if erryo > o erryoma-

If the number of marked volumes is less than min_verf*NVOL then alpha is reduced and a
new marking is done (NVOL is the global number of volumes).

Extend marking The present version of the program can only handle regular meshes,
which means in our case a mesh without irregular/hanging nodes. To avoid such irregular
nodes a green mesh closure is produced by refining additional volumes in a greenl, green2,
or green3 way, see Figure 2.1. If more than 3 hanging nodes appear in a volume it is red/full
refined into 8 pieces.

The initial marking is extended by the subroutine SEL_MARK such that all volumes, faces,
and edges to refine (including the green closure) are marked by a number indicating the
refinement type (red/greenl/2/3, ...). During the run of SEL_MARK the consistency over
processor borders is kept by a communication over coupling edges.

Load balancing The expected work load of each processor is estimated by the expected
amount of volumes on each processor weighted with the computation time the processor has
needed in the last step. If the imbalance between processors reaches a certain amount (at
the moment 30%) and the amount of communication for re-balancing is less than the gain
in computational speed a repartitioning is done.

Prediction Based on the marking the additional amount of memory needed during the
refinement step is predicted by counting all marked volumes, faces, and edges. Then the
additional memory on the mesh data arrays is allocated.

Refinement The actual refinement (which includes the green closure) is done in 3 steps.
It starts with the marked edges, goes on with the marked faces and finishes with the marked
volumes. After the refinement some temporarily needed space on the mesh data arrays is
freed. The data organization on the mesh data arrays follows the guidelines explained in [2].

In certain cases it is not possible to accomplish the refinement in a single run and the
procedure is restarted with the second step. A typical case is the marking of one half of a
green edge. In such a case, in the first run, the father of the corresponding green volumes
is virtually restored and red refined. Afterwards, in the second run, the green closure in the
new subtetrahedrons is performed.

20 CHAPTER 3. ADAPTIVE MESH GENERATION

3.3.2 Parameters of A REFINE

The procedure A_REFINE does the complete adaptive mesh refinement including a possibly
necessary load balancing. It takes the present mesh and the corresponding solution and
generates the next level.

SUBROUTINE A_REFINE(A,JCOOR,NUMNP,JDIR,NDIR,JNEUM,NNEUM, JTET,NUMEL,
JKANTE ,NKANTE, JFACE ,NFACE, JIGLOB, JKETTE1D , JKETTE2D,
JLC,JGEOM,NGEOM, JX,VFS, JDGRAPH,RTIMES,L_GROBNETZ, IER)

A I/O workspace vector

JCOOR I/O pointer to array of node coordinates COOR
NUMNP I/O NUMber of Nodal Points

JDIR I/O pointer to the Dirichlet data DIR

NDIR I/O number of Dirichlet faces

JNEUM I/O pointer to the Neumann data NEUM
NNEUM I/O number of Neumann faces

JVOL I/O pointer to array of volumes VOL

NVOL I/O Number of VOLumes

JKANTE [/O pointer to array of edges KANTE

NKANTE [/O Number of KANTEs (edges)

JFACE I/O pointer to array of faces FACE

NFACE I/O Number of FACEs

JIGLOB I/O pointer to array of global crosspoint names IGLOB

JKETTE1D [/O pointer to array of 1D kette data KETTE1D
JKETTE2D [/O pointer to array of 2D kette data KETTE2D

JLC I/O pointer to the hierarchical list

JGEOM I/O pointer to array of geometry data GEOM

NGEOM [/O Number of GEOMetry data sets

JX I/O pointer to the solution array

VFS [/O number of refinement steps

JDGRAPH [/O pointer to the dual graph of the mesh

RTIMES [/O array of computation times for each processor; in: measured time for

last solution, out: guessed time for next solution
L GROBNETZ I/O logical parameter determining whether the main mesh is fixed or not
IER O error indicator of the subroutine

The data ordering mentioned in 3.2.2 is always kept by the routine.

3.4 Parameters of the output tool AUSGABE

The subroutine AUSGABE is an output tool for several (mesh) data. Features of AUSGABE:
e graphical output of mesh data with GRAPE (3D)
e graphical output of mesh data with gebgraf (2D)
e graphical output of mesh data with Irix Explorer (3D)

e tabular output of mesh data

3.5. TREE STRUCTURE OF THE ROUTINES 21

tabular output of kette data

tabular output of the solution/error

tabular output of error norms

output of the mesh as standardized file *.std (works only as one processor version)

SUBROUTINE AUSGABE(SOLVED,COOR,NUMNP,KANTE,NKANTE,FACE,NFACE,
VOL,NUMEL,DIR,NDIR,NEUM,NNEUM,KETTE1D,KETTE2D,
VFS,X,LC,A,IER)

SOLVED mesh status

COOR array of node coordinates
NUMNP number of nodal points
KANTE array of edges

NKANTE number of edges

FACE array of faces

NFACE number of faces

VOL array of volumes

NUMEL number of volumes

DIR array of Dirichlet data

NDIR number of Dirichlet faces (on coarse mesh)
NEUM array of Neumann data

NNEUM number of Neumann faces (on coarse mesh)

KETTE1D array of 1D kette data
KETTE2D array of 2D kette data

VFS number of refinement steps
X solution

LC hierarchical list

A workspace array

TER error parameter

All variables except the error parameter IER are input.

3.5 Tree structure of the routines

Tree substructures of subroutines marked with the symbol x are described before in the list.

3.5.1 NET.O for generating the user mesh

NET_O
< DATA READ
— SET_RBCOM
— MEM_CHANGE
< K_CODES
— KA_CODE
<~ KAC_OPT
— ZUERST

22

— SET_KCHIELD
— PCORECT
— K_LC
— P_FACE
< GEMPKT
— TETORDNEN
< TESTORDN
— ECKPUNKTE
< GEMPKT
— GEMKANTE
< COM_PROB

CHAPTER 3. ADAPTIVE MESH GENERATION

3.5.2 SET_GROBNETZ for the main mesh fixing

SET_GROBNETZ

— CVBKLZ

< CHOVBZ

— GROB_RBO

< MEM_CHANGE

<~ GROB_RB1

— ZUERST *

< COM_PROB

—> MAKE_DGRAPH
— BUILDHV
— BUILD_DGRAPH
< PACK_DGRAPH

3.5.3 N_SPLIT for distribution of the mesh

N_SPLIT

— GET_SPLIT
< D_SPLIT

— RECV_NODE_1
< SEND_NODE_1
— S_MARK2

<~ GET_GROB_NR

— T_KUERZ

< DATREDO

< POST_FRED
— POST_KRED
< POST_CRED
—> MEM_CHANGE
< SET_COM_KN

3.5.4 A_REFINE for the adaptive mesh refinement

A_REFINE
— HCOM_SIZE
— NO_MARK
< SET_VMARK
— GEO_MARK

— EST_MARK
< SEL_MARK
— TET_VOR
< DREI_VOR
— K_VOR

3.5. TREE STRUCTURE OF THE ROUTINES

< KREUZPROD
—> NODE2FACE

<— REBALANCE DREI_VOR
— VOR_FEIN <3 D_VOR_1
< T_KANTEN — GET_FDEP
— T_DREI — GET_KDEPTH
— T_TET K_VOR
— SEL_KUERZ <3 K_VOR_1
— SET_COM_KN s GET.KTYP
EST_MARK — GET _KDEPTH
< ECKPUNKTE REBALANCE
— RES_E — COMPUTE_LOADS
— E3LEHF <— REPARTITION
<3 E3INTG < PARMETIS REPARTLDIFFUSION
— E3SHAP — COMPUTE_COMMLOADS
— NORMAL_ABL < VOR_TRANSFER
— JACOBIAN < SORTIEREN

< TRANSFER
— STORE_NEW_PART

<~ REC_GRADIENT VOR_FEIN
— FACE_AKK — LC_PLATZ
<~ P_FACE * T_KANTEN
— A_GET_XL — GET_KTYP
<~ GET_NEUM <~ GET_KDEPTH
— P2_GN — SET_KCHIELD
<~ A_FEMACC — C_RENAME
— EST_ZZ < C_UPDATE
— E3LEHF — TK
— E2INTG <~ GET KTYP
— E2SHAP — GET_KDEPTH
<~ E3INTG — K_WRITE
— E3SHAP — SET_KCHIELD
< JACOBIAN < PCORECT
— GET_CT — K_LC
< M1APPROX T_DREI
< MARKIEREN — TD
SEL_MARK — GET_KXTYP
— A_K3AKK_VOR — D_WRITE
— SET_VROT — D_GRUEN
<~ GET_VTYP < GEMPKT
<~ DREI_MROT — GET_KDEPTH
— A_K3AKK <~ GET KTYP
— DREIMARK — PCORECT
<~ GET KTYP — K_LC *
<~ DREI_MROT — K_WRITE *
< TETMARK — D_WRITE
— GET_VTYP — D_ROT
< GTMARK — GET_KDEPTH
— SET_VROT < PCORECT
TET_VOR — K_LC *
<~ GET_VTYP — K_WRITE x
— GET_VDEP — D_WRITE
< GET _KDEPTH <~ GET_G_KANTEN
— GET_GROB_NR — GET KXTYP

24

T_TET
— T_T
— GET_VTYP
— T_GRUEN1
< GEMKANTE
— GET_GROB_NR
— D_WRITE
— T_WRITE
< SET_VTYP
— G_V_G1
< T_GRUEN2
— GEMPKT
— GET_GROB_NR
<~ GET_KDEPTH
— N_KANTE
— K_LC *

3.5.5 AUSGABE

AUSGABE

< IAUS

— A_VIS_GRAPE
— ECKPUNKTE
— VCRFROMD
< GEBGRAPE

— A_VIS X11
< ECKPUNKTE *
<> OLD_KET
— DRAW3D

<~ A_VIS_EXPL
< ECKPUNKTE *
< OLD_KET

CHAPTER 3. ADAPTIVE MESH GENERATION

— K_WRITE *
— D_WRITE
— T_WRITE %
— T_GRUEN3
<~ GET_GROB_NR
— D_WRITE
— T_WRITE %
— G_V_G2
— G_V_G3
— T_ROT
< GEMPKT
— GET_GROB_NR
— GET_KDEPTH
< N_KANTE *
— D_WRITE
— T_WRITE %

< OUT3DEXPL
< NETZDRUCK
— GET_VTYP
— GET_GROB_NR
— FSTRADDI
< FSTRADDR
— VRBPRINT
< KETPOUT
— WTABX
— PWTABX
— A_FNTAB
< A_FEHLER

3.6 Short description of the routines in libaNetzA.a

The following FORTRAN sources are located in aNetzA. The library substitutes IibNA.a from

previous versions of the program.

AUSGABE ausgabe.f
A_VIS_EXPL a_visual3d.f
A_VIS_GRAPE a_visual3d.f
A VIS X11 a_visual3d.f
A_YSFAKTOR cnetz.f
BUILDHV buildhv.f
BUILD_DGRAPH dgraph.f
COMPUTE_COMMLOADS balance.f

frame for the output of several data (mesh, solution, error
estimates)

prepares the data for visualization with the Irix 3D Ex-
plorer

prepares the data for visualization with GRAPE

prepares the data for visualization with 2D X11 interface
determines the relative length of the sub-edges (factor in
LC)

accumulation of an auxiliary array for building the dual
graph of the mesh

constructs the dual graph of the mesh

guesses the communication load for a load rebalancing (not
implemented yet)

3.6. SHORT DESCRIPTION OF THE ROUTINES IN LIBANETZA.A 25

COMPUTE_LOADS

COM_PROB
DATRED

D_WRITE
EB2KUG
ECKPUNKTE
FSTRADDI
FSTRADDR
GEMKANTE
GEMPKT
GEOPRINT
GET_FDEP
GET_GROB_NR

GET_KDEPTH
GET KTYP
GET_MINFO

GET_PART_OFF

GET_VDEP
GET_VTYP
GET_WGT_OFF
G_MEM_USE
IAUS
IER_TEST

ITAUSCH
KAC_OPT
KA_CODE
KEESCHNITT

KEGPROJ
KESCHNITT

KETPOUT
KUERZEN

KUGPROJ
K_CODES
K_LC

K_WRITE
LIES

MAKE_DGRAPH

balance.f

com_prob.f
kuerzen.f

AUpfein.f
pcorect.f
AUpfein.f
netzdruck.f
netzdruck.f
AUpfein.f
AUpfein.f
stdwrite.f
AUpfein.f

v_typ.f

AUpfein.f
AUpfein.f
memo.f
dgraph.f
AUpfein.f
v_typ.f
dgraph.f
memo.f
ausgabe.f
ier_set.f

AUpfein.f
geom.f
geom.f

pcorect.f

pcorect.f
pcorect.f

netzdruck.f
kuerzen.f

pcorect.f
geom.f
AUpfein.f

AUpfein.f
standard.f

dgraph.f

guesses the computational load of the processors after an
adaptive mesh refinement

sets the variables of the common block in com_prob.inc
deletes faces/edges/nodes which are not referred in the
volumes/faces/edges; generates IGLOB and deletes unused
boundary condition data

writes a face in the array of faces

determines the cut plane of two spheres

determines the vertices of a tetrahedron

generates a format string

generates a format string

determines the common edge of two faces

determines the common node of two edges

output of the face geometry description

determines the refinement level of a face

determines the name of the coarse grid volume to which
the fine volume belongs to

determines the refinement level of an edge

determines the refinement type of an edge

reads array data from info block of the workspace vector
returns the offset in DGRAPH for the partitioning info
determines the refinement level of a volume

determines the refinement type of a volume

returns the offset in DGRAPH for the weights

returns the percentage use of the workspace vector
displays the output menu and returns the user choice
tests the error indicator IER, displays an error message,
and sets IER new

swaps two integer values

optimizes the geometry codes of an edge

generates the geometry code of an edge from a given face
geometry

computes the coordinates of a node situated on the cut
between a cone and a plane

computes the coordinates of a node situated on a cone
computes the coordinates of a node situated on the cut
between a sphere and a plane

output of kette data (for kette see [1])

deletes unused mesh data and performs the necessary
renumbering, generates the array of global crosspoint
names IGLOB (Note that DAT DOWN distributes the whole
coarse mesh, then some elements are marked, and KUERZEN
deletes all elements not marked.)

projection of a node onto a sphere

generates edge geometry codes

writes nodes into LC and computes a start solution for the
new edge midpoint

writes an edge into the array of edges

reads and analyses a row of the file of program control
variables (control.adapt)

frame for the creation of the data structure DGRAPH

26

MEMO_INIT
MEMO_OUT

MEMO_USE
MEM_CHANGE

MG_NAME

MIT3DGRAFIK

MOVE

M_CH_COPY
M_CH_MAIN
M_CH_POST
M_CH_PRE
M_CH_TEST
M_CH_VAL
M_DEL
M_D_0UT
M_FREE_GET
M_H_OUT
M_LENG

M_NAME
M_NEW

M_N_FREE

M_OFF_END
M_OFF_GET

M_O_GET
M_WHERE
NETZDRUCK
NET_O
N_KANTE
OLD_KET

OLD_LC

OUTKETTE

OUTSTANDARD

ouT

OUT_COM_PROB

PACK_DGRAPH

PCORECT

memo.f

memo.f
memo.f

mem_change.f

memo.f

a_visual3d.f
cnetz.f

memo.f
memo.f
memo.f
memo.f
memo.f
memo.f
memo.f
memo.f
memo.f
memo.f
memo.f

memo.f
memo.f

memo.f

memo.f
memo.f

memo.f
memo.f
netzdruck.f
net_0.f
AUpfein.f
old arr.f

old._arr.f
netzdruck.f
standard.f
netzdruck.f

outprob.f

dgraph.f

pcorect.f

CHAPTER 3. ADAPTIVE MESH GENERATION

initializes the workspace vector for the memory manage-
ment

displays all data from the info block of the workspace vector
displays the present percentage use of the workspace vector
executes all changes in memory usage on the permanently
used arrays on the workspace vectorand gives the new off-
sets

determines the name string of a given array

dummy function .TRUE. for libGraf.a and .FALSE. for
libNoGraf.a

realization of a coordinate transformation for special appli-
cations

auxiliary routine for changes on the workspace vector
executes memory changes on the workspace vector
auxiliary routine for changes on the workspace vector
auxiliary routine for changes on the workspace vector
auxiliary routine for changes on the workspace vector
auxiliary routine for changes on the workspace vector
deletes an array from the info block of the workspace vector
auxiliary routine for MEMO_OUT

returns the first free address on the workspace vector
auxiliary routine for MEMO_OUT

auxiliary routine, returns the maximal size of an array of
a given amount of memory (bytes)

returns the name of an array by its number

returns the start address of a new array on the workspace
vector

returns the first free address on the workspace vector pos-
sible for the given array type and gives the maximal array
size for this type

auxiliary routine for changes on the workspace vector
returns the start address of a given array on the workspace
vector

auxiliary routine of M_OFF_GET

auxiliary routine of the memory management

output of the full data structure

frame for generation of the user mesh

generates a new inner edge including the middle node
generates the kette array as defined in the former versions
of SPC-PM Po 3D (KETDIM=7) from the present arrays
generates the hierarchical list as defined in the former ver-
sions of SPC-PM Po 3D (LCDIM=4) from the present list
displays the part of the kette data (for kette see [1]) of one
processor

displays program control variables

displays the part of the solution vector of one processor
displays problem information from the common block in
com_prob.inc

converts the dual graph from the static structure used in
BUILD_DGRAPH to the later used dynamic structure and frees
unused memory

determines the middle point of an edge

3.7. SHORT DESCRIPTION OF THE ROUTINES IN LIBANETZT.A 27

PRINT_DGRAPH
PROJ1FACE
PROJ2ANY

PROJ2FACE

PWTABX
P_FACE
RDIRPRINT
REBALANCE
REPARTITION
RNDPRINT
ROTPROJ
SETFILE
SETSTANDARD
SET_IER

SET_KCHIELD

SET_MINFO
SET_RBCOM

SET_VTYP
SORTIEREN
STDF_OUT

STDWRITE
STORE_NEW_PART
STORE_PARTITION
TORPROJ

T_KUERZ

T_WRITE
VERSION
VOR_TRANSFER
VRBPRINT
WTABX
ZESCHNITT

ZWEIIWERTE
ZYLPROJ
ZZSCHNITT

dgraph.f
pcorect.f
pcorect.f

pcorect.f

netzdruck.f
AUpfein.f
netzdruck.f
balance.f
balance.f
stdwrite.f
pcorect.f
setfile.f
standard.f
ier_set.f

AUpfein.f

memo.f
set_rbcom.f

v_typ.f
balance.f
stdwrite.f

stdwrite.f
balance.f
dgraph.f
pcorect.f
kuerzen.f

AUpfein.f
version.f
balance.f
netzdruck.f
netzdruck.f
pcorect.f

standard.f
pcorect.f
pcorect.f

displays the structure DGRAPH

projection of a node onto one special geometry

projection of a node onto two arbitrary geometries; position
determined in an iterative process

projection of a node onto two special geometries; position
must be computable

displays one row of the table of the solution/error
determines the nodes of a face

output of Dirichlet data (RDS, not longer used)

frame for dynamic load balancing

determines a repartitioning by calling ParMetis

output of boundary condition data

projection of a node onto a hyperboloid or ellipsoid

input of the filename

sets the program control variables using file control.adapt
sets the error parameter IER to a given value and displays
an error message

returns the combined refinement type and level of an edge
for the data entry in KANTE, see 2.2.3

auxiliary routine of the memory management

sets the values of the variables in the common block RB in
the file net3ddat.inc

sets the refinement type of a volume

sorts an array in increasing order

frame for the output of the full data structure as a standard
file *.std

output of the full data structure as a standard file
corrects the partitioning in the structure DGRAPH

writes a full partitioning into the structure DGRAPH
projection of a node onto a torus

deletes all volumes which are not marked with the own
processor number (array MARK)

writes a volume into the array of volumes

displays the title of the program

generates the transfer list for the repartitioning

output of Dirichlet data (FDS)

prints table of the solution

computes the coordinates of a node situated on the cut
between a cylinder and a plane

reads two integer values from an string variable
projection of a node onto a cylinder

computes the coordinates of a node situated on the cut
between two cylinders

3.7 Short description of the routines in libaNetzT.a

The FORTRAN sources are located in aNetzT. The library substitutes IibNT.a from previous
versions of the program.

A_REFINE
C_RENAME

a_refine.f
t_kante.f

frame for the adaptive mesh refinement
moves/renames nodes on the kette arrays during the refinement
step

28

C_UPDATE

DATREDO
DREIMARK
DREI_MROT
DREI_VOR
D_GRUEN
D_ROT
D_SPLIT
D_VOR-1
EST_MARK
FEHLOUT
GET_G_KANTEN
GET_SPLIT
GROB_RBO

GROB_RB1
GTMARK

G_V_G1
G_V_G2
G_V_G3

HCOM_SIZE
K_VOR
K_VOR-1
LC_PLATZ
MARKIEREN
NO_MARK
N_SPLIT
POST_CRED
POST_FRED
POST_KRED
SEL_KUERZ
SEL_MARK

SET_COM_KN
SET_GROBNETZ
SET_NETDIM

SET_NGR_T
SET_VMARK
SET_VROT
SHOW_MARK
STWERTE

S_MARK2
TESTORDN

TETMARK
TETORDNEN

t_kante.f

n_split.f
sel_mark.f
sel_mark.f
drei_vor.f
t_drei.f
t_drei.f
n_split.f
drei_vor.f
est_mark.f
est_mark.f
t_drei.f
n_split.f
set_grobnetz.f

set_grobnetz.f
sel_mark.f

t_gruenl.f
t_gruen2.f
t_gruend.f

a_refine.f
k_vor.f
k_vor.f
vor_fein.f
est_mark.f
a_refine.f
n_split.f
n_split.f
n_split.f
n_split.f
sel_kuerz.f
sel_mark.f

a_refine.f
set_grobnetz.f
control.F

n_split.f
a_refine.f
sel_mark.f
est_mark.f
control.F

n_split.f
tetordnen.f

sel_mark.f
tetordnen.f

CHAPTER 3. ADAPTIVE MESH GENERATION

updates the array of edges and the LC array after renaming the
nodes

compares two array and erases all non matching data
red/green marking of faces depending on its edges

red marking of a face and its edges

frame for counting marked faces

green refinement of a face

red refinement of a face

determines pairs of processors for the data splitting

counts marked faces

frame for the marking of tetrahedra by its estimated errors
displays the estimated error per volume

determines the green edges of a face which should be red refined
determines if a processor can split its data

determines the new number of boundary conditions after fixing
the main mesh and definition of the new coarse mesh
computes the new boundary conditions data

determines the number of red/green marked faces of a tetrahe-
dron

reconstruction of the father from two greenl tetrahedra
reconstruction of the father from 4 green2 tetrahedra
determines for 4 green3 tetrahedra the faces of the father tetra-
hedron

determines size of auxiliary work space for SELFEIN

frame for counting marked edges

counts marked edges

makes space for new nodes in LC

marks volumes by its errors for red refinement

returns . TRUE. if nothing is marked for refinement

frame for the data splitting between processors

corrects some arrays after shortening of the array of nodes
corrects some arrays after shortening of the array of faces
corrects some arrays after shortening of the array of edges
erases unused refined faces and edges

frame for the extension of the marking to all involved volumes,
faces, and edges

corrects the common block in com_prob.inc after the refinement
frame for fixing the main mesh

sets constants (especially array dimensions) for tetrahedral
meshes

corrects some arrays after the shortening of the FACE array
marks volumes by user input

marks a tetrahedron and its faces for red refinement

displays the volume marking vector

presets the program control variables with standard values and
opens the file control.adapt

marks volumes during the splitting processes

returns .TRUE. until the shortest diagonal is in the right place
in the data structure of the tetrahedra

checks and marks faces of non red marked volumes

sorts the coarse mesh tetrahedra in a way that the shortest
diagonal is taken at the first refinement

3.7. SHORT DESCRIPTION OF THE ROUTINES IN LIBANETZT.A 29

TET_VOR
TRANSFER

T_DREI
TD
T_GRUEN1
T_GRUEN2
T_GRUEN3
T_KANTEN
TX
T_ROT
T_TET
T_T
VOR_FEIN

ZUERST

tet_vor.f
transfer.f

t_drei.f
t_drei.f
t_gruenl.f
t_gruen2.f
t_gruend.f
t_kante.f
t_kante.f
t_rot.f
t_tet.f
t_tet.f
vor_fein.f

zuerst.f

counts marked volumes

moves (the children of) coarse mesh tetrahedra between pro-
cessors

frame for refining faces

refines a face

refines a tetrahedron greenl

refines a tetrahedron green2

refines a tetrahedron green3

frame for refining edges

refines an edge

refines a tetrahedron red

frame for refining tetrahedra

refines a tetrahedron

determines the size and allocates data arrays prior the refine-
ment

prepares the coarse mesh for the refinement (sets initial values
of variables etc.)

30

CHAPTER 3. ADAPTIVE MESH GENERATION

Chapter 4

Assembly of the equation system

4.1 Changes against version 2.x of SPC-PM Po 3D

4.1.1 General remarks

There is mainly one change in the assembly of the stiffness matrix since version 2.x, see [2]. Now,
the FDS is used instead of the RDS, which effects only the determination of the nodes of the
tetrahedra. The same routines are used for the numerical integration and for the shape functions.
The steps in the assembly are also the same.

Other changes are the reorganization of the library and the changed coarse grid matrix.

4.1.2 Library reorganization

The library libAssem.a described in [2] had been reorganized for version v3.x of SPC-PM Po 3D.
This organization is kept by version v4.x.

All element based routines for numerical integration, shape functions, and inhomogeneous
Neumann boundary conditions and the element routines itself are now contained in libElem3D.a.

The source file bsp.f with the user supplied routines for function and its derivatives had been
moved out of the library to the main directory of the program. This was done to avoid user specific
versions of the library.

The assembly of the equation system and the solver are now decoupled and all solver related
routines are now in libaSolve.a.

4.1.3 Coarse grid matrix

The handling of the coarse grid matrix and their assembly have been completely changed in
version v4.x of SPC-PM Po 3D. Until the main mesh is fixed the solver works without any coarse
grid solution, and coarse grid matrix respectively.

During the main mesh fixing the present stiffness matrix, or better their Cholesky factorization,
is stored as the matrix of the new coarse mesh. Then the solver uses this coarse grid solution.

4.2 Tree structures

A_ASSEMBLE
< KLZ_INIT!
< A_ASSEM
< MAKEKZU!

Yin IibKLZ.a, see [2], Section 6.1.

31

32 CHAPTER 4. ASSEMBLY OF THE EQUATION SYSTEM

< E3LEHF
< E2INTG
< E2SHAP
<+ PHI2BQ, PHI2L, PHI2Q, P2L, P2Q
< E3INTG
<3 E3SHAP
< PHI3L, PHI3Q, PHI3TQ, P3L, P3Q, P3TQ, PTL, PTQ
<3 ECKPUNKTE
<3 A_ELEMENT
< IHPT
< A_ELS
— F?
< JACOBIAN
<3 SETPMAT
< ELAST
— F?
<3 SETEMAT
< JACOBIAN
< AKKUS, AKKUEL
<+ AKKUIJFEST
<+ FAKKU, FAKKUEL
< P_FACE
<5 A_NEUMANN
< IVD
<+ A_GET XL
<+ GET_NEUM
<+ E3RSOB
— G2
< USERNEUM
<3 PACKKLZ!
<+ SORTKZU!
<+ DIRI2A
<5 A_K1AKK_VOR3 A_K2AKK_VOR®,A_K3AKK_VOR?
< P_FACE
<3 ATIKLZ
< JFROMA
<3 AWITHJ
< DIRINTPO
U
< TRCLOSE
<+ A_FEMACC
< X_UP_IH

A_GROBGIT
< A_COARSMAT3
<~ A_ASSCOARS3
— MAKEKZU

2to be supplied in bsp.f
3in libaCom.a, see Chapter 7

4.3. SHORT DESCRIPTION OF THE SUBROUTINES 33

— AKKUS, AKKUEL
— PACKKLZ, SORTKZU

— CVBKLZ

4.3 Short description of the subroutines

4.3.1 Description of the subroutines in libaAssem.a

All source files of the library libaAssem.a are located in the subdirectory aAssem. The
library is no substitution of the older libAssem.a, it is just an extension.

ATIKLZ

A_ASSCOARS3

A_ASSEM
A_ASSEMBLE

A_COARSMAT3

A_GET XL
A_GROBGIT

A_NEUMANN
A_OUTX
DIRI2A

DIRINTPO
Get_NEUM
X_UP_IH

aliklz.f

a_coarse.f
a_assem.f

writes values on main diagonal of a matrix of KLZ storage
type

assembles an approximated coarse grid matrix

assembles the equation system

a_assemble.f frame for the assembly of the equation system and the han-

a_coarse.f

dling of the Dirichlet boundary conditions
frame for ASSCOARS3

a_neumann.f extracts the coordinates of given nodes out of COOR
a_grobgit.f frame for the assembly coarse grid matrix; not used in the

present version

a_neumann.f computes the element right hand side for a face

diri2a.f
diri2a.f

diri2a.f

output of the solution vector

marks Dirichlet boundary conditions in the matrix and sets
the start vector

determines values on Dirichlet nodes

a_neumann.f extracts Neumann data out of NEUMF

diri2a.f

auxiliary routine for the handling of Dirichlet boundary con-
ditions in parallel

4.3.2 Description of the subroutines in libElem3D.a

The source files of the library libElem3D.a are located in the subdirectory Elem3D. The
library contains all element related routines which are formerly part of libAssem.a. It can
be used with the adaptive version v4.x and the older version v3.x.

A_ELEMENT
A_ELS
E2INTG
E2SHAP

E3INTG
E3LEHF

E3SHAP

ELAST

ELEMENT

a_element.f

a_els.f
eZintg.f
e2shap.f

e3intg.f
e3lehf.f

e3shap.f
elast.f

element.f

adaptive version of ELEMENT

adaptive version of ELS

determines integration points and weights, 2D

determines the shape functions/derivatives in the integration
points, 2D

determines integration points and weights, 3D

allocates memory for the arrays QGST2, QGST3, SHP2, SHP3, S, and
P

determines the shape functions/derivatives in the integration
points, 3D

computes the element stiffness matrix and the right hand side
(elasticity)

frame for ELAST / ELS

34

ELS

IHPT

IVD

JACOBIAN

P2L

P2Q

P3L

P3Q

P3TQ

PHI2BQ

PHI2L

PHI2Q

PHI3L

PHI3Q

PHI3TQ

PTL

PTQ

SETEMAT
SETPMAT

els.f
ihpt.f
ivd.f
jacobian.f
p2.f
p2.f
p3.f
p3.f
p3.f
phi2.f
phi2.f
phi2.f
phi3.f
phi3.f
phi3.f
pt.f
pt.f

setmat.f
setmat.f

CHAPTER 4. ASSEMBLY OF THE EQUATION SYSTEM

computes element stiffness matrix and the right hand side (Pois-
son)

integer function, determines whether an element is a hexahedron
(1), a pentahedron (2), or a tetrahedron (3)

integer function, determines whether an face is a quadrilateral
(1), or a triangle (2)

determines the Jacobian functional matrix .J, its inverse J~!, and
its determinant for one integration point in an element
computes the values of all shape functions/derivatives in a point
(linear triangle)

computes the values of all shape functions/derivatives in a point
(quadratic triangle)

computes the values of all shape functions/derivatives in a point
(linear pentahedron)

computes the values of all shape functions/derivatives in a point
(quadratic pentahedron)

computes the values of all shape functions/derivatives in a point
(quadratic pentahedron; 18 nodes)

computes the values of all shape functions/derivatives in a point
(quadratic quadrilateral; 9 nodes)

computes the values of all shape functions/derivatives in a point
(linear quadrilateral)

computes the values of all shape functions/derivatives in a point
(quadratic quadrilateral; 8 nodes)

computes the values of all shape functions/derivatives in a point
(linear hexahedron)

computes the values of all shape functions/derivatives in a point
(quadratic hexahedron)

computes the values of all shape functions/derivatives in a point
(quadratic hexahedron; 27 nodes)

computes the values of all shape functions/derivatives in a point
(linear tetrahedron)

computes the values of all shape functions/derivatives in a point
(quadratic tetrahedron)

set material dependent values for each material range (Elasticity)
set material dependent values for each material range (Poisson)

Chapter 5

Solving the problem with the Parallel

Preconditioned Conjugate Gradient
Method (PPCG)

5.1 The Solver

In Version v4.x the assembly of the equation system and the solving process are completely
decoupled. The routine ASSLOES, known from [2] is now replaced by A_ASSEMBLE (see Chap-
ter 4) and A_LOESEN.

The solver in A_LOESEN is the PPCG solver with the concept of non-overlapping domain
decomposition and data storage described in [2].

Due to the adaptivity of the program there are some major changes in the preconditioners
especially in the BPX. These changes will be described in the Sections 5.3 — 5.4.

The subroutine A_STARTWR3D serves as an interactive input routine for the control pa-
rameters of the CG algorithm. The user can choose the options given in Table 5.1.

Some specific initializations for the CG method and the preconditioners are realized in
the subroutine A_PREVOR. First the subroutine D_OUT_KLZ (see [7]) extracts the main diagonal
D of the stiffness matrix locally on each subdomain. If the coarse grid solver is used in the
preconditioner (Section 5.3 and 5.4) the crosspoint values of the main diagonals of each
processors stiffness matrix are sent to processor 0. Since we have fixed and factorized the
real stiffness matrix on level 0 (main mesh) within SET_GROBNETZ the special handling of
Dirichlet boundary conditions and its factorization is not longer necessary in A_PREVOR.

At the end the subroutine A_PREVOR makes some special initializations depending on the
kind of the chosen preconditioner. In particular, the inverse entries of D are stored, because
only D! is used subsequently. Here, the information on Dirichlet boundary conditions is
introduced, by setting the inverse of the Oxer 1.D+40 to zero (see [2] Section 4.3.1, Step 5).
In case of the BPX preconditioner D~! is expanded according to VqE, see 5.4.

After finishing the subroutine A_PREVOR the PCG iteration starts.

5.2 The Jacobi preconditioner
The Jacobi preconditioner is the simplest preconditioner. It only consists of a multiplication

of the residual vector r with the inverse D! of the main diagonal of the stiffness matrix.
This preconditioning is realized within the subroutine A_PRLOES.

35

36 CHAPTER 5. SOLVING THE PROBLEM

Option Description
v variant of preconditioning: v=1 Jacobi
v=2 Yserentant without coarse grid solver
v=3 Yserentant with coarse grid solver
v=4 BPX without coarse grid solver
v=5 BPX with coarse grid solver
i iter, maximal number of iterations
e epsilon, termination criterion for the relative error norm in the CG
algorithm
d Delta, scaling factor for the coarse grid matrix. Note that a change of
Delta is only possible until the main mesh is fixed
z control of the amount of screen output, see ion in [3, Table 2.1]
p switches the plot of the CG-Iterations on/off; for information see [5]

Table 5.1: Control parameters for the solver.

After this vector multiplication the subroutine transfers the resulting vector w = D~ r
from data type II to data type I using the subroutine A_FEMACC, see Section 7 and [1]. This
necessity follows from the data type structure of the PCG method. Therefore the communi-
cation cost of the Jacobi preconditioned CG is the same as that of a unpreconditioned CG,
and only N; essential arithmetical operations per step are needed on processor i.

The condition number of C~'K = D 'K equals O(h~?) where K is the stiffness matrix
of our global problem and h is the discretization parameter, but the performance is better
than without preconditioning because the sums of the elements in the rows of the matrix
are now nearly equilibrated.

5.3 The Yserentant preconditioner

The Yserentant preconditioner [9] is based on a hierarchy of the finite element meshes. It
can be written in the following form:

-t =557

Here, S is the basis transformation matrix which transfers the usual nodal basis to the
h-hierarchical basis. For the g-th level we can write S = S, = S! , ... S} with

1 ifi=j, 4,5=12...N,
% if j = iy and j = 45, where P is the middle point
(5571)” = between P(1) and P(2) which are the end points of an (5.1)
edge of a tetrahedron from the mesh 7,
0 else

If we have strong oscillating coefficients in the differential equation, a Jacobi modification
of the form
Ct=85D1sT (5.2)

is helpful. D is the diagonal matrix extracted from the stiffness matrix whose elements are
scaled with the mesh size h; of the level ¢ of the point it belongs to.

5.3. THE YSERENTANT PRECONDITIONER 37

If we use the coarse grid solver we get the following form:

C'=85A'ST, with (5.3)

SLLT on the coarse grid,
AO — ~
D else.

LLT is the Cholesky decomposition of the matrix Cy, and Cj is the finite element assembly
of the stiffness matrix on level 0 (main mesh), which is stored by the routine SET_GROBNETZ.
The coarse grid matrix can be scaled by a factor Delta before it is factorized (until now
there are no experiences what a good Delta could be). The matrix D is the part of the
diagonal D of the stiffness matrix not belonging to the coarse grid.

While the communication cost of the Yserentant preconditioner is nearly as low as with-
out it, the condition number C 'K is equal to O(h™!) in the three-dimensional case. This
is an improvement in comparison to the Jacobi preconditioner, but it still cannot satisfy.

The Yserentant preconditioning is also realized within the subroutine A_PRLOES. The
transformation with the matrices S and ST is carried out in the subroutines A_HiSmulYser
and A_HSTmulYser, respectively:

Routine Description
A HiSmulYser (Nfg,Nk,X,Liste) | X = SX
A HSTmulYser (Nfg,Nk,X,Liste) | X = STX

Here, Nfg denotes the number of degrees of freedom, Nk is the number of nodes on the
subdomain (node) k, X is the vector of the length N = Nk xNfg, and Liste is the hierarchical
list on the subdomain, which is generated by the mesh refinement procedures, see Chapter 3.
Liste is the two-dimensional array LC described in 2.2.10, which has in the case of the
Yserentant the following form:

array Description
Liste[LC_LEN,Nk] | Liste[1,*] - node number
Liste[2,%*] - left father
Liste[3,*] - right father
Liste[4,*] - coefficient
Liste[5,*]-Liste[9,*] - not used

The last coefficient defines the basis transformation matrix S. In our definition (5.1) (and
in the most cases) it is 3.

The routine A_PRLOES copies first the residual vector to a working vector w setting the
Dirichlet values to zero. Then the multiplication w = STw is carried out. Now the resulting
vector w is multiplied with D~ (therefore in the subroutine A_PREVOR the inverse of D is
computed). In case we use a coarse grid solver only the part of w not belonging to coarse
grid nodes is multiplied with the corresponding part of the D.

In the next step we have to transform w from data type II to type I. Here communication
is necessary which becomes somewhat complicated if we include a coarse grid solver. Because
our coarse grid solver is based on a Cholesky factorization only stored on processor 0 all
processors have to send their crosspoint values to processor 0. While this processor computes
the coarse grid solution the other processors start the communication with respect to their
edges and faces. In the last communication step all processors receive their parts of the
coarse grid solution. Nevertheless, at the end the amount of communication is only slightly
higher than that without any coarse grid solution.

38 CHAPTER 5. SOLVING THE PROBLEM

In coincidence with the equations (5.2) and (5.3) we compute after this w = Sw. We set
the values at the Dirichlet points in the resulting vector to zero and finish the Yserentant
preconditioning step.

5.4 The BPX preconditioner

The BPX preconditioner [4] is also a hierarchical preconditioner. It can be written in the
following form:

c' =887,

Here S is a transformation matrix which transforms the normal nodal basis of the space V,
into the generating system of the Cartesian product space VqE = Vi x Vox... xV, (with the
nodal basis spaces V;, V; C Viyq).
a4 -1 j+1
For the g-th level we can write S = S, = [I{ |Z3 | --- | T!, | I,]|, I} = T} _\ T} 75 .. .- I}
with

1 ifi=j, ij=1,2.. Ny
L if j = 4; and j = is, where PO is the middle point
(I,]:_l)ij = between P and P(2) which are the end points of an (5.4)
edge of a tetrahedron from the mesh 7;_;
0 else

In the case of strong oscillating coefficients in the differential equation a Jacobi modifi-
cation is helpful. This modification has the form:

Ct=8D1357 (5.5)

where D is the extracted main diagonal of the stiffness matrix corresponding to VqE . Its
elements are scaled with the mesh size h; of the zone i of the point it belongs to.
If we include a coarse grid solver we get the following for

Ot =S8A;t5T, with (5.6)

i SLLT on the grid of V7,
0= D else.

For 0LLT see Section 5.3. The matrix D is the part of the expanded diagonal D of the
stiffness matrix not belonging to the coarse grid.

Due to the fact that we must communicate in the space corresponding to VqE the amount
of communication data of the BPX preconditioner is higher than that of the preconditioners
mentioned before. But on the other hand the condition number of C7'K is O(1) for the
BPX preconditioner.

Before we can use the subroutine A_PRLOES for the BPX preconditioning some additional
initialization steps are necessary. At first we have to predict the dimension of VqE which

determines the length of the expanded residuum w and the expanded diagonal D. This is
done by the function GET_WLEN_BPX. Moreover, this function generates the entries K_0_BPX
and K_L_BPX in the kette arrays and initializes the vector START needed by A_HB2BPX. Now
we extend the hierarchical list with additional entries in the LC_DAT part in the following
way:

5.4. THE BPX PRECONDITIONER

39

array

Description

Liste[LC_LEN,Nk]

Liste[1,*] - node number
Listel[2,%*] - left father

Liste[3,*] - right father
Listel[4,*] - Son

Liste[5,*] - right from in zone 7 + 1
Liste[6,*] - left from in zone 7z + 1
Liste[7,*] - right to in zone 7 — 1
Listel[8,*] - left to in zone 7 — 1
Liste[9,*] - not used

Note that the values in Liste[5,*] - Liste[8,*] are positions on the extended w or D

respectively.

The list extention is done by the subroutine A_HB2BPX:

A_HB2BPX(Liste,KETTE,V_BIT,START,Mfr,Mto)

input output
Liste | hierarchical list hierarchical list with BPX data in the
LC_DAT part
KETTE | KETTE list —
V_BIT | masked fatherhood of the nodes taken | —
from last column of COOR
START | start of coupling node data on the ex- | corrected start points
tended vectors
Mfr auxiliary array —
Mto auxiliary array —

For the interprocessor communication we need a special order of crosspoints and nodes
on coupling edges and faces to preserve the same position on the extended vector w on each
processor. The extended vectors are organized as follows:

I

Level n

|
cross points
fathers on Lev 2

cross points Level 3 - n:

I I

-1 I—I—-I1—I-I-1-1I

cross points coupling nodes local nodes

Level 3 - n
i | I I.--1 I--
Lev3 Lev4 Levn,

cross point ¢

coupling nodes:

CN1 CN2

CNN

This structure exists separately for each degree of freedom. The inverse diagonal of the
stiffness matrix D~! is extended to D~! in the same way by the routine DIA2BPX.

According to the new handling

of the additional BPX data there is no need to provide

additional memory for the hierarchical list and the Kettes as in previous versions of SPC-
PM Po 3D. But you have to provide two additional vectors V_.BIT and START and you still
have to provide enough memory for the auxiliary vector w in the BPX preconditioner and
the vector of the main diagonal of the stiffness matrix (better: its inverse D™') which also
have to be extended according to VqE.

40 CHAPTER 5. SOLVING THE PROBLEM

The application of the transformation matrices S and ST is done by the subroutines
A _HiSmulBPX, PRE_HSTmulBPX, and A_HSTmulBPX:

Routine Description

A HiSmulBPX(W,Liste,KETTE,M,V_BIT,START) | X = SX
PRE_HSTmulBPX(W,Liste,KETTE,V_BIT) extends X according to VqE
A_HSTmulBPX (Nfg,W,Liste,M) X =5"X

Like in the Yserentant case the subroutine A_PRLOES copies first the residual vector to
the working vector w setting the Dirichlet values to zero. Then the multiplication w = STy
takes place. As the result we get the extended vector w which is multiplied with D! (15 is
the extended main diagonal of the stiffness matrix). If a coarse grid solver is used, only the
part of w not belonging to the coarse grid is multiplied with D~

Now we have to transfer w from data type II to type I. This communication concerns all
zones. We start with the crosspoint communication where we communicate from the highest
down to the lowest zone. If a coarse grid solver is included then after arriving at zone 0
all processors send their crosspoint values of zone 0 to processor 0. While this processor
is computing the coarse grid solution, the other processors start the communication over
their edges and faces from zone 1 up to the highest zone. In the last communication step
all processors receive their part of the coarse grid solution from processor 0.

Finally we compute w = Sw, which reduces our vector w to the length Nk. After inserting
the Dirichlet boundary conditions the BPX preconditioning step ends.

5.5 Tree structure of the routine

In the case of a BPX preconditioning the initialization subroutine A_HB2BPX is called in the
subroutine A_LOESEN. The PCG method is realized by the subroutine A_PPCGM:

A_LOESEN < D_OUT_KLZ!
< OUT_COM_PROB <3 A_TREEUP_DOD?
< A_STARTWR3D <5 0XCOPYVBZ

< A_FEMACC? < VDMULT?
< CUBE_DOD® < CHOVBZ*
<y PLOT_INIT < TREE_DOWN_0°
< PLOT_NAME < A_FEMACC?
< PLOT_CMD < A_HISCALE3D
< TREE_DOWN_0® < VDDIVO3
< A_FEMACC? < PRE_HSTMULBPX
<3 GET_WLEN_BPX <y GET_NV
< GET_NV < DIA2BPX
< A_HB2BPX < AXMKLZ!
< A_YSFAKTOR < VDMINUS?®
<3 A_PPCGM <s A_PRLOES
< DSCAPR < VDOMUL3
< A_PREVOR <s A_HSTMULYSER
lin libKLZ.a, see [2], Section 6.1
%in IibaCom.a, see Section 7
3in libvbasmod.a, see [2], Section 6.3
Yin libMbasmod.a, see [2], Section 6.4
5

in libCubecom.a, see [2], Section 6.2

5.6. DESCRIPTION OF THE ROUTINES

< PRE_HSTMULBPX
< A_HSTMULBPX
< VDMULT?

< A_FEMACC?

< A_TREEUP_DOD?
< RUEVBZ*

< VORVBZ*

< A_K3AKK?

41

< A_K3AKKP?
< A_TREE_DOWN?
< A_HISMULYSER
< A_HISMULBPX
< VDOMUL3

< A_TREE_DOD?

< VDAXPY?

< ZWISCH

5.6 Description of the routines

The following FORTRAN sources are located in the subdirectory ./solve.

A_HB2BPX bpx_hiemul.f

A_HISCALE3D hiemul.f

A_HISMULBPX
A_HISMULYSER
A_HSTMULBPX

bpx_hiemul.f
hiemul.f

bpx_hiemul.f

A_HSTMULYSER hiemul.f
A_LOESEN a_loesen.f
A_PPCGM a_ppcgm.f
A_PREVOR a_prevor.f
A_PRLOES a_prloes.f

a_startwr3d.f
bpx_hiemul.f
bpx_hiemul.f
bpx_hiemul.f

A_STARTWR3D
DIA2BPX
GET_NV
GET_WLEN_BPX

OUT_LISTE
PRE_HSTMULBPX

bpx_hiemul.f
bpx_hiemul.f

a_loesen.f
zwisch.f

VIOR
ZWISCH

fills the LC_DAT part of the hierarchical list with data for
the BPX

scaling of the main diagonal elements with the mesh size
of the corresponding zone

multiplication with the transformation matrix S
multiplication with the transformation matrix S
multiplication with the transformation matrix ST
multiplication with the transformation matrix ST

frame for solving the equation system

parallel preconditioned conjugate gradient method
initializations depending on the kind of the chosen precon-
ditioner

preconditioning depending on the kind of the chosen pre-
conditioner

provides the possibility to change solver parameters
expands the extracted diagonal D to D needed by the BPX
determines the number of fatherhoods

determines the temporary length of the preconditioned
residual vector during the BPX; corresponds to the for-
mer value NBPX

auxiliary display routine

initializes the multiplication with the transformation ma-
trix ST

combines to vectors by a logical OR

displays the values of the CG parameters

42

CHAPTER 5. SOLVING THE PROBLEM

Chapter 6

Memory management

6.1 Introduction

Within FORTRANT77 programming the memory management concept of the workspace
vector is widely used. At the start of the program a very large vector is allocated and the
storage on this vector is managed by the user via offsets. This is a very efficient way of
memory management but it is also often the reason of hardly to find bugs.

For the new version 4.x of SPC-PM Po 3D a set of functions and routines was written
by F. Milde to make the handling of the workspace vector simpler and more reliable. Sim-
ple operations like allocating and de-allocating arrays are provided but also more complex
operations like increasing or decreasing the size of arrays.

All the functions and routines are contained in aNetzA /memo.f, which also needs the
include file include/memo.inc. The arrays on the workspace vector are managed using an
info block at the beginning of the vector. This info block must be initialized at the start of
the program. At this point the maximal number of arrays to be managed is fixed.

The functions in memo.f are described in the following sections. The description of each
function/routine consists of the calling sequence, the explanation of the parameters, and a
short description of the function.

6.2 Basic functions

SUBROUTINE MEMO_INIT(A,TYPE,LENGTH,NA MAX, IER)

A I/O0 Workspace vector

TYPE I Type of A; Bytes per element of A

LENGTH 1 Length of A in TYPE units

NA_MAX I Maximum number of arrays to be managed on A
IER I/0 Error parameter; zero if no error appears

Initializes the workspace vector for the memory management.

INTEGER*4 FUNCTION M _FREE GET(A)

A I workspace vector

Returns the offset for the free part of the workspace vector.

43

44 CHAPTER 6. MEMORY MANAGEMENT

INTEGER*4 FUNCTION M _NEW(A,TYPE,DIM,NUM,NAME,A NUM,0_IND,IER)

A I/O Workspace vector
TYPE I Type of A; Bytes per element of A
DIM I Dimension of the array; number of TYPE block per entry

NUM I/O Length of the array (in DIM*TYPE blocks)
NAME I String with the name of the array

ANUM O Number of the array in the info block
0_.IND I Original address of the array or —1

IER I/O Error parameter; zero if no error appears

Allocating a new array on the workspace vector. The function returns the offset for the
array on A. If NUM is —1 on input all the remaining space is allocated and NUM returns the
length of the array. The parameter 0_IND should normally set to —1. It can be used to
integrate an already existing array in the workspace management. In this case 0_IND must
be the original address of the array.

SUBROUTINE M DEL(A,NAME,A NUM, IER)

A I/O Workspace vector

NAME I String with the name of the array

ANUM I Number of the array in the info block
IER I/O Error parameter; zero if no error appears

Deletes an array specified by A_NUM and/or NAME on the workspace vector. The data is not
removed physically, only the entry in the management info block is freed.

INTEGER*4 FUNCTION M _OFF GET(A,A NUM,NAME, IER)

A I Workspace vector

ANUM I Number of the array in the info block
NAME [String with the name of the array

IER I/O Error parameter; zero if no error appears

Returns the offset of the array given by A_NUM and/or NAME on the workspace vector.

6.3 Getting information on the workspace vector

REAL FUNCTION G_MEM_USE(A)

A I workspace vector

Returns the usage of the workspace vector in percent.

SUBROUTINE MEMO_USE(A)

A I workspace vector

Output of the the usage of the workspace vector (percentage).

6.4. CHANGING ARRAY SIZES 45

SUBROUTINE MEMO_QUT (A)

A I workspace vector

Output of the usage of the workspace vector (percentage + information about all arrays).

6.4 Changing array sizes

Because of the linear storage of the data on the workspace vector every change in the size
of an array (except the last) cause data movement. To keep this movement as small as
possible the change of array sizes is done in several steps:

1. Initialization of an auxiliary array
2. Registration of all concerned arrays
3. Data movement

4. Removing the auxiliary array

5. Getting the new offsets

The associated routines are the following:

SUBROUTINE M_CH PRE(A,IH,HL,IER)

A I/O workspace vector

IH O offset of the auxiliary array on A

HL O length of the auxiliary array

IER I/O error parameter; zero if no error appears

Initializes an auxiliary array at the end of the workspace vector for changing array sizes.

SUBROUTINE M_CH VAL (A,H,A NUM,NAME,NUM, IER)

A I/O Workspace vector

H [/O Auxiliary array created by M_CH_PRE
ANUM I Number of the array in the info block
NAME [String with the name of the array

NUM I New length of the array

IER [/O Error parameter; zero if no error appears

Registers the new length of the array specified by A_NUM and NAME for data movement.

46 CHAPTER 6. MEMORY MANAGEMENT

SUBROUTINE M _CH MAIN(A,H,WHAT,IER)

A I/O Workspace vector

H I Auxiliary array created by M_CH_PRE
WHAT 1 String; either *MORE’ or ’LESS’

IER I/O Error parameter; zero if no error appears

Performs the size changes by moving the data. To keep things simple there are only two
possibilities for changing array sizes:

WHAT="LESS’: All array sizes decrease or remain unchanged.
WHAT="MORE’: All array sizes increase or remain unchanged.

This allows an unidirectional data movement to preserve efficiency.

SUBROUTINE M_CH POST(A,HL)

A T/O Workspace vector
HL I Length of the auxiliary array created by M_CH_PRE

Removes the auxiliary array from the workspace vector.

To obtain the new offsets of the arrays the function M_OFF_GET should be used, see 6.2.

6.5 Management in the program

There are the following 15 fixed and managed arrays in the present version of SPC-
PM Po 3D:

G_LC Row pointer vector for the coarse grid matrix (VBZ)
G_CC Row data of the coarse grid matrix (VBZ)

GEOM geometry data, see 2.2.11

DIR Dirichlet boundary conditions, see 2.2.6

NEUM Neumann boundary conditions, see 2.2.6

IGLOB Global crosspoint names, see 2.2.5
KETTE1D 1D kettes, see 2.2.7
KETTE2D 2D kettes, see 2.2.7

COOR Array of nodes, see 2.2.4
VOL Array of volumes, see 2.2.1
KANTE Array of edges, see 2.2.3
FACE Array of faces, see 2.2.2
X Solution vector, see 2.2.12
LC Hierarchical list, see 2.2.10

DGraph Partitioning information, see 2.2.14

Usually, most of these arrays grow in size during an adaptive refinement step. The other
ones might change their location (offset). All these changes should be managed using the
routine mem_change. It is defined as follows:

6.6. USAGE EXAMPLE 47

SUBROUTINE MEM CHANGE(A,IER,WHAT,
NCP,NUMNP,NKANTE,NFACE,NVOL,
NK1,NK2,NDIR,NNEUM, JDIR, JNEUM,N GLC,
N_GCC,NGEOM, J_GLC,J_GCC,J_GEOM, JIGLOB,

JKETTE1D, JKETTE2D, JCOOR, JLC, JVOL, JKANTE,

A

IER
WHAT
NCP
NUMNP
NKANTE
NFACE
NVOL
NK1

NK2
NDIR
NNEUM
N_GLC
N_GCC
NGEOM
J_GLC
J_GCC
J_GEOM
JIGLOB
JKETTE1D
JKETTE2D
JCOOR
JLC
JVOL
JKANTE
JDREI
JX
JDGRAPH

1/0
1/0

e el e el e e e e e N N

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

JDREI, JX, JDGRAPH)

Workspace vector

Error parameter; zero if no error appears
String; either *MORE’ or ’LESS’

Number of crosspoints

Number of nodes

Number of edges

Number of faces

Number of volumes

Number of 1D kettes

Number of 2D kettes

Number of Dirichlet boundary conditions
Number of Neumann boundary conditions
Dimension of the coarse grid matrix
Number of entries in the coarse grid matrix
Number of geometry data sets

Offset for the row offset vector of the coarse grid matrix
Offset for the data of the coarse grid matrix
Offset for the geometry data

Offset for the global crosspoint names
Offset for the 1D kettes

Offset for the 2D kettes

Offset for the nodes

Offset for the hierarchical list

Offset for the volumes

Offset for the edges

Offset for the faces

Offset for the solution vector

Offset for the partitioning data

The routine takes the parent array offsets and the new array lengths as input, performs the
changes according to WHAT and gives the new array offsets back. The error parameter IER
is set, if there is not enough space for the changes on the workspace vector. It is highly
recommended to use this routine for changing the size of any of this arrays to keep the data
structures consistent.

6.6 Usage example

In the following we give a little example to demonstrate the usage of the memory manage-
ment routines:

48

CHAPTER 6. MEMORY MANAGEMENT

INTEGER*4 LENGTH

PARAMETER (LENGTH=50000)

INTEGER*4 A (LENGTH)

INTEGER*4 M_FREE_GET, M_OFF_GET, M_NEW
EXTERNAL M_FREE_GET, M_OFF_GET, M_NEW

INITIALISATION OF THE MEMORY MANAGEMENT; 35 ARRAYS MAXIMUM
CALL MEMO_INIT(A,4,LENGTH,35,IER)

GET A POINTER TO A NEW INTEGER ARRAY

JMARK = M_NEW(A,4,FIELDDIM,LEN ,’Mark ’,NR,-1,IER)
GET A POINTER TO A NEW REAL*8 ARRAY
J_X = M_NEW(A,8,NDF ,NUMNP, ’XValues’,K ,-1,IER)

USE THE ARRAYS IN A SUBROUTINE
CALL MARKING(A(JMARK) ,A(J_X), ...)

OUTPUT OF THE MEMORY USAGE
CALL MEMO_OUT(A)

CHANGE ARRAY SIZES (ALL INCREASE OR ALL DECREASE, NEVER MIXED)
X INCREASES
N_X_NEW = NUMNP + 400
CALL M_CH_PRE(A,IH,HL,IER)
K=2 IS THE ARRAY NUMBER OF X, NEITHER JMARK NOR J_X CHANGES IN THIS CASE
CALL M_CH_VAL(A,A(IH),K,’XValues’,N_X_NEW,IER)
CALL M_CH_MAIN(A,A(IH),’MORE’,IER)
CALL M_CH_POST(A,HL)

GET THE POINTER TO THE FREE SPACE ON A
JFREE = M_FREE_GET(A)

USE IT
CALL SET_X(A(J_X), ... , A(JFREE))

MARK DECREASES
LEN_NEW = LEN - 10
CALL M_CH_PRE(A,IH,HL,IER)
NR=1 IS THE ARRAY NUMBER OF MARK
CALL M_CH_VAL(A,A(IH),NR,’Mark’,LEN_NEW,IER)
CALL M_CH_MAIN(A,A(IH),’LESS’,IER)
CALL M_CH_POST(A,HL)
GET NEW POINTERS TO THE INFLUENCED ARRAYS; ARRAY NUMBER K=2
J_X = M_OFF_GET(A,K,’XValues’,IER)
JFREE = M_FREE_GET(A)

OQUTPUT OF THE PERCENTAGE OF MEMORY USED
CALL MEMO_USE(A)

DELETE THE ARRAYS, START WITH LAST!
CALL M_DEL(A,K ,’XValues’,IER)
CALL M_DEL(A,NR,’Mark’ ,IER)

Chapter 7

Enhanced communication routines

7.1 The concept

The new communication routines contained in in the library libaCom.a are generalized ver-
sions of well known routines from libDDCMcom.a. According to the increased requirements
the routines include not only the communication over nodes, but also over edge and faces
in single or double precision. They support also every vector operation from libvhasmod.a
and not only addition.

To obtain this functionality a new calling scheme was introduced. Every routine takes
an input string called WAS. It consists of two capital letters denoting the action to take and
the data type. The possibilities for the first letter are given in table 7.1. The second letter
is either S (real*4), I (integer*4) for single precision or D (real*8) for double precision.

Letter | Description
F Communication over faces
E Communication over edges
N Communication over nodes
W Communication according to the BPX vector w

Table 7.1: Possibilities for the first letter of the communication descriptor WAS.

The desired arithmetical operation is also given as input. The routines take a pointer to
a function from libvbasmod.a.

The new routines are also capable to communicate just over the current hypercube
dimension LOC_CUBE (in cases where only part of the nodes have already data). LOC_CUBE
can vary between 0 and NCUBE which is the maximal cube dimension.

7.2 Communication over kettes

The routine names are derived from the original corresponding routines, just an A_ was
added to denote adaptivity which stands for the new program version.
The routines are defined as follows:

49

50 CHAPTER 7. ENHANCED COMMUNICATION ROUTINES

SUBROUTINE A_FEMACC(WAS,OPER,CDIM,VAR,Nfg,RC,K1D,K2D,IGLOB,

H,PROT)
WAS I Action descriptor as explained in sec. 7.1
OPER I Operation to execute; for example VDplus
CDIM I Dimension of crosspoint matrix
VAR I Kett_Akk variant
Nfg I Degrees of freedom
RC I/O Vector to accumulate
K1D [1D kette
K2D [2D kette
IGLOB I list of global crosspoint names
H H work array as large as possible

PROT I/O Protocol array to speed up communication

The routine corresponds to femakk with an improved functionality. The operation OPER is
applied to the vector RC on processor borders. The input WAS and OPER is explained in the
previous section. The value CDIM could be '+’ the dimension of the crosspoint matrix, zero,
or -’ the dimension of the crosspoint matrix. In the first case crosspoint communication
and kette communication takes place, in the second case just kette communication and in
the third just crosspoint communication. The value VAR corresponds to FEMAKKVAR known
from previous program versions. FEMAKKVAR=1 is not yet supported.

The size of the auxiliary vector H should be as large as possible. If it is large enough all
will be OK, if not, a segmentation fault might occur. A rough upper limit for the length is
2 % Nfg times the sum of the local nodes over the processors.

SUBROUTINE A K1AKK VOR(KETTE,H)

KETTE I/O 1D kette
H H Large auxiliary vector

Generates the communication information PWEGID for 1D kettes. The routine handles the
new structure of the kettes. It corresponds to KettAkk_Vor.

SUBROUTINE A_K2AKK_VOR

The corresponding routine to Kett2Akk _Vor is not yet provided.

SUBROUTINE A K3AKK VOR(KETTE,H)

KETTE I/O 2D kette
H H Large auxiliary vector

Generates the communication information PWEGID for 2D kettes. The routine handles the
new structure of the kettes. It corresponds to Kett3Akk_Vor.

SUBROUTINE A_K1AKK

The corresponding routine to Kett1Akk is not yet provided.

7.3. CUBE COMMUNICATION 51

SUBROUTINE A_K3AKK(WAS,Nfg,RC,Kette,H,OPER)

WAS I Action descriptor as explained in 7.1

Nfg I Degrees of freedom

RC I/O Vector to accumulate

Kette I 1D and 2D kettes; they must be stored continuously
H H work array as large as possible

OPER I Operation to execute; for example VDplus

The routine applies the operation OPER to the vector RC on processor borders. Communi-
cation takes place over 1D and 2D kettes. The routine corresponds to Kett3Akk.

SUBROUTINE A_K3AKKP(WAS,Nfg,RC,Kette,H,OPER,PROT)

WAS I Action descriptor as explained in 7.1

Nfg I Degrees of freedom

RC [/O Vector to accumulate

Kette I 1D and 2D kettes; they must be stored continuously
H H work array as large as possible

OPER I Operation to execute; for example VDplus
PROT I/O Protocol array to speed up communication

This routine provides the same functionality as A_K3AKK but at the first call of the routine
the actual communication routes are logged to the array PROT to speed up all further runs
of the routine. It corresponds to Kett3AkkP.

7.3 Cube communication

As already mentioned in section 7.1 a specialty of SPC-PM Po 3Dversion 4.x is the distinc-
tion between NCUBE and LOC_CUBE. Until the maximal hypercube dimension NCUBE is reached
the standard communication routines from libCubecom.a would be slower. However, the
functionality and the parameters stay the same. For a more detailed description the reader
might refer to [5]. Only a small subset of adjusted routines is provided:

SUBROUTINE A_TREE_DOWN(N,WORDS)

N I Number of words
WORDS I/O vector of words with length N

Distributes the vector WORDS tree downwards to all processors. The routine corresponds to
TREE_DOWN.

SUBROUTINE A _Tree DoD(N,X,Y,H,VDop)

N I Vector length
X O result vector
Y I Input vector
H H Auxiliary vector
I Operation to execute; for example VDplus

The vector operation VDop is carried out over all processors. The input and output vectors
are double precision. The routine corresponds to Tree_DoD.

52 CHAPTER 7. ENHANCED COMMUNICATION ROUTINES

SUBROUTINE A _TreeUp DoD(N,X,Y,H,VDop)

N I Vector length
X O result vector
Y I Input vector
H H Auxiliary vector
I Operation to execute; for example VDplus

The routine provides the same functionality as A_Tree_DoD but the result arises only on
processor 0! The routine corresponds to TreeUp_DoD.

Chapter 8

Auxiliary and tool routines

8.1 Preface

A large set of auxiliary and tool routines is provided for the unification of heavily used func-
tionalities. The most important set of such routines is the memory management described
in chapter 6. Additionally, there exist routines for an unified error handling and a lot of tool
routines for the manipulation of various data sets. To keep readability and compatibility
the user is requested to use these routines when ever possible.

8.2 Error handling

Most of the routines in SPC-PM Po 3DV4.x take and give back an error indicator named
IER. This parameter is normally zero and carries a certain nonzero value if an error occurs.
So for an efficient error handling it is necessary to set IER on an error and later to check if
an error has occurred. For this we provide two functions:

LOGICAL*4 FUNCTION SET_IER(IER,PROG,VAL)

IER O Error indicator
PROG I String (usually) containing the name of the calling routine
VAL I Value the error indicator should be set to

The function sets the error indicator to the given value and displays a error message like:

Proz. X: ERROR IN PROG : VAL

This functionality is provided as a logical function to enable calling sequences like:
IF(SET_IER(IER, 'my_buggy_routine’,1)) RETURN

The function always returns .TRUE.

LOGICAL*4 FUNCTION IER_TEST(IER,PROG,VAL)

IER I/O Error indicator
PROG I String (usually) containing the name of the calling routine
VAL I Value the error indicator should be set to

In difference to SET_IER this function takes IER as input and checks if the error indicator is
already set by an previous routine. If the error indicator is zero the function return .FALSE..
If not, the error indicator is set to VAL and an error message is displayed:

93

54 CHAPTER 8. AUXILIARY AND TOOL ROUTINES

Proz. X: ERROR IN PROG : VAL

In this case it returns .TRUE.. The function is intended to be used like:

CALL BUGGY_ROUTINE(... ,IER)
IF (IER_TEST(IER,’THIS_ROUTINE’,1)) THEN
C Error handling

ENDIF

or in the easiest case:

CALL BUGGY_ROUTINE(... ,IER)
IF (IER_TEST(IER,’THIS_ROUTINE’,1)) RETURN

8.3 Auxiliary routines

8.3.1 Set special data fields
SUBROUTINE K_LC(COOR,X,LC,TIEFE,P,V1,V2)

COOR I/O Array of nodes

X I/O Solution vector

LC I/O Hierarchical list

TIEFE I Level depth of the node
P I Number of node

Vi I Number of father 1

V2 I Number of father 2

The routine registers a node in the hierarchical list, sets the fatherhood bits at father 1 and
2 and interpolates a solution for the son from those of the two father nodes.

SUBROUTINE K WRITE(KANTE,NR,A,B,M,ZEIG,TYP,DEP,PM)

KANTE I/O Array of edges
NR I/O Number of the edge

A [First node of the edge

B I Last Node of the edge

M I Middle node of the edge

ZEIG I Geometry types of the edge; Output of KA_CODE
TYP I Refinement type of the edge

DEP [Refinement depth of the edge

PM I Value which is added to NR

The routine writes a complete edge data set into the edge array. For a more detailed
explanation of the input values the reader might refer to section 2.2.3. The input value PM
could be useful in an loop over NR. The routine returns NR = NR + PM.

8.3. AUXILIARY ROUTINES 95

INTEGER*4 FUNCTION SET_KCHIELD(TYP,TIEFE)
TYP I Refinement type of the edge
TIEFE 1 Refinement depth of the edge
The function return an 32 Bit integer value containing the information TYP and TIEFE. The

exact encoding is described in 2.2.3.

SUBROUTINE KA_CODE (KCODE,FCODE, IER)

KCODE I/O Geometry types of the edge
FCODE I Geometry types of a face belonging to the edge
IER O Error indicator

The routine writes the geometry information from the face to KCODE. This can be done at
most for two faces belonging to an edge. If a third face geometry should be added IER will
be set.

SUBROUTINE KAC_OPT(KCODE,GEOM,NGEQOM, IER)

KCODE I/O Geometry types of the edge
GEOM I Geometry data set

NGEOM I Number of possible geometries
IER O Error indicator

The routine tries to optimize the edge geometry in a certain sense.

SUBROUTINE D _WRITE(FACE,NR,A,B,C,ZEIG,CHIELD,PM)

FACE I/O Array of faces
NR I/O Number of face to write

A I Number of first edge

B I Number of second edge

C I Number of third edge

ZEIG I Geometry type of the face
CHIELD [Refinement type of the face
PM I Value which is added to NR

The routine writes a complete face data set to the face array. For a more detailed explanation
of the input values the reader might refer to section 2.2.2. The input value PM could be useful
in an loop over NR. The routine returns NR = NR + PM.

SUBROUTINE T_WRITE(VOL,NR,A,B,C,D,REG,TYP,GNR,PM)

VOL I/O Array of volumes
NR I/O Number of volume to write

A I Number of the first face

B I Number of the second face

C I Number of the third face

D I Number of the fourth face

REG I Number of material

TYP I Refinement type

GNR I Name of the coarse volume the volume belongs to
PM I Value which is added to NR

56 CHAPTER 8. AUXILIARY AND TOOL ROUTINES

The routine writes a complete volume data set to the volume array. For a more detailed
explanation of the input values the reader might refer to section 2.2.1. The input value PM
could be useful in an loop over NR. The routine returns NR = NR + PM.

SUBROUTINE SET_VTYP(VOL,NR,TYP,GROB.NR)

VOL I/O Array of volumes
NR [Number of the volume
TYP [Refinement type

GROB.NR I Name of the coarse volume the volume belongs to

The routine stores the information TYP and GROB_NR in the data section of the volume NR.
The exact encoding is described in 2.2.1.

8.3.2 Read special data fields
INTEGER*4 FUNCTION GET_KTYP(KANTE,NR)

KANTE I Array of edges
NR [Number of an edge

The function returns the refinement type of the edge NR.

INTEGER*4 FUNCTION GET _KDEPTH(KANTE,NR)

KANTE T Array of edges
NR I Number of an edge

The function returns the refinement depth of the edge NR.

INTEGER*4 FUNCTION GET FDEP(FACE,NR,KANTE)

FACE I Array of faces
NR [Number of an edge
KANTE I Array of edges

The function returns the refinement depth of the face NR.

INTEGER*4 FUNCTION GET_VDEP(TET,NR,FACE,KANTE)

TET I Array of volumes
NR I Number of an edge
FACE I Array of faces
KANTE 1 Array of edges

The function returns the refinement depth of the volume NR.

INTEGER*4 FUNCTION GET_VTYP(VOL,NR)

VOL T Array of volumes
NR I Number of the volume

The function returns the refinement type of the volume NR.

8.3. AUXILIARY ROUTINES o7

INTEGER*4 FUNCTION GET _GROB_NR(VOL,NR)

VOL T Array of volumes
NR I Number of the volume

The function returns the name of the coarse volume the volume NR belongs to.

8.3.3 Tools
SUBROUTINE ECKPUNKTE(TET,FACE,KANTE,P,MP,IER)
TET I volume data set
FACE I Array of faces
KANTE 1 Array of edges
P O corner/all nodes of TET
MP I Get middle nodes (1) or not (0)
IER O Error indicator

The routine determines the 4 corner nodes of the tetrahedron TET. If the MP flag is set and
TET is a quadratic element, additionally, the six middle nodes of the edges are written to
P(5) to P(10). Thus, the size of the array P must be 4 or 10.

SUBROUTINE P _FACE(FACE,KANTE,ENR,KZAHL,MP,IER)

FACE 1 Face data set

KANTE 1 Array of edges

ENR O corner/all nodes of FACE

KZAHL 1 Number of edges per face

MP I Get middle nodes (1) or not (0)
IER O Error indicator

The routine determines the corner nodes of FACE (its edges build a closed polygonal track)
to ENR. If the MP flag is set the middle nodes of the edges are also returned on ENR beginning
at position KZAHL + 1. Thus, the size of ENR must be KZAHL or 2 % KZAHL.

INTEGER*4 FUNCTION GEMKANTE(FACE,F1,F2,KZAHL,IER)

FACE 1 Array of faces

Fi1 I First face

F2 I Second face

KZAHL I Number of edges per face

IER O Error indicator

The function returns the number of the common edge of the faces F1 and F2. If there is no
common edge, IER is set and the function returns —1.

INTEGER*4 FUNCTION GEMPKT (KANTE,K1,K2,IER)

KANTE 1 Array of edges
K1 I First edge

K2 I Second edge
IER O Error indicator

The function returns the number of the common node of the edges K1 and K2. If there is

58 CHAPTER 8. AUXILIARY AND TOOL ROUTINES

no common node IER is set and the function returns —1.

SUBROUTINE ITAUSCH(A,B)

A,B I/O Integer or real values

The routine swaps the values A and B.

INTEGER*4 FUNCTION Get Part 0ff (DGraph)

DGraph I DGraph data structure

The function returns the offset of the partitioning vector in DGraph. For more detail see
section 2.2.14. Note that Get_Part _0ff(DGraph) + 1 is the first position of the partition
array.

INTEGER*4 Function Get_Wgt_0ff (DGraph)

DGraph I DGraph data structure

The function returns the offset of the weight vector in DGraph. For more detail see sec-
tion 2.2.14. Note that Get_Wgt_0ff(DGraph) + 1 is the first position of the weight array.

SUBROUTINE Store Partition(DGraph,Part)

DGraph I/O DGraph data structure
Part I Partition vector

The routine stores the current partitioning Part in the DGraph data stucture.

SUBROUTINE Print Dgraph(DGraph)

DGraph I DGraph data structure
The routine displays all data stored in DGraph.

Chapter 9

Schematic program run

Figure 9.1 shows an schematic run of the program. Most of the functional blocks are
associated with exactly one subroutine as indicated in Table 9.1.

There are two conditionals in the global program loop. One for the main mesh fixing and
one for the data splitting. The first conditional switches the logical parameter L_GROBNETZ,
which is only true if the main mesh is fixed. The fixing is done, if the number of elements
exceeds the parameter VOL_SOLL which is defined as VOL_SOLL = 2V¢UBE 4 N_JE_PROC. Note
that the program runs just on processor 0 till the main mesh is fixed.

The second conditional checks first if L_.GROBNETZ is true. Then it checks if the current
hypercube dimension LOC_CUBE has already reached the maximal dimension NCUBE. If not
the memory utilization is checked. If it exceeds the parameter SPLIT_WERT on a processor
the data is split. Note that the memory utilization can range from 0 to 1, which corresponds
to 0% to 100%.

Function block Corresponding subroutine
Get user mesh NET_O

Get parameters SETSTANDARD

Refine mesh A_REFINE

Assemble equation system A_ASSEMBLE

Solve A_LOESEN

Set main mesh SET_GROBNETZ

Split data if needed and possible N_SPLIT

Table 9.1: Main function blocks of SPC-PM Po 3Dv4.x and the corresponding subroutines.

99

CHAPTER 9. SCHEMATIC PROGRAM RUN

|

Initialise

Get User mesh
e

Vv

Case

Solve Refine New mesh End program New parameters

| | !

STOP Get parameters T

Refine mesh

l

Assemble equation system

Solve

No Enough elements

for the main mesh?

Set main mesh

No oads are high enough to

split and splitting is possible

Split data

J—— —

Figure 9.1: Flow chart of the schematic program run.

Bibliography

1]

(6]

7]

8]

[9]

Th. Apel, G. Haase, A. Meyer, and M. Pester. Parallel solution of finite element equation
systems: efficient inter-processor communication. Preprint SPC95.5, TU Chemnitz-
Zwickau, 1995.

Th. Apel, F. Milde, and M. Thef}. SPC-PM Po 3D — Programmer’s Manual. Preprint
SPC95_34, TU Chemnitz-Zwickau, 1995.

Th. Apel and U. Reichel. SPC-PM Po 3D V3.3 — User’s Manual. Preprint SFB393/99-
06, TU Chemnitz, Februar 1999.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math.
Comp., 55:1-22, 1990.

G. Haase, Th. Hommel, A. Meyer, and M. Pester. Bibliotheken zur Entwicklung paral-
leler Algorithmen. Preprint SPC95_20, TU Chemnitz—Zwickau, 1995. Updated version
of SPC94_4 and SPC93_1.

G. Kunert. A posteriori error estimation for anisotropic tetrahedral and triangular finite
element meshes. PhD thesis, TU Chemnitz, 1999. Logos, Berlin, 1999.

A. Meyer and M. Pester. Verarbeitung von Sparse-Matrizen in Kompaktspeicherform
(KLZ/KZU). Preprint SPC94_12, TU Chemnitz—Zwickau, 1994.

M. Pester. Behandlung gekriimmter Oberflachen in einem 3D-FEM-Programm fiir Par-
allelrechner. Preprint SFB393/97-10, TU Chemnitz, April 1997.

H. Yserentant. Uber die Aufspaltung von Finite-Elemente-Riumen in Teilrdume ver-
schiedener Verfeinerungsstufen. Habilitationsschrift, RWTH Aachen, 1984.

61

62

Index

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols

1D kette 7,21
2D kette 7,21

A
AASSEM 31
A_ASSEMBLE 31
ABPX 14
A_COARSMAT3 32
A_ELEMENT 32
AELS 32
AFEMACC 36, 50
A HB2BPX 39, 40
A HiSmulBPX 40
A HiSmulYser 37, 37
A HSTmulBPX 40
A HSTmulYser 37, 37
AKI1AKK 50
A K1AKK VOR 32, 50
AK2AKK_VOR 32, 50
AK3AKK 51
AK3AKK.VOR 32, 50
AK3AKKP 51
ANETDIM 14
A NEUMANN 32
ANLEV 14
APPCGM 40
APREVOR 35, 37
A_PRLOES 35, 37, 38, 40
AREFINE 22
A_STARTWR3D 35
ASTD 14
A TreeDoD 51
A_TREEDOWN 51
A_TreeUpDoD 52
adapt.inc 14
adaptive mesh refinement 18
alpha 19
assembly 31
AUSGABE 20, 21, 24
AZONE 10, 14

B
BPX 14
bsp.f 31

C
CHDUMMY 11

CHAIN 9
coarse grid matrix 31
coarse grid solver
....... 35, 37, 38, 40
coarse mesh 3,15, 28, 29
COMPROB 12, 21, 22
com_prob.inc 12
communication .. 37,39, 40
control.adapt 15
¢1010); 6
coupling edge 6, 15, 16
|4

coupling face 6,15, 16

crosspoints 39
D
DAZONE 10
DCOOR . ..ovveeenn.. 6
DOUTKLZ 40
DWRITE 55
data storage 35
typel 37, 40
type Il 37, 40
Delta 14, 36, 37
DGRAPH 10, 16
DIA2BPX 39
DIMFACE 5, 11
DIMGEOM 10, 12
DIMKANTE 6, 12
DIMVOL 4,11
DIR .o, 7,21
Dirichlet boundary condi-
tions 35, 38, 40
Dirichlet data 7
DRDAT 12
DRDIR 12
DRIFG 12
DRNEUM 12
DRNODES 12
DVDIR 7,12
DVNEUM 7,12
E
E2INTG 32
E2SHAP 32
E3INTG 32
E3LEHF 32
E3SHAP 32

ECKPUNKTE
Edges
ELAST
Epsilon

FACE
face types
Faces
fatherhood
FCHIELD
FDS
FEMAKKVAR
File
FILENAME
filename.inc
Full data structure

G_MEM_USE
GEMKANTE
GEMPKT
geo_mark.f
GEOM
Geometry
GET_FDEP
GET_GROB_NR
GET _KDEPTH

GET XTYP
Get_Part_Off
GET_VDEP
GET_VTYP
Get_Wgt_Off

GET_WLEN_BPX
GRAPE

hierarchical list ... 9,
HISCALE3D

ICH
ICHRING
IER
TER_TEST
IGLOB

16-18, 20, 25,

16, 38
.. 40

27, 53
.. 53

Index

ITAUSCH 58
Iter 13
itri L 13
Ivar 14
IVD oo 34
J
JACOBT 14
K
KIDDIM 8, 12
K2DDIM 8, 12
KCLEN 8
KCOFF ..o 8
KFLEN ..., 8
K_FOFF 8
KKLEN 8
KKOFF ... 8
KLBPX 8, 38
KLC 54
KNEWC 8
KNIK 8
KNODL ..o 8
KOBPX 8, 38
KTBPX ... 8
KWID ©ooveeeen . 8
KWRITE 54
KACODE 55
KACOPT 55
KANTE 6, 16, 21
KCHIELD 6, 12
KETDIM 8
Kett3Akk 51
Kett3Akk Vor 50
Kett3AkkP 51
KETTE 9
kette 16
Kettedata 8
KETTELD 8, 16, 21
KETTE2D 8, 16, 21
KUERZEN 25
KZEIG ...\, 6, 12
L
Lamé problem 2
Lback 14
LC 9, 21, 24, 25
LCDAT 9,11, 39
LCLEN 9, 11
Length 13
Lforw 14
libaNetzA.a 11, 24
libaNetzT.a 27

LinkLevel

M_CH_MAIN
M_CH_POST

M_OFF_GET
main mesh

11, 14, 15, 20, 22, 28, 37

MEM_CHANGE
MEMO_INTT

memory management

63
NDIR 16, 21
NDIRREAL 7,7, 12
NEN2D 3,11, 12
NEN3D 3,11, 12
NENXD 11
net3ddat.inc 11
NETO 16, 21
NETDIM 11
NEUM 7,16, 21
Neumann data 7
NFACE 16, 21
Nfg 37
NGEOM 16
NI 12
Nint2ass 13
Nint2error 13
Nint3ass 13
Nint3error 13
Nk 12, 37
NKANTE 16, 21
NKettSum 12
Nlevl 13
NNEUM 16, 21
NNEUMREAL 7,7, 12
NODENR 13
nodes 6
NPROC 14
NProtl 12
NProt2 12
NRDAT 12
NRNODES 12
number_of_coarse_volume . 4
NUMEL 21
NVOL 16
numerical integration ... 31
NUMNP 16, 21

(0]
ORG_LOESVAR 14
ORG_MAXADR 14
0XCOPYVBZ 40
P

PFACE 57
PACKKLZ 32
ParMetis 17, 27
PKDAT .. .o .. 8,12
PKLENG 8, 12
PKZEIG 8, 12
Poisson problem 2
PRE_HSTmulBPX 40
preconditioner

BPX 35,38, 38, 40

64
Jacobi 35
Yserentant 36
Print Dgraph 58
PROBLEM 12
PROCSFULL 14
PROT 11
Protinfo 12
PWEGID 8, 12
R
RB, 12
RDS 3
REGION 9
regular mesh 19
S
scale 14
SELCOM 14
SEL.MARK 19

SET_GROBNETZ ... 17, 22, 37

SET_KCHIELD
SET_RBCOM

SETSTANDARD
SPLIT_WERT
standard.inc
Store Partition

tetrahedral elements

Index

U
user mesh 3,15, 16, 26

A%
Verf 13
VERSION 27
vertvar 13
VFS 20, 21
VOL 4,9, 16, 21
VOL_REGION 4,9, 14
VOL.TYP 4, 14
volume_type 4
Volumes 4
X
X o 10, 16
Y
YSER 14

