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Introdution

The lassial subspae iteration method is one of the most e�etive methods for om-

puting a group of the smallest eigenvalues of a �nite{dimensional symmetri eigenvalue

problem (see, for example, [1℄). A possibility for onstruting the modi�ed subspae iter-

ation method is indiated in the paper [2℄, the onvergene and the error of this method

are investigated in the papers [3, 4℄ (see also [5℄). In the present paper, the modi�ed

subspae iteration method is proposed for solving symmetri nonlinear eigenvalue prob-

lems. Nonlinear �nite{dimensional eigenvalue problems arise after the disretization of

in�nite{dimensional nonlinear eigenvalue problems (see, for example, [6{17℄).

In setion 1 of the present paper, the statement of a symmetri eigenvalue problem

in a �nite{dimensional spae with a nonlinear entrane of a spetral parameter is given.

In setion 2, the Rayleigh{Ritz approximation of the initial problem in a subspae is

formulated. In setion 3, results about existene and properties of the eigenvalues of the

nonlinear eigenvalue problem in a subspae are proved. Similar results were obtained

earlier in the papers [6{8, 10{15℄. In setion 4, we desribe auxiliary results obtained in

the papers [3, 4℄. These results are used further for onstruting and investigating the

iterative method. In setions 5 and 6, the modi�ed subspae iteration method for the

nonlinear eigenvalue problem is formulated, the onvergene and the error of this method

for omputing eigenvalues are investigated.

1. Formulation of the problem

Let H be an N{dimensional real Eulidean spae with the salar produt (:; :) and

the norm k:k, and let � be an interval on the real axis IR, � = (�; �), 0 � � < � � 1.

Introdue the operators A(�) andB(�) that, for �xed � 2 �, are symmetri linear operators

from H to H satisfying the following onditions:

a) positive de�niteness, i.e. there exist positive ontinuous funtions �

1

(�) and �

1

(�),

� 2 �, suh that

(A(�)v; v) � �

1

(�)kvk

2

; (B(�)v; v) � �

1

(�)kvk

2

8v 2 H; � 2 �;

b) ontinuity with respet to the numerial argument, i.e.

kA(�)� A(�)k ! 0; kB(�)� B(�)k ! 0;

as �! �, �; � 2 �. By k:k also denote the norm of an operator from H to H.

De�ne the Rayleigh quotient by the formula:

R(�; v) =

(A(�)v; v)

(B(�)v; v)

; v 2 H n f0g; � 2 �:
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Assume that the following additional onditions are ful�lled:

) the Rayleigh quotient R(�; v), � 2 �, is, for �xed v 2 H, a noninreasing funtion

of the numerial argument, i.e.

R(�; v) � R(�; v); � < �; �; � 2 �; v 2 H n f0g;

d) there exists � 2 � suh that

� � min

v2Hnf0g

R(�; v) � 0;

e) there exists � 2 � suh that

� � max

v2Hnf0g

R(�; v) � 0:

Consider the following variational eigenvalue problem: �nd � 2 �, u 2 H n f0g, suh

that

(1:1) (A(�)u; v) = �(B(�)u; v) 8v 2 H:

This problem is equivalent to the operator eigenvalue problem: �nd � 2 �, u 2 H n f0g,

suh that

A(�)u = �B(�)u:

The number � that satis�es (1.1) is alled an eigenvalue, and the element u is alled

an eigenelement of problem (1.1) orresponding to �. The set U(�) that onsists of the

eigenelements orresponding to the eigenvalue � and the zero element is a losed subspae

in H, whih is alled the eigensubspae orresponding to the eigenvalue �. The dimension

of this subspae is alled a multipliity of the eigenvalue �.

2. Approximation of the problem in the subspae

Let V be a k{dimensional subspae of the spae H, 1 � k � N .

It is not diÆult to see that onditions d) and e) imply the following properties:

f) there exists � 2 � suh that

� � min

v2V nf0g

R(�; v) � 0;

g) there exists � 2 � suh that

� � max

v2V nf0g

R(�; v) � 0:

Problem (1.1) is approximated by the following variational eigenvalue problem in the

subspae: �nd � = �(V ) 2 �, u = u(V ) 2 V n f0g, suh that

(2:1) (A(�)u; v) = �(B(�)u; v) 8v 2 V:
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Problem (2.1) is alled the Rayleigh{Ritz approximation of problem (1.1) in the subspae

V .

Variational problem (2.1) is equivalent to the operator eigenvalue problem: �nd � =

�(V ) 2 �, u = u(V ) 2 V n f0g, suh that

A(�; V )u = �B(�; V )u;

where A(�; V ) = P

V

A(�)P

V

and B(�; V ) = P

V

B(�)P

V

are operators from V to V for

�xed � 2 �, and P

V

is the orthogonal projetor from H onto V .

Remark 1. Assume that v

i

, i = 1; 2; : : : ; k, is a basis of the subspae V . Then problem

(2.1) is equivalent to the matrix problem: �nd � = �(V ) 2 �, y = y(V ) 2 IR

k

n f0g, suh

that

(2:2) A(�; V )y = �B(�; V )y;

where IR

k

is the spae of vetors x = (x

1

; x

2

; : : : ; x

k

)

T

, x

i

2 IR, i = 1; 2; : : : ; k, y =

(y

1

; y

2

; : : : ; y

k

)

T

, y

i

, i = 1; 2; : : : ; k are the oeÆients in the expansion of the eigenelement

u 2 V , u =

k

P

i=1

y

i

v

i

, the matries A(�; V ) and B(�; V ) of order k for �xed � 2 � are

de�ned by the formulas:

A(�; V ) = fa

ij

(�; V )g

k

ij=1

; B(�; V ) = fb

ij

(�; V )g

k

ij=1

;

a

ij

(�; V ) = (A(�)v

i

; v

j

); b

ij

(�; V ) = (B(�)v

i

; v

j

); i; j = 1; 2; : : : ; k;

for � 2 �.

Remark 2. Suppose A(�) and B(�) are matries of order N for �xed � 2 �, H = IR

N

,

V is a k{dimensional subspae of the spae H, 1 � k � N . Then the matries of matrix

problem (2.2) have the representation

A(�; V ) = Q

T

A(�)Q; B(�; V ) = Q

T

B(�)Q; � 2 �;

where Q = (v

1

; v

2

; : : : ; v

k

) is the matrix with the olumns v

i

, i = 1; 2; : : : ; k.

3. Existene of the eigenvalues

For �xed � 2 � we introdue the auxiliary linear eigenvalue problem: �nd (�; V ) 2 IR,

u = u(�; V ) 2 V n f0g, suh that

(3:1) (A(�)u; v) = (�; V )(B(�)u; v) 8v 2 V:

Variational problem (3.1) with � 2 � is equivalent to the operator eigenvalue problem:

�nd (�; V ) 2 IR, u = u(�; V ) 2 V n f0g, suh that

A(�; V )u = (�; V )B(�; V )u:
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Remark 3. For �xed � 2 � problem (3.1) is equivalent to the matrix problem: �nd

(�; V ) 2 IR, y = y(�; V ) 2 IR

k

n f0g, suh that

(3:2) A(�; V )y = (�; V )B(�; V )y;

the matries A(�; V ) and B(�; V ) of order k are de�ned in Remarks 1 and 2 for �xed

� 2 �.

For a symmetri positive de�nite linear operator A from V to V , denote by V

A

the

Eulidean spae of elements from V with the salar produt (u; v)

A

= (Au; v) and the

norm kvk

A

= (v; v)

1=2

A

, u; v 2 V

A

.

Lemma 1. For �xed � 2 � problem (3.1) has k real positive eigenvalues 0 < 

1

(�; V ) �



2

(�; V ) � : : : � 

k

(�; V ). The eigenelements u

i

= u

i

(�; V ), i = 1; 2; : : : ; k, orrespond to

these eigenvalues:

(A(�)u

i

; u

j

) = 

i

(�; V )Æ

ij

; (B(�)u

i

; u

j

) = Æ

ij

; i; j = 1; 2; : : : ; k:

The elements u

i

= u

i

(�; V ), i = 1; 2; : : : ; k, form an orthonormal basis of the spae V

B(�)

.

The proof is given, for example, in [18℄.

Lemma 2. The formula of the minimax priniple is valid:



i

(�; V ) = min

W

i

�V

max

v2W

i

nf0g

R(�; v); i = 1; 2; : : : ; k;

whereW

i

is an i{dimensional subspae of the spae V . In partiular, the following relations

hold:



1

(�; V ) = min

v2V nf0g

R(�; v); 

k

(�; V ) = max

v2V nf0g

R(�; v):

The proof is given, for example, in [18℄.

Set

�

1;min

(a; b) = min

�2[a;b℄

�

1

(�); �

1;min

(a; b) = min

�2[a;b℄

�

1

(�);

for a �xed segment [a; b℄ on �.

Lemma 3. Suppose that

kA(�)� A(�)k

�

1;min

(a; b)

�

1

2

for �; � 2 [a; b℄. Then the following inequality is valid:

j

i

(�; V )� 

i

(�; V )j � 2

 

kA(�)� A(�)k

�

1;min

(a; b)

+

kB(�)�B(�)k

�

1;min

(a; b)

!



i

(a; V )
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for i = 1; 2; : : : ; k, �; � 2 [a; b℄.

Proof. Denote by E

i

(�; V ) the subspae spanned on the eigenelements u

j

= u

j

(�; V ),

j = 1; 2; : : : ; i, whih orrespond to the eigenvalues 

j

(�; V ), j = 1; 2; : : : ; i, of problem

(3.1) for �xed � 2 �, 1 � i � k. Using the minimax priniple of Lemma 2, we obtain



i

(�; V ) = min

W

i

�V

max

v2W

i

nf0g

R(�; v) �

� max

v2E

i

(�;V )nf0g

R(�; v) �

� max

v2E

i

(�;V )nf0g

R(�; v) + max

v2E

i

(�;V )nf0g

jR(�; v)� R(�; v)j =

= 

i

(�; V ) + �

i

(�; �);

where

�

i

(�; �) = max

v2E

i

(�;V )nf0g

jR(�; v)� R(�; v)j; �; � 2 �:

Hene

j

i

(�; V )� 

i

(�; V )j � maxf�

i

(�; �); �

i

(�; �)g; �; � 2 �:

Let us estimate �

i

(�; �), �; � 2 [a; b℄. It is easy to verify that

R(�; v)� R(�; v) = R(�; v)

(A(�)v; v)� (A(�)v; v)

(A(�)v; v)

+

+R(�; v)

(B(�)v; v)� (B(�)v; v)

(B(�)v; v)

+

+(R(�; v)�R(�; v))

(A(�)v; v)� (A(�)v; v)

(A(�)v; v)

; �; � 2 �:

This relation implies the inequality

�

i

(�; �) �

 

kA(�)� A(�)k

�

1;min

(a; b)

+

kB(�)� B(�)k

�

1;min

(a; b)

!



i

(a; V ) + �

i

(�; �)

kA(�)� A(�)k

�

1;min

(a; b)

for �; � 2 [a; b℄. Consequently, the following estimate holds

�

i

(�; �) �

1

1�

kA(�)�A(�)k

�

1;min

(a;b)

 

kA(�)� A(�)k

�

1;min

(a; b)

+

kB(�)� B(�)k

�

1;min

(a; b)

!



i

(a; V )

for �; � 2 [a; b℄. This proves the lemma.

Lemma 4. The funtions 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k, are ontinuous noninreasing

funtions with positive values. The following inequalities hold: 

i

(�;H) � 

i

(�; V ), � 2 �,

i = 1; 2; : : : ; k.

Proof. The ontinuity of the funtions 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k, follows from

Lemma 3 and ondition b). Using the minimax priniple of Lemma 2 and ondition ), we
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obtain that the funtions 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k, are noninreasing funtions and



i

(�;H) � 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k. Thus, the lemma is proved.

Lemma 5. The funtions � � 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k, are ontinuous and

stritly inreasing funtions with negative and positive values in the neighbourhoods of the

points � and �, respetively.

Proof. The inrease of the funtions �� 

i

(�; V ), � 2 �, i = 1; 2; : : : ; k, follows from

Lemma 4.

Taking into aount ondition f), we obtain that there exists a number � 2 �, for whih

the following relations are valid:

�� 

i

(�; V ) < � � 

i

(�; V ) � � � 

1

(�; V ) = � � min

v2V nf0g

R(�; v) � 0

for � 2 (�; �), i = 1; 2; : : : ; k.

Aording to ondition g), there exists � 2 � suh that the following inequalities hold:

�� 

i

(�; V ) > � � 

i

(�; V ) � � � 

N

(�; V ) = � � max

v2V nf0g

R(�; v) � 0

for � 2 (�; �), i = 1; 2; : : : ; k. Thus, the lemma is proved.

Lemma 6. A number � = �(V ) 2 � is an eigenvalue of problem (2.1) if and only if the

number � is a solution of an equation from the set ��

i

(�; V ) = 0, � 2 �, i = 1; 2; : : : ; k.

Proof. If � is a solution of the equation ��

i

(�; V ) = 0, � 2 �, for some i, 1 � i � k,

then it follows from (2.1) and (3.1) that � is an eigenvalue of problem (2.1). If � is

an eigenvalue of problem (2.1), then (2.1) and (3.1) imply � � 

i

(�; V ) = 0 for some i,

1 � i � k. This proves the lemma.

Theorem 1. Problem (2.1) has k eigenvalues �

i

= �

i

(V ), i = 1; 2; : : : ; k, whih are

repeated aording to their multipliity: � < �

1

� �

2

� : : : � �

k

< �. Eah eigenvalue �

i

is a unique root of the equation �� 

i

(�; V ) = 0, � 2 �, i = 1; 2; : : : ; k.

Proof. By Lemma 5, eah equation of the set �� 

i

(�; V ) = 0, � 2 �, i = 1; 2; : : : ; k,

has a unique solution. Denote these solutions by �

i

, i = 1; 2; : : : ; k, i. e. �

i

�

i

(�

i

; V ) = 0,

i = 1; 2; : : : ; k. To hek that the numbers �

i

, i = 1; 2; : : : ; k, are put in an inreasing

order, let us assume the opposite, i. e. �

i

> �

i+1

. Then, aording to Lemma 4, we obtain

a ontradition, namely

�

i

= 

i

(�

i

; V ) � 

i

(�

i+1

; V ) � 

i+1

(�

i+1

; V ) = �

i+1

:

By Lemma 6, the numbers �

i

, i = 1; 2; : : : ; k, are eigenvalues of problem (2.1). Thus, the

theorem is proved.

For brevity we will put

�

i

= �

i

(H); 

i

(�) = 

i

(�;H); � 2 �; i = 1; 2; : : : ; N:
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Theorem 2. Problem (1.1) has N eigenvalues �

i

, i = 1; 2; : : : ; N , whih are repeated

aording to their multipliity: � < �

1

� �

2

� : : : � �

N

< �. Eah eigenvalue �

i

is a

unique root of the equation ��

i

(�) = 0, � 2 �, i = 1; 2; : : : ; N . The following inequalities

are valid: �

i

= �

i

(H) � �

i

(V ), i = 1; 2; : : : ; k.

The proof follows from Theorem 1 and Lemma 4.

Remark 4. If � = 0, then onditions d) and f) follow from ondition ).

Proof. Let us �x � 2 � and put � = minf

1

(�); �g=2. Taking into aount ondition

), Lemma 2, and the relation � � 

1

(�)=2, � � �=2 < �, we have

� � min

v2V nf0g

R(�; v) � � � min

v2Hnf0g

R(�; v) = � � 

1

(�) � 

1

(�)=2� 

1

(�) = �

1

(�)=2 < 0:

Thus, onditions d) and f) are satis�ed for hosen � 2 �.

Remark 5. If � =1, then onditions e) and g) follow from ondition ).

Proof. For �xed � 2 � put � = 2maxf

N

(�); �g. Sine � � 2

N

(�) and � � 2� > �,

aording to ondition ) and Lemma 2, we obtain the relation:

� � max

v2V nf0g

R(�; v) � � � max

v2Hnf0g

R(�; v) = � � 

N

(�) � 2

N

(�)� 

N

(�) = 

N

(�) > 0;

whih implies that onditions e) and g) are satis�ed.

4. Auxiliary results

Assume that the symmetri positive de�nite linear operator C(�) from H to H is

given for �xed � 2 �, and that there exist ontinuous funtions Æ

0

(�), Æ

1

(�), � 2 �,

0 < Æ

0

(�) � Æ

1

(�), � 2 �, suh that

Æ

0

(�)(C(�)v; v) � (A(�)v; v) � Æ

1

(�)(C(�)v; v); v 2 H; � 2 �:

Put

S(�; �) = I � �(�)C

�1

(�)(A(�)� �B(�));

where � 2 �, � 2 IR; I is the identity operator from H to H; �(�), � 2 �, is a given

funtion.

For a given k{dimensional subspae V of the spae H we de�ne a subspae W of the

spae H and numbers �

0

and �

1

by the formulas:

W = S(�; �

0

)V; �

0

= 

k

(�; V ); �

1

= 

k

(�;W );

for �xed � 2 �.

7



Lemma 7. Let �(�) = Æ

�1

1

(�), � 2 �. Then W is a k{dimensional subspae of the

spae H.

The proof is given in [3, 4℄.

Lemma 8. Let 

k

(�) = 

k

(�;H) be an eigenvalue of problem (3.1) with � 2 � suh

that



k

(�) = : : : = 

k+s

(�) < 

k+s+1

(�);

k � 1, s � 0, k + s + 1 � N . Assume that �

0

< 

k+s+1

(�), �(�) = Æ

�1

1

(�), � 2 �. Then



k

(�) � �

1

� �

0

, and the following estimate is valid:

�

1

� 

k

(�) � �(�; �

0

)(�

0

� 

k

(�));

where 0 < �(�; �) < 1;

�(�; �) =

1� Æ(�)(1� �=

k+s+1

(�))

1 + Æ(�)(1� �=

k+s+1

(�))(�=

k

(�)� 1)

;

Æ(�) = Æ

0

(�)=Æ

1

(�); � 2 [

k

(�); 

k+s+1

(�)); � 2 �:

The proof is given in [3, 4℄.

5. Convergene of the modi�ed subspae iteration method

Introdue the funtions '

n

(�), � 2 �, n = 0; 1; : : :, by the formulas:

'

n

(�) = 

k

(�;H

n

k

); � 2 �;

where H

n

k

is a subspae of the spae H, n = 0; 1; : : :, 

k

(�; V ) is the k{th eigenvalue of

problem (3.1) for �xed � 2 �.

Consider the following iterative method:

(5:1) H

n+1

k

= S(�

n

)H

n

k

; n = 0; 1; : : : ;

where the number �

n

is de�ned as a solution of the equation:

(5:2) �� '

n

(�) = 0; � 2 �;

for n = 0; 1; : : : Here S(�) = S(�; �), � 2 �; S(�; �), � 2 �, � 2 IR, is de�ned in setion 4,

H

0

k

is a given k{dimensional subspae of the spae H.

Remark 6. At eah step of the iterative method (5.1), we need to �nd the number �

n

as a solution of equation (5.2) or the equation � � 

k

(�;H

n

k

) = 0, � 2 �. It follows from

Theorem 1 that �

n

= �

k

(H

n

k

) is the maximal eigenvalue of problem (2.1) with V = H

n

k

.

8



Consequently, the number �

n

we may de�ne as the maximal eigenvalue of matrix problem

(2.2) of order k (see Remarks 1 and 2).

Lemma 9. Let �(�) = Æ

�1

1

(�), � 2 �. Then H

n

k

, n = 1; 2; : : : are k{dimensional

subspaes of the spae H.

The proof follows from Lemma 7.

Lemma 10. The funtions '

n

(�), � 2 �, n = 0; 1; : : :, are ontinuous noninreasing

funtions with positive values. In addition, the following inequalities are valid: '

n

(�) �



k

(�), � 2 �, n = 0; 1; : : :

The proof follows from Lemmas 3 and 4.

Lemma 11. The funtions ��'

n

(�), � 2 �, n = 0; 1; : : :, are ontinuous and stritly

inreasing funtions with negative and positive values in the neighbourhoods of the points

� and �, respetively.

The proof follows from Lemma 5.

Lemma 12. Let A and B be linear operators from H to H, the operator A has the

inverse operator A

�1

from H to H and kB�Ak kA

�1

k < 1. Then there exists the operator

B

�1

from H to H and the following inequality holds:

kB

�1

k �

kA

�1

k

1� kB � Ak kA

�1

k

:

The proof is given, for example, in [19℄.

Put

�(�) =

1� Æ

k

(1� �=�

k+s+1

)

1 + Æ

k

(1� �=�

k+s+1

)(�=�

k

� 1)

; � 2 [�

k

; �

k+s+1

);

Æ

k

= min

�2[�

k

;�

k+s+1

℄

Æ(�); Æ(�) = Æ

0

(�)=Æ

1

(�); � 2 �;

for �

k

; �

k+s+1

2 �, �

k

< �

k+s+1

. Note that 0 < Æ

k

� 1, 0 < �(�) < 1 for � 2 [�

k

; �

k+s+1

).

Lemma 13. The half{open interval [�

k

; �

k+s+1

) is ontained in the half{open interval

[

k

(�); 

k+s+1

(�)) for any � 2 [�

k

; �

k+s+1

).

Proof. Taking into aount Lemma 4, we get 

k

(�) � �

k

and 

k+s+1

(�) � �

k+s+1

for

� 2 [�

k

; �

k+s+1

). These inequalities proves the lemma.

Lemma 14. The following inequality holds: �(�; �) � �(�) for �; � 2 [�

k

; �

k+s+1

).

9



Proof. By Lemma 13, if � 2 [�

k

; �

k+s+1

), then � 2 [

k

(�); 

k+s+1

(�)) for � 2

[�

k

; �

k+s+1

). Now relations 

k

(�) � �

k

, 

k+s+1

(�) � �

k+s+1

, � 2 [�

k

; �

k+s+1

), imply

the desired inequality. Thus, the lemma is proved.

Theorem 3. Let �

k

be an eigenvalue of problem (1.1) suh that

�

k

= : : : = �

k+s

< �

k+s+1

;

k � 1, s � 0, k + s + 1 � N , the sequene �

n

, n = 0; 1; : : : is alulated by the formulas

(5.1), (5.2). Suppose �

0

< �

k+s+1

, �(�) = Æ

�1

1

(�), � 2 �. Then �

n

! �

k

as n !1, and

the following inequalities are valid

�

k+s+1

> �

0

� �

1

� : : : � �

n

� : : : � �

k

:

Moreover, the following estimate holds:

�

n+1

� 

k

(�

n+1

) � (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

k

(�

n

));

where 0 < �(�) < 1, � 2 [�

k

; �

k+s+1

), n = 0; 1; : : :

Proof. Let us show that the solutions �

n

, n = 0; 1; : : : of the equations ��'

n

(�) = 0,

� 2 �, n = 0; 1; : : : satisfy the following inequalities:

�

k+s+1

> �

0

� �

1

� : : : � �

n

� : : : � �

k

:

Assume that the equation �� '

n

(�) = 0, � 2 �, has the solution �

n

suh that

�

k+s+1

> �

0

� �

1

� : : : � �

n

� �

k

; n � 0:

Hene we obtain

�

0

= '

n

(�

n

) = �

n

< �

k+s+1

= 

k+s+1

(�

k+s+1

) � 

k+s+1

(�

n

):

Consequently, by Lemma 8, we have

�

1

= '

n+1

(�

n

) � �

0

= '

n

(�

n

) = �

n

:

It follows from Lemmas 10 and 11 that the equation � � '

n+1

(�) = 0, � 2 �, has the

unique solution �

n+1

and

�

k+s+1

> �

0

� �

1

� : : : � �

n

� �

n+1

� �

k

:

Let us prove that �

n

! �

k

as n!1. Taking into aount Lemma 8, 13, 14, we obtain

the following relations:

�

n+1

� 

k

(�

n+1

) = (�

n+1

� '

n+1

(�

n

)) + ('

n+1

(�

n

)� 

k

(�

n+1

)) �

� (�

n+1

� '

n+1

(�

n

)) + ('

n+1

(�

n

)� 

k

(�

n

)) =

= (�

n+1

� '

n+1

(�

n

)) + (�

1

� 

k

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

; �

0

)(�

0

� 

k

(�

n

)) �

� (�

n+1

� '

n+1

(�

n

)) + �(�

n

)(�

n

� 

k

(�

n

));
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where �

0

= '

n

(�

n

) = �

n

, �

1

= '

n+1

(�

n

).

Sine �

k+s+1

> �

0

� �

1

� : : : � �

n

� : : : � �

k

, there exists � 2 [�

k

; �

k+s+1

) suh that

�

n

! � as n!1.

Denote by u

n

an element from H

n

k

suh that

R(�

n

; u

n

) = max

v2H

n

k

nf0g

R(�

n

; v) = '

n

(�

n

) = �

n

; ku

n

k

B(�

n

)

= 1;

for n = 0; 1; : : :

Let us show that there exists a onstant  > 0 suh that ku

n

k � , n = 0; 1; : : : Choose

a number n

0

� 0 suh that

kB(�

n

)� B(�)k kB

�1

(�)k �

1

2

for n � n

0

. We may do this beause, by ondition b), kB(�

n

) � B(�)k ! 0 as n ! 1.

Then, aording to Lemma 12, we obtain

ku

n

k

2

= (u

n

; u

n

) = (B

�1

(�

n

)B(�

n

)u

n

; u

n

) �

� kB

�1

(�

n

)k ku

n

k

2

B(�

n

)

= kB

�1

(�

n

)k �

�

kB

�1

(�)k

1� kB(�

n

)� B(�)k kB

�1

(�)k

� 

1

for n � n

0

, 

1

= 2kB

�1

(�)k. Put



0

= max

n=0;1;:::;n

0

ku

n

k:

Thus, we obtain that the required onstant  is de�ned by the formula  = maxf

0

; 

1

g.

Sine ku

n

k � , n = 0; 1; : : :, there exists an element w 2 H and a subsequene u

n

i

+1

,

i = 1; 2; : : :, suh that u

n

i

+1

! w as i!1.

Let us prove that �

n

i

+1

� '

n

i

+1

(�

n

i

)! 0 as i!1. We have

0 � �

n

i

+1

� '

n

i

+1

(�

n

i

) = max

v2H

n

i

+1

k

nf0g

R(�

n

i

+1

; v)� max

v2H

n

i

+1

k

nf0g

R(�

n

i

; v) �

� R(�

n

i

+1

; u

n

i

+1

)� R(�

n

i

; u

n

i

+1

)! 0

as i!1. Here, we have taken into aount that

R(�

n

i

+1

; u

n

i

+1

)! R(�; w); R(�

n

i

; u

n

i

+1

)! R(�; w);

as i!1.

Using the inequality

�

n

i

+1

� 

k

(�

n

i

+1

) � (�

n

i

+1

� '

n

i

+1

(�

n

i

)) + �(�

n

i

)(�

n

i

� 

k

(�

n

i

))

as i!1, we get

0 � �� 

k

(�) � �(�)(�� 

k

(�));
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where 0 < �(�) < 1, � 2 [�

k

; �

k+s+1

). Hene the number � 2 [�

k

; �

k+s+1

) satis�es the

equation � � 

k

(�) = 0, i. e. � = �

k

is an eigenvalue of problem (1.1) and �

n

! �

k

as

n!1. This ompletes the proof of the theorem.

6. Error estimates of the modi�ed subspae iteration method

Assume that there exist positive ontinuous funtions �

0

(�; �) and �

0

(�; �), �; � 2 �,

suh that

kA(�)� A(�)k � �

0

(�; �)j�� �j; kB(�)�B(�)k � �

0

(�; �)j�� �j;

for �; � 2 �.

Set

�

0;max

(a; b) = max

�;�2[a;b℄

�

0

(�; �); �

0;max

(a; b) = max

�;�2[a;b℄

�

0

(�; �);

for a �xed segment [a; b℄ on �.

Lemma 15. Assume that the following inequality holds:

�

0;max

(a; b)

�

1;min

(a; b)

(b� a) �

1

2

;

for a �xed segment [a; b℄ on �, V is a k{dimensional subspae of the spae H, 1 � k � N .

Then the following estimate is valid:

j

i

(�; V )� 

i

(�; V )j � r

i

(a; b; V ) j�� �j; �; � 2 [a; b℄;

where

r

i

(a; b; V ) = 2

 

�

0;max

(a; b)

�

1;min

(a; b)

+

�

0;max

(a; b)

�

1;min

(a; b)

!



i

(a; V ); i = 1; 2; : : : ; k:

The proof follows from Lemma 3.

Put

q(�) = maxf�(�

k

); �(�)g; � 2 [�

k

; �

k+s+1

);

!

k

= �

k+s+1

q

1� Æ

k

=(1 +

q

1� Æ

k

):

Note that 0 < q(�) < 1 for � 2 [�

k

; �

k+s+1

).

Lemma 16. The following equality is valid:

max

�2[�

k

;�

0

℄

�(�) = q(�

0

)

for �

0

2 [�

k

; �

k+s+1

). If 0 � !

k

� �

k

, then q(�

0

) = �(�

0

). If �

k

� !

k

< �

k+s+1

and

�

k

� �

0

� !

k

, then q(�

0

) = �(�

k

).

Proof. It is not diÆult to make sure (see also [5℄) that �

0

(!

k

) = 0, �

0

(�) < 0 for

� 2 (0; !

k

), �

0

(�) > 0 for � 2 (!

k

; �

k+s+1

). These relations imply desired results. Thus,

the lemma is proved.

12



Theorem 4. Let �

k

be an eigenvalue of problem (1.1) suh that

�

k

= : : : = �

k+s

< �

k+s+1

;

k � 1, s � 0, k + s + 1 � N , the sequene �

n

, n = 0; 1; : : : is alulated by the formulas

(5.1), (5.2). Assume that �

0

< �

k+s+1

, �(�) = Æ

�1

1

(�), � 2 �, and that numbers n

0

� 0

and " > 0 suh that �

k

� �

n+1

� �

n

� �

k

+ " < �

k+s+1

and

�

0;max

(�

k

; �

k

+ ")

�

1;min

(�

k

; �

k

+ ")

" �

1

2

for n � n

0

. Then the following estimate is valid:

�

n+1

� 

k

(�

n+1

) � q

n

(�

n

� 

k

(�

n

));

where q

n

= r

k

(�

k

; �

k

+ ";H

n+1

k

) + �(�

n

), n � n

0

.

Suppose r

k

(�

k

; �

k

+ ";H

n+1

k

) � �, n � n

0

. Then

�

n+1

� 

k

(�

n+1

) � q

n+1

0

(�

0

� 

k

(�

0

));

�

n+1

� �

k

� q

n+1

0

(�

0

� 

k

(�

0

));

for q

0

= � + q(�

0

), n � n

0

.

Proof. Aording to Lemma 15, for n � n

0

we obtain the following relation:

�

n+1

� '

n+1

(�

n

) = '

n+1

(�

n+1

)� '

n+1

(�

n

) =

= 

k

(�

n+1

; H

n+1

k

)� 

k

(�

n

; H

n+1

k

) �

� r

k

(�

k

; �

k

+ ";H

n+1

k

)(�

n

� �

n+1

) �

� r

k

(�

k

; �

k

+ ";H

n+1

k

)(�

n

� 

k

(�

n

));

in whih we have taken into aount that



k

(�

n

) � 

k

(�

n

; H

n+1

k

) = '

n+1

(�

n

) � '

n+1

(�

n+1

) = �

n+1

:

Now, by Theorem 3 and Lemma 16, we obtain desired estimates. Thus, the theorem is

proved.

Remark 7. Assume that the operators A(�) = A, B(�) = B, C(�) = C, do not

depend on � 2 IR, and that the following relations are valid:

Æ

0

(Cv; v) � (Av; v) � Æ

1

(Cv; v); v 2 H;

for given onstants Æ

0

and Æ

1

, 0 < Æ

0

� Æ

1

. In this ase, the iterative method (5.1) and

(5.2) has the following form:

H

n+1

k

= S(�

n

)H

n

k

; �

n

= �

k

(H

n

k

); n = 0; 1; : : : ;
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where S(�) = I � �C

�1

(A� �B), � 2 IR, � = Æ

�1

1

, H

0

k

is a given k{dimensional subspae

of the spae H. Note that the number �

n

= �

k

(H

n

k

) is a maximal eigenvalue of problem

(2.1) with V = H

n

k

.

Then the error estimates of Theorem 4 are transformed to the form:

�

n+1

� �

k

� �(�

n

)(�

n

� �

k

);

�

n+1

� �

k

� q

n+1

0

(�

0

� �

k

);

for n = 0; 1; : : :, where 0 < �(�) < 1 for � 2 [�

k

; �

k+s+1

), q(�) = maxf�(�

k

); �(�)g,

� 2 [�

k

; �

k+s+1

), 0 < q

0

= q(�

0

) < 1,

�(�) =

1� Æ(1� �=�

k+s+1

)

1 + Æ(1� �=�

k+s+1

)(�=�

k

� 1)

; Æ = Æ

0

=Æ

1

; � 2 [�

k

; �

k+s+1

):

These error estimates are idential with known results (see, for example, [3℄).
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