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Introduction

The classical subspace iteration method is one of the most effective methods for com-
puting a group of the smallest eigenvalues of a finite-dimensional symmetric eigenvalue
problem (see, for example, [1]). A possibility for constructing the modified subspace iter-
ation method is indicated in the paper [2], the convergence and the error of this method
are investigated in the papers [3, 4] (see also [5]). In the present paper, the modified
subspace iteration method is proposed for solving symmetric nonlinear eigenvalue prob-
lems. Nonlinear finite-dimensional eigenvalue problems arise after the discretization of
infinite—dimensional nonlinear eigenvalue problems (see, for example, [6-17]).

In section 1 of the present paper, the statement of a symmetric eigenvalue problem
in a finite—dimensional space with a nonlinear entrance of a spectral parameter is given.
In section 2, the Rayleigh-Ritz approximation of the initial problem in a subspace is
formulated. In section 3, results about existence and properties of the eigenvalues of the
nonlinear eigenvalue problem in a subspace are proved. Similar results were obtained
earlier in the papers [6-8, 10-15]. In section 4, we describe auxiliary results obtained in
the papers [3, 4]. These results are used further for constructing and investigating the
iterative method. In sections 5 and 6, the modified subspace iteration method for the
nonlinear eigenvalue problem is formulated, the convergence and the error of this method
for computing eigenvalues are investigated.

1. Formulation of the problem

Let H be an N—dimensional real Euclidean space with the scalar product (.,.) and
the norm ||.||, and let A be an interval on the real axis R, A = (o, ), 0 < a < 3 < oc.
Introduce the operators A(u) and B(p) that, for fixed p € A, are symmetric linear operators
from H to H satisfying the following conditions:

a) positive definiteness, i.e. there exist positive continuous functions ay (u) and £y (p),
i € A, such that

(A(p)v,v) > aa()|[oll?, (B(p)v.v) > Bu(p)l[v]l®> Yo € H,p € A;
b) continuity with respect to the numerical argument, i.e.
[A(k) = A()|| = 0, ||B(k) — Bn)|| =0,

as i — 1, p,n € A. By ||| also denote the norm of an operator from H to H.
Define the Rayleigh quotient by the formula:

R(p,v) = ve H\{0},peA.



Assume that the following additional conditions are fulfilled:
c) the Rayleigh quotient R(u,v), p € A, is, for fixed v € H, a nonincreasing function
of the numerical argument, i.e.

R(p,v) > R(n,v), p<nune€AveH\{0}
d) there exists n € A such that

— min R <0
n- moin (n,v) <0;

e) there exists 7 € A such that

— R > 0.
- max R(n.v) =
Consider the following variational eigenvalue problem: find A € A, w € H \ {0}, such
that

(1.1) (AN)u,v) = M(B(Nu,v) Yv e H.

This problem is equivalent to the operator eigenvalue problem: find A € A, uw € H \ {0},
such that
A(N)u = AB(M)u.

The number A that satisfies (1.1) is called an eigenvalue, and the element w is called
an eigenelement of problem (1.1) corresponding to A\. The set U(X) that consists of the
eigenelements corresponding to the eigenvalue A and the zero element is a closed subspace
in H, which is called the eigensubspace corresponding to the eigenvalue A. The dimension
of this subspace is called a multiplicity of the eigenvalue \.

2. Approximation of the problem in the subspace

Let V be a k—dimensional subspace of the space H, 1 <k < N.
It is not difficult to see that conditions d) and e) imply the following properties:
f) there exists n € A such that

n— min_ R(n,v)

<0
veV\{0}

g) there exists n € A such that

— R > 0.
n- max, (n,v) >

Problem (1.1) is approximated by the following variational eigenvalue problem in the
subspace: find A = A(V) € A, u =u(V) € V'\ {0}, such that

(2.1) (AN)u,v) = A B(Nu,v) YveV.
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Problem (2.1) is called the Rayleigh-Ritz approximation of problem (1.1) in the subspace
V.

Variational problem (2.1) is equivalent to the operator eigenvalue problem: find A =
AV) e A, u=u(V)e V\{0}, such that

AN V)u = AB(\, V),

where A(u,V) = PyA(p)Py and B(p, V) = PyB(u)Py are operators from V' to V for
fixed p € A, and Py is the orthogonal projector from H onto V.

Remark 1. Assume that v;, i = 1,2, ...k, is a basis of the subspace V. Then problem
(2.1) is equivalent to the matrix problem: find A = A(V) € A, y = y(V) € R*\ {0}, such
that

(2.2) A\ V)y = AB(A, V)y,
where R is the space of vectors © = (21,20,...,2:)", #; € R, i = 1,2,... k, y =
(1,92, uk) ", yiy i = 1,2, ... k are the coefficients in the expansion of the eigenelement

k

w €V, u = Y yv;, the matrices A(u,V) and B(p, V) of order k for fixed p € A are
i=1

defined by the formulas:

A(ﬂv V) = {aij(:u’v V)}?jzlv B(ﬂv V) = {bij(:u’v V)}?jzla

aij(/'La V) = (A(,U/)’UZ‘,UJ'), bZ](/'La V) - (B(,U/)’UZ‘,UJ'), Za] - ]-7 27 BRI ka
for p € A.

Remark 2. Suppose A(u) and B(u) are matrices of order N for fixed € A, H = RY,
V is a k—dimensional subspace of the space H, 1 < k < N. Then the matrices of matrix
problem (2.2) have the representation

A(p,V)=Q A(WQ, B(u,V)=Q ' B(n)Q, neA,

where Q = (v1, V2, ..., v;) is the matrix with the columns v;, i =1,2,... k.

3. Existence of the eigenvalues

For fixed i € A we introduce the auxiliary linear eigenvalue problem: find y(u, V') € R,
u=u(p,V)eV\{0}, such that

(3.1) (A(p)u,v) =v(p, V)(B(p)u,v) Yo €V

Variational problem (3.1) with p € A is equivalent to the operator eigenvalue problem:
find v(p, V) € R, u = u(p, V) € V \ {0}, such that

Ap, Vyu = v(p, V) B(p, V)u.
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Remark 3. For fixed ;o € A problem (3.1) is equivalent to the matrix problem: find
Y1, V) € R, y=y(p,V) € R¥\ {0}, such that

(3'2) A(,LL, V)y = ’7(/% V)B(,LL, V)y,

the matrices A(p, V) and B(u, V) of order k are defined in Remarks 1 and 2 for fixed
e A.

For a symmetric positive definite linear operator A from V to V, denote by Vj the

Euclidean space of elements from V' with the scalar product (u,v)s = (Au,v) and the
norm ||v||4 = (v,v)}f, u,v € Vy.

Lemma 1. For fivred p € A problem (3.1) has k real positive eigenvalues 0 < v1(u, V) <
Yo, V') < oo < (s, V). The eigenelements u; = w;(p, V), i = 1,2,...,k, correspond to
these eigenvalues:

(A(p)ui, wi) = vilp, V)oij,  (B(p)wi,uy) =95, 4,5 =1,2,... k.
The elements u; = u;(p, V), i = 1,2,...,k, form an orthonormal basis of the space Vp,).
The proof is given, for example, in [18].
Lemma 2. The formula of the minimaz principle is valid:

72(:“’7 V) :Vgllér‘l/ ’l)GIVI[}'lai}EO}R(ij), 1= 17277k7

where W; is an i—dimensional subspace of the space V. In particular, the following relations
hold:

N, V)= nin R(p,v), V) = max, R(p, v).

The proof is given, for example, in [18].

Set
min(a,0) = i ) min(@,b) = i )
1min(0,0) = min a1(p), Prmin(a,b) = min fi(s)
for a fixed segment [a, b] on A.
Lemma 3. Suppose that
JAGw — Al _ 1
al,min(aab) -2

for p,n € [a,b]. Then the following inequality is valid:

[A(p) = Al | 1B(s) = B(n)ll
al,min(aa b) * ﬁl,min(aa b) >

4

s, V) = (V)] < 2 ( (0, V)



fori=1,2,....k, u,n € [a,b].

Proof. Denote by E;(u, V) the subspace spanned on the eigenelements u; = u;(p, V),
J = 1,2,...,4, which correspond to the eigenvalues v;(u, V), j = 1,2,...,4, of problem
(3.1) for fixed u € A, 1 <i < k. Using the minimax principle of Lemma 2, we obtain

, - i <
Yilw, V) Jnin, ve%?i’EO}R(”’”) <
< max  R(p,v) <
T weE;i(n,V)\{0} (,v) <
< max  R(n,v)+ max R(p,v) — R(n,v)| =
= weE;i(n,V)\{0} (n.0) veEi(n,V)\{0}| (k) (m,2)]

Yi(n, V) + oi(p,m),

where

. _ _ A
oi(p,n) veEf(%?%\{O}'R(“’”) R(n,v)|, wne

Hence
i1, V) = vi(n, V)| < max{o;(p,m), 0:(n, )}, p,m € A
Let us estimate o;(u,n), ,n € [a,b]. It is easy to verify that

R(:u’v U) - R(nv U) = R(nv U)

(A(p)v,v)
B — (B
R(n.v) (B(n)v, v) = (B(u)v,v)
(B(n)v,v)
(A(,LL)U, U) - (A(U)Ua U)
+R/~L,U —RU,U ’ MaUGA
(it ) = 80 )= Gy )
This relation implies the inequality
[A() — Al | [1B(#) —B(n)H) [A(k) — Al
oi(p,n) < i(a, V) +oi(p,
(/j' 77) ( a’l,min(a’a b) ﬁl,min(aa b) 7 ( ) (M 77) al,mm(a,, b)
for p1,m € [a,b]. Consequently, the following estimate holds
1 [AG) — Al |, [[B(r) — B(n)l
7)< T GG ( (@) T Bomn(@d) )Y
for p1,m € [a,b]. This proves the lemma.
Lemma 4. The functions v;(p, V), p € A, i =1,2,...,k, are continuous nonincreasing

functions with positive values. The following inequalities hold: ~v;(p, H) < v;i(u, V'), p € A,
i=1.2,.. .k

Proof. The continuity of the functions v;(u, V), p € A, i = 1,2,...,k, follows from
Lemma 3 and condition b). Using the minimax principle of Lemma 2 and condition ¢), we
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obtain that the functions v;(u, V), p € A, i = 1,2,...,k, are nonincreasing functions and
Yilp, H) < vi(p, V), p€ A, i =1,2,... k. Thus, the lemma is proved.

Lemma 5. The functions p — vi(p,V), p € A, i = 1,2,... k, are continuous and
strictly increasing functions with negative and positive values in the neighbourhoods of the
points a and 3, respectively.

Proof. The increase of the functions p — v; (i, V), p € A, i = 1,2,..., k, follows from
Lemma 4.

Taking into account condition f), we obtain that there exists a number n € A, for which
the following relations are valid:

=, V) <n—vmnV)<n—mnV)=n— véﬁ—li\?o}R("’”) <0

for p € (a,m),i=1,2,.... k.
According to condition g), there exists n € A such that the following inequalities hold:

=i, V) >n—vnV)>n—ynnV)=n— ve“&—?i%}R("’”) >0

for pe (n,B),i=1,2,..., k. Thus, the lemma is proved.

Lemma 6. A number A = A(V') € A is an eigenvalue of problem (2.1) if and only if the
number X is a solution of an equation from the set p—~;(u, V) =0, pe N, i=1,2,... k.

Proof. If \ is a solution of the equation p—;(u, V) =0, u € A, for some i, 1 <i <k,
then it follows from (2.1) and (3.1) that A is an eigenvalue of problem (2.1). If A is
an eigenvalue of problem (2.1), then (2.1) and (3.1) imply A — ;(A, V) = 0 for some i,
1 <4 < k. This proves the lemma.

Theorem 1. Problem (2.1) has k eigenvalues \; = N;(V), i = 1,2,...,k, which are
repeated according to their multiplicity: a < Ay < Ay < ... < A\p < (. Fach eigenvalue \;
is a unique root of the equation p— v;(11, V) =0, pe A, i=1,2,...,k.

Proof. By Lemma 5, each equation of the set pn — v;(u, V) =0, p € A,y i=1,2,...,k,
has a unique solution. Denote these solutions by A;, i = 1,2,...,k, i. e. A\;—v(\;, V) =0,
t = 1,2,..., k. To check that the numbers \;, © = 1,2,... k, are put in an increasing
order, let us assume the opposite, i. e. A; > A;11. Then, according to Lemma 4, we obtain
a contradiction, namely

Ai = %'(/\ia V) < %’(/\i+1a V) < '7i+1(/\i+17 V) = Ait1-

By Lemma 6, the numbers \;, i = 1,2,..., k, are eigenvalues of problem (2.1). Thus, the
theorem is proved.

For brevity we will put



Theorem 2. Problem (1.1) has N eigenvalues X;, i = 1,2,..., N, which are repeated
according to their multiplicity: o < A\ < Ay < ... < Ay < (. Each eigenvalue N\; is a
unique root of the equation p—-y;(pn) =0, w € A, i =1,2,...,N. The following inequalities
are valid: \i = N(H) < \(V), 1 =1,2,... k.

The proof follows from Theorem 1 and Lemma, 4.
Remark 4. If « = 0, then conditions d) and f) follow from condition c).

Proof. Let us fix v € A and put n = min{y;(v),r}/2. Taking into account condition
¢), Lemma 2, and the relation n < v;(v)/2, n < v/2 < v, we have

— min R <p— min R(n.v)=n— < 9 - 2 < 0.
n— min (n,v) <n oin (mv) =n—mnm) <M@)/2 =) n(v)/

Thus, conditions d) and f) are satisfied for chosen n € A.
Remark 5. If 3 = oo, then conditions e) and g) follow from condition c).

Proof. For fixed v € A put n = 2max{yy(v),v}. Since n > 2yx(v) and n > 2v > v,
according to condition c¢) and Lemma 2, we obtain the relation:

n- max R(n,v) > n — nax R(n,v) =n—9n5(n) > 29v(v) — v (v) = yn(v) >0,

which implies that conditions e) and g) are satisfied.

4. Auxiliary results

Assume that the symmetric positive definite linear operator C'(p) from H to H is
given for fixed g € A, and that there exist continuous functions dq(), 01(p), pu € A,
0 < do(p) < d1(p), p € A, such that

0o (1) (C(p)v,v) < (A(p)v,v) < &1 (p)(C(p)v,v), ve H, peA.

Put
S(pyn) =1 — () (1) (A(p) — nB(p)),

where p € A, n € IR; I is the identity operator from H to H; 7(u), 1 € A, is a given
function.

For a given k-dimensional subspace V' of the space H we define a subspace W of the
space H and numbers v° and v! by the formulas:

W:S(/,L,I/U)‘/? VO:fYk(/'Lav)a Vl:f)/k(:u’vw)v

for fixed pu € A.



Lemma 7. Let 7(u) = 67 (), u € A. Then W is a k-dimensional subspace of the
space H.

The proof is given in [3, 4].

Lemma 8. Let vi(u) = vi(u, H) be an eigenvalue of problem (3.1) with p € A such

that

Ve(r) = o = Vs (1) < Yrrsra(p),
k>1,5>0, k+s+1<N. Assume that 1° < vpyo1(pn), 7(n) = 67 (), p € A. Then
Ye(p) < vt <10 and the following estimate is valid:

V= (i) < plp, 1°) (10 — (),

where 0 < p(p,v) <1,

B 1 —0(p) (1 —v/Yigst1(p))
) = 15000 = v/ ee () (o) — 1)

o(p) = do(p) /01 (1), v € [v(p), Yrrssr(m)), p €A

The proof is given in [3, 4].

5. Convergence of the modified subspace iteration method
Introduce the functions ¢, (1), p € A, n=10,1, ..., by the formulas:

where H}' is a subspace of the space H, n = 0,1,..., v(u, V) is the k-th eigenvalue of
problem (3.1) for fixed pu € A.
Consider the following iterative method:

(5.1) HM = S(p™HE, n=0,1,...,
where the number p" is defined as a solution of the equation:
(5.2) f— () =0, p€A,

forn=0,1,... Here S(u) = S(p, ), o € A; S(p,m), p € A, n € R, is defined in section 4,
H} is a given k-dimensional subspace of the space H.

Remark 6. At each step of the iterative method (5.1), we need to find the number p"
as a solution of equation (5.2) or the equation p — v (u, Hy) = 0, p € A. It follows from
Theorem 1 that p™ = A,(H}') is the maximal eigenvalue of problem (2.1) with V' = H}!.
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Consequently, the number p we may define as the maximal eigenvalue of matrix problem
(2.2) of order k (see Remarks 1 and 2).

Lemma 9. Let 7(u) = 0;'(p), u € A. Then HP, n = 1,2,... are k—dimensional
subspaces of the space H.

The proof follows from Lemma 7.

Lemma 10. The functions ¢, (i), p € A, n =0,1,..., are continuous nonincreasing
functions with positive values. In addition, the following inequalities are valid: ¢, () >

716(”)7 M€A7 n:0,1,...
The proof follows from Lemmas 3 and 4.

Lemma 11. The functions p— ¢n(p), p € A, n =0,1,..., are continuous and strictly
increasing functions with negative and positive values in the neighbourhoods of the points
a and (3, respectively.

The proof follows from Lemma 5.

Lemma 12. Let A and B be linear operators from H to H, the operator A has the
inverse operator A~' from H to H and ||B— A||||A7Y|| < 1. Then there exists the operator
B~ from H to H and the following inequality holds:

A=

Bl < .
1570 = T — Ay AT

The proof is given, for example, in [19].
Put

_ 1= 0k(1 = v/ Aeyss1)
]_ + 5k(1 — l//)\k+s+1)(l//)\k — ].)7

op = _min  6(p),  6(p) =d0o(1)/01(p), p €A,

BE[AE Ak 4s41]

p(v) V€ [Ny Abtsn),
for )\k, >\k+s+1 S A, A < >\k+s+1- Note that 0 < (5k: <1,0< p(l/) <lforve [)\k, )\k:—l—s—l—l)-

Lemma 13. The half-open interval [Ay, Arysy1) is contained in the half-open interval
[V (1), Yivs1 () for any p € [Ag, Apystr)-

Proof. Taking into account Lemma 4, we get (1) < Ap and yppsr1(pt) > Aprsyr for
t € [Aey Akrst1). These inequalities proves the lemma.

Lemma 14. The following inequality holds: p(u,v) < p(v) for p,v € [Ag, Aprsi1)-
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Proof. By Lemma 13, if v € [Ag, \erst1), then v € [ye(p), Viysi1(p)) for p €

[Aes Akgsg1). Now relations yg(p) < Mgy Yegst1(t) > Apgstt, 8 € [Ap Apgsgr), imply
the desired inequality. Thus, the lemma is proved.

Theorem 3. Let A\, be an eigenvalue of problem (1.1) such that

Ap—...—= )\k+s < /\k+s+17

E>1,5s>0,k+s+1<N, the sequence u", n = 0,1,... is calculated by the formulas
(5.1), (5.2). Suppose pi® < Apisi1, 7(1) = 67 (1), u € A. Then p™ — A\, as n — oo, and
the following inequalities are valid

Nepsgr > p0 > ph > 0> > >\
Moreover, the following estimate holds:
P = () < (" = g (1) + o) (" = (")),
where 0 < p(/j,) < 17 IS [/\ka /\k+s+1)7 n= Oa 17 s

Proof. Let us show that the solutions p™, n =0, 1,... of the equations u — ¢, (u) = 0,
we A n=0,1,... satisfy the following inequalities:

Nipsgr > p0 > ph > 0> 0 > 0>\
Assume that the equation p — @, (1) =0, p € A, has the solution p™ such that
Mipsir > p0 > pt > 0> p" > N, 0> 0.
Hence we obtain

V) = On(p") = 1" < Megsi1 = Virst1(Megst1) < Versrr(p”).

Consequently, by Lemma 8, we have

n

v = o (") <V0 = pn (") = p.

It follows from Lemmas 10 and 11 that the equation g — @, 1(p) = 0, p € A, has the
unique solution x"*1 and

Mipsgr > p0 > pt > 0> > ">

Let us prove that u — A, as n — oo. Taking into account Lemma 8, 13, 14, we obtain
the following relations:

W =1 = (" = @ (W) + (e (1) — (e tY)) <
< (" = o (1) + (Pnpr (") = 1 (p) =
= (0" = @un (M) + (= (u")) <
< (W = (M) + p(p” O (= y(p™)) <
< (WM = g () + (") (1" = (1)),



where 1 = ¢, (u") =
Since Agpsi1 > p

pr = pas n — 0o.
Denote by v an element from H}' such that

VRS

RO w) = oy B 0) = enl) = %oy =1

forn=0,1,...

Let us show that there exists a constant ¢ > 0 such that [|u"|| < ¢, n=0,1,...

a number ny > 0 such that

1B(2") ~ B 1B ()] <

pt > ... > p" > .0 > A, there exists g € [Ag, Aprsa1) such that

Choose

for n > ny. We may do this because, by condition b), ||B(u") — B(u)|| — 0 as n — oc.

Then, according to Lemma 12, we obtain

= () = (BB ) <
< 1B gy = 1B <
S 151

<a
L= |[B(u") = B)|l 1B (w)]
for n > ng, c; = 2||B7'(u)]|. Put

— n
o= max |u"].

Thus, we obtain that the required constant ¢ is defined by the formula ¢ = max{cy, ¢; }.
Since ||u"]| < ¢, n =0,1,..., there exists an element w € H and a subsequence u™*!,

i=1,2,..., such that v — w as i = co.
Let us prove that p™™ — ¢, .1 (u™) — 0 as i — co. We have

0<p™* ! —gp (@) = max R"*w)— max R(u"v)<

veH T\ {0} veH T\ {0}

S R(an+1, uni+1) - R(/,Lnl, n; +1) =0
as 7 — oo. Here, we have taken into account that
R(p"* u™*) — R(p,w),  R(p™,u"*) — R(p,w),

as 1 — 00.
Using the inequality

P — () < (W = o (7)) A p() (1" — e (0™))

as 1 — 00, we get,
0 < p— (1) < p(p) (1 — (),
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where 0 < p(p) < 1, p € [Ak, Akrss1). Hence the number p € [Ag, Apisi1) satisfies the
equation g — yx(p) = 0, 1. e. u = A; is an eigenvalue of problem (1.1) and p™ — \; as
n — oo. This completes the proof of the theorem.

6. Error estimates of the modified subspace iteration method

Assume that there exist positive continuous functions ag(u,n) and Bo(u, 1), u,n € A,
such that

NA(u) — A < aolp,n) | =l |B(p) — Bl < Bolpe,n) | — nl,

for p,n € A.
Set

Q0,maz(@,b) = max ao(it,n),  Lomaz(a,b) = max, ﬂo(u n),
1€ a,b] wmElab

for a fixed segment [a, b] on A.
Lemma 15. Assume that the following inequality holds:

aO,max (a, b) 1

b—a) <=
Cl-/l,min(avb) ( a) N 2,

for a fized segment [a,b] on A, V is a k-dimensional subspace of the space H, 1 < k < N.
Then the following estimate is valid:

|7l(:u7 V) - %(777 V)| < Ti(a’aba V) |/j’ - 77|7 JIN/AS [aab]a

where

(a o aOmaa:( ) ﬂOmaa:( ) (a Z:
rz(,b,V)—2<a1mm( 3 ﬁlmm( )>%(,V), 1,2,...,k

The proof follows from Lemma 3.

Put
q(p) = max{p(A), p(11)}, 0 € [Ak, Akgsrr),

Wi = Apgsg1y/1 = 0x/(1 + /1 — ).

Note that 0 < q(u) < 1 for p € [Ar, Metst1)-
Lemma 16. The following equality is valid:

max _p(u) = q(1’)
BE[A 0]

for p° € Mg, Apgst1)- If 0 < wp < Ag, then q(u°) = p(p°). If Ap < wi < Ajgsq1 and
e < ¥ < wy, then q(1°) = p(A).

Proof. It is not difficult to make sure (see also [5]) that p'(wp) = 0, p'(1) < 0 for
€ (0,wg), p'(1) > 0 for p € (wg, Akrs+1). These relations imply desired results. Thus,
the lemma is proved.
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Theorem 4. Let A\, be an eigenvalue of problem (1.1) such that

Ak == Apps < Mpgstts

E>1,s>0,k+s+1<N, the sequence u, n = 0,1,... is calculated by the formulas
(5.1), (5.2). Assume that p° < Aprspr, 7() = 07 (1), p € A, and that numbers ng > 0
and € > 0 such that A\, < p™ < pu? < A\ + € < Mppsq1 and

aO,max()\ka )\k: + 8) e < 1
O-/l,min()\k:a >\k + 8) — 2

for n > ng. Then the following estimate is valid:

n+1

2 - '7k(:“n+1)

where gy = 1o e+, HEY) + p(u™), m > mo.
Suppose r(Ae, A\, + &, Hi™) < o, n > ng. Then

n+1

M —’Yk(ﬂ M —’Yk(ﬂo))
n+1 n+1

n-l—l) S n—|—1(
ptt =N < gt — (),

for qo = o+ q(p°), n > ny.

Proof. According to Lemma 15, for n > ny we obtain the following relation:

= op (1) = ut (@) — (") =

'Yk(ﬂn+1 HI?-H) k(ﬂnaHl?-H)

Tk()\k,/\k+5 Hn+1)(/,tn— n+1)
(A M+ &, HP ) (" = e (p™)),

n+1

<
<

VANV

in which we have taken into account that

n+1) — n+1.

,Yk(/j’n) S Vk(un’ Hg+1) - §0n+1(:un) S 90n+1(/1’ %

Now, by Theorem 3 and Lemma 16, we obtain desired estimates. Thus, the theorem is
proved.

Remark 7. Assume that the operators A(u) = A, B(u) = B, C(n) = C, do not
depend on p € IR, and that the following relations are valid:

3o (Cv,v) < (Av,v) < 6;(Cv,v), v € H,

for given constants dy and 01, 0 < dy < ;. In this case, the iterative method (5.1) and
(5.2) has the following form:

H™ = SGUVHD, 5 = M(H]). n=0,1.....

13



where S(u) = I —7C (A —uB), p € R, 7 = 07", HY is a given k-dimensional subspace
of the space H. Note that the number p" = A\, (H}') is a maximal eigenvalue of problem
(2.1) with V = H?.

Then the error estimates of Theorem 4 are transformed to the form:

P = N < p(p™) (1" = M),
’unJrl - Ak S q(T)LJrl(,uO o /\lc),
for n = 0,1,..., where 0 < p(p) < 1 for p € [N, Apys1), q(p) = max{p(Ar), p(p)},
[IAS [)\kv )\k-l-s-i-l)a 0< do = q(/'LO) < ]-7
_ 1—6(1 = v/Apsst1)
L+ 6(1 = v/ Appsyr) (/A — 1)

p(lj) d = 50/(517 S [)\ka )\k-l—s—l—l)-

These error estimates are identical with known results (see, for example, [3]).
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