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Abstract

Hermitian pencils, i.e., pairs of Hermitian matrices, arise in many applications,
such as linear quadratic optimal control or quadratic eigenvalue problems. We derive
conditions which anti-triangular and anti-m-Hessenberg forms for general (including
singular) Hermitian pencils can be obtained under unitary equivalence transforma-
tions.
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1 Introduction

In this paper, we discuss necessary and sufficient conditions for the existence of particular
condensed forms for Hermitian matrices and pencils from which eigenvalues and nested
sets of invariant subspaces can be obtained.

Definition 1 Let X = (xj;) € C**" and m € N.

1. We say that X is lower anti-triangular if 2, =0 for j +k <mn, we.,

)

Analogously we say that X is upper anti-triangular if xj, =0 for j+k > n.

2. We say that X is lower anti-m-Hessenberg if v, =0 for j +k <n —m, i.e.,

=17

Analogously we define upper anti-m-Hessenberg matrices. If X s lower anti-1-
Hessenberg, we also say that X is anti-Hessenberg.

As long as it is not stated otherwise, "anti-triangular’ and ’anti-m-Hessenberg’ always
means 'lower anti-triangular’ and ’lower anti-m-Hessemberg’, respectively. Analogous to
the matrix case, we define anti-triangular and anti-m-Hessenberg forms for pencils.

In this paper we will discuss the reduction of Hermitian pencils to anti-m-Hessenberg
forms and anti-triangular forms via unitary equivalence transformations that preserve the
Hermitian structure.

The motivation for this research arises from structured eigenvalue problems in control
theory and in the numerical simulation of mechanical systems.

The first application is the linear quadratic optimal control problem, see [12, 13, 18]
and the references therein.

This is the problem of minimizing the cost functional

: /: (2(tyQu(®) + u(t)*Ru(t) + ult)"S"x(t) + ()" Sult) ) dt

subject to the dynamics

Ei(t) = Ax(t)+ Bu(t), ty<t (1)
I(to) Zo, (2)



where A, E,Q € C" B, S € C""™ R e C™™ @ and R Hermitian, xg,z(t),u(t) € C",
and to,t € R. It is known that solutions of (1) can be obtained via the solution of a
boundary value problem, see [17, 18] and the references therein. For the solution of this
boundary value problem one has to compute deflating subspaces of the matrix pencil

E 0 0 A 0 B
A0 =B 0| - Q A S |. (3)
0 0 0 S* B* R
Multiplying both matrices with
0 I 0
P=|T1 00
0 0 I

from the left, we see that the pencil (3) is equivalent to the pencil

0 —E* 0 Q A* S
M-B=X|E 0 0|-]A4 0 B]. (4)
0 0 0 S* B* R

Multiplying A by i, we find that \iA — B is a Hermitian pencil, i.e., both 7A and B
are Hermitian. Clearly, both pencils A4 — B and \iA — B have the same right deflating
subspaces and the eigenvalues of A\i.A— B coincide with the eigenvalues of AA— B multiplied
by i. Therefore, to analyze and compute eigenvalues and deflating subspaces, it is sufficient
to consider the Hermitian pencil A\i.A — B. It should be noted, however, that if the original
problem is real, then we have obtained an Hermitian nonreal problem in this way. For
the real case one has to discuss 'skew-Hermitian/Hermitian’ pencils AS — H, i.e., pencils
where § is skew Hermitian and ‘H is Hermitian. This case is more complicated, because
one has to deal with an additional symmetry. It is well known that the spectra of skew-
Hermitian/Hermitian pencils are symmetric with respect to the imaginary axis (see [23]).
In the real case, the spectra have an additional symmetry with respect to the real axis. In
this paper we only consider the complex case. The real case is referred to a later discussion.

Other applications of Hermitian pencils arise in the numerical treatment of quadratic
eigenvalue problems in mechanics. In quadratic eigenvalue problems one is interested in
computing A € C and = € C"\{0} such that

(A+ AB+ \C)z =0,

where typically A,C' € C**" are Hermitian and B is Hermitian or skew Hermitian. Hermit-
ian quadratic eigenvalue problems arise for example in the analysis of geometrical nonlinear
buckling structures with finite element methods (see [3, 9]) or in the theory of damped os-
cillatory systems (see [6, 11]). With the substitution p = % for A\ # 0, the problem can be
linearized such that it reduces to the generalized Hermitian eigenvalue problem

(2300 1Y)
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see, e.g., [9]. Quadratic eigenvalue problems with B skew Hermitian arise in numerical
simulation of the deformation of anisotropic materials (see [14]) and the acoustic simulation
of poroelastic materials (see [20]). In this case the substitution 1 = i\ leads to the linearized
eigenvalue problem

0 e Ae | | =C 0 Az (6)
| —ic -iB x| | 0 -—A x |’
For a detailed study of Hermitian quadratic eigenvalue problems and, more general, of
matrix polynomials see [6].

Canonical forms for Hermitian pencils or for related pairs of quadratic or Hermitian
forms are well known and have been widely discussed in literature, starting with results
of Weierstrafl for the regular case (see [24]) and results of Kronecker for the singular case
(see [10]). For a complete discussion of canonical forms for Hermitian pencils see [22], and
for a large list of references see [23].

But for the sake of numerical stability, we are interested in finding condensed forms for
Hermitian pencils under unitary transformations. In other words, we try to reduce both
matrices of the pencil via a simultaneous unitary similarity transformation. Anti-triangular
forms for Hermitian pencils seem to be good forms to chase for. We say that a Hermitian
pencil AA — B is congruent to a pencil in anti-triangular form if there exists a nonsingular

matrix P such that
A g

Indeed, if one is interested in finding condensed forms under unitary transformations, it
does not make sense to look for classical Schur forms for Hermitian pencils, because this
reduces to the problem of diagonalizing two Hermitian matrices simultaneously. It is well-
known that this is possible if and only if the matrices commute (see, e.g., [21]). On the
other hand, if (7) holds then P can be chosen to be unitary. This follows easily by applying
the QR-decomposition on P, see also Lemma 2 in the following section. Hence, both A
and B are simultaneously unitarily similar to anti-triangular matrices.

P*(AM — B)P=

Anti-triangular forms for Hermitian pencils are related to Schur-like forms for skew-
Hamiltonian /Hamiltonian pencils that are discussed in [16]. A skew-Hamiltonian/Hamil-
tonian pencil is a pencil AS — H such that S is skew-Hamiltonian, that is SJ — JS* = 0,
and such that H is Hamiltonian, that is HJ + JH* = 0, where

0 I
J= { ol ] .
Thus, skew-Hamiltonian/Hamiltonian pencils are structured with respect to an indefinite
(skew) scalar product, defined by the matix J. Condensed forms for matrices and pencils

that are structured with respect to indefinite scalar products have been widely discussed
in the literature, see [4, 5, 7, 12, 15, 19, 25], to name a few.
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If A\S — H is a skew-Hamiltonian/Hamiltonian pencil, then the pencil \iJS — JH is
Hermitian. Furthermore, if AS — H is in Schur-like form, i.e.,

MIBNE
e[ B

then the corresponding Hermitian pencil A\iJS — JH is congruent to a pencil in anti-
triangular form and has the structure

. AN v
)\ZJS—JH:[QD]NC[&D].

From this point of view, it seems that anti-triangular forms for Hermitian pencils are the
natural forms to look for if one is interested in obtaining condensed forms under unitary
transformations.

In [16] it was shown that not every regular skew-Hamiltonian/Hamiltonian pencil can
be reduced to Schur-like form. This generalizes a result on Hamiltonian matrices (see [15]).
The reason why a Schur-like form does not always exist is because certain conditions on
the purely imaginary eigenvalues have to be satisfied. This comes from the fact that purely
imaginary eigenvalues of Hamiltonian matrices have signs £ = +1 that are invariant under
structure-preserving transformations, see [15], or [6] and [12] for a more general setting.
An analogous situation holds in the pencil case (see [16] and [22]).

However, the consideration of Hermitian pencils is more general than the consideration
of skew-Hamiltonian /Hamiltonian pencils, since the case of odd-sized pencils is included in
the context of Hermitian pencils. Furthermore, only the case of regular pencils is discussed
in [16] and it is the purpose of this paper to include the singular case. This case is of
interest as well; see for example [18] for applications when the pencil (4) is singular.

It will turn out that the existence of anti-triangular forms for singular Hermitian pencils
is equivalent to the existence of anti-m-Hessenberg forms for certain regular Hermitian
pencils. But besides this, anti-m-Hessenberg forms of Hermitian pencils are of interest
themselves. During the numerical computation of the Schur form of a matrix, the matrix
is usually reduced to Hessenberg form in the first step (see, e.g., [8]). Hessenberg-like forms
for Hamiltonian matrices have been discussed in, e.g., [1] and [4]. Anti-Hessenberg forms
for Hermitian matrices correspond to Hessenberg-like forms for Hamiltonian matrices.

In section 2 we will discuss basic properties of Hermitian anti-triangular and anti-m-
Hessenberg matrices and in section 3 we discuss corresponding forms for the case of regular
Hermitian pencils. In section 3 another important condensed form for Hermitian pencils is
derived, the so-called sign condensed form. In a certain sense, this form displays "how far
away’ a Hermitian pencil is from being congruent to anti-triangular or anti-m-Hessenberg
form. The case of singular pencils will be discussed in section 4.

Throughout the paper we use the following notation.
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1. Given two square matrices A, B, we define the direct sum A& B of A and B by
A 0

Ad B = { 0 B ] .

Analogously we define the direct sum of square pencils.

2. By Z, we denote the pxp zip matrix Z, = [0;1;p11]; ,—; with ones on the anti-diagonal
and zeros elsewhere.

3. By o(\) we denote the sign of A € R, that is

1 it A >0,
o(A)=40 if A=0,
-1 ifA<O.

4. By A ~. B we denote that the matrices A and B are congruent.
5. By spec(A) we denote the spectrum of a square matrix A.

6. By e; we denote the jth unit vector.

2 Anti-triangular and anti-m-Hessenberg forms

In this section we discuss conditions when Hermitian matrices can be transformed to anti-
triangular and anti-m-Hessenberg matrices via unitary congruence transformations. It
turns out that the conditions for unitary congruence are the same as for congruence.

Lemma 2 Let A € C**" be Hermitian and congruent to an anti-m-Hessenberg matriz for
some m € N. Then A is unitarily similar to an anti-m-Hessenberg matriz.

Proof. Let A be in anti-m-Hessenberg form and let A and A be congruent, i.e., there
exists a nonsingular matrix P € C"*", such that P*AP = A. Let P = QR be the
QR-decomposition (see [8]) of P. Then Q*AQ = R *AR™! is still anti-m-Hessenberg. 0

Let us recall that the inertia index of a Hermitian matrix G is
nd(G) = (vy,v-, 1),

where v, ,v_, vy are the numbers of positive, negative and zero eigenvalues of GG, respec-
tively. Conditions for the existence of both anti-triangular and anti-m-Hessenberg forms
will be based on the following lemma.



Lemma 3 Let A € C**" be Hermitian and let Ind(A) = (vy,v_,1p). Then A is congruent
to a matrixz of the form
0 A,
i )

where Ay € CHF A, € C0*k if and only if vy —v | <2k + vy — n.

Proof. ’'=’": Let A be in the form (8). Then there exist nonsingular matrices S €
Cn=Rx(n=k) and T € C*** such that

I, O
sar =1 0],

where m < k,n — k. From this we obtain that

m n—k—m m k—m
0 0 I, 0
[S 0 ]A_[S* 0 ]__ 0 0 0 0
0o T 0 T I, 0 Az Az |
0 0 A§2 A33
where T*A3T = [ Ail Ag } Furthermore, we obtain
A32 A33
I 000 0 0 I, O I 0 —3Ay —Agp
0 I 00 0 0 O 0 0 I 0 0
—3A3 0 1 0 I, 0 Ay As 0 0 I 0
As, 0 0 T 0 0 A%, As 00 0 I
0o o0 I, O
o o0 o0 o
| I, 0 O 0
0 0 0 As

This implies Ind(A) = (m,m,n — k —m) + Ind(As3) and since Az is a (k —m) x (k—m)
matrix, we obtain from n — k — m < 14 that

vy —v | <k—-m=2k+n—k—-—m-—n<2k+vy—n.

‘<" Assume w.l.o.g. that v, —v_ > 0; otherwise consider —A. Then the matrix

- |l o o0, 0 0
A=l 0 o o |
0o 0 0 I,



is congruent to A, since Ind(A) = (v4,v_,1p). Here O,, denotes the vy X 1 zero matrix.
It remains to show that v_ 4+ 1y > n — k and this follows by

v+ = n—vi=n—v_— (vy —v_)
> n—v_—Q2k+vy—n)=2(n—k)— (v_+1p). O

Corollary 4 Let A € C**™ be Hermitian, Ind(A) = (v, v, 1), and n > m € N.
1. If n —m s even, then A s congruent to an anti-m-Hessenberg matriz if and only if
vy —v | <vp+m.
2. If n —m s odd, then A is congruent to an anti-m-Hessenberg matrixz if and only if

vy —v_| <vg+m+ 1.

Proof. Let us first consider the case that n — m is even. If A is congruent to an anti-m-
Hessenberg matrix, then in particular A is congruent to a matrix of the form

0 A,
Ay Az |
), Hence, Lemma 3 implies that

where Az €

n-—+m

vy —v | <2 + vy —n=1ry+m.

Conversely assume that |, — v | < vy + m. Then Lemma 3 implies that A is congruent
to a matrix of the form

0 A,

Ay Az |7

n+m n+m n+m )

where A, (5 and A3 e 2
CE™)*("5™) e nonsingular, such that

SAT=[0 4, ],

n—m

(*3™) and T €

“Z*) is anti-triangular. Clearly such matrices always exist. It follows

S 0 0 A S* 0| 0 SA,T
0 7~ A Az 0 T | | (SAT)* T*AsT
is anti-triangular and thus, A is congruent to an anti-triangular matrix. The case that

n — m is odd follows in an analogous way, noting that in this case an anti-m-Hessenberg
form of A has the structure

0 A,

Ay As |7

) and A, € CF)x(FE),

where A, €
that

n+m+1 ( n+m-+1
2

where A; € C! 0
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Corollary 5 Let A € C**" be Hermitian and let Ind(A) = (v4,v_, 1p).

1. If n 1s even, then A is congruent to an anti-triangular matrix if and only if

vy — v | < .

2. If n is odd, then A s congruent to an anti-triangular matriz if and only if
vy —v | <y + 1.

We see from these results that the inertia indices of Hermitian matrices play a key role
in the discussion of anti-triangular and anti-m-Hessenberg forms. The following lemma
establishes an auxiliary result for the computation of the inertia index of some special
Hermitian matrices.

Lemma 6 Let A € C**" be an Hermitian matriz of the form

0 0 Ay
A= 0 Ay Ay |,
Aly Ay Ass,
where A3 € C™* and Ay € Crmm=—k)x(n—m—k)

1. If m =k and Ay3 is invertible, then

Ind(A) = (m,m,0) + Ind(As).

2. If Ayy € Clr=m—k)x(n=m=k) 4 inyertible, then

0 A ])
Ind(A) = Ind . 7 + Ind(Ajy),
W ({ Aly As (42)
where Agg = A33 — A;3A22A23.

Proof. 1. If m = k and A;3 is invertible, we find that

A 000 0 0 Ay | [AG —AFAL, —3A5A5
—AgAd T 0 0 Ay Ao 0 I 0
| —1ApAL 0 T Ar, ALy Ass 0 0 I
[0 0 I 0 I
= |0 Ay O|~. |1 0 O
I 0 0 0 0 Ay.




This implies that Ind(A) = (m,m,0) + Ind(As,).

2. If Ay, is invertible, we find that

I, 0 01 0 0 A I, O 0
0 I 0 0 Ay A 0 [ —AyAgy
0 —ARAY I Aty A% Ass 0 0 I,
0 0 A [ 0 A 0
= 0 Ay 0 |~ | A Az 0
| Ar, 0 As | 0 0 A,

where Agg = A33 - A;3A22A23. 0

3 Condensed forms for regular Hermitian pencils

In this section we discuss condensed forms for regular Hermitian pencils, i.e., pencils A\G —
H € C"" such that both G and H are Hermitian. These forms are the canonical form,
anti-triangular forms that can be obtained via a unitary similarity transformation that
operates simultaneously on GG and H, anti-m-Hessenberg forms, and the so-called sign

condensed form. First let us recall the well-known canonical form for Hermitian pencils
(see [22]).

Theorem 7 Let \G — H be a reqular Hermitian pencil. Then there exists a nonsingular
matric P € C*"™ such that

P*A\G—H)P = (\G, — H)) & ... & (\G, — H)), (9)

where the blocks \G; — H; have one and only one of the following forms.

1. Blocks associated with paired nonreal eigenvalues \g, Aj:

N2 0 Z.TJ+(No)
Z. 0 | | J(N)Z, 0

2. Blocks associated with real eigenvalues \g and sign = € {1, —1}:

0 1 0 \ Alo
XeZ, —eZ, T (o) =< —€ . _9
Lo N 1 0



3. Blocks associated with the eigenvalue oo and sign £ € {1, —1}:

0 0 (1) 0 1
eZ,J.(0) —eZ, =« L —€
0 1 0 L 0

Proof. See [22]. [

Definition 8 Let A\G — H be a reqular Hermatian pencil and let N\G; — H; be a single block
of the canonical form (9) of \G — H. If \G; — H; is a block of type 2) or 3) then the
parameter = that appears in the canonical form (9) is called the sign associated with the
block \G; — H;.

Besides the eigenvalues of a Hermitian pencil, the signs associated with blocks to real
eigenvalues or the eigenvalue oo are invariants under congruence. The collection of these
signs is sometimes referred to as the sign characteristic (see, e.g., [7] and [12] for related
work on H-selfadjoint matrices, where H is a nonsingular Hermitian matrix). It will turn
out that especially the signs of odd-sized blocks play a key role in our investigation of
condensed forms. This motivates the following definition of the sign sum.

Definition 9 Let \G — H € C"" be a regular Hermitian pencil and let Ay € R U {oo}
be a real eigenvalue of \G — H with partial multiplicities (p1, ..., PryPrg1s - - - Pm), where
D1y .-y Pr are odd and pryy, ..., Pm GTE EVEN.

1. The tupel (e1,...,em) is called the sign characteristic of Ao, where ¢; is the sign
associated with the block in the canonical form (9) that corresponds to Ay and p;.

2. The integer Signsum(N\g, G, H) := &1 + ... + &, is called the sign sum of \g with
respect to N\G — H. If there is no risk of confusion we write Signsum(Xy) instead of
Signsum(Ag, G, H).

In addition, we set Signsum(XAg, G, H) = 0, whenever \y € R U {o0} is not an eigenvalue
of \G — H. We note that if in the canonical form (9) there are only even sized blocks
associated with \g then Signsum()¢) = 0, since the sign sum is obtained by the sum of
the signs that correspond to odd sized blocks. The following theorem allows to ’split’ a
regular Hermitian pencil into an anti-triangular part and a diagonal part. Furthermore,
all the information on the sign sum, i.e., all the information on the signs that are needed
in the following, can be read off the diagonal part. For the proof of this result, we first
state the following auxiliary remark.

Remark 10 Let A € C**™ be Hermitian.

10



0 1412 0 0 0 f112
1. f A= | A}, Ay, 0 |, then A is congruent to 0 Az O
0 0 /133 /4T2 0 /422

0 0 1413 0 0 0 0 f113
/122 1423 0 . 0 /422 0 /423
At AL Am 0| then A is congruent to 0 0 Au 0

2. It A=

Theorem 11 (Sign condensed form) Let \G — H € C**" be a reqular Hermitian pen-
cil. Then there exists a nonsingular matriz P € C**" and m € N, such that

0 0 (;13 0 0 }{13
POAG—H)P=X| 0 Gy Gy |—| 0 Hy Hy |, (10)
Gi3 Gy G Hiy Hyy H

where Gz, Hiz3 € C™*™ are anti-triangular and
51]%1 0 glAllbl 0

AGay — Hyy = A — , (11)
Sk]bk SkAk]fk

0 0 0 S+,

Pr+41

where A\y < ... < Ay and ey, ... ex11 € {1, —1}. Furthermore, we have for all Ay € RU{o0}
that
Signsum(\g, G, H) = Signsum(\g, Gag, Has).

Proof. Assume, w.l.o.g., that A\G— H is in the canonical form (9). The proof now proceeds
by induction on the number [ of distinct real eigenvalues, including the eigenvalue oc.

‘Il = 0 If \G — H has neither real eigenvalues nor the eigenvalue oo, then clearly all
the blocks in the canonical form (9) have even sizes. Thus, applying Remark 10 part 1
repeatedly, we find that A\G — H is congruent to a pencil in form (10), where the block
AGyy — Hyy does not appear.

'l = [+ 1": Let us pick an eigenvalue Ay € RU {oo} of A\G — H. For the sake of briefness
of notation, we consider only the case \g € R. The case \y = oo can be proved analo-
gously. (This can be seen easily by interchanging the roles of G and H.) After an eventual
reordering of blocks, we may assume that

o[G0 [H o
N AR AL

where A\G; — H; contains all the blocks associated with Ay and A\Gy — Hy contains all the
other blocks. We assume furthermore that A\G; — H; contains p, odd sized blocks with
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sign ¢ and p_ odd sized blocks with sign —z, where e € {1, —1}, i.e., in particular we have
Signsum(Ag) = e(p; — p_). Then, applying Remark 10 various times on AG; — H; and
eventually reordering some blocks, we find that

NG — H
0 0 0 0 Gis 0 0 0 0 His
0 <, 0 0 0 0 eXol,, 0 0 0
~e A0 0 -, 0 0 | =] 0 0 =X, 0 0 |,
0 0 0 Gy, 0 0 0 0 H, 0
Gt 0 0 0 Gss H:, 0 0 0 Hs;

where Gy5 and H; are anti-triangular. Let us assume, w.l.o.g., that p, > p_. Setting

1 \/§Ip+—p7 0 0

P=— 0 el el
5 - -
V2 0 —l, eI,
and noting that
[ el,, . 0 0 ] [ xolp, p. 0 0 ]
Pl A 0 el, 0 — 0 ol 0 P
L 0 0 —<l, J [ 0 0 —eXodp, J
el,, ., 0 0 eXody, —p_ 0 0
= A 0 0 e, |- 0 0 cholp |,
0 el, 0 0 cXol, 0
we obtain by applying Remark 10 that
0 0 0 G 0 0 0 Hy
_ 0 el, . 0 0 0 eXolp,—p_ O 0
AG = H ~e A 0 0 Gy O 0 0 H, 0 ’
G, 0 0 Gu H;, 0 0 Hy

where Gy, and Hj, are anti-triangular and the block eAl,, _, — eAol,,_, displays the

sign sum of \y. Using the induction hypothesis on A\Gy — H,, the result follows by one
more application of Remark 10. O

Remark 12 The pencil P*(AG — H)P has the pattern

A N |- NERE
| ] |

and the sign sum of each real eigenvalue or the eigenvalue oo of A\G — H can be easily read
off the subpencil NGy — Hys, since obviously we have

Signsum(Ay, Gag, Haz) = capa fora=1,... k.

12



Remark 13 In [16], it was shown how to obtain an analogue of form (10) for skew-Hamil-
tonian/Hamiltonian pencils. This method can be easily adapted to Hermitian pencils.
Doing so, one can see that in a step-wise reduction, the reduction to the blocks G153 and
H,3 can be executed via unitary transformations.

In the following we will deduce necessary and sufficient conditions for the existence of
anti-triangular forms and anti-m-Hessenberg forms for Hermitian pencils. Given a Her-
mitian pencil A\G — H, we note that for every t € R, we have a Hermitian matrix tG — H.
It is clear that if the pencil A\G — H is in anti-triangular form then so is the Hermitian
matrix tG — H. It will turn out that also the converse is true - at least in the case that
the size of the pencil is even. Therefore, the results of section 2 imply that the existence
of anti-triangular forms for the Hermitian pencil AG — H is linked to conditions on the
indices of the matrices tG — H, where t is real.

Moreover, we will see that these conditions on indices can be interpreted as conditions
on the sign sums of the real eigenvalues and the eigenvalue oo of the pencil A\G — H. Since
we may assume that the pencil is in sign condensed form and since the blocks Gy3 and
Hi3 in (10) are already in anti-triangular form, it remains to consider the block (11) that
inherits all information on the sign sums. The following lemma examines this block and
will be applied repeatedly.

Lemma 14 Consider the pencil N\Gay — Hay in the form (11). Furthermore, let ti,t; € R
such that

A< <A1 < <A << Apgs <ty < Apgpir << A
Setting Ind(tGay — Hyy) = <1/+(t), v_(t), l/o(t)>, we obtain that

a+f3

(v t) = v () = (vatr) = v (1)) = 23 vy
(l/+(t2) — V_(t2)> + <l/+(t1) — V_(tl)) =2 (E ejpj> -2 (j:aéﬂﬂ sjpj> — 2881 Pkg 1

Proof. We obtain that

a-1 atp k
vi(t) —v_(ty) = (ZSJ'Z?J) - (Z%’%’) - ( Z 5ij> — Ck41Pk+1

j=1 j=a atf+l
a—1 a+p3 k

and  vy(ty) —v (ty) = (Z 5jpj> + (Z 5jpj> - ( Z 5jpj> — Ek+1Dk+1-
j=1 j=a j=a+f+1

This implies the assertion. 0O
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We are now able to discuss necessary and sufficient conditions for the existence of anti-
triangular forms for regular Hermitian pencils. We start with a result for the case that the
size of the pencil is even.

Theorem 15 Let \G — H € C*™ 2" be a reqular Hermitian pencil and for t € R let
Ind(tG — H) = (14(25), v_(t), I/o(t)>. Then the following statements are equivalent.

1. N\G — H 1s congruent to a pencil in anti-triangular form.
2. For allt € R we have that vy (t) —v_(t)] < vy(t).
3. For almost all t € R we have that |v,(t) — v_(t)| < vp(t).

4. If Ao € RU {00} is an eigenvalue of \G — H then Signsum(\g) = 0.

Proof. '1) = 2): Let P € C*"*?" be a nonsingular matrix such that P*(AG — H)P is in
anti-triangular form. Then clearly P*(tG — H )P is Hermitian anti-triangular for all ¢ € R.
Thus, 2) follows from Corollary 5.

'2) = 3)": is trivial.

'3) = 4)": W.lo.g. we may assume that AG — H is in sign condensed form (10). If Ay is
not an eigenvalue of A\Gyy — Hyy then trivially Signsum(\y) = 0. Thus, let us consider an
eigenvalue \, of A\Gyy — Hsy. There are two possible cases.

Case (1) Assume that A\, € R, that is a € {1,...,k}, where A\y,..., \; are as in (11).
Choose t1,ty € R such that

AL <o < Aa1 <t < A <ty < Apggr <o < Agy

and furthermore, such that |vy(t;) — v_(t;)| < 1p(t;) holds for j = 1,2 and that 4G — H
and t,GG — H are nonsingular. This is possible, since the pencil A\G — H is regular, i.e.,
tG — H is nonsingular for almost all ¢ € R, and, in addition, condition 3) holds for almost
all £ € R. Then, we obtain from (10) and Lemma 6 that

(y+(tj), v (1), yo(tj)) = (m,m,0) + Ind(t;Gay — Hyy) for j =1,2.

Since ;G — H and t,G — H are nonsingular, we have 14(t;) = vy(t2) = 0. Therefore, we
obtain from Lemma 14 that

0 = wolts) +wn(ty) = [vi(ts) — v (t2)| + [v4(t) — v-(t1)]
> <1/+(t2) - V_(t2)> - <1/+(t1) - y_(t1)> ‘ — 2. Signsum(\,).

This implies Signsum(\,) = 0.
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Case (2) If the assumption of Case (1) does not hold, then A\, = co.

In this case, we choose t1,t; € R such that
< A <0< A < ty,

and furthermore such that |v4(¢;) — v_(¢;)| < vp(t) holds for j = 1,2 and that t,G — H
and tyGG — H are nonsingular. Then we obtain from Lemma 14 that

0> ‘ (1/+(t2) e (tg)) - (1/+(t1) - u,(tl)) ‘ — 2 Signsum(Au.).

'4) = 1)": This follows directly from Theorem 10, since 4) implies that the subpencil
AGyy — Hyy does not appear. D

Remark 16 The condition Signsum(\g) = 0 means that in the canonical form (9) the odd-
sized blocks associated with Ay occur in pairs with opposite signs +1 and —1, respectively.
(The pairing applies only to the signs, but not to the sizes of the blocks!)

Our next result gives necessary and sufficient conditions for the existence of anti-
Hessenberg forms for a Hermitian pencil A\G — H. Again, we will consider the indices
of the Hermitian matrices tG — H, where t € R, and then interprete these conditions in
terms of the sign sums of the real eigenvalues and the eigenvalue oco. First, we consider
the case that the size of the pencil is odd.

Theorem 17 Let \G — H € C?OxCnth) pe o reqular Hermitian pencil and fort € R let
Ind(tG — H) = (1/+(t), v_(t), l/o(t)). Then the following statements are equivalent.

1. A\G — H 1s congruent to a pencil in anti-Hessenberg form.
2. For allt € R we have that vy (t) —v_(t)] < vp(t) + 1.
3. For almost all t € R we have that |v,(t) — v_(t)| < vp(t) + 1.

4. For every real eigenvalue \y € RU{oo} we have that |Signsum(Ng)| < 1 and if
A < ... <\ < o0 denote the real eigenvalues (including oo ) with nonzero sign sum
then \q,..., A\, satisfy the property

Signsum(A,) = —Signsum(Ao41), a=1,...,r— 1. (12)

Proof. '1) = 2): Let P € C***" be a nonsingular matrix such that P*(A\G — H)P is
in anti-Hessenberg form. Then P*(tG — H)P is Hermitian anti-Hessenberg for all ¢ € R.
Thus, 2) follows from Corollary 4.
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'2) = 3)": is trivial.

'3) = 4)": W.lLo.g. we may assume that A\G — H is in sign condensed form (10). Again, it
is sufficient to consider the subpencil A\Gyy — Hsy that has the form (11). Let us consider
an eigenvalue A\, of \Gyy — Hy,.

Case (1) Assume that A\, € R, that is A\, € {\1,..., \x}. Choose t1,t5 € R such that
M <o < Ao <t <A <ta < Apgr << g,

and such that ¢;G — H is nonsingular and |vy(t;) —v_(t)| < vp(t;) + 1 for j = 1,2. Then
we obtain from Lemma 14 and vy(t;) = vy(t2) = 0 that

2 > Jua(t) = v (0] + v (t2) — v (t2)
> | (vett) = vot)) = (vi(t2) = v-(t2))] = [28ignsum(A,)].
This implies |Signsum(\,)| < 1.
Case (2) If the assumption of Case (1) does not hold then A\, = cc.
In this case, we choose t1,t; € R such that

< A\ <...< A <ty

and, furthermore, such that ¢;G — H is nonsingular and |v,(t;) — v_(¢;)| < vp(t;) + 1 for
j =1,2. Applying Lemma 14 once more, we conclude that

2 > 2|Signsum(A)|.
For the second part of 3) we first note that |Signsum(Ag)| = 1 for all the eigenvalues Ag of

MGy — Hys, since this subpencil does not contain eigenvalues with sign sum zero. We pick
an « € {1,...,k} and distinguish two cases.

Case (a) Assume « < k. Then choose t;,t, € R such that t;G — H is nonsingular,
lvi(t;) —v_(t)] < w(t;) + 1 for j = 1,2, and such that

A < ooo < o1 <t <A < Apar <ty < Appe << A
Applying Lemma 14 again, we obtain that
2 > 2|Signsum(\,) + Signsum(Aa41)|.

This implies Signsum(\,) = —Signsum(A,+1), since both terms do not vanish.

Case (b) If the assumption of Case (a) does not hold, then o = k. If NGy — Hyy does
not have the eigenvalue oo then ), is already the eigenvalue of maximal modulus and the
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proof of (12) proceeds as in Case (a). Otherwise, choose t1,%, € R such that {;G — H is
nonsingular, |vy(t;) — v_(t)] < wvy(t;) +1 for j = 1,2, and such that

<A <o < Ay <ty < Ag.
Then we obtain from Lemma 14 that

2 vy (ta) — v ()] + v (t1) — v (t1)]
vy (ta) — v (t2) + vy (t1) — v-(t1)|

= 2|Signsum(\y) + Signsum(A)|.

>
>

This implies Signsum(\;) = —Signsum ().

'4) = 1)”: Again, we may assume that the pencil is in sign condensed form (10). It remains
to show that the subpencil A\Gsy — Hy of the form (11) is congruent to anti-Hessenberg
form. From 4) we find in particular that all the eigenvalues of AGyy — Hiy are simple.
Again, we consider two different cases.

Case (1) Assume that NGy — Hsy does not have the eigenvalue cc.

This implies in particular that £ = 2¢+1 is odd, since the size of A\Gyy — Hys is necessarily
odd and all its eigenvalues are simple. Let us assume, w.l.0.g., that the sign ; of A\; is equal
to one. Otherwise, we may consider the pencil —(AG — H). Then, the property (12) implies
that the eigenvalues with sign +1 interlace the eigenvalues with sign —1. We visualize that
by the following formula.

A < A3 < e < )\qul < )\2q+1 sign 1

Ay < A< L < /\Qq SigIl —1 (13)

By row and column permutations we find that

—I, 0 —H, 0
— Hyy ~ q — >
)\GQZ 22 c )\ |: 0 I +1 :| |: 0 H2 :| )

q

where spec(lfh) = {2, A\, ..., Ay} and spec(lf[z) = {1, Az, Aggtr -

The interlacing property (13) allows us to solve an inverse eigenvalue problem (see [2]
or [8]). There, it is shown that (13) is sufficient for the existence of a unitary matrix
Q € Clathx(@t) guch that

. Hy Hy ]
HQ=| 2% 22,
Cme=|
where Hy; € R and spec(H,;) = spec(H;). From this, we see that
I, 0 0 —-H, 0 0
)\GQQ—HQQ ~e )\ 0 Iq 0 - 0 H21 H22
0 0 1 0 Hj, Hsy



Note that we obtain from spec(Hs;) = spec(H;) that every eigenvalue of the upper principal

subpencil .
\ —I, 0| _ | —H 0
0 I 0  Hy
occurs with algebraic multiplicity 2 and opposite signs. Hence, the pencil satisfies condition
4) of Theorem 15 and there exists a nonsingular P € C**?¢ such that

el ]l a)e

is in anti-triangular form. This implies that

‘ ~I, 0 0 ~H, 0 0
{PO] M o0 I, 0| —| 0 Hy Hy {PO]
0 1 o 0 1
0 0 1 0 H;Q Hss

is in anti-Hessenberg form.

Case (2) If the assumption of Case (1) does not hold then AGsy — Hsy has the eigenvalue
0.

This implies that k£ = 2¢ is even. Again, property (12) implies that the eigenvalues with
sign +1 interlace the eigenvalues with sign —1, where we assume again that ¢; = 1. Thus,
we have the following situation.

A< /\3 < e < )\Qq_l with SigIl +1

Ay < A < L < Agq with sign — 1 (14)

Furthermore, the eigenvalue oo has the sign +1. By row and column permutations we find

that ~
[ I, 0 0 ] [ H 0 0 ]
AGoy —Hypp~e AP O =1, O =1 0 —Hy, 0},
Lo o' o] Lo o 1]
where spec(ﬁl) ={ A1, A3,..., Ay} and spec(ﬁz) = {2, Agy .o, Ao )

The interlacing property (14) allows us to solve another inverse eigenvalue problem. In
[26] it is shown that (14) is sufficient for the existence of a rank-one updating with a vector
x € R? such that spec(H; + xx*) = spec(H;). From this, we see that

[Iq Ox-l [Iq 0 0] [Hl 0 0] [Iq 00]

0 I, 0/ (x| O -, 00— 0 —H, 0 0 I, 0

{001J [oooJ [o 0 1J [x*o1J
I, 0 0 H 4ozt 0 o
= A0 -1, 0|-— 0 —H, 0
0 0 0 * 0 1
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Again, we see from Theorem 15 that the upper principal 2¢ x 2¢ subpencil is congruent
to a pencil in anti-triangular form and thus, AGys — Hyy is congruent to a pencil in anti-
Hessenberg form. DO

Theorem 15 and Theorem 17 are special cases of a more general result for anti-m-
Hessenberg forms. This general result can be shown by induction on m. For the induction
step, we need the following lemma.

Lemma 18 Let AGyy — Hyy € C=2mX(=2m) e g pencil in form (11). Furthermore, let
Ind(tGay — Hay) = (V+ (t),v_(t), l/o(t)), and assume that

v (t) —v_(t)] < w(t)+m~+1  for almost all t € R.

Then there exists a nonsingular matriz P-€ C™=2mx(=2m) gych that

. G0 H 0
P()\G22—H22)P:)\{0 G//:|_|: 0 H//:|7

where the size of \G" — H" is odd and such that the following conditions are satisfied.

1. Setting Ind(tG' — H') = (,u+(t), p(t), ug(t)>, we have that

| (t) — p—(t)] < po(t) +m  for almost all t € R.

2. Setting Ind(tG" — H") = (7r+(t),7r_ (1), 7T0(t)> , we have that

[T (t) —m_(t)| < mp(t) + 1 for almost all t € R.
Proof. Let si,...,s,11 € R be arbitrary with the condition that for j =1,...,k 4+ 1 we
have that |vy(s;) —v_(s;)| < w(sj) +m + 1, and such that
51 <A <S5y << Sk < Ap < S

This implies in particular that vy(s;) = 0. Applying Lemma 14, we find the recursive
formula

(4 (501 = v (501 ) = (4 (50) = v (50)) = 2paca

Thus, the map a — <V+(Sa) —v_ (sa)> is increasing whenever &, is positive and decreasing

whenever ¢, is negative. Hence, ’extremal points’ such that |v;(s,) —v_(sq)] = m+1, can
only be reached for an « such that £, # ,_1. Therefore, let us combine adjacent blocks
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with equal signs. W.l.o.g., we may assume that £y = 1. Hence, we find that A\Gys — Has is
in the form

(_1)2E¢I1 0 (_1)2D¢I1 0
/\GQQ—HQQZ)\ - )
0 (_1)l+1qu 0 (_1)l+1qu

I

where E, =1, fora=1,...,l—1and E, = [ ql_é”““ 8 ] € Cr*u and the matrices

D, € Clxi~ o =1,... [ are diagonal. Choose t, € {sy,...,sk41} such that ¢, is smaller
than all the eigenvalues displayed by the blocks AEg — Dg for # > « and larger than all
the eigenvalues displayed by the blocks AEg — Dg for # < a. We will distinguish two cases.

Case (1) Assume that [ is odd.
We construct A\G' — H and A\G" — H" as follows. Writing

e O

Ea:{o Ea] and DO‘:{O Da

where e, d, € C, let us define

(—1)E, (—1)2D,

G —H' = ) - :
(-1 E, (—1)+1D,

(—1)261 (—1>2d1

AG" — H" = )\ - .

(=) e (—1)"*d,

From the construction, we see immediately that the eigenvalues of A\G” — H" have sign
sum equal to one and satisfy the interlacing property (12) of Theorem 17. This implies in
particular

| (8) = - (8)] < mo(t) + 1.

It remains to show that |py () —p_(t)] < po(t)+m. For this, we note that from Lemma 14
we obtain that

(v ltars) = v-(tasn)) = (vilta) = v (ta)) = 2=1)""ga, (16)
(1 ) = i (tan)) = (B (ta) = p-(t)) = 2(=1)"" (g0 = 1). (17)
Furthermore, for & = 1 we obtain that

vi(th) —vo(t) = - +e—+...+a1—q,
pg(t) —p—(ty)) = —(@—1)+(@—-1)—+...+ (@1 —-1)—(g—1)
= vy(ty) —v_(t))+ 1.
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From this and from (16) and (17), we conclude that
(18 (ta) = 1 (t2)) = (v4(ta) = - (1)) = (=1, (18)

Formulas (16) and (17) imply in particular that the map a — <U+(ta) —v_ (ta)) reaches a

maximum only for an even o and a minimum only for an odd «. This, together with (18)
implies that
e (1) = ()] = e o ) = -0 + 1.

that is
lps(te) — u_(to)| <m forall a. (19)

By the choice of the t,, it is now clear that we have
| (8) = ()] < po(t) +m
for almost all ¢ € R.

Case (2) If [ is even, then the situation is more complicated, since we want the pencil
AG" — H" to have odd size. Therefore, we have to change the construction of Case (1).
We consider two different subcases.

Subcase (2a) Assume that |v,(t;) — v ()] < |ve(t1) —v_(t1)]-
With the notation (15), let us define

AG'— H'
(—1)Er (—=1)°D;

(—1)%e; (—1)%d,
and MG —H" =\ — ,
(—1)l€l_1 (—1)ldl_1

i.e., we left out e; and d; in the construction of A\G” — H”. Analogous to Case 91) we find
that
(14 (ta) = n(ta)) = (Ve (ta) = v-(ta)) = (=1

fora=1,...,1—1, but

(et = p () = (vt = v () =1,

For a =1,...,1 — 1, we can proceed as in Case (1) such that we find

|y (te) —pu_(to)| <m fora=1,...,1—1.
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Thus, the only case that may cause problems is the case that v, (¢;) — v_(t;) > m, since
then gy (t;) — p—(t;) > m+ 1. We show that this case does not occur.

Assume v, (t;) — v_(t;) > m. From the assumption of the Subcase (2a) and the fact that
for odd « the term vy (t,) — v_(t,) may only reach a minimum, but not a maximum, we
obtain that

volty) — v (t) = —(m +1).
It follows from Lemma 14 that
201 = v () — v () + v () — v () Sm— (m+1) = —1.

This is a contradiction. Therefore, we have v (t;) — v_(#;) < m and thus, we obtain
analogous to Case (1) for almost all ¢ € R that

[ (8) = = ()] < po(t) + m.

Subcase (2b) If the assumption of (2a) does not hold then |v;(I) —v_(I)] > |v4(1) —v_(1)].

In this case we leave out e; and d; in the construction of \G” — H”, i.e., we set

E1 Dl

_E D
AG' — H' = ) 2 . ?

(=1 E, (~1)"*' Dy
—€9 —d2
AG" — H" = )\ . - :
(_1)l+16l (_1)l+1dl

Analogous to Case (1) we find that
(4 (ta) = () = (velta) = v (1)) = (=1
fora=2,...,[, but
(e (t) = pe(t)) = (veltr) = v (1)) = —1.

Analogous to Subcase (2a) it remains to show that v, (t;) — v_(t;) > —m.

Assume v (t;) —v_(t;) < —m. Then
2 =vi(ty) —v_(ty) +vi(t) —v_(t;)) < —m+ (m+1) =1,
and this is a contradiction. The rest of the proof proceeds analogous to Subcase (2a). 0O
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Theorem 19 Let \G — H € C**" be a regqular Hermitian pencil and let m < n be such
that n — m is even. Furthermore, let Ind(tG — H) = <1/+(t)7 v_(t), l/g(t)) fort € R. Then

the following statements are equivalent.

1. A\G — H 1is congruent to a pencil in anti-m-Hessenberg form.
2. For allt € R we have that vy (t) —v_(t)] < vo(t) + m.

3. For almost all t € R we have that |v,(t) — v_(t)| < vo(t) +m.

Proof. 'l) = 2): Let P € C**™ be nonsingular such that P*(A\G — H)P is in anti-m-
Hessenberg form. Then 2) follows from Corollary 4.

'2) = 3)": is trivial.
'3) = 1)": We proceed by induction on m.
'm = 0" and 'm = 1’ have already been proved, see Theorem 15 and Theorem 17.

'm = (m+1)": Once again we may assume that A\G — H is in sign condensed form (10) and
it is sufficient to consider the subpencil AG; — Hj, that has the form (11). By Lemma 18
we find that there exists a nonsingular matrix P € C**" such that

- N G0 H 0
P()\G22_H22)P:/\|:0 G//:|_|:0 H//:|a

where the size of \G"” — H" is odd and, setting Ind(tG' — H') = <u+(t), p (), ,uo(t)> and

Ind(tG" — H") = <7r+ (t), 7 (1), 7r0(t)>, the following conditions are satisfied for almost all
te R

o (t) +m,
mo(t) + 1.

|4 (1) — - (2)]
|7 () — 7 (t)]

Let n' and n” denote the sizes of \G' — H' and AG"” — H", respectively. By assumption,
n — (m+ 1) is even and thus, so is n' — m, since n —n’ = n” is odd. Therefore, by the
induction hypothesis and by Theorem 17, the pencil A\G' — H' is congruent to a pencil in
anti-m-Hessenberg form and A\G"” — H" is congruent to a pencil in anti-Hessenberg form,
ie.,

<
<

)\G22_H22
[ 0 G Gs O 0 o] [ o Hy, Hs 0 0 0 ]
G, Go Gos 0 0 0 Hf, Hypy Hyy 0 0 0
) Gy G3y Gsy 0 0 0 | _ | Hjy Hy Hy 0 0 0
0 0 0 0 G G 0 0 0 0 Hy Hy
0 0 0 G Gy G 0 0 0 H Hy Hy
| 0 0 0 Gy Gy Gz | | 0O 0 0 Hfy Hj Hs |




0 0 0 0 G12 G13 0 0 0 0 H12 H13

0 0 G Gz 0 0 0 0 Hy Hsz 0 0
o a| 0 Gh Gn Gw 0 0| |0 Hy Hy Hy 00|,
‘ 0 Giy Giy Gss 0 0 0 Hi Hjy Hss 0 0

G, 0 0 0 Gy Go Hf, 0 0 0 Hy Hy

Gty 0 0 0 Gi G Hy 0 0 0 Hj Hs;

where the submatrices have the following forms.

Gio, Hiy € C2™*("3™)  are anti-triangular,
C?13,1@’13 € C(ngm)xmv
G, Hi, € C2)%("3)  are anti-triangular,
G13,ﬁ13 S (n;l)Xla

and the other blocks have corresponding sizes. Hence, the pencil (20) is in anti-(m+1)-
Hessenberg form. O

In Theorem 19 we did not give conditions on the sign sums as in the Theorems 15
and 17. In principle, this is also possible for the case m > 1. But then the conditions
become very complicated, since we have to consider many subcases. Therefore, we prefer
the conditions given in Theorem 19.

Clearly, Theorem 19 does not hold in the case that n — m is odd. For example, let us
consider the case m = 0 and n = 3. The Hermitian pencil

0 01 0 01
A0 1T 0] —-]1020
1 00 1 00

is in anti-triangular form, but we immediately obtain Signsum(2) = 1. We see from this
example that the eigenvalue that is displayed in the middle of the anti-diagonal plays an
exceptional role and has to be treated differently from the rest of the eigenvalues. In fact,
we may omit the eigenvalue that is displayed in the middle of the anti-diagonal, and its
tribute to the sign sum may also be omitted, such that we can use the fact that n — 1 —m
is even and apply Theorem 19. This is done in the proof of the next theorem.

Theorem 20 Let \G — H € C*™ be a reqular Hermitian pencil and let m < n be such
that n — m is odd. Furthermore, let Ind(tG — H) = (1/+(t), v_(t), Uo(t)) fort € R. Then

the following statements are equivalent.

1. N\G — H 1s congruent to a pencil in anti-m-Hessenberg form.
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2. There exists to € RU {oo} and ¢ € {1, —1} such that

lvi(t) —v_(t) +e| <wp(t) +m  forall t <t
and |vi(t) —v (t) —e| <w(t)+m  for all t > t.

3. There exists to € RU {oo} and e € {1, —1} such that

lvi(t) —v_(t) + | <wp(t)+m  for almost all t <ty
and v (t) —v_(t) —e| < w(t)+m  for almost all t > t.

Proof. '1) = 2): Let P € C**™ be nonsingular such that P*(A\G — H)P is in anti-m-
Hessenberg form. Thus, P*(tG — H)P is Hermitian anti-m-Hessenberg for all ¢ € R. This
means in particular that

0 0 tG13 — H13
P*(tG — H)P = 0 tg2s — hay  tGaz — Hag
tGiy — Hiy Gy — Hyy tGay — Hyy

?

where tG3 — Hy3 € C(n_r‘;_l)x(wr‘;_l), and tgoy — hoy € C, and where the other blocks have

corresponding sizes. If goo # 0 then let ¢y = %, otherwise set tg = co. Then Lemma 6 for

t # to implies that

Ind(tG — H) = Ind(tG — H) + Ind(tgay — has), (21)

where

= 0 tG13—H13]‘

[ tGly — Hi *

For some t < t, set £ = —0(tgyy — hyy) and (,u+(t), p(t), ,uo(t)> = Ind(tG' — H), and note

that tG — H is in anti-m-Hessenberg form with size n — 1. Thus, since n — 1 — m is even,
we can apply Theorem 19 and we obtain from (21) for ¢ > ¢, that

i (t) = v-(t) + e = [ (t) — p-(O)] < po(t) +m = () + m,

since po(t) = 1y(t) for t # ty. Analogously we obtain for ¢ > ¢, that
v (t) = v=(t) — & = [ (t) = p—(B)| < po(t) +1m = wo(t) + m.

'2) = 3)": is trivial.

3) = 1): W.lo.g. we may assume that ¢ = 1. Otherwise, we may consider the pencil
—(AG — H). Repeating our proof strategy once more, we assume that A\G — H is in
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sign condensed form (10) and we consider the subpencil A\Gay — Hyy. By 2) there exists
to € RU {00}, such that

lvy (t) (t) + 1| < wp(t) +m for almost all ¢ < ¢,

S (22)
lvi(t) —v_(t) — 1] < wvp(t) +m for almost all ¢ > t,.

We show next that we may assume that t; is an eigenvalue of A\Gyy — Hyy. For this, let A\,
be an eigenvalue of AGy, — Hyy such that |\, — to| is minimal. We assume that A, < to;
the case ty < A, can be proved analogously. Clearly we have

(t) +m for almost all t <\, (since \, < tp)

volt) v () +1] < 1
— 1] < wp(t) +m for almost all t > to.

and | (t) —v_(t)

Thus, it remains to show that |v, (t) —v_(t) — 1| < vy(t)+m for almost all t € (\,, tp). But
this follows from the fact that ¢ — <U+(t> —v_(t)— 1) and vy(t) are constant on (A, to),

since by the choice of A, there are no other eigenvalues in the interval (Ao, tp).

Hence, we may assume that t; = A, is an eigenvalue of A\Gyy — Hyy. Let a be chosen
minimal with the property that (22) is satisfied for all ¢ = Ag, where § > a. For the rest
of the proof, we distinguish two different cases.

Case (1) Assume that o > 1. Then there exists infinitely many ¢; with \,_1 < t1 < A4,
such that

lvy(t1) —v_(t1) — 1| > vo(ty) + m.
On the other hand, we know that (22) holds for ty = A,, i.e., t; can be chosen, such that

lvy(t) —v_(t) + 1| < wvp(ty) +m.

Both inequalities hold simultaneously only if v, (t;) —v_(t;) —1 < — (1/0 (t1)+ m) Choose

ty such that A\, < t3 < Agy1 and
implies that

vi(ty) —v_(ts) — 1‘ < 1y(ty) + m. Then Lemma 14

(ve () = v-(t2)) = (v4(t1) = v_(t1)) = 20pa.
If £, is equal to —1, then
vi(ts) = v (82) < wiltr) = v (0) < = (w(tr) +m) = = (w(t) +m),

since vy(t1) = vp(tz) = 0, which is a contradiction to |vy(t2) — v_(t2) — 1] < vp(ty) + m.
Thus, ¢, = 1. By permuting some rows and columns, we obtain that

0 h 0
AGizy = Ha NCAH é}_A[o ﬁ],
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where A\g — h € C has the eigenvalue \,. Defining <u+(t),,u,(t),ﬂ0(t)) = Ind(tG — H),
we find that

v (t) —v_(t) +1] forall t <A,
() = (0] = { e(t) —v () —1] forall ¢> A

This implies that |4 () — p—(t)| < vo(t) +m = po(t) + m for almost all ¢ € R. Hence, by
Theorem 19 the pencil A\Gyy — Hyy is congruent to a pencil

0 0 h 0 0

g
)\ 0 0 G23 - 0 0 H23 )
: Gl | { 0 Hyy } L

where the subpencil A | -~ - A AL 2 is in anti-m-Hessenberg form. Thus,

G23 G33 i H23 H33
we finally obtain

0 0 GAQg 0 0 f{23
)\GQQ — H22 ~e A 0 q 0 — 0 h 0 s

and this pencil is in anti-m-Hessenberg form.
Case (2) If @ # 1, then o = 1. Thus, (22) holds for all ) = A\g. This means in particular
that both

lvp(t) —v_(t) + 1| < wp(t) +m (23)

and |y (t) —v_(t) = 1| <w
hold for almost all £ € R. Permuting some rows and columns, we obtain that
g 0 h 0
e [2 0] a4 2]

where A\g — h € C has the eigenvalue \;. Setting (,u+(t), p(t), ug(t)> = Ind(tG — H), we

B R AGES 7SS orall t<A
| (1) = p-(1)] = { e (t) —v_(t) — =] forall >\

Then (23) and (24) imply that
14 (t) — ()] < vo(t) +m = po(t) +m,

for almost all t € R and hence we may proceed as in Case (1). This completes the proof.
0

Analogous to the proof of Theorem 15, we obtain conditions on the sign sum for the
real eigenvalues and the eigenvalue oo. We only state this for the anti-triangular case.
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Corollary 21 Let \G — H € CCrtUxCntl) be o regular Hermitian pencil. Then the
following statements are equivalent.

1. N\G — H 1s congruent to a pencil in anti-triangular form.

2. There exists exactly one eigenvalue g € R such that Signsum(\g) = +1 and for
every eigenvalue A\, € RU {oo} with A, # Ao we have that Signsum(\,) = 0.

4 Condensed forms for singular Hermitian pencils

In this section we include the case of singular Hermitian pencils. Although in this case an
anti-triangular form does not necessarily display the roots of the elementary divisors, it still
displays a nested set of invariant subspaces and therefore, the consideration of condensed
forms of singular Hermitian pencils does still make sense.

Analogous to the regular case, we derive a sign condensed form and then discuss the ex-
istence of anti-triangular and anti-m-Hessenberg forms. Let us first consider the canonical
form (see [22]).

Theorem 22 Let \G— H € C"*" be a Hermitian pencil. Then there exists a nonsingular
matric P € C**", such that

. G0 H 0
roc-me=x| ¢ =10 o] (25)
where the following conditions are satisfied.

1. The subpencil \G' — H' is block diagonal with diagonal blocks of the form

[ 0 0 Zr'l [ 0 0 @(0)%1
A\ [Z() 8 8 J — {Z ;(m 0 eo*f € Clr+Dx(r+1) (26)
r rJdr €1

where r > 0.

2. The subpencil \G" — H" is reqular and in canonical form (9).

Proof. The proof follows directly from [22], Lemma 3. [

In the following, if we speak of the sign characteristic or sign sum of Ay € RU {oo}
with respect to A\G — H, we mean the sign characteristic or sign sum, respectively, of
Ao € RU {oo} with respect to the regular subpencil A\G” — H" in the canonical form (25)
of \G — H. Next, we generalize Theorem 11 to the case of singular pencils.
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Theorem 23 (Sign condensed form) Let \G—H € C"*" be a Hermitian pencil. Then
there exists a nonsingular matric P € C**" and m € N, such that

0 0 G13 i 0 0 H13
PAG—H)P=X| 0 Gy G |—| 0 Hy Hy |, (27)
Giy Gy G | Hiy Hy; Hss

is reqular and Gy, Hi3 € C™™ are

0  Gis ] _ { 0 Hi |
G’fg G33 Hf3 H33 i
lower anti-triangular. Furthermore

where the subpencil A [

AGay — Ha
O, 0 O, 0

€1Ip1 51/\111)1 (28)

Skka Sk)\k-[pk
0 0 0 Eht1dpyyy |

where Ay < ... < Xg. In addition we have for all \y € RU {oo} that

Signsum(\g, G, H) = Signsum(\g, Gag, Has).

Proof. Let A\G — H be in canonical form (25) and let [ denote the number of singular
blocks of type (26). We prove the result by induction on [.

'l = 0’: This is Theorem 10.
1= (I4+1)" It follows from Remark 10 that

0 0 Z 0 0 0 J.(00Z, 0
B 0 0 0 0 0 0 el 0
AG—H = A Z. 0 0 0| | ZJ(0) e 0 0
L 000 G| | o0 0 0 H |
0 00 Z 1 [ O 0 0 J.(00Z
v o000 0 0 0 e}
¢ 0 0G 0 0 0 H 0 ’
 Z, 0 0 0| [ZJ(0) e 0 0 |

where the number of blocks of type (26) of the subpencil AG — H is equal to [. By the
induction hypothesis we find that A\G — H is congruent to a pencil that is in sign condensed
form (27). Thus, the result follows by again applying Remark 10. 0O

We are now able to discuss necessary and sufficient conditions for the existence of anti-
triangular and anti-m-Hessenberg forms for the singular case. A condition on sign sums of
real eigenvalues (including oo) of the regular subpencil that is analogous to the condition
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in Theorem 15 or Theorem 21 does not hold as we can see from the following example.

The Hermitian pencil
\ 00| |00
0 0 0 1

is already in anti-triangular form, but Signsum(oo) = 1. The background is that the
problem of reducing a singular Hermitian pencil to anti-m-Hessenberg form is basically the
problem of reducing a regular subpencil to anti-(m + [)-Hessenberg form, where [ denotes
the number of singular blocks of the pencil.

Theorem 24 Let \G— H € C**" be a Hermitian pencil and let m < n be such that n—m
is even. Furthermore, let Ind(tG—H) = <V+(t), v_(t), l/g(t)) fort € R. Then the following
statements are equivalent.

1. N\G — H 1s congruent to a pencil in anti-m-Hessenberg form.

2. For allt € R we have that vy (t) — v_(t)] < v(t) + m.

3. For almost all t € R we have that |v,(t) — v_(t)| < vo(t) +m.
Proof. '1) = 2)": As in the regular case, this follows from Lemma 3.
'2) = 3)": is trivial.

'3) = 1)": Assume that A\G — H is in sign condensed form (27), i.e.,

0 0 0 G14 0 0 0 H14
0 0o 0 Gu| | 0 O 0 Hy

AG =2 0 0 G33 G34 0 0 H33 H34 ’
Gl G G3 Gu Hyi, Hj, H3 Hy

where \G 4 — Hyy € C**F is regular. For all ¢t € R that are not eigenvalues of the regular

. 0 G14 0 H14
pencil A [ Gty G ] — [ HY, Hi ] we have that

Ind(tG — H) = (k, k,0) + (0,0,1) + Ind(tGss — Hs).
Setting (,u+(t), p_(t), uo(t)> := Ind(tG33 — Hs3), we obtain for almost all these ¢ that

|14 (8) = - (B)] = vy () = v ()] S wo(t) +m = po(t) +m + 1.

The size of AG33 — Hsg is n—2k —1[, such that n—2k—l—(m—1) =n—m— 2k — 2L is even.
Thus, Theorem 19 can be applied and AG33 — H3z is congruent to a pencil A\G33 — Hs3 in
anti-(m + [)-Hessenberg form. Hence

0 0 0 G14 0 0 0 H14
NG Hen| O O 0 Gul |0 O 0 Hul|
0 0 G33 *x 0 0 H33 *
GLI G;4 * G44 Hik4 H;4 * H44



and this pencil is in anti-m-Hessenberg form. DO

We have a corresponding result for the case that n—m is odd. Analogous to the regular
case, the entry on the middel of the leftmost nonzero anti-diagonal plays an exceptional
role.

Theorem 25 Let \G — H € C"*™ be a Hermitian pencil and let n > m € N such that
n —m is odd. Furthermore, let Ind(tG — H) = <u+(t),y,(t),1/0(t)> for t € R. Then the

following statements are equivalent.

1. N\G — H 1s congruent to a pencil in anti-m-Hessenberg form.
2. There exists ty € RU{oo} and ¢ € {1, -1}, such that

lvp(t) —v_(t) +e| <wp(t) +m  forall t <t
and vy (t) —v_(t) —e| < w(t)+m  for all t> t.

3. There exists ty € RU{oo} and ¢ € {1, -1}, such that

lvp(t) —v_(t) +e| S wvp(t)+m  for almost all t <t
and vy (t) —v_(t) —e| < w(t)+m  for almost all t > t.

Proof. '1) = 2): Assume there exists a nonsingular matrix P € C*"**" such that
P*(AG — H)P is in anti-m-Hessenberg form, thus, P*(tG — H)P is Hermitian anti-m-
Hessenberg for all ¢ € R. This means in particular that

0 0 tG13 — H13
P*(tG — H)P = 0 tgay — hay  tGaz — Hayg | |
1Gry — Hiy 1Gy— Hyy 1G5, — Hi
where tG3 — Hy3 € C(WT;?I)X(H?A), tgos — hoy € C, and the other blocks have corre-
sponding sizes. If the subpencil Agss — hoy is regular we may proceed as in the proof of
Theorem 20. Otherwise, Agss — hyy = 0. Then it follows from Lemma 3 that

n+m-—1
2

for all t € R. Hence, 2) is trivially satisfied for any ¢, € RU {o0o}.

vy (t) —v_(t)] <2 +(t) —n=1(t) + m—1

'2) = 3)": is trivial.
'3) = 1)": is proved analogous to the proof of Theorem 24. 0O

It was our main goal to obtain necessary and sufficient conditions for the existence
of anti-triangular forms for general (including singular) Hermitian pencils. This explicit
result follows now directly from Theorem 24 and Theorem 25.
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Corollary 26 Let \G — H € C*"**™ be a Hermitian pencil. Furthermore, for t € R let
Ind(tG — H) = <1/+(t), v_(t), l/o(t)>. Then the following statements are equivalent.

1. A\G — H 1is congruent to a pencil in anti-triangular form.

2. For allt € R we have that vy (t) — v_(t)] < vp(t).

Corollary 27 Let \G — H € Ct0xCnt) be o Hermitian pencil. Furthermore, fort € R
let Ind(tG — H) = (1/+(t), v_(t), Vo(t)>. Then the following statements are equivalent.

1. A\G — H 1is congruent to a pencil in anti-triangular form.
2. There exists ty € RU{oo} and ¢ € {1, -1}, such that

vy (t) —v_(t) +e| <wp(t) forall t <ty

and |vi(t) —v (t) —e| < w(t) for all t > t.

5 Conclusions

We have obtained the so-called sign condensed form for general Hermitian pencils. This
form is a mixture of a triangular form and a diagonal form, where the diagonal form displays
all the ’singularity’ and all the sign sums of the real eigenvalues of the pencil (or of the
regular subpencil), including the eigenvalue co. We have furthermore obtained necessary
and sufficient conditions for the existence of anti-triangular and anti-m-Hessenberg forms
for Hermitian pencils in terms of conditions on the sign sum of the real eigenvalues and the
eigenvalue oo and in terms of the inertia indices of certain Hermitian matrices. The latter
conditions hold also in the case that the pencil is singular. If a Hermitian pencil can be
transformed to anti-m-Hessenberg form via congruence, then the transformation matrices
can be chosen to be unitary, i.e., in this case both matrices of the pencil are simultaneously
unitarily similar to anti-m-Hessenberg forms.
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