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Abstract

Hermitian pencils, i.e., pairs of Hermitian matrices, arise in many applications,

such as linear quadratic optimal control or quadratic eigenvalue problems. We derive
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1 Introduction

In this paper, we discuss necessary and su�cient conditions for the existence of particular

condensed forms for Hermitian matrices and pencils from which eigenvalues and nested

sets of invariant subspaces can be obtained.

De�nition 1 Let X = (x

jk

) 2 C

n�n

and m 2 N .

1. We say that X is lower anti-triangular if x

jk

= 0 for j + k � n, i.e.,

X=̂

"

�

�

�

�

#

:

Analogously we say that X is upper anti-triangular if x

j;k

= 0 for j + k � n.

2. We say that X is lower anti-m-Hessenberg if x

jk

= 0 for j + k � n�m, i.e.,

X=̂

"

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

#

:

Analogously we de�ne upper anti-m-Hessenberg matrices. If X is lower anti-1-

Hessenberg, we also say that X is anti-Hessenberg.

As long as it is not stated otherwise, 'anti-triangular' and 'anti-m-Hessenberg' always

means 'lower anti-triangular' and 'lower anti-m-Hessemberg', respectively. Analogous to

the matrix case, we de�ne anti-triangular and anti-m-Hessenberg forms for pencils.

In this paper we will discuss the reduction of Hermitian pencils to anti-m-Hessenberg

forms and anti-triangular forms via unitary equivalence transformations that preserve the

Hermitian structure.

The motivation for this research arises from structured eigenvalue problems in control

theory and in the numerical simulation of mechanical systems.

The �rst application is the linear quadratic optimal control problem, see [12, 13, 18]

and the references therein.

This is the problem of minimizing the cost functional

1

2

Z

1

t

0

�

x(t)

�

Qx(t) + u(t)

�

Ru(t) + u(t)

�

S

�

x(t) + x(t)

�

Su(t)

�

dt

subject to the dynamics

E _x(t) = Ax(t) +Bu(t); t

0

< t (1)

x(t

0

) = x

0

; (2)
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where A;E;Q 2 C

n�n

; B; S 2 C

n�m

; R 2 C

m�m

, Q and R Hermitian, x

0

; x(t); u(t) 2 C

n

,

and t

0

; t 2 R . It is known that solutions of (1) can be obtained via the solution of a

boundary value problem, see [17, 18] and the references therein. For the solution of this

boundary value problem one has to compute deating subspaces of the matrix pencil

�

2

4

E 0 0

0 �E

�

0

0 0 0

3

5

�

2

4

A 0 B

Q A

�

S

S

�

B

�

R

3

5

: (3)

Multiplying both matrices with

P =

2

4

0 I 0

I 0 0

0 0 I

3

5

from the left, we see that the pencil (3) is equivalent to the pencil

�A� B = �

2

4

0 �E

�

0

E 0 0

0 0 0

3

5

�

2

4

Q A

�

S

A 0 B

S

�

B

�

R

3

5

: (4)

Multiplying A by i, we �nd that �iA � B is a Hermitian pencil, i.e., both iA and B

are Hermitian. Clearly, both pencils �A � B and �iA � B have the same right deating

subspaces and the eigenvalues of �iA�B coincide with the eigenvalues of �A�B multiplied

by i. Therefore, to analyze and compute eigenvalues and deating subspaces, it is su�cient

to consider the Hermitian pencil �iA�B. It should be noted, however, that if the original

problem is real, then we have obtained an Hermitian nonreal problem in this way. For

the real case one has to discuss 'skew-Hermitian/Hermitian' pencils �S � H, i.e., pencils

where S is skew Hermitian and H is Hermitian. This case is more complicated, because

one has to deal with an additional symmetry. It is well known that the spectra of skew-

Hermitian/Hermitian pencils are symmetric with respect to the imaginary axis (see [23]).

In the real case, the spectra have an additional symmetry with respect to the real axis. In

this paper we only consider the complex case. The real case is referred to a later discussion.

Other applications of Hermitian pencils arise in the numerical treatment of quadratic

eigenvalue problems in mechanics. In quadratic eigenvalue problems one is interested in

computing � 2 C and x 2 C

n

nf0g such that

(A+ �B + �

2

C)x = 0;

where typically A;C 2 C

n�n

are Hermitian and B is Hermitian or skew Hermitian. Hermit-

ian quadratic eigenvalue problems arise for example in the analysis of geometrical nonlinear

buckling structures with �nite element methods (see [3, 9]) or in the theory of damped os-

cillatory systems (see [6, 11]). With the substitution � =

1

�

for � 6= 0, the problem can be

linearized such that it reduces to the generalized Hermitian eigenvalue problem

�

�

B A

A 0

� �

�x

x

�

=

�

�C 0

0 A

� �

�x

x

�

; (5)
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see, e.g., [9]. Quadratic eigenvalue problems with B skew Hermitian arise in numerical

simulation of the deformation of anisotropic materials (see [14]) and the acoustic simulation

of poroelastic materials (see [20]). In this case the substitution � = i� leads to the linearized

eigenvalue problem

�

�

0 iC

�iC �iB

� �

�x

x

�

=

�

�C 0

0 �A

� �

�x

x

�

; (6)

For a detailed study of Hermitian quadratic eigenvalue problems and, more general, of

matrix polynomials see [6].

Canonical forms for Hermitian pencils or for related pairs of quadratic or Hermitian

forms are well known and have been widely discussed in literature, starting with results

of Weierstra� for the regular case (see [24]) and results of Kronecker for the singular case

(see [10]). For a complete discussion of canonical forms for Hermitian pencils see [22], and

for a large list of references see [23].

But for the sake of numerical stability, we are interested in �nding condensed forms for

Hermitian pencils under unitary transformations. In other words, we try to reduce both

matrices of the pencil via a simultaneous unitary similarity transformation. Anti-triangular

forms for Hermitian pencils seem to be good forms to chase for. We say that a Hermitian

pencil �A�B is congruent to a pencil in anti-triangular form if there exists a nonsingular

matrix P such that

P

�

(�A� B)P =̂

"

�

�

�

#

: (7)

Indeed, if one is interested in �nding condensed forms under unitary transformations, it

does not make sense to look for classical Schur forms for Hermitian pencils, because this

reduces to the problem of diagonalizing two Hermitian matrices simultaneously. It is well-

known that this is possible if and only if the matrices commute (see, e.g., [21]). On the

other hand, if (7) holds then P can be chosen to be unitary. This follows easily by applying

the QR-decomposition on P , see also Lemma 2 in the following section. Hence, both A

and B are simultaneously unitarily similar to anti-triangular matrices.

Anti-triangular forms for Hermitian pencils are related to Schur-like forms for skew-

Hamiltonian/Hamiltonian pencils that are discussed in [16]. A skew-Hamiltonian/Hamil-

tonian pencil is a pencil �S �H such that S is skew-Hamiltonian, that is SJ � JS

�

= 0,

and such that H is Hamiltonian, that is HJ + JH

�

= 0, where

J =

�

0 I

�I 0

�

:

Thus, skew-Hamiltonian/Hamiltonian pencils are structured with respect to an inde�nite

(skew) scalar product, de�ned by the matix J . Condensed forms for matrices and pencils

that are structured with respect to inde�nite scalar products have been widely discussed

in the literature, see [4, 5, 7, 12, 15, 19, 25], to name a few.
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If �S � H is a skew-Hamiltonian/Hamiltonian pencil, then the pencil �iJS � JH is

Hermitian. Furthermore, if �S �H is in Schur-like form, i.e.,

�S �H=̂

"

@

@

@

@

#

;

then the corresponding Hermitian pencil �iJS � JH is congruent to a pencil in anti-

triangular form and has the structure

�iJS � JH=̂

"

@

@

@

@

#

�

c

"

�

�

�

�

#

:

From this point of view, it seems that anti-triangular forms for Hermitian pencils are the

natural forms to look for if one is interested in obtaining condensed forms under unitary

transformations.

In [16] it was shown that not every regular skew-Hamiltonian/Hamiltonian pencil can

be reduced to Schur-like form. This generalizes a result on Hamiltonian matrices (see [15]).

The reason why a Schur-like form does not always exist is because certain conditions on

the purely imaginary eigenvalues have to be satis�ed. This comes from the fact that purely

imaginary eigenvalues of Hamiltonian matrices have signs " = �1 that are invariant under

structure-preserving transformations, see [15], or [6] and [12] for a more general setting.

An analogous situation holds in the pencil case (see [16] and [22]).

However, the consideration of Hermitian pencils is more general than the consideration

of skew-Hamiltonian/Hamiltonian pencils, since the case of odd-sized pencils is included in

the context of Hermitian pencils. Furthermore, only the case of regular pencils is discussed

in [16] and it is the purpose of this paper to include the singular case. This case is of

interest as well; see for example [18] for applications when the pencil (4) is singular.

It will turn out that the existence of anti-triangular forms for singular Hermitian pencils

is equivalent to the existence of anti-m-Hessenberg forms for certain regular Hermitian

pencils. But besides this, anti-m-Hessenberg forms of Hermitian pencils are of interest

themselves. During the numerical computation of the Schur form of a matrix, the matrix

is usually reduced to Hessenberg form in the �rst step (see, e.g., [8]). Hessenberg-like forms

for Hamiltonian matrices have been discussed in, e.g., [1] and [4]. Anti-Hessenberg forms

for Hermitian matrices correspond to Hessenberg-like forms for Hamiltonian matrices.

In section 2 we will discuss basic properties of Hermitian anti-triangular and anti-m-

Hessenberg matrices and in section 3 we discuss corresponding forms for the case of regular

Hermitian pencils. In section 3 another important condensed form for Hermitian pencils is

derived, the so-called sign condensed form. In a certain sense, this form displays 'how far

away' a Hermitian pencil is from being congruent to anti-triangular or anti-m-Hessenberg

form. The case of singular pencils will be discussed in section 4.

Throughout the paper we use the following notation.
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1. Given two square matrices A, B, we de�ne the direct sum A� B of A and B by

A� B =

�

A 0

0 B

�

:

Analogously we de�ne the direct sum of square pencils.

2. By Z

p

we denote the p�p zip matrix Z

p

= [�

i+j;p+1

]

p

i;j=1

with ones on the anti-diagonal

and zeros elsewhere.

3. By �(�) we denote the sign of � 2 R , that is

�(�) =

8

<

:

1 if � > 0;

0 if � = 0;

�1 if � < 0:

4. By A �

c

B we denote that the matrices A and B are congruent.

5. By spec(A) we denote the spectrum of a square matrix A.

6. By e

j

we denote the jth unit vector.

2 Anti-triangular and anti-m-Hessenberg forms

In this section we discuss conditions when Hermitian matrices can be transformed to anti-

triangular and anti-m-Hessenberg matrices via unitary congruence transformations. It

turns out that the conditions for unitary congruence are the same as for congruence.

Lemma 2 Let A 2 C

n�n

be Hermitian and congruent to an anti-m-Hessenberg matrix for

some m 2 N . Then A is unitarily similar to an anti-m-Hessenberg matrix.

Proof. Let

~

A be in anti-m-Hessenberg form and let

~

A and A be congruent, i.e., there

exists a nonsingular matrix P 2 C

n�n

, such that P

�

AP =

~

A. Let P = QR be the

QR-decomposition (see [8]) of P . Then Q

�

AQ = R

��

~

AR

�1

is still anti-m-Hessenberg.

Let us recall that the inertia index of a Hermitian matrix G is

Ind(G) = (�

+

; �

�

; �

0

);

where �

+

; �

�

; �

0

are the numbers of positive, negative and zero eigenvalues of G, respec-

tively. Conditions for the existence of both anti-triangular and anti-m-Hessenberg forms

will be based on the following lemma.
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Lemma 3 Let A 2 C

n�n

be Hermitian and let Ind(A) = (�

+

; �

�

; �

0

). Then A is congruent

to a matrix of the form

�

0 A

2

A

�

2

A

3

�

; (8)

where A

3

2 C

k�k

, A

2

2 C

(n�k)�k

if and only if j�

+

� �

�

j � 2k + �

0

� n:

Proof. ')': Let A be in the form (8). Then there exist nonsingular matrices S 2

C

(n�k)�(n�k)

and T 2 C

k�k

such that

SA

2

T =

�

I

m

0

0 0

�

;

where m � k; n� k. From this we obtain that

�

S 0

0 T

�

�

A

�

S

�

0

0 T

�

=

2

6

6

4

m n� k �m m k �m

0 0 I

m

0

0 0 0 0

I

m

0 A

31

A

32

0 0 A

�

32

A

33

3

7

7

5

;

where T

�

A

3

T =

�

A

31

A

32

A

�

32

A

33

�

. Furthermore, we obtain

2

6

6

4

I 0 0 0

0 I 0 0

�

1

2

A

31

0 I 0

�A

�

32

0 0 I

3

7

7

5

2

6

6

4

0 0 I

m

0

0 0 0 0

I

m

0 A

31

A

32

0 0 A

�

32

A

33

3

7

7

5

2

6

6

4

I 0 �

1

2

A

31

�A

32

0 I 0 0

0 0 I 0

0 0 0 I

3

7

7

5

=

2

6

6

4

0 0 I

m

0

0 0 0 0

I

m

0 0 0

0 0 0 A

33

3

7

7

5

:

This implies Ind(A) = (m;m; n� k�m) + Ind(A

33

) and since A

33

is a (k�m)� (k�m)

matrix, we obtain from n� k �m � �

0

that

j�

+

� �

�

j � k �m = 2k + n� k �m� n � 2k + �

0

� n:

'(': Assume w.l.o.g. that �

+

� �

�

� 0; otherwise consider �A. Then the matrix

~

A =

2

6

6

4

0 0 I

�

�

0

0 O

�

0

0 0

I

�

�

0 0 0

0 0 0 I

�

+

��

�

3

7

7

5

;
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is congruent to A, since Ind(

~

A) = (�

+

; �

�

; �

0

). Here O

�

0

denotes the �

0

� �

0

zero matrix.

It remains to show that �

�

+ �

0

� n� k and this follows by

�

�

+ �

0

= n� �

+

= n� �

�

� (�

+

� �

�

)

� n� �

�

� (2k + �

0

� n) = 2(n� k)� (�

�

+ �

0

):

Corollary 4 Let A 2 C

n�n

be Hermitian, Ind(A) = (�

+

; �

�

; �

0

), and n > m 2 N .

1. If n�m is even, then A is congruent to an anti-m-Hessenberg matrix if and only if

j�

+

� �

�

j � �

0

+m:

2. If n�m is odd, then A is congruent to an anti-m-Hessenberg matrix if and only if

j�

+

� �

�

j � �

0

+m+ 1:

Proof. Let us �rst consider the case that n�m is even. If A is congruent to an anti-m-

Hessenberg matrix, then in particular A is congruent to a matrix of the form

�

0 A

2

A

�

2

A

3

�

;

where A

3

2 C

(

n+m

2

)�(

n+m

2

)

and A

2

2 C

(

n�m

2

)�(

n+m

2

)

. Hence, Lemma 3 implies that

j�

+

� �

�

j � 2

n+m

2

+ �

0

� n = �

0

+m:

Conversely assume that j�

+

� �

�

j � �

0

+m. Then Lemma 3 implies that A is congruent

to a matrix of the form

�

0 A

2

A

�

2

A

3

�

;

where A

2

2 C

(

n�m

2

)�(

n+m

2

)

and A

3

2 C

(

n+m

2

)�(

n+m

2

)

. Let S 2 C

(

n�m

2

)�(

n�m

2

)

and T 2

C

(

n+m

2

)�(

n+m

2

)

be nonsingular, such that

SA

2

T =

�

0

~

A

2

�

;

where

~

A

2

2 C

(

n�m

2

)�(

n�m

2

)

is anti-triangular. Clearly such matrices always exist. It follows

that

�

S 0

0 T

�

� �

0 A

2

A

�

2

A

3

� �

S

�

0

0 T

�

=

�

0 SA

2

T

(SA

2

T )

�

T

�

A

3

T

�

is anti-triangular and thus, A is congruent to an anti-triangular matrix. The case that

n �m is odd follows in an analogous way, noting that in this case an anti-m-Hessenberg

form of A has the structure

�

0 A

2

A

�

2

A

3

�

;

where A

3

2 C

(

n+m+1

2

)�(

n+m+1

2

)

and A

2

2 C

(

n�m�1

2

)�(

n+m+1

2

)

.
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Corollary 5 Let A 2 C

n�n

be Hermitian and let Ind(A) = (�

+

; �

�

; �

0

).

1. If n is even, then A is congruent to an anti-triangular matrix if and only if

j�

+

� �

�

j � �

0

:

2. If n is odd, then A is congruent to an anti-triangular matrix if and only if

j�

+

� �

�

j � �

0

+ 1:

We see from these results that the inertia indices of Hermitian matrices play a key role

in the discussion of anti-triangular and anti-m-Hessenberg forms. The following lemma

establishes an auxiliary result for the computation of the inertia index of some special

Hermitian matrices.

Lemma 6 Let A 2 C

n�n

be an Hermitian matrix of the form

A =

2

4

0 0 A

13

0 A

22

A

23

A

�

13

A

�

23

A

33

;

3

5

;

where A

13

2 C

m�k

and A

22

2 C

(n�m�k)�(n�m�k)

.

1. If m = k and A

13

is invertible, then

Ind(A) = (m;m; 0) + Ind(A

22

):

2. If A

22

2 C

(n�m�k)�(n�m�k)

is invertible, then

Ind(A) = Ind

��

0 A

13

A

�

13

~

A

33

��

+ Ind(A

22

);

where

~

A

33

= A

33

� A

�

23

A

22

A

23

.

Proof. 1: If m = k and A

13

is invertible, we �nd that

2

4

A

�1

13

0 0

�A

23

A

�1

13

I 0

�

1

2

A

33

A

�1

13

0 I

3

5

2

4

0 0 A

13

0 A

22

A

23

A

�

13

A

�

23

A

33

3

5

2

4

A

��

13

�A

��

13

A

�

23

�

1

2

A

��

13

A

�

33

0 I 0

0 0 I

3

5

=

2

4

0 0 I

0 A

22

0

I 0 0

3

5

�

c

2

4

0 I 0

I 0 0

0 0 A

22

:

3

5

8



This implies that Ind(A) = (m;m; 0) + Ind(A

22

).

2: If A

22

is invertible, we �nd that

2

4

I

m

0 0

0 I 0

0 �A

�

23

A

�1

22

I

k

3

5

2

4

0 0 A

13

0 A

22

A

23

A

�

13

A

�

23

A

33

3

5

2

4

I

m

0 0

0 I �A

22

A

23

0 0 I

k

3

5

=

2

4

0 0 A

13

0 A

22

0

A

�

13

0

~

A

33

3

5

�

c

2

4

0 A

13

0

A

�

13

~

A

33

0

0 0 A

22

;

3

5

where

~

A

33

= A

33

� A

�

23

A

22

A

23

.

3 Condensed forms for regular Hermitian pencils

In this section we discuss condensed forms for regular Hermitian pencils, i.e., pencils �G�

H 2 C

n�n

such that both G and H are Hermitian. These forms are the canonical form,

anti-triangular forms that can be obtained via a unitary similarity transformation that

operates simultaneously on G and H, anti-m-Hessenberg forms, and the so-called sign

condensed form. First let us recall the well-known canonical form for Hermitian pencils

(see [22]).

Theorem 7 Let �G� H be a regular Hermitian pencil. Then there exists a nonsingular

matrix P 2 C

n�n

such that

P

�

(�G�H)P = (�G

1

�H

1

)� : : :� (�G

l

�H

l

); (9)

where the blocks �G

j

�H

j

have one and only one of the following forms.

1. Blocks associated with paired nonreal eigenvalues �

0

, �

�

0

:

�

�

0 Z

r

Z

r

0

�

�

�

0 Z

r

J

r

(�

0

)

J

r

(�

0

)

�

Z

r

0

�

:

2. Blocks associated with real eigenvalues �

0

and sign " 2 f1;�1g:

�"Z

r

� "Z

r

J

r

(�

0

) = "

2

4

0 1

.

.

.

1 0

3

5

� "

2

6

6

4

0 �

0

�

0

1

.

.

.

.

.

.

�

0

1 0

3

7

7

5

:

9



3. Blocks associated with the eigenvalue 1 and sign " 2 f1;�1g:

�"Z

r

J

r

(0)� "Z

r

= "

2

6

6

4

0 0

0 1

.

.

.

.

.

.

0 1 0

3

7

7

5

� "

2

4

0 1

.

.

.

1 0

3

5

:

Proof. See [22].

De�nition 8 Let �G�H be a regular Hermitian pencil and let �G

j

�H

j

be a single block

of the canonical form (9) of �G � H. If �G

j

� H

j

is a block of type 2) or 3) then the

parameter " that appears in the canonical form (9) is called the sign associated with the

block �G

j

�H

j

.

Besides the eigenvalues of a Hermitian pencil, the signs associated with blocks to real

eigenvalues or the eigenvalue 1 are invariants under congruence. The collection of these

signs is sometimes referred to as the sign characteristic (see, e.g., [7] and [12] for related

work on H-selfadjoint matrices, where H is a nonsingular Hermitian matrix). It will turn

out that especially the signs of odd-sized blocks play a key role in our investigation of

condensed forms. This motivates the following de�nition of the sign sum.

De�nition 9 Let �G � H 2 C

n�n

be a regular Hermitian pencil and let �

0

2 R [ f1g

be a real eigenvalue of �G � H with partial multiplicities (p

1

; : : : ; p

r

; p

r+1

; : : : ; p

m

), where

p

1

; : : : ; p

r

are odd and p

r+1

; : : : ; p

m

are even.

1. The tupel ("

1

; : : : ; "

m

) is called the sign characteristic of �

0

, where "

j

is the sign

associated with the block in the canonical form (9) that corresponds to �

0

and p

j

.

2. The integer Signsum(�

0

; G;H) := "

1

+ : : : + "

r

is called the sign sum of �

0

with

respect to �G�H. If there is no risk of confusion we write Signsum(�

0

) instead of

Signsum(�

0

; G;H).

In addition, we set Signsum(�

0

; G;H) = 0, whenever �

0

2 R [ f1g is not an eigenvalue

of �G � H. We note that if in the canonical form (9) there are only even sized blocks

associated with �

0

then Signsum(�

0

) = 0, since the sign sum is obtained by the sum of

the signs that correspond to odd sized blocks. The following theorem allows to 'split' a

regular Hermitian pencil into an anti-triangular part and a diagonal part. Furthermore,

all the information on the sign sum, i.e., all the information on the signs that are needed

in the following, can be read o� the diagonal part. For the proof of this result, we �rst

state the following auxiliary remark.

Remark 10 Let A 2 C

n�n

be Hermitian.

10



1. If A =

2

4

0 A

12

0

A

�

12

A

22

0

0 0 A

33

3

5

, then A is congruent to

2

4

0 0 A

12

0 A

33

0

A

�

12

0 A

22

3

5

.

2. If A =

2

6

6

4

0 0 A

13

0

0 A

22

A

23

0

A

�

13

A

�

23

A

33

0

0 0 0 A

44

3

7

7

5

, then A is congruent to

2

6

6

4

0 0 0 A

13

0 A

22

0 A

23

0 0 A

44

0

A

�

13

A

�

23

0 A

33

3

7

7

5

.

Theorem 11 (Sign condensed form) Let �G�H 2 C

n�n

be a regular Hermitian pen-

cil. Then there exists a nonsingular matrix P 2 C

n�n

and m 2 N , such that

P

�

(�G�H)P = �

2

4

0 0 G

13

0 G

22

G

23

G

�

13

G

�

23

G

33

3

5

�

2

4

0 0 H

13

0 H

22

H

23

H

�

13

H

�

23

H

33

3

5

; (10)

where G

13

; H

13

2 C

m�m

are anti-triangular and

�G

22

�H

22

= �

2

6

6

6

4

"

1

I

p

1

0

.

.

.

"

k

I

p

k

0 0

3

7

7

7

5

�

2

6

6

6

4

"

1

�

1

I

p

1

0

.

.

.

"

k

�

k

I

p

k

0 "

k+1

I

p

k+1

3

7

7

7

5

; (11)

where �

1

< : : : < �

k

and "

1

; : : : ; "

k+1

2 f1;�1g. Furthermore, we have for all �

0

2 R[f1g

that

Signsum(�

0

; G;H) = Signsum(�

0

; G

22

; H

22

):

Proof. Assume, w.l.o.g., that �G�H is in the canonical form (9). The proof now proceeds

by induction on the number l of distinct real eigenvalues, including the eigenvalue 1.

'l = 0': If �G � H has neither real eigenvalues nor the eigenvalue 1, then clearly all

the blocks in the canonical form (9) have even sizes. Thus, applying Remark 10 part 1

repeatedly, we �nd that �G � H is congruent to a pencil in form (10), where the block

�G

22

�H

22

does not appear.

'l ) l + 1': Let us pick an eigenvalue �

0

2 R [ f1g of �G�H. For the sake of briefness

of notation, we consider only the case �

0

2 R . The case �

0

= 1 can be proved analo-

gously. (This can be seen easily by interchanging the roles of G and H.) After an eventual

reordering of blocks, we may assume that

�G�H = �

�

G

1

0

0 G

2

�

�

�

H

1

0

0 H

2

�

;

where �G

1

�H

1

contains all the blocks associated with �

0

and �G

2

�H

2

contains all the

other blocks. We assume furthermore that �G

1

� H

1

contains p

+

odd sized blocks with

11



sign " and p

�

odd sized blocks with sign �", where " 2 f1;�1g, i.e., in particular we have

Signsum(�

0

) = "(p

+

� p

�

). Then, applying Remark 10 various times on �G

1

� H

1

and

eventually reordering some blocks, we �nd that

�G�H

�

c

�

2

6

6

6

6

4

0 0 0 0

^

G

15

0 "I

p

+

0 0 0

0 0 �"I

p

�

0 0

0 0 0 G

2

0

^

G

�

15

0 0 0

^

G

55

3

7

7

7

7

5

�

2

6

6

6

6

4

0 0 0 0

^

H

15

0 "�

0

I

p

+

0 0 0

0 0 �"�

0

I

p

�

0 0

0 0 0 H

2

0

^

H

�

15

0 0 0

^

H

55

3

7

7

7

7

5

;

where

^

G

15

and

^

H

15

are anti-triangular. Let us assume, w.l.o.g., that p

+

� p

�

. Setting

P =

1

p

2

2

4

p

2I

p

+

�p

�

0 0

0 "I

p

�

"I

p

�

0 �"I

p

�

"I

p

�

3

5

and noting that

P

�

0

@

�

2

4

"I

p

+

�p

�

0 0

0 "I

p

�

0

0 0 �"I

p

�

3

5

�

2

4

"�

0

I

p

+

�p

�

0 0

0 "�

0

I

p

�

0

0 0 �"�

0

I

p

�

3

5

1

A

P

= �

2

4

"I

p

+

�p

�

0 0

0 0 "I

p

�

0 "I

p

�

0

3

5

�

2

4

"�

0

I

p

+

�p

�

0 0

0 0 "�

0

I

p

�

0 "�

0

I

p

�

0

3

5

;

we obtain by applying Remark 10 that

�G�H �

c

�

2

6

6

4

0 0 0

�

G

14

0 "I

p

+

�p

�

0 0

0 0 G

2

0

�

G

�

14

0 0

�

G

44

3

7

7

5

�

2

6

6

4

0 0 0

�

H

14

0 "�

0

I

p

+

�p

�

0 0

0 0 H

2

0

�

H

�

14

0 0

�

H

44

3

7

7

5

;

where

�

G

14

and

�

H

14

are anti-triangular and the block "�I

p

+

�p

�

� "�

0

I

p

+

�p

�

displays the

sign sum of �

0

. Using the induction hypothesis on �G

2

� H

2

, the result follows by one

more application of Remark 10.

Remark 12 The pencil P

�

(�G�H)P has the pattern

�

2

6

6

6

4

�

�

�

�

@

@

3

7

7

7

5

�

2

6

6

6

4

�

�

�

�

@

@

3

7

7

7

5

;

and the sign sum of each real eigenvalue or the eigenvalue 1 of �G�H can be easily read

o� the subpencil �G

22

�H

22

, since obviously we have

Signsum(�

�

; G

22

; H

22

) = "

�

p

�

for � = 1; : : : ; k:

12



Remark 13 In [16], it was shown how to obtain an analogue of form (10) for skew-Hamil-

tonian/Hamiltonian pencils. This method can be easily adapted to Hermitian pencils.

Doing so, one can see that in a step-wise reduction, the reduction to the blocks G

13

and

H

13

can be executed via unitary transformations.

In the following we will deduce necessary and su�cient conditions for the existence of

anti-triangular forms and anti-m-Hessenberg forms for Hermitian pencils. Given a Her-

mitian pencil �G�H, we note that for every t 2 R , we have a Hermitian matrix tG�H.

It is clear that if the pencil �G � H is in anti-triangular form then so is the Hermitian

matrix tG � H. It will turn out that also the converse is true - at least in the case that

the size of the pencil is even. Therefore, the results of section 2 imply that the existence

of anti-triangular forms for the Hermitian pencil �G � H is linked to conditions on the

indices of the matrices tG�H, where t is real.

Moreover, we will see that these conditions on indices can be interpreted as conditions

on the sign sums of the real eigenvalues and the eigenvalue 1 of the pencil �G�H. Since

we may assume that the pencil is in sign condensed form and since the blocks G

13

and

H

13

in (10) are already in anti-triangular form, it remains to consider the block (11) that

inherits all information on the sign sums. The following lemma examines this block and

will be applied repeatedly.

Lemma 14 Consider the pencil �G

22

�H

22

in the form (11). Furthermore, let t

1

; t

2

2 R

such that

�

1

< : : : < �

��1

< t

1

< �

�

< : : : < �

�+�

< t

2

< �

�+�+1

< : : : < �

k

:

Setting Ind(tG

22

�H

22

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

, we obtain that

�

�

+

(t

2

)� �

�

(t

2

)

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

= 2

�+�

P

j=�

"

j

p

j

:

�

�

+

(t

2

)� �

�

(t

2

)

�

+

�

�

+

(t

1

)� �

�

(t

1

)

�

= 2

 

��1

P

j=1

"

j

p

j

!

� 2

 

k

P

j=�+�+1

"

j

p

j

!

� 2"

k+1

p

k+1

:

Proof. We obtain that

�

+

(t

1

)� �

�

(t

1

) =

 

��1

X

j=1

"

j

p

j

!

�

 

�+�

X

j=�

"

j

p

j

!

�

 

k

X

j=�+�+1

"

j

p

j

!

� "

k+1

p

k+1

and �

+

(t

2

)� �

�

(t

2

) =

 

��1

X

j=1

"

j

p

j

!

+

 

�+�

X

j=�

"

j

p

j

!

�

 

k

X

j=�+�+1

"

j

p

j

!

� "

k+1

p

k+1

:

This implies the assertion.
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We are now able to discuss necessary and su�cient conditions for the existence of anti-

triangular forms for regular Hermitian pencils. We start with a result for the case that the

size of the pencil is even.

Theorem 15 Let �G � H 2 C

2n�2n

be a regular Hermitian pencil and for t 2 R let

Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

. Then the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-triangular form.

2. For all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t).

3. For almost all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t).

4. If �

0

2 R [ f1g is an eigenvalue of �G�H then Signsum(�

0

) = 0.

Proof. '1) ) 2)': Let P 2 C

2n�2n

be a nonsingular matrix such that P

�

(�G�H)P is in

anti-triangular form. Then clearly P

�

(tG�H)P is Hermitian anti-triangular for all t 2 R .

Thus, 2) follows from Corollary 5.

'2)) 3)': is trivial.

'3) ) 4)': W.l.o.g. we may assume that �G �H is in sign condensed form (10). If �

0

is

not an eigenvalue of �G

22

�H

22

then trivially Signsum(�

0

) = 0. Thus, let us consider an

eigenvalue �

�

of �G

22

�H

22

. There are two possible cases.

Case (1) Assume that �

�

2 R , that is � 2 f1; : : : ; kg, where �

1

; : : : ; �

k

are as in (11).

Choose t

1

; t

2

2 R such that

�

1

< : : : < �

��1

< t

1

< �

�

< t

2

< �

�+1

< : : : < �

k

;

and furthermore, such that j�

+

(t

j

)� �

�

(t

j

)j � �

0

(t

j

) holds for j = 1; 2 and that t

1

G�H

and t

2

G � H are nonsingular. This is possible, since the pencil �G � H is regular, i.e.,

tG�H is nonsingular for almost all t 2 R , and, in addition, condition 3) holds for almost

all t 2 R . Then, we obtain from (10) and Lemma 6 that

�

�

+

(t

j

); �

�

(t

j

); �

0

(t

j

)

�

= (m;m; 0) + Ind(t

j

G

22

�H

22

) for j = 1; 2:

Since t

1

G � H and t

2

G � H are nonsingular, we have �

0

(t

1

) = �

0

(t

2

) = 0. Therefore, we

obtain from Lemma 14 that

0 = �

0

(t

2

) + �

0

(t

1

) � j�

+

(t

2

)� �

�

(t

2

)j+ j�

+

(t

1

)� �

�

(t

1

)j

�

�

�

�

�

�

+

(t

2

)� �

�

(t

2

)

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

�

�

�

= 2 � Signsum(�

�

):

This implies Signsum(�

�

) = 0.

14



Case (2) If the assumption of Case (1) does not hold, then �

�

=1.

In this case, we choose t

1

; t

2

2 R such that

t

1

< �

1

< : : : < �

k

< t

2

;

and furthermore such that j�

+

(t

j

) � �

�

(t

j

)j � �

0

(t) holds for j = 1; 2 and that t

1

G � H

and t

2

G�H are nonsingular. Then we obtain from Lemma 14 that

0 �

�

�

�

�

�

+

(t

2

)� �

�

(t

2

)

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

�

�

�

= 2Signsum(�

1

):

'4) ) 1)': This follows directly from Theorem 10, since 4) implies that the subpencil

�G

22

�H

22

does not appear.

Remark 16 The condition Signsum(�

0

) = 0 means that in the canonical form (9) the odd-

sized blocks associated with �

0

occur in pairs with opposite signs +1 and �1, respectively.

(The pairing applies only to the signs, but not to the sizes of the blocks!)

Our next result gives necessary and su�cient conditions for the existence of anti-

Hessenberg forms for a Hermitian pencil �G � H. Again, we will consider the indices

of the Hermitian matrices tG � H, where t 2 R , and then interprete these conditions in

terms of the sign sums of the real eigenvalues and the eigenvalue 1. First, we consider

the case that the size of the pencil is odd.

Theorem 17 Let �G�H 2 C

(2n+1)�(2n+1)

be a regular Hermitian pencil and for t 2 R let

Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

. Then the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-Hessenberg form.

2. For all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) + 1.

3. For almost all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) + 1.

4. For every real eigenvalue �

0

2 R [ f1g we have that jSignsum(�

0

)j � 1 and if

�

1

< : : : < �

r

� 1 denote the real eigenvalues (including 1) with nonzero sign sum

then �

1

; : : : ; �

r

satisfy the property

Signsum(�

�

) = �Signsum(�

�+1

); � = 1; : : : ; r � 1: (12)

Proof. '1) ) 2)': Let P 2 C

2n�2n

be a nonsingular matrix such that P

�

(�G � H)P is

in anti-Hessenberg form. Then P

�

(tG � H)P is Hermitian anti-Hessenberg for all t 2 R .

Thus, 2) follows from Corollary 4.
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'2)) 3)': is trivial.

'3)) 4)': W.l.o.g. we may assume that �G�H is in sign condensed form (10). Again, it

is su�cient to consider the subpencil �G

22

�H

22

that has the form (11). Let us consider

an eigenvalue �

�

of �G

22

�H

22

.

Case (1) Assume that �

�

2 R , that is �

�

2 f�

1

; : : : ; �

k

g. Choose t

1

; t

2

2 R such that

�

1

< : : : < �

��1

< t

1

< �

�

< t

2

< �

�+1

< : : : < �

k

;

and such that t

j

G�H is nonsingular and j�

+

(t

j

)� �

�

(t)j � �

0

(t

j

) + 1 for j = 1; 2. Then

we obtain from Lemma 14 and �

0

(t

1

) = �

0

(t

2

) = 0 that

2 � j�

+

(t

1

)� �

�

(t

1

)j+ j�

+

(t

2

)� �

�

(t

2

)j

�

�

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

�

�

�

+

(t

2

)� �

�

(t

2

)

�

�

�

�

= j2Signsum(�

�

)j:

This implies jSignsum(�

�

)j � 1.

Case (2) If the assumption of Case (1) does not hold then �

�

=1.

In this case, we choose t

1

; t

2

2 R such that

t

1

< �

1

< : : : < �

k

< t

2

;

and, furthermore, such that t

j

G�H is nonsingular and j�

+

(t

j

) � �

�

(t

j

)j � �

0

(t

j

) + 1 for

j = 1; 2. Applying Lemma 14 once more, we conclude that

2 � 2jSignsum(�

1

)j:

For the second part of 3) we �rst note that jSignsum(�

�

)j = 1 for all the eigenvalues �

�

of

�G

22

�H

22

, since this subpencil does not contain eigenvalues with sign sum zero. We pick

an � 2 f1; : : : ; kg and distinguish two cases.

Case (a) Assume � < k. Then choose t

1

; t

2

2 R such that t

j

G � H is nonsingular,

j�

+

(t

j

)� �

�

(t)j � �

0

(t

j

) + 1 for j = 1; 2, and such that

�

1

< : : : < �

��1

< t

1

< �

�

< �

�+1

< t

2

< �

�+2

< : : : < �

k

:

Applying Lemma 14 again, we obtain that

2 � 2jSignsum(�

�

) + Signsum(�

�+1

)j:

This implies Signsum(�

�

) = �Signsum(�

�+1

), since both terms do not vanish.

Case (b) If the assumption of Case (a) does not hold, then � = k. If �G

22

� H

22

does

not have the eigenvalue 1 then �

�

is already the eigenvalue of maximal modulus and the

16



proof of (12) proceeds as in Case (a). Otherwise, choose t

1

; t

2

2 R such that t

j

G � H is

nonsingular, j�

+

(t

j

)� �

�

(t)j � �

0

(t

j

) + 1 for j = 1; 2, and such that

t

1

< �

1

< : : : < �

k�1

< t

2

< �

k

:

Then we obtain from Lemma 14 that

2 � j�

+

(t

2

)� �

�

(t

2

)j+ j�

+

(t

1

)� �

�

(t

1

)j

� j�

+

(t

2

)� �

�

(t

2

) + �

+

(t

1

)� �

�

(t

1

)j

= 2jSignsum(�

k

) + Signsum(�

1

)j:

This implies Signsum(�

k

) = �Signsum(�

1

).

'4)) 1)': Again, we may assume that the pencil is in sign condensed form (10). It remains

to show that the subpencil �G

22

� H

22

of the form (11) is congruent to anti-Hessenberg

form. From 4) we �nd in particular that all the eigenvalues of �G

22

� H

22

are simple.

Again, we consider two di�erent cases.

Case (1) Assume that �G

22

�H

22

does not have the eigenvalue 1.

This implies in particular that k = 2q+1 is odd, since the size of �G

22

�H

22

is necessarily

odd and all its eigenvalues are simple. Let us assume, w.l.o.g., that the sign "

1

of �

1

is equal

to one. Otherwise, we may consider the pencil �(�G�H). Then, the property (12) implies

that the eigenvalues with sign +1 interlace the eigenvalues with sign �1. We visualize that

by the following formula.

�

1

< �

3

< : : : < �

2q�1

< �

2q+1

sign 1

�

2

< �

4

< : : : < �

2q

sign � 1

(13)

By row and column permutations we �nd that

�G

22

�H

22

�

c

�

�

�I

q

0

0 I

q+1

�

�

�

�

~

H

1

0

0

~

H

2

�

;

where spec(

~

H

1

) = f�

2

; �

4

; : : : ; �

2q

g and spec(

~

H

2

) = f�

1

; �

3

; : : : ; �

2q+1

g.

The interlacing property (13) allows us to solve an inverse eigenvalue problem (see [2]

or [8]). There, it is shown that (13) is su�cient for the existence of a unitary matrix

Q 2 C

(q+1)�(q+1)

such that

Q

�

~

H

2

Q =

�

~

H

21

~

H

22

~

H

�

22

~

H

23

�

;

where

~

H

23

2 R and spec(

~

H

21

) = spec(

~

H

1

). From this, we see that

�G

22

�H

22

�

c

�

2

4

�I

q

0 0

0 I

q

0

0 0 1

3

5

�

2

4

�

~

H

1

0 0

0

~

H

21

~

H

22

0

~

H

�

22

~

H

23

3

5

:

17



Note that we obtain from spec(

~

H

21

) = spec(

~

H

1

) that every eigenvalue of the upper principal

subpencil

�

�

�I

q

0

0 I

q

�

�

�

�

~

H

1

0

0

~

H

21

�

occurs with algebraic multiplicity 2 and opposite signs. Hence, the pencil satis�es condition

4) of Theorem 15 and there exists a nonsingular P 2 C

2q�2q

such that

P

�

�

�

�

�I

q

0

0 I

q

�

�

�

~

H

1

0

0

~

H

21

��

P

is in anti-triangular form. This implies that

�

P 0

0 1

�

�

0

@

�

2

4

�I

q

0 0

0 I

q

0

0 0 1

3

5

�

2

4

�

~

H

1

0 0

0

~

H

21

~

H

22

0

~

H

�

22

~

H

23

3

5

1

A

�

P 0

0 1

�

is in anti-Hessenberg form.

Case (2) If the assumption of Case (1) does not hold then �G

22

�H

22

has the eigenvalue

1.

This implies that k = 2q is even. Again, property (12) implies that the eigenvalues with

sign +1 interlace the eigenvalues with sign �1, where we assume again that "

1

= 1. Thus,

we have the following situation.

�

1

< �

3

< : : : < �

2q�1

with sign + 1

�

2

< �

4

< : : : < �

2q

with sign � 1

(14)

Furthermore, the eigenvalue 1 has the sign +1. By row and column permutations we �nd

that

�G

22

�H

22

�

c

�

2

4

I

q

0 0

0 �I

q

0

0 0 0

3

5

�

2

4

~

H

1

0 0

0 �

~

H

2

0

0 0 1

3

5

;

where spec(

~

H

1

) = f�

1

; �

3

; : : : ; �

2q�1

g and spec(

~

H

2

) = f�

2

; �

4

; : : : ; �

2q

g.

The interlacing property (14) allows us to solve another inverse eigenvalue problem. In

[26] it is shown that (14) is su�cient for the existence of a rank-one updating with a vector

x 2 R

q

such that spec(

~

H

1

+ xx

�

) = spec(

~

H

2

). From this, we see that

2

4

I

q

0 x

0 I

q

0

0 0 1

3

5

0

@

�

2

4

I

q

0 0

0 �I

q

0

0 0 0

3

5

�

2

4

~

H

1

0 0

0 �

~

H

2

0

0 0 1

3

5

1

A

2

4

I

q

0 0

0 I

q

0

x

�

0 1

3

5

= �

2

4

I

q

0 0

0 �I

q

0

0 0 0

3

5

�

2

4

~

H

1

+ xx

�

0 x

0 �

~

H

2

0

x

�

0 1

3

5

:
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Again, we see from Theorem 15 that the upper principal 2q � 2q subpencil is congruent

to a pencil in anti-triangular form and thus, �G

22

�H

22

is congruent to a pencil in anti-

Hessenberg form.

Theorem 15 and Theorem 17 are special cases of a more general result for anti-m-

Hessenberg forms. This general result can be shown by induction on m. For the induction

step, we need the following lemma.

Lemma 18 Let �G

22

�H

22

2 C

(n�2m)�(n�2m)

be a pencil in form (11). Furthermore, let

Ind(tG

22

�H

22

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

, and assume that

j�

+

(t)� �

�

(t)j � �

0

(t) +m+ 1 for almost all t 2 R :

Then there exists a nonsingular matrix P 2 C

(n�2m)�(n�2m)

such that

P

�

(�G

22

�H

22

)P = �

�

G

0

0

0 G

00

�

�

�

H

0

0

0 H

00

�

;

where the size of �G

00

�H

00

is odd and such that the following conditions are satis�ed.

1. Setting Ind(tG

0

�H

0

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

, we have that

j�

+

(t)� �

�

(t)j � �

0

(t) +m for almost all t 2 R :

2. Setting Ind(tG

00

�H

00

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

, we have that

j�

+

(t)� �

�

(t)j � �

0

(t) + 1 for almost all t 2 R :

Proof. Let s

1

; : : : ; s

k+1

2 R be arbitrary with the condition that for j = 1; : : : ; k + 1 we

have that j�

+

(s

j

)� �

�

(s

j

)j � �

0

(s

j

) +m + 1, and such that

s

1

< �

1

< s

2

< : : : < s

k

< �

k

< s

k+1

:

This implies in particular that �

0

(s

j

) = 0. Applying Lemma 14, we �nd the recursive

formula

�

�

+

(s

�+1

)� �

�

(s

�+1

)

�

�

�

�

+

(s

�

)� �

�

(s

�

)

�

= 2p

�

"

�

:

Thus, the map � 7!

�

�

+

(s

�

)��

�

(s

�

)

�

is increasing whenever "

�

is positive and decreasing

whenever "

�

is negative. Hence, 'extremal points' such that j�

+

(s

�

)��

�

(s

�

)j = m+1, can

only be reached for an � such that "

�

6= "

��1

. Therefore, let us combine adjacent blocks
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with equal signs. W.l.o.g., we may assume that "

1

= 1. Hence, we �nd that �G

22

�H

22

is

in the form

�G

22

�H

22

= �

2

6

4

(�1)

2

E

q

1

0

.

.

.

0 (�1)

l+1

E

q

l

3

7

5

�

2

6

4

(�1)

2

D

q

1

0

.

.

.

0 (�1)

l+1

D

q

l

3

7

5

;

where E

q

�

= I

q

�

for � = 1; : : : ; l � 1 and E

q

l

=

�

I

q

l

�p

k+1

0

0 0

�

2 C

q

l

�q

l

, and the matrices

D

q

�

2 C

q

�

�q

�

, � = 1; : : : ; l are diagonal. Choose t

�

2 fs

1

; : : : ; s

k+1

g such that t

�

is smaller

than all the eigenvalues displayed by the blocks �E

�

� D

�

for � � � and larger than all

the eigenvalues displayed by the blocks �E

�

�D

�

for � < �. We will distinguish two cases.

Case (1) Assume that l is odd.

We construct �G

0

�H

0

and �G

00

�H

00

as follows. Writing

E

�

=

�

e

�

0

0

~

E

�

�

and D

�

=

�

d

�

0

0

~

D

�

�

; (15)

where e

�

; d

�

2 C , let us de�ne

�G

0

�H

0

= �

2

6

4

(�1)

2

~

E

1

.

.

.

(�1)

l+1

~

E

l

3

7

5

�

2

6

4

(�1)

2

~

D

1

.

.

.

(�1)

l+1

~

D

l

3

7

5

;

�G

00

�H

00

= �

2

6

4

(�1)

2

e

1

.

.

.

(�1)

l+1

e

l

3

7

5

�

2

6

4

(�1)

2

d

1

.

.

.

(�1)

l+1

d

l

3

7

5

:

From the construction, we see immediately that the eigenvalues of �G

00

� H

00

have sign

sum equal to one and satisfy the interlacing property (12) of Theorem 17. This implies in

particular

j�

+

(t)� �

�

(t)j � �

0

(t) + 1:

It remains to show that j�

+

(t)��

�

(t)j � �

0

(t)+m. For this, we note that from Lemma 14

we obtain that

�

�

+

(t

�+1

)� �

�

(t

�+1

)

�

�

�

�

+

(t

�

)� �

�

(t

�

)

�

= 2(�1)

�+1

q

�

; (16)

�

�

+

(t

�+1

)� �

�

(t

�+1

)

�

�

�

�

+

(t

�

)� �

�

(t

�

)

�

= 2(�1)

�+1

(q

�

� 1): (17)

Furthermore, for � = 1 we obtain that

�

+

(t

1

)� �

�

(t

1

) = �q

1

+ q

2

�+ : : :+ q

l�1

� q

l

;

�

+

(t

1

)� �

�

(t

1

) = �(q

1

� 1) + (q

2

� 1)�+ : : :+ (q

l�1

� 1)� (q

l

� 1)

= �

+

(t

1

)� �

�

(t

1

) + 1:
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From this and from (16) and (17), we conclude that

�

�

+

(t

�

)� �

�

(t

�

)

�

�

�

�

+

(t

�

)� �

�

(t

�

)

�

= (�1)

�+1

: (18)

Formulas (16) and (17) imply in particular that the map � 7!

�

�

+

(t

�

)� �

�

(t

�

)

�

reaches a

maximum only for an even � and a minimum only for an odd �. This, together with (18)

implies that

max

�

j�

+

(t

�

)� �

�

(t

�

)j = max

�

j�

+

(t

�

)� �

�

(t

�

)j+ 1;

that is

j�

+

(t

�

)� �

�

(t

�

)j � m for all �: (19)

By the choice of the t

�

, it is now clear that we have

j�

+

(t)� �

�

(t)j � �

0

(t) +m

for almost all t 2 R .

Case (2) If l is even, then the situation is more complicated, since we want the pencil

�G

00

� H

00

to have odd size. Therefore, we have to change the construction of Case (1).

We consider two di�erent subcases.

Subcase (2a) Assume that j�

+

(t

l

)� �

�

(t

l

)j < j�

+

(t

1

)� �

�

(t

1

)j.

With the notation (15), let us de�ne

�G

0

�H

0

= �

2

6

6

6

4

(�1)

2

~

E

1

.

.

.

(�1)

l

~

E

l�1

�E

l

3

7

7

7

5

�

2

6

6

6

4

(�1)

2

~

D

1

.

.

.

(�1)

l

~

D

l�1

�D

l

3

7

7

7

5

;

and �G

00

�H

00

= �

2

6

4

(�1)

2

e

1

.

.

.

(�1)

l

e

l�1

3

7

5

�

2

6

4

(�1)

2

d

1

.

.

.

(�1)

l

d

l�1

3

7

5

;

i.e., we left out e

l

and d

l

in the construction of �G

00

�H

00

. Analogous to Case 91) we �nd

that

�

�

+

(t

�

)� �

�

(t

�

)

�

�

�

�

+

(t

�

)� �

�

(t

�

)

�

= (�1)

�+1

for � = 1; : : : ; l � 1, but

�

�

+

(t

l

)� �

�

(t

l

)

�

�

�

�

+

(t

l

)� �

�

(t

l

)

�

= 1:

For � = 1; : : : ; l � 1, we can proceed as in Case (1) such that we �nd

j�

+

(t

�

)� �

�

(t

�

)j � m for � = 1; : : : ; l � 1:
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Thus, the only case that may cause problems is the case that �

+

(t

l

) � �

�

(t

l

) � m, since

then �

+

(t

l

)� �

�

(t

l

) � m + 1. We show that this case does not occur.

Assume �

+

(t

l

)� �

�

(t

l

) � m. From the assumption of the Subcase (2a) and the fact that

for odd � the term �

+

(t

�

) � �

�

(t

�

) may only reach a minimum, but not a maximum, we

obtain that

�

+

(t

1

)� �

�

(t

1

) = �(m + 1):

It follows from Lemma 14 that

2q

l

= �

+

(t

1

)� �

�

(t

1

) + �

+

(t

l

)� �

�

(t

l

) � m� (m+ 1) = �1:

This is a contradiction. Therefore, we have �

+

(t

l

) � �

�

(t

l

) < m and thus, we obtain

analogous to Case (1) for almost all t 2 R that

j�

+

(t)� �

�

(t)j � �

0

(t) +m:

Subcase (2b) If the assumption of (2a) does not hold then j�

+

(l)��

�

(l)j � j�

+

(1)��

�

(1)j.

In this case we leave out e

1

and d

1

in the construction of �G

00

�H

00

, i.e., we set

�G

0

�H

0

= �

2

6

6

6

4

E

1

�

~

E

2

.

.

.

(�1)

l+1

~

E

l

3

7

7

7

5

�

2

6

6

6

4

D

1

�

~

D

2

.

.

.

(�1)

l+1

~

D

l

3

7

7

7

5

;

�G

00

�H

00

= �

2

6

4

�e

2

.

.

.

(�1)

l+1

e

l

3

7

5

�

2

6

4

�d

2

.

.

.

(�1)

l+1

d

l

3

7

5

:

Analogous to Case (1) we �nd that

�

�

+

(t

�

)� �

�

(t

�

)

�

�

�

�

+

(t

�

)� �

�

(t

�

)

�

= (�1)

�+1

for � = 2; : : : ; l, but

�

�

+

(t

1

)� �

�

(t

1

)

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

= �1:

Analogous to Subcase (2a) it remains to show that �

+

(t

1

)� �

�

(t

1

) > �m.

Assume �

+

(t

1

)� �

�

(t

1

) � �m. Then

2q

l

= �

+

(t

1

)� �

�

(t

1

) + �

+

(t

l

)� �

�

(t

l

) � �m + (m + 1) = 1;

and this is a contradiction. The rest of the proof proceeds analogous to Subcase (2a).
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Theorem 19 Let �G � H 2 C

n�n

be a regular Hermitian pencil and let m � n be such

that n�m is even. Furthermore, let Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

for t 2 R . Then

the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-m-Hessenberg form.

2. For all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) +m.

3. For almost all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) +m.

Proof. '1) ) 2)': Let P 2 C

n�n

be nonsingular such that P

�

(�G � H)P is in anti-m-

Hessenberg form. Then 2) follows from Corollary 4.

'2)) 3)': is trivial.

'3)) 1)': We proceed by induction on m.

'm = 0' and 'm = 1' have already been proved, see Theorem 15 and Theorem 17.

'm) (m+1)': Once again we may assume that �G�H is in sign condensed form (10) and

it is su�cient to consider the subpencil �G

22

�H

22

that has the form (11). By Lemma 18

we �nd that there exists a nonsingular matrix

~

P 2 C

n�n

such that

~

P

�

(�G

22

�H

22

)

~

P = �

�

G

0

0

0 G

00

�

�

�

H

0

0

0 H

00

�

;

where the size of �G

00

�H

00

is odd and, setting Ind(tG

0

�H

0

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

and

Ind(tG

00

�H

00

) =

�

�

+

(t); �

�

(t); �

0

(t)

�

, the following conditions are satis�ed for almost all

t 2 R .

j�

+

(t)� �

�

(t)j � �

0

(t) +m;

j�

+

(t)� �

�

(t)j � �

0

(t) + 1:

Let n

0

and n

00

denote the sizes of �G

0

� H

0

and �G

00

� H

00

, respectively. By assumption,

n � (m + 1) is even and thus, so is n

0

� m, since n � n

0

= n

00

is odd. Therefore, by the

induction hypothesis and by Theorem 17, the pencil �G

0

�H

0

is congruent to a pencil in

anti-m-Hessenberg form and �G

00

� H

00

is congruent to a pencil in anti-Hessenberg form,

i.e.,

�G

22

�H

22

�

c

�

2

6

6

6

6

6

6

6

4

0

^

G

12

^

G

13

0 0 0

^

G

�

12

^

G

22

^

G

23

0 0 0

^

G

�

13

^

G

�

23

^

G

33

0 0 0

0 0 0 0

�

G

12

�

G

13

0 0 0

�

G

�

12

�

G

22

�

G

23

0 0 0

�

G

�

13

�

G

�

23

�

G

33

3

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

4

0

^

H

12

^

H

13

0 0 0

^

H

�

12

^

H

22

^

H

23

0 0 0

^

H

�

13

^

H

�

23

^

H

33

0 0 0

0 0 0 0

�

H

12

�

H

13

0 0 0

�

H

�

12

�

H

22

�

H

23

0 0 0

�

H

�

13

�

H

�

23

�

H

33

3

7

7

7

7

7

7

7

5
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�

c

�

2

6

6

6

6

6

6

6

4

0 0 0 0

^

G

12

^

G

13

0 0

�

G

12

�

G

13

0 0

0

�

G

�

12

�

G

22

�

G

23

0 0

0

�

G

�

13

�

G

�

23

�

G

33

0 0

^

G

�

12

0 0 0

^

G

22

^

G

23

^

G

�

13

0 0 0

^

G

�

23

^

G

33

3

7

7

7

7

7

7

7

5

�

2

6

6

6

6

6

6

6

4

0 0 0 0

^

H

12

^

H

13

0 0

�

H

12

�

H

13

0 0

0

�

H

�

12

�

H

22

�

H

23

0 0

0

�

H

�

13

�

H

�

23

�

H

33

0 0

^

H

�

12

0 0 0

^

H

22

^

H

23

^

H

�

13

0 0 0

^

H

�

23

^

H

33

3

7

7

7

7

7

7

7

5

(20)

where the submatrices have the following forms.

^

G

12

;

^

H

12

2 C

(

n

0

�m

2

)�(

n

0

�m

2

)

are anti-triangular,

^

G

13

;

^

H

13

2 C

(

n

0

�m

2

)�m

;

�

G

12

;

�

H

12

2 C

(

n

00

�1

2

)�(

n

00

�1

2

)

are anti-triangular,

�

G

13

;

�

H

13

2 C

(

n

00

�1

2

)�1

;

and the other blocks have corresponding sizes. Hence, the pencil (20) is in anti-(m+1)-

Hessenberg form.

In Theorem 19 we did not give conditions on the sign sums as in the Theorems 15

and 17. In principle, this is also possible for the case m > 1. But then the conditions

become very complicated, since we have to consider many subcases. Therefore, we prefer

the conditions given in Theorem 19.

Clearly, Theorem 19 does not hold in the case that n�m is odd. For example, let us

consider the case m = 0 and n = 3. The Hermitian pencil

�

2

4

0 0 1

0 1 0

1 0 0

3

5

�

2

4

0 0 1

0 2 0

1 0 0

3

5

is in anti-triangular form, but we immediately obtain Signsum(2) = 1. We see from this

example that the eigenvalue that is displayed in the middle of the anti-diagonal plays an

exceptional role and has to be treated di�erently from the rest of the eigenvalues. In fact,

we may omit the eigenvalue that is displayed in the middle of the anti-diagonal, and its

tribute to the sign sum may also be omitted, such that we can use the fact that n� 1�m

is even and apply Theorem 19. This is done in the proof of the next theorem.

Theorem 20 Let �G � H 2 C

n�n

be a regular Hermitian pencil and let m � n be such

that n �m is odd. Furthermore, let Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

for t 2 R . Then

the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-m-Hessenberg form.

24



2. There exists t

0

2 R [ f1g and " 2 f1;�1g such that

j�

+

(t)� �

�

(t) + "j � �

0

(t) +m for all t < t

0

and j�

+

(t)� �

�

(t)� "j � �

0

(t) +m for all t > t

0

:

3. There exists t

0

2 R [ f1g and " 2 f1;�1g such that

j�

+

(t)� �

�

(t) + "j � �

0

(t) +m for almost all t < t

0

and j�

+

(t)� �

�

(t)� "j � �

0

(t) +m for almost all t > t

0

:

Proof. '1) ) 2)': Let P 2 C

n�n

be nonsingular such that P

�

(�G � H)P is in anti-m-

Hessenberg form. Thus, P

�

(tG�H)P is Hermitian anti-m-Hessenberg for all t 2 R . This

means in particular that

P

�

(tG�H)P =

2

4

0 0 tG

13

�H

13

0 tg

22

� h

22

tG

23

�H

23

tG

�

13

�H

�

13

tG

�

23

�H

�

23

tG

�

33

�H

�

33

3

5

;

where tG

13

�H

13

2 C

(

n�m�1

2

)�(

n+m�1

2

)

, and tg

22

�h

22

2 C , and where the other blocks have

corresponding sizes. If g

22

6= 0 then let t

0

=

h

22

g

22

, otherwise set t

0

=1. Then Lemma 6 for

t 6= t

0

implies that

Ind(tG�H) = Ind(t

~

G�

~

H) + Ind(tg

22

� h

22

); (21)

where

t

~

G�

~

H =

�

0 tG

13

�H

13

tG

�

13

�H

�

13

�

�

:

For some

~

t < t

0

, set " = ��(

~

tg

22

�h

22

) and

�

�

+

(t); �

�

(t); �

0

(t)

�

= Ind(t

~

G�

~

H), and note

that t

~

G�

~

H is in anti-m-Hessenberg form with size n� 1. Thus, since n� 1�m is even,

we can apply Theorem 19 and we obtain from (21) for t > t

0

that

j�

+

(t)� �

�

(t) + "j = j�

+

(t)� �

�

(t)j � �

0

(t) +m = �

0

(t) +m;

since �

0

(t) = �

0

(t) for t 6= t

0

. Analogously we obtain for t > t

0

that

j�

+

(t)� �

�

(t)� "j = j�

+

(t)� �

�

(t)j � �

0

(t) +m = �

0

(t) +m:

'2)) 3)': is trivial.

'3) ) 1)': W.l.o.g. we may assume that " = 1. Otherwise, we may consider the pencil

�(�G � H). Repeating our proof strategy once more, we assume that �G � H is in
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sign condensed form (10) and we consider the subpencil �G

22

� H

22

. By 2) there exists

t

0

2 R [ f1g, such that

j�

+

(t)� �

�

(t) + 1j � �

0

(t) +m for almost all t < t

0

j�

+

(t)� �

�

(t)� 1j � �

0

(t) +m for almost all t > t

0

:

(22)

We show next that we may assume that t

0

is an eigenvalue of �G

22

�H

22

. For this, let �

�

be an eigenvalue of �G

22

� H

22

such that j�

�

� t

0

j is minimal. We assume that �

�

� t

0

;

the case t

0

< �

�

can be proved analogously. Clearly we have

j�

+

(t)� �

�

(t) + 1j � �

0

(t) +m for almost all t < �

�

(since �

�

� t

0

)

and j�

+

(t)� �

�

(t)� 1j � �

0

(t) +m for almost all t > t

0

:

Thus, it remains to show that j�

+

(t)��

�

(t)�1j � �

0

(t)+m for almost all t 2 (�

�

; t

0

). But

this follows from the fact that t 7!

�

�

+

(t)� �

�

(t)� 1

�

and �

0

(t) are constant on (�

�

; t

0

),

since by the choice of �

�

there are no other eigenvalues in the interval (�

�

; t

0

).

Hence, we may assume that t

0

= �

�

is an eigenvalue of �G

22

� H

22

. Let � be chosen

minimal with the property that (22) is satis�ed for all t

0

= �

�

, where � � �. For the rest

of the proof, we distinguish two di�erent cases.

Case (1) Assume that � > 1. Then there exists in�nitely many t

1

with �

��1

< t

1

< �

�

,

such that

j�

+

(t

1

)� �

�

(t

1

)� 1j > �

0

(t

1

) +m:

On the other hand, we know that (22) holds for t

0

= �

�

, i.e., t

1

can be chosen, such that

j�

+

(t

1

)� �

�

(t

1

) + 1j � �

0

(t

1

) +m:

Both inequalities hold simultaneously only if �

+

(t

1

)� �

�

(t

1

)� 1 < �

�

�

0

(t

1

)+m

�

: Choose

t

2

such that �

�

< t

2

< �

�+1

and

�

�

�

�

+

(t

2

) � �

�

(t

2

) � 1

�

�

�

� �

0

(t

2

) + m. Then Lemma 14

implies that

�

�

+

(t

2

)� �

�

(t

2

)

�

�

�

�

+

(t

1

)� �

�

(t

1

)

�

= 2"

�

p

�

:

If "

�

is equal to �1, then

�

+

(t

2

)� �

�

(t

2

) < �

+

(t

1

)� �

�

(t

1

) � �

�

�

0

(t

1

) +m

�

= �

�

�

0

(t

2

) +m

�

;

since �

0

(t

1

) = �

0

(t

2

) = 0, which is a contradiction to j�

+

(t

2

) � �

�

(t

2

) � 1j � �

0

(t

2

) + m.

Thus, "

�

= 1. By permuting some rows and columns, we obtain that

�G

22

�H

22

�

c

�

�

g 0

0

~

G

�

� �

�

h 0

0

~

H

�

;
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where �g � h 2 C has the eigenvalue �

�

. De�ning

�

�

+

(t); �

�

(t); �

0

(t)

�

= Ind(t

~

G �

~

H),

we �nd that

j�

+

(t)� �

�

(t)j =

�

j�

+

(t)� �

�

(t) + 1j for all t < �

�

j�

+

(t)� �

�

(t)� 1j for all t > �

�

:

This implies that j�

+

(t)� �

�

(t)j � �

0

(t) +m = �

0

(t) +m for almost all t 2 R . Hence, by

Theorem 19 the pencil �G

22

�H

22

is congruent to a pencil

�

2

4

g 0 0

0 0

^

G

23

0

^

G

�

23

^

G

33

3

5

�

2

4

h 0 0

0 0

^

H

23

0

^

H

�

23

^

H

33

3

5

;

where the subpencil �

�

0

^

G

23

^

G

�

23

^

G

33

�

��

�

0

^

H

23

^

H

�

23

^

H

33

�

is in anti-m-Hessenberg form. Thus,

we �nally obtain

�G

22

�H

22

�

c

�

2

4

0 0

^

G

23

0 g 0

^

G

�

23

0

^

G

33

3

5

�

2

4

0 0

^

H

23

0 h 0

^

H

�

23

0

^

H

33

3

5

;

and this pencil is in anti-m-Hessenberg form.

Case (2) If � 6> 1, then � = 1. Thus, (22) holds for all t

0

= �

�

. This means in particular

that both

j�

+

(t)� �

�

(t) + 1j � �

0

(t) +m (23)

and j�

+

(t)� �

�

(t)� 1j � �

0

(t) +m (24)

hold for almost all t 2 R . Permuting some rows and columns, we obtain that

�G

22

�H

22

� �

�

g 0

0

~

G

�

� �

�

h 0

0

~

H

�

;

where �g � h 2 C has the eigenvalue �

1

. Setting

�

�

+

(t); �

�

(t); �

0

(t)

�

= Ind(t

~

G�

~

H), we

�nd that

j�

+

(t)� �

�

(t)j =

�

j�

+

(t)� �

�

(t) + "

1

j for all t < �

1

j�

+

(t)� �

�

(t)� "

1

j for all t > �

1

:

Then (23) and (24) imply that

j�

+

(t)� �

�

(t)j � �

0

(t) +m = �

0

(t) +m;

for almost all t 2 R and hence we may proceed as in Case (1). This completes the proof.

Analogous to the proof of Theorem 15, we obtain conditions on the sign sum for the

real eigenvalues and the eigenvalue 1. We only state this for the anti-triangular case.
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Corollary 21 Let �G � H 2 C

(2n+1)�(2n+1)

be a regular Hermitian pencil. Then the

following statements are equivalent.

1. �G�H is congruent to a pencil in anti-triangular form.

2. There exists exactly one eigenvalue �

0

2 R such that Signsum(�

0

) = �1 and for

every eigenvalue �

�

2 R [ f1g with �

�

6= �

0

we have that Signsum(�

�

) = 0.

4 Condensed forms for singular Hermitian pencils

In this section we include the case of singular Hermitian pencils. Although in this case an

anti-triangular form does not necessarily display the roots of the elementary divisors, it still

displays a nested set of invariant subspaces and therefore, the consideration of condensed

forms of singular Hermitian pencils does still make sense.

Analogous to the regular case, we derive a sign condensed form and then discuss the ex-

istence of anti-triangular and anti-m-Hessenberg forms. Let us �rst consider the canonical

form (see [22]).

Theorem 22 Let �G�H 2 C

n�n

be a Hermitian pencil. Then there exists a nonsingular

matrix P 2 C

n�n

, such that

P

�

(�G�H)P = �

�

G

0

0

0 G

00

�

�

�

H

0

0

0 H

00

�

; (25)

where the following conditions are satis�ed.

1. The subpencil �G

0

�H

0

is block diagonal with diagonal blocks of the form

�

2

4

0 0 Z

r

0 0 0

Z

r

0 0

3

5

�

2

4

0 0 J

r

(0)

�

Z

r

0 0 e

�

1

Z

r

J

r

(0) e

1

0

3

5

2 C

(r+1)�(r+1)

; (26)

where r � 0.

2. The subpencil �G

00

�H

00

is regular and in canonical form (9).

Proof. The proof follows directly from [22], Lemma 3.

In the following, if we speak of the sign characteristic or sign sum of �

0

2 R [ f1g

with respect to �G � H, we mean the sign characteristic or sign sum, respectively, of

�

0

2 R [ f1g with respect to the regular subpencil �G

00

�H

00

in the canonical form (25)

of �G�H. Next, we generalize Theorem 11 to the case of singular pencils.
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Theorem 23 (Sign condensed form) Let �G�H 2 C

n�n

be a Hermitian pencil. Then

there exists a nonsingular matrix P 2 C

n�n

and m 2 N , such that

P

�

(�G�H)P = �

2

4

0 0 G

13

0 G

22

G

23

G

�

13

G

�

23

G

33

3

5

�

2

4

0 0 H

13

0 H

22

H

23

H

�

13

H

�

23

H

33

3

5

; (27)

where the subpencil �

�

0 G

13

G

�

13

G

33

�

�

�

0 H

13

H

�

13

H

33

�

is regular and G

13

; H

13

2 C

m�m

are

lower anti-triangular. Furthermore

�G

22

�H

22

= �

2

6

6

6

6

6

4

O

l

0

"

1

I

p

1

.

.

.

"

k

I

p

k

0 0

3

7

7

7

7

7

5

�

2

6

6

6

6

6

4

O

l

0

"

1

�

1

I

p

1

.

.

.

"

k

�

k

I

p

k

0 "

k+1

I

p

k+1

3

7

7

7

7

7

5

;

(28)

where �

1

< : : : < �

k

. In addition we have for all �

0

2 R [ f1g that

Signsum(�

0

; G;H) = Signsum(�

0

; G

22

; H

22

):

Proof. Let �G � H be in canonical form (25) and let l denote the number of singular

blocks of type (26). We prove the result by induction on l.

'l = 0': This is Theorem 10.

'l ) (l + 1)': It follows from Remark 10 that

�G�H = �

2

6

6

4

0 0 Z

r

0

0 0 0 0

Z

r

0 0 0

0 0 0

~

G

3

7

7

5

�

2

6

6

4

0 0 J

r

(0)

�

Z

r

0

0 0 e

�

1

0

Z

r

J

r

(0) e

1

0 0

0 0 0

~

H

3

7

7

5

�

c

�

2

6

6

4

0 0 0 Z

r

0 0 0 0

0 0

~

G 0

Z

r

0 0 0

3

7

7

5

�

2

6

6

4

0 0 0 J

r

(0)

�

Z

r

0 0 0 e

�

1

0 0

~

H 0

Z

r

J

r

(0) e

1

0 0

3

7

7

5

;

where the number of blocks of type (26) of the subpencil �

~

G �

~

H is equal to l. By the

induction hypothesis we �nd that �

~

G�

~

H is congruent to a pencil that is in sign condensed

form (27). Thus, the result follows by again applying Remark 10.

We are now able to discuss necessary and su�cient conditions for the existence of anti-

triangular and anti-m-Hessenberg forms for the singular case. A condition on sign sums of

real eigenvalues (including 1) of the regular subpencil that is analogous to the condition
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in Theorem 15 or Theorem 21 does not hold as we can see from the following example.

The Hermitian pencil

�

�

0 0

0 0

�

�

�

0 0

0 1

�

is already in anti-triangular form, but Signsum(1) = 1. The background is that the

problem of reducing a singular Hermitian pencil to anti-m-Hessenberg form is basically the

problem of reducing a regular subpencil to anti-(m+ l)-Hessenberg form, where l denotes

the number of singular blocks of the pencil.

Theorem 24 Let �G�H 2 C

n�n

be a Hermitian pencil and let m � n be such that n�m

is even. Furthermore, let Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

for t 2 R . Then the following

statements are equivalent.

1. �G�H is congruent to a pencil in anti-m-Hessenberg form.

2. For all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) +m.

3. For almost all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t) +m.

Proof. '1)) 2)': As in the regular case, this follows from Lemma 3.

'2)) 3)': is trivial.

'3)) 1)': Assume that �G�H is in sign condensed form (27), i.e.,

�G�H = �

2

6

6

4

0 0 0 G

14

0 O

l

0 G

24

0 0 G

33

G

34

G

�

14

G

�

24

G

�

34

G

44

3

7

7

5

�

2

6

6

4

0 0 0 H

14

0 O

l

0 H

24

0 0 H

33

H

34

H

�

14

H

�

24

H

�

34

H

44

3

7

7

5

;

where �G

14

�H

14

2 C

k�k

is regular. For all t 2 R that are not eigenvalues of the regular

pencil �

�

0 G

14

G

�

14

G

44

�

�

�

0 H

14

H

�

14

H

44

�

we have that

Ind(tG�H) = (k; k; 0) + (0; 0; l) + Ind(tG

33

�H

33

):

Setting

�

�

+

(t); �

�

(t); �

0

(t)

�

:= Ind(tG

33

�H

33

), we obtain for almost all these t that

j�

+

(t)� �

�

(t)j = j�

+

(t)� �

�

(t)j � �

0

(t) +m = �

0

(t) +m + l:

The size of �G

33

�H

33

is n�2k� l, such that n�2k� l� (m� l) = n�m�2k�2l is even.

Thus, Theorem 19 can be applied and �G

33

�H

33

is congruent to a pencil �

^

G

33

�

^

H

33

in

anti-(m+ l)-Hessenberg form. Hence

�G�H �

c

�

2

6

6

4

0 0 0 G

14

0 O

l

0 G

24

0 0

^

G

33

�

G

�

14

G

�

24

� G

44

3

7

7

5

�

2

6

6

4

0 0 0 H

14

0 O

l

0 H

24

0 0

^

H

33

�

H

�

14

H

�

24

� H

44

3

7

7

5

;
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and this pencil is in anti-m-Hessenberg form.

We have a corresponding result for the case that n�m is odd. Analogous to the regular

case, the entry on the middel of the leftmost nonzero anti-diagonal plays an exceptional

role.

Theorem 25 Let �G � H 2 C

n�n

be a Hermitian pencil and let n � m 2 N such that

n �m is odd. Furthermore, let Ind(tG � H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

for t 2 R . Then the

following statements are equivalent.

1. �G�H is congruent to a pencil in anti-m-Hessenberg form.

2. There exists t

0

2 R [ f1g and " 2 f1;�1g, such that

j�

+

(t)� �

�

(t) + "j � �

0

(t) +m for all t < t

0

and j�

+

(t)� �

�

(t)� "j � �

0

(t) +m for all t > t

0

:

3. There exists t

0

2 R [ f1g and " 2 f1;�1g, such that

j�

+

(t)� �

�

(t) + "j � �

0

(t) +m for almost all t < t

0

and j�

+

(t)� �

�

(t)� "j � �

0

(t) +m for almost all t > t

0

:

Proof. '1) ) 2)': Assume there exists a nonsingular matrix P 2 C

2n�2n

such that

P

�

(�G � H)P is in anti-m-Hessenberg form, thus, P

�

(tG � H)P is Hermitian anti-m-

Hessenberg for all t 2 R . This means in particular that

P

�

(tG�H)P =

2

4

0 0 tG

13

�H

13

0 tg

22

� h

22

tG

23

�H

23

tG

�

13

�H

�

13

tG

�

23

�H

�

23

tG

�

33

�H

�

33

3

5

;

where tG

13

� H

13

2 C

(

n�m�1

2

)�(

n+m�1

2

)

, tg

22

� h

22

2 C , and the other blocks have corre-

sponding sizes. If the subpencil �g

22

� h

22

is regular we may proceed as in the proof of

Theorem 20. Otherwise, �g

22

� h

22

� 0. Then it follows from Lemma 3 that

j�

+

(t)� �

�

(t)j � 2

n+m� 1

2

+ �

0

(t)� n = �

0

(t) +m� 1

for all t 2 R . Hence, 2) is trivially satis�ed for any t

0

2 R [ f1g.

'2)) 3)': is trivial.

'3)) 1)': is proved analogous to the proof of Theorem 24.

It was our main goal to obtain necessary and su�cient conditions for the existence

of anti-triangular forms for general (including singular) Hermitian pencils. This explicit

result follows now directly from Theorem 24 and Theorem 25.
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Corollary 26 Let �G � H 2 C

2n�2n

be a Hermitian pencil. Furthermore, for t 2 R let

Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

. Then the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-triangular form.

2. For all t 2 R we have that j�

+

(t)� �

�

(t)j � �

0

(t).

Corollary 27 Let �G�H 2 C

(2n+1)�(2n+1)

be a Hermitian pencil. Furthermore, for t 2 R

let Ind(tG�H) =

�

�

+

(t); �

�

(t); �

0

(t)

�

. Then the following statements are equivalent.

1. �G�H is congruent to a pencil in anti-triangular form.

2. There exists t

0

2 R [ f1g and " 2 f1;�1g, such that

j�

+

(t)� �

�

(t) + "j � �

0

(t) for all t < t

0

and j�

+

(t)� �

�

(t)� "j � �

0

(t) for all t > t

0

:

5 Conclusions

We have obtained the so-called sign condensed form for general Hermitian pencils. This

form is a mixture of a triangular form and a diagonal form, where the diagonal form displays

all the 'singularity' and all the sign sums of the real eigenvalues of the pencil (or of the

regular subpencil), including the eigenvalue 1. We have furthermore obtained necessary

and su�cient conditions for the existence of anti-triangular and anti-m-Hessenberg forms

for Hermitian pencils in terms of conditions on the sign sum of the real eigenvalues and the

eigenvalue 1 and in terms of the inertia indices of certain Hermitian matrices. The latter

conditions hold also in the case that the pencil is singular. If a Hermitian pencil can be

transformed to anti-m-Hessenberg form via congruence, then the transformation matrices

can be chosen to be unitary, i.e., in this case both matrices of the pencil are simultaneously

unitarily similar to anti-m-Hessenberg forms.
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