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1 Introduction

We consider an adaptive �nite element method for the numerical solution of partial di�er-

ential equations, given in a weak formulation

�nd u 2 V

0

with a(u; v) = hf; vi 8v 2 V

0

: (1.0.1)

In the simplest example of a Laplace equation, the space V

0

is a subspace of H

1

(
) with

zero{Dirichlet type boundary conditions on @
 and

a(u; v) =

Z




(ru) � (rv) d
 :

An adaptiv f.e. solution for such a problem starts with a coarse conformal triangulation

of 
, where (1.0.1) is approximated from piecewise linear functions w.r.t. the given mesh.

After having an approximate solution some error estimator (see i.e. [10, 1] for an overview)

leads to an adaptive re�nement, i.e. some of the actual triangles are subdivided into 4 equal

subtriangles ('red' subdivision) due to the local large estimated error contribution.

This procedure can disturb the consistency of the mesh, if one triangle is re�ned on

one side of an edge and on the other side not (compare �g.1). There are two possibilies to

overcome this di�culty:

1. Usually a `green' re�nement is used for all these unconsistent triangles (�

1

in �g.1).

These `green' triangles have to be removed before the next re�nement steps are done,

otherwise some angles could become very small. A generalization to quadrilaterals

or bricks is complicate.

2. We accept the so called `hanging nodes', but have to ensure that the �nite element

ansatz functions used on this nonconformal triangulation remain continuous piecewise

linear (or piecewise quadratic) functions. This idea works on quadrilaterals or bricks

as well.

This paper shall be concerned with the case 2. We will show, how the properties of the

preconditioned conjugate gradient method can be used in such a way that a solution within

this continuous subspace of the nonconformal (discontinuous) function space is guaranteed.

The advantage of such a proceeding is the following:

Either we assemble a sti�ness matrix

~

K in the usual way:

for each element do

1) generate element matrix and right hand side

2) add these into the allocated arrays

or we work without any assembly of

~

K and carry out a matrix vector multiply within the

PCGM element{by{element.

In both cases the e�ective sti�ness matrix

~

K is de�ned from a nonconformal f.e. space in

the presence of at least one `hanging node'. This space, called V

(non)

is spanned by the

1



basis functions ~'

1

; : : : ; ~'

n

(on a mesh with n nodes), which are collected into a row vector

~

� = ( ~'

1

; : : : ; ~'

n

) in the following. Each function ~'

i

(nonzero only in triangles that contain

the node i as vertex) is as usually the sum of the shape functions de�ned in the single

triangles. Hence, if at least one `hanging node' occurs in the actual mesh, some of the

functions ~'

i

are discontinuous (not in H

1

(
)).

Usually the `hanging nodes' do not carry a degree of freedom, their values are de�ned

from the values at neighboring nodes. This is equivalent to the de�nition of a continuous

subspace V

(con)

� V

(non)

with the smaller dimension (n � #`hanging nodes') and we look

for the �nite element solution u 2 V

(con)

with

a(u; v) = hf; vi 8v 2 V

(con)

\ V

0

: (1.0.2)

On the other hand, the sti�ness matrix

~

K is de�ned with the basis

~

� of V

(non)

from

~

K = (a( ~'

j

; ~'

i

))

n

i;j=1

, so

u =

n

X

i=1

u

i

~'

i

=

~

�u

is a continuous function in V

(con)

only if some restrictions on the vector u 2 R

n

are ful�lled.

(Vectors in R

n

are column vectors and are underlined to distinguish them from functions.

From the de�nition of the basis

~

� as row vector of the functions ~'

i

, a short abbreviation

of the linear combination u =

~

�u is used throughout this paper.)

Note that u = (u

1

; : : : ; u

n

)

T

contains expanding coe�cients of u w.r.t. the basis con-

sidered. These coe�cients u

i

coincide with the values of the function u at node i only in

the case of the nodal basis (i.e.

~

�). Later on we consider hierarchical basis functions as

another basis in V

(non)

, then this is no longer true.

Using the basis

~

�, we transform (1.0.1) into a linear system

~

Ku =

~

b;

but we have to solve

P

T

~

KPu = P

T

~

b

with u 2 U = imP � R

n

and P the projection onto the subspace U that leads to continuous

functions:

u =

~

�u 2 V

(con)

() u 2 U

For using these ideas within an adaptive �nite element method we have to investigate two

basic features:

1. A special variant of PCGM has to be designed, that guarantees a solution within a

prescribed subspace U � R

n

working with the larger (n� n){matrix

~

K. This is the

goal of Chapter 2.

2. The projector P requires a cheap implementation which is simple for linear elements,

but more complicate for quadratic ones. This is discussed in Chapters 3 and 4.
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2 The Projected PCGM

2.1 The Basic Conjugate Gradient Method

Both algorithms, the PCGM and the projected PCGM are nothing but variants of the basic

CG method, which is well{known from Hesteness/Stiefel [5] for a long time, if we replace

the symmetric matrix A and the Euklidian inner product in R

n

by a symmetric operator

A: U! U with respect to another inner product h�; �i. (Nothing but this symmetry is used

in the proofs for the basic CG [5]).

So, let A : U ! U be symmetric and positive de�nite with respect to the inner product

h�; �i : U � U ! R

1

:

Then the CG method for solving Au =

~

b reads as

Start: u 2 U arbitrary,

w := Au�

~

b

q := w; 
 := hw;wi

Iteration: 1: � := hAq; qi; � := �
=�

2: û := u+ �q

3: ŵ := w + �Aq

4: 
̂ := hŵ; ŵi; � := 
̂=


5: q̂ := ŵ + �q

with (û; q̂; 
̂) instead of (u; q; 
) goto 1:

As is well{known, the rate of convergence depends on the eigenvalues of A: If


 � �

i

(A) � �
; (2.1.1)

then the k{th step of the iteration has

hA(u� u

�

); (u� u

�

)i � �

2k

� const (2.1.2)

with � =

1�

p

�

1+

p

�

; � = 
=
 and u

�

the exakt solution.

2.2 Preconditioned Conjugate Gradient Method

If we try to solve a linear (n� n) system

Ku

�

= b;
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with an ill{conditioned s.p.d. matrix K, we have to introduce a preconditioner C with

'good' eigenvalues of C

�1

K. Then PCGM follows directly from 2.1 by replacing

A = C

�1

K;

~

b = C

�1

b

and

hu; vi = (Cu; v)

with (�; �) the Euklidian inner product in U = R

n

, because A is s.p.d. w.r.t. h�; �i.

So, the rate of convergence depends on the spectral bounds of A = C

�1

K :


 � �

i

(C

�1

K) � �
 (2.2.1)

(which is 
(Cx; x) � (Kx; x) � �
(Cx; x) 8x 2 R

n

)

and (2.1.2) reads as

(K(u� u

�

); u� u

�

) � �

2k

� const:

In the implementation, the step 3. is often replaced by

3a) r̂ := r + �Kq

3b) ŵ := C

�1

r̂

with the residuum r = Ku� b of the original linear system.

2.3 Projected PCGM

Now we try to solve the linear system

P

T

~

KPu

�

= P

T

~

b

with u

�

= Pu

�

2 U � R

n

and U a proper subspace of dimension n

0

< n.

Let U = imP and V = imP

T

, where P is a projector R

n

! U, then K = P

T

~

KP is a

unique mapping U ! V, so there exists a unique solution u

�

2 U for each P

T

~

b 2 V. Let

~

K

be a symmetric positive de�nit (n� n){matrix. For each u 2 U, the residiuum

r = P

T

~

KPu� P

T

~

b = P

T

(

~

Ku�

~

b)

is a vector in V. This means that a basic CGM without preconditioning (A = P

T

~

KP ) is

impossible (û := u+ �r makes no sense).

So, we have to de�ne a preconditioner C : U ! V and especially C

�1

: V! U is required

to form w := C

�1

r 2 U.

In order to obtain a well{de�ned CGM from the basics in 2.1, we consider the following

restriction of the Euklidian inner product in R

n

to U and V as a dual pairing:

(u; v)

D

= (u; v) for each u 2 U (�rst argument)

and v 2 V (second argument).

4



Then K = P

T

~

KP and C are symmetric positive de�nit operators w.r.t. (�; �)

D

in the

following sense:

(u

1

; Ku

2

)

D

= (u

2

; Ku

1

)

D

8u

1

; u

2

2 U

(u

1

; Cu

2

)

D

= (u

2

; Cu

1

)

D

8u

1

; u

2

2 U

(C

�1

v

1

; v

2

)

D

= (C

�1

v

2

; v

1

)

D

8v

1

; v

2

2 V:

Now, we de�ne A = C

�1

K : U ! U and hu

1

; u

2

i = (u

1

; Cu

2

)

D

8u

1

; u

2

2 U.

Here, h�; �i is an inner product U� U ! R

1

and A is symmetric positive de�nit w.r.t. h�; �i:

hAu

1

; u

2

i = (C

�1

Ku

1

; Cu

2

)

D

=

�

u

2

; C(C

�1

Ku

1

)

�

D

= (u

2

; Ku

1

)

D

= (u

1

; Ku

2

)

D

= (u

1

; CC

�1

Ku

2

)

D

= hu

1

;Au

2

i:

Hence, all presuppositions of (2.1) are ful�lled and the CGM for solving Au

�

= b (with

b = C

�1

P

T

~

b 2 U) reads as:

Start: u 2 U arbitrary

calculate r =

~

Ku�

~

b;

note: P

T

r 2 V is the original residuum

q := w := C

�1

P

T

r 2 U


 := hw;wi = (w;Cw)

D

= (w; P

T

r)

D

= (w; r) ( from w 2 U)

Iteration: 1: � := hAq; qi = (C

�1

Kq;Cq)

D

= (q;Kq)

D

=

= (q;

~

Kq) ; � := �
=�

2: û := u+ �q (update in U)

3a) r̂ := r + �

~

Kq

3b) ŵ := C

�1

P

T

r̂

4: 
̂ := hŵ; ŵi = (ŵ; r̂); � := 
̂=


5: q̂ := ŵ + �q (update in U)

Remark 1: The projection P

T

r in step 3a) is not explicitly done, if the preconditioner

is chosen as

C

�1

= P

~

C

�1

P

T

: V! U: (2.3.1)

In this case P

T

r (and P

T

r̂) never occur in the iteration but ŵ and 
̂ are well{de�ned from

the structure of C

�1

.

Remark 2: The rate of convergence depends on the eigenvalues of the operator A:


 � �

i

(P

~

C

�1

P

T

~

KP ) � �
: (2.3.2)

We have for the k{th step

hA(u� u

�

); u� u

�

i = (u� u

�

; K(u� u

�

))

D

=

�

~

K(u� u

�

); u� u

�

�

� �

2k

� const

5



with � as in 2.1 . For investigating these eigenvalues for our application the Ficticious

Space Lemma [8] has to be used (see Chapter 4).

Remark 3: The special structure of the projectors P and P

T

occur only once within

the precondtioning step 3b), so we have the usual PCGM with a special projected precon-

ditioner running within the subspace U.

3 Implementing the Projection

From Chapter 2 we conclude that the PCGM solution of the linear system

P

T

~

Ku = P

T

~

b

for u 2 U is a typical PCGM, if the projection, introduced into the preconditoner

C

�1

= P

~

C

�1

P

T

can be cheaply implemented. To clarify the structure of the matrix P , we have to consider

the �nite element spaces as de�ned in the Introduction.

For sake of simplicity, we require for our actual mesh at most one 'hanging node' per

edge in the linear case as in �g. 1 (resp. one pair of 'hanging nodes' in the quadratic

case as in �g. 2). Each triangle contains at most one edge with a 'hanging node' (i.e. the

adaptive mesh generator subdivides each triangle 'red' if more than one of its edges are

subdivided).

3.1 The Case of (Bi{, Tri{) Linear Elements

Without loss of generality we can suppose that exactly one 'hanging node' (the last one,

node n) has been produced by a 'red' subdivision of one triangle without subdividing the

other one sharing an edge (k; k

0

).

So, the node n is 'son' of the 'fathers' k and k

0

in the hierarchical generation of the actual

�ne mesh and we have the situation as in �g. 1.

�
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E

E

E
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u

u
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Then, the nonconformal basis

~

� contains 3 discontinuous piecewise linear functions:

~'

n

(nonzero in �

2

; �

4

and �

3

; zero in �

1

)

~'

k

(the support contains �

1

and �

2

) and

~'

k

0

(the support contains �

1

and �

3

).

A function u =

~

�u (with u = (u

1

; : : : ; u

n

)

T

) is continuous if and only if

u

n

=

1

2

(u

k

+ u

k

0

); (3.1.1)

because this implies a linear dependence on u

k

and u

k

0

from both sides of this edge (k; k

0

).

The matrix representation of the projector

P : R

n

! U =

�

u : u

n

=

1

2

(u

k

+ u

k

0

)

�

is obvionsly P = I � e

n

e

T

n

+

1

2

e

n

e

T

k

+

1

2

e

n

e

T

k

0

.

A much more simple formula is found with respect to the hierarchical �nite element

basis

~

	. This basis was used for e�cient hierarchical preconditioning 2D f.e. systems by

YSERENTANT[12].

Let

~

	 = (

~

 

1

; : : : ;

~

 

n

) the hierarchical basis of the same (discontinuous) f.e. space

V

non

= span

~

�. Then, before subdividing the edge (k; k

0

) we had no 'hanging node', so

V

con

= span(

~

 

1

; : : : ;

~

 

n�1

)

and here the functions

~

 

k

and

~

 

k

0

are continuous with a support containing �

1

and

5

S

i=2

�

i

.

So, only

~

 

n

= ~'

n

is the discontinuous basis function in the basis

~

	 and we have

u =

~

	v 2 V

con

() v

n

= 0; (3.1.2)

a much more simple representation of V

con

.

For representing U (subspace of R

n

of coe�cient vectors with respect to the nodal basis

functions

~

�), we compare

u =

~

	v =

~

�u:

With the well{known transformation matrix Q mapping the nodal basis to the hierarchical

one:

~

	 =

~

�Q; (3.1.3)

we obtain

u =

~

	v =

~

�Qv =

~

�u() Qv = u:

This leads to another (hierarchical) representation of the matrix P :

u 2 U () u = Pu() v = Q

�1

u ful�lles v

n

= 0;

7



hence

P = Q

^

PQ

�1

(3.1.4)

with

^

P = diag(1; 1; : : : ; 1; 0)

= I � e

n

e

T

n

:

The implementation of P (and P

T

) within the precondtioning step 3b) of the PCG algo-

rithm in 2.3 is then best combined with the hierarchical preconditioner

~

C

�1

= QQ

T

in R

n

:

From (3.1.4) and (2.3.1) we have

C

�1

= P

~

C

�1

P

T

= Q

^

PQ

�1

QQ

T

Q

�T

^

PQ

T

= Q

^

PQ

T

:

So, the projection into the proper subspace is done after transforming the residual r =

~

Ku�

~

b into the hierarchical basis.

For better convergence and for 3D{calculations this can be generalized to the BPX{

preconditioner in a straight forward manner.

3.2 The Case of Quadratic Elements

Here, we consider 6{node triangles or 8{node quadrilaterals in 2D (resp. 10{node tetrahe-

drons or 20{node bricks in 3D).

Again, for simple description, we consider only one subdivided edge, that produced 2

'hanging nodes', following �g.2:

�

�

�

�

�

�

�

�

�

�

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

D̀

D

D

D

D

D

D

D

D

D

D

D

D

D

D

h

h

h

h

h

h

h

,

,

,

,

,

,E

E

E

E

E

E

u

u

u

u

u

u

u

�

1

�

2

�

3

�

4

�

5

k

k

0

m

s

s

s

s

s

s

s

s

s

s

s

n�1

n

Figure 2

Let the edge (k;m; k

0

) be subdivided into the two smaller edges

(m;n� 1; k) and (m;n; k

0

)

(again the two last nodes n� 1 and n are 'hanging nodes').

Now, the subspace V

con

is again represented by restrictions of u

n

and u

n�1

depending on

8



u

k

; u

m

and u

k

0

but this is no more a local information on the two subedges. A cheap

implementation of P (and P

T

) is again possible in considering the hierarchical basis

~

	.

For quadratic elements, the hierarchical basis is de�ned as follows: On the �nest mesh,

we forget the edge{midnodes and de�ne the hierarchical basis as in the linear case for the

functions belonging to vertex nodes. Then the quadratic edge bubbles are added to the

basis for completing

~

	. Obviously span

~

	 = span

~

� and

~

	 =

~

�Q remain valid with the

same matrix Q as in the linear case.

From the element by element de�nition of the basis functions as sums of shape functions,

we obtain the following 3 discontinuous functions in the hierarchical basis:

~

 

m

=

(

quadratic bubble from �

1

{side

piecewise linear from �

2

=�

3

{side

~

 

n

=

(

0 from �

1

{side

quadratic bubble in �

2

~

 

n�1

=

(

0 from �

1

{side

quadratic bubble in �

3

In the hierarchical basis

~

	, the functions

~

 

k

and

~

 

k

0

are continuous (the same as in the

linear case).

So, u =

~

	v 2 V

con

is a continuous function, when v

m

~

 

m

+ v

n

~

 

n

+ v

n�1

~

 

n�1

is continuous

over the edge (k;m; k

0

), which is equivalent to

v

n

= v

n�1

=

1

4

v

m

:

(v

n

~

 

n

+ v

n�1

~

 

n�1

corrects the jump in v

m

~

 

m

at the edge).

Now, the projection

^

P w.r.t. the hierarchical basis is non{symmetric

^

P = I � e

n

e

T

n

� e

n�1

e

T

n�1

+

1

4

e

n

e

T

m

+

1

4

e

n�1

e

T

m

and the same calculation as in 3.1 yields

C

�1

= Q

^

P

^

P

T

Q

T

as a generalization of the hierarchical precondtioner to 'hanging nodes' for quadratic el-

ements. In the general case, the implementation of

^

P and

^

P

T

is a simple edge{oriented

algorithm:

v :=

^

P

T

v: for each edge (m; i; j) do

if node i is 'hanging' then

v

m

:= v

m

+

1

4

v

i

; v

i

:= 0

w :=

^

Pw: for each edge (m; i; j) do

if node i is 'hanging' then

w

i

:=

1

4

w

m

9



4 The Estimation of the Eigenvalue Bounds

For complete use of the ideas above, we have to prove that

�(P

~

C

�1

P

T

P

T

~

KP )

is bounded independent on h (or growing as � j lnhj for the simple hierarchical precondi-

tioner

~

C

�1

= QQ

T

). Here the Ficticous Space Lemma [8] has to be used:

Ficticious Space Lemma: If we have

1. a symmetric p.d. operator

~

A :

~

H !

~

H

(Hilbert space with inner product h�; �i

�

, the '�cticous space')

2.

~

C

�1

a 'good' precondtioner for

~

A, i.e.




1

h

~

A; ~u; ~ui

�

� h

~

A

~

C

�1

~

A~u; ~ui

�

� 


2

h

~

A~u; ~ui

�

8~u 2

~

H .

3. Let A : H ! H s.p.d. w.r.t. h�; �i { inner product in H .

4. Let R :

~

H ! H a restriction operator with

hAR~u;R~ui � c

R

h

~

A~u; ~ui

�

8~u 2

~

H

5. Let Q : H !

~

H a prolongation with RQu = u 8u 2 H and

h

~

AQu;Qui

�

� c

�1

Q

hAu; ui 8u 2 H

then : C

�1

= R

~

C

�1

R

�

is a 'good' preconditioner for A with


hAu; ui � hAC

�1

Au; ui � �
hAu; ui

and


 � 


1

c

Q

; �
 � 


2

c

R

:

We would like to use this Lemma with

H = V

con

(A is de�ned from the underlying bilinear form a(�; �)

with the conformal f. e. basis span� and

has K as matrix representation)

~

H = V

non

(

~

A is de�ned from a(�; �)

w.r.t. the basis

~

�,

belonging to the sti�ness matrix

~

K)

Then R : V

non

! V

con

has the previous matrix representation P , and from V

con

� V

non

we

10



can choose Q as the idendity.

The F.S.L. could be applied yielding our preconditioner P

~

C

�1

P

T

as matrix representation

of C

�1

, but for the de�nition of

~

C

�1

acting on the nonconformal f.e. space, the spectral

bounds 


1

; 


2

are unclear. So, we consider another auxiliary �cticious space

~

H = V

green

.

Let V

green

= span

^

� the f.e. space on the same triangulation for which V

con

and V

non

are de�ned but instead of letting 'hanging nodes', the triangles (�

1

in the examples) are

subdivided 'green' into 2 parts. Then, in the example of 3.1 we have

~'

i

= '̂

i

8i 6= k; k

0

; n;

when

span

~

� = span( ~'

1

; : : : ; ~'

n

) = V

non

span

^

� = span('̂

1

; : : : ; '̂

n

) = V

green

Now, '̂

k

; '̂

k

0

and '̂

n

are continuous functions from the usual conformal mesh.

If for a function u =

^

�u 2 V

green

, we de�ne Ru =

^

�Pu with the same projection matrix

as in 3.1 or 3.2, the arising function coincides with the analogous de�nition from chapters

3.1/3.2 using the nonconformal basis:

Ru =

~

�Pu =

^

�Pu 2 V

con

:

Hence, although the sti�ness matrices

~

K and

^

K = (a('̂

j

; '̂

i

))

n

i;j=1

do not coincide the

projections P

T

~

KP = P

T

^

KP do.

Now, we can use the F.S.Lemma with

~

H = V

green

;

^

K , preconditioner

~

C

�1

and

H = V

con

; K = P

T

~

KP = P

T

^

KP and R :

~

H ! H is represented by P .

For completing this chapter the constant c

R

has to be estimated:

a(Ru;Ru) � c

R

a(u; u) 8u 2 V

green

:

Knowing the fact that the dimension of V

con

= RV

green

is (n{#hanging nodes) and these

'hanging nodes' can occur in the (locally) �nest level only, the angel between the subspaces

V

con

and W (when V

green

= V

con

+ W ) is 'good':

a(u; v) � 
 (a(u; u)a(v; v))

1=2

8u 2 V

con

8v 2 W

with 0 < 
 < 1 (independent on h , see i.e. [2, 6]).

So, c

R

follows with u = Ru+ v 8u 2 V

green

; v 2 W and

a(u; u) = a(Ru;Ru) + 2a(Ru; v) + a(v; v)

� a(Ru;Ru)� 2
 (a(Ru;Ru) � a(v; v))

1=2

+ a(v; v)

� (1� 
) (a(Ru;Ru) + a(v; v))

yielding c

R

= (1� 
)

�1

.
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Using the Ficticous Space Lemma we obtain for

�(C

�1

K) � �
=
 � 


2

=


1

� c

R

:

So, the precondtioner C

�1

= P

~

C

�1

P

T

for K = P

T

~

KP is as good as

~

C

�1

for

^

K.

Remark 1: We have




2

=


1

= O(j lnhj

2

) for the hierarchical preconditioner in 2D [12] or




2

=


1

= O(1) for BPX precondtioners [4, 11, 9].
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