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1 Introduction

The standard matrix eigenvalue problem for the n� n matrix A has the form

(A� �I)v = 0:

Many matrix eigenvalue problems are more naturally presented not in this form but as

generalized eigenvalue problems

(A� �B)v = 0:

Generalized eigenvalue problems have some interesting special features; for example, they

can have in�nite eigenvalues.

The most popular algorithm for solving generalized eigenvalue problems is the QZ

algorithm of Moler and Stewart [2]. This is a generalization of the QR algorithm, which

solves standard eigenvalue problems. An important feature of the QZ algorithm that was

rightly emphasized by its inventors is that it functions perfectly well in the presence of

in�nite eigenvalues. However, when one looks at explanations of the QZ algorithm, e.g.

[1], [2], [5], they always assume from the outset that B is nonsingular, which rules out

in�nite eigenvalues. As far as I know, all explanations of the QZ algorithm that have been

published so far have shared this weakness. Thus there are good explanations of the QZ

algorithm in the literature, but none of them holds for the case when in�nite eigenvalues

are present. The purpose of this paper is simply to demonstrate why the QZ algorithm

performs well in the presence of in�nite eigenvalues.

In this paper we discuss implicitly shifted (bulge-chasing) QZ algorithms. These are

iterative processes that operate on pencils that have been reduced to Hessenberg-triangular

form beforehand. Each QZ iteration makes use of shifts to introduce a bulge in the

Hessenberg form at the top of the pencil. Then the bulge is chased to the bottom and o�

of the edge of the pencil, restoring the Hessenberg-triangular form. In the course of the

iterations, eigenvalues are de
ated one or more at a time. In�nite eigenvalues normally

emerge at the top of the pencil, and �nite eigenvalues are de
ated at the bottom. The

key to rapid convergence of the �nite eigenvalues is the e�ective transmission of the shifts

from top to bottom of the pencil during the bulge chase. (Of course the shifts must also

be good approximations to eigenvalues, but this is not hard to arrange.) In this paper

we identify the mechanism by which shifts are transmitted through the pencil during the

bulge chase, and we show that the shift-transmission mechanism is not disrupted by the

presence of in�nite eigenvalues. Thus �nite eigenvalues converge rapidly at the bottom

of the pencil, regardless of whether or not in�nite eigenvalues are present. In either case,

every few iterations produces a new �nite eigenvalue for de
ation. If there are in�nite

eigenvalues, they rapidly percolate to the top of the pencil for de
ation there. De
ation

of in�nite eigenvalues must not be neglected. If it is, the shift transmission process breaks

down, and progress toward convergence comes to a halt.

The implicitly shifted QZ algorithms that we study in this paper are members of the

larger family of implicitly shifted GZ algorithms [5]. The ideas presented in here are

applicable to the larger family. We will restrict our attention to the QZ case in order to

keep the presentation as simple as possible.
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2 Basic Facts and Terminology

Given a pair of real or complex n � n matrices A and B, the matrix polynomial A � �B

with indeterminate � is called a matrix pencil. A �nite complex number � is called an

eigenvalue of the pencil A� �B if there is a nonzero vector v (called an eigenvector) such

that (A � �B)v = 0. The problem of �nding the eigenvalues of a matrix pencil is called

the generalized eigenvalue problem. One easily sees that if the matrix B is nonsingular, the

eigenvalues of the matrix pencil A� �B are exactly the eigenvalues of the matrix B

�1

A.

There are n of them, and they are (�nite) complex numbers.

Regardless of whether or not B is singular, the (�nite) eigenvalues of the matrix pencil

are exactly the solutions of the characteristic equation

det(A� �B) = 0:

This is analogous to the standard eigenvalue problem. The di�erence is that ifB is singular,

the characteristic polynomial det(A��B) has degree less than n. In fact, it can even happen

that det(A � �B) is identically zero. For example, this happens when A and B have a

common null vector. Then every � is an eigenvalue. If det(A� �B) is identically zero, we

call A � �B a singular pencil. Otherwise it is a regular pencil. We will focus on regular

pencils.

Two matrix pencils A��B and

~

A��

~

B are called strictly unitarily equivalent if there are

unitary matrices U and V such that

~

A� �

~

B = U(A� �B)V . Obviously strictly unitarily

equivalent pencils have the same eigenvalues. The Generalized Schur Theorem [1, Theorem

7.7.1] states that every pencil is strictly unitarily equivalent to a pencil

~

A� �

~

B for which

~

A and

~

B are upper triangular. Letting �

1

; : : : ; �

n

and �

1

; : : : ; �

n

denote the main diagonal

entries of

~

A and

~

B, respectively, we see that the characteristic equation of

~

A� �

~

B is

n

Y

i=1

(�

i

� ��

i

) = 0:

If �

i

= �

i

= 0 for some i, the pencil is singular. Otherwise it is regular, and each pair

(�

i

; �

i

) for which �

i

6= 0 gives rise to an eigenvalue �

i

=�

i

. If the pencil is regular, but

the matrix B (and

~

B) is singular, there will be at least one pair for which �

i

= 0 (and

�

i

6= 0). It is reasonable to say that each of these gives rise to an in�nite eigenvalue.

(Each corresponds to a zero eigenvalue of the reciprocal pencil �A� B.) If we make this

convention, then each regular pencil has exactly n eigenvalues, counting the in�nite ones.

Since the generalized Schur form tells everything about the eigenvalues of a pencil, one

would naturally like to have an algorithm that transforms a pencil to generalized Schur

form by a sequence of unitary equivalence transformations. A big step in this direction

is to transform the pencil to Hessenberg-triangular form. Every pencil is strictly unitarily

equivalent to a pencil

^

A��

^

B for which

^

A is upper Hessenberg (â

ij

= 0 if i > j+1) and

^

B

is upper triangular. The reduction can be carried out by a direct procedure [1, x7.7.4] in

O(n

3

) 
ops. This is already quite close to the generalized Schur form, but Galois theory

requires that the rest of the reduction be done by an iterative method, in this case the QZ

algorithm.
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Suppose we have now a Hessenberg-triangular pencil. We will now drop the hats and

call it A��B. If any one of the subdiagonal entries a

j+1;j

is zero, we can split the eigenvalue

problem into two (or more) subproblems involving subpencils. Therefore, we can assume

without loss of generality that our A is a proper upper Hessenberg matrix, i.e. a

j+1;j

6= 0

for all j.

If B is singular, at least one of the b

jj

will be zero. There are at least two ways to deal

with this situation. One is to chase the zero entry to either the top or the bottom of B

by the procedure described in [1, x7.7.5]. Then an in�nite (or possibly 0=0) eigenvalue can

be de
ated from either the top or the bottom of the pencil. The other course of action is

simply to leave the zero in place and apply the QZ algorithm to the pencil with a singular

B. The objectives of this paper are to demonstrate why there is no harm in doing this and

to convince the reader that this is the most e�cient course of action.

3 The implicitly-shifted QZ algorithm

The implicitly-shiftedQZ algorithm operates on a pencilA��B that is in proper Hessenberg-

triangular form. A QZ iteration begins with an equivalence transformation that disturbs

the Hessenberg form of A by introducing a bulge near the upper left hand corner. The rest

of the iteration consists of returning A to Hessenberg form by chasing the bulge from one

end of the matrix to the other and, �nally, o� the edge.

Chasing the bulge

We will describe �rst the procedure by which the bulge is chased through the matrix,

deferring until later the description of how the bulge is created. An iteration of degree

m produces a bulge that protrudes m diagonals beyond the subdiagonal. For example, a

bulge of degree two looks like this:
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:

This bulge has been chased one row down and one column to the right from its original

position. To chase it further we apply a pair of Givens rotators on the left to annihilate

the entries in positions (5; 2) and (4; 2). We also apply compensating transformations on

the right to maintain the triangular form of B. Speci�cally, the �rst Givens rotator (or

Householder re
ector or other unitary transformation matrix) acts on rows 4 and 5 and

transforms the (5; 2) entry to zero. We must apply the same transformation to B. This

recombines rows 4 and 5, creating a new nonzero entry in position (5; 4). The newly
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transformed pencil has the form
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:

One general principle of this algorithm is that whenever the triangular form of B is dis-

turbed, we restore it immediately. Thus we apply a transformation on the right that acts

on columns 4 and 5 and annihilates the entry b

54

. When we apply this same transformation

to A, it recombines columns 4 and 5, creating a nonzero entry in position (6; 4). The pencil

now has the form
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:

The next transformation from the left acts on rows 3 and 4 and annihilates the entry a

42

.

When we apply this same transformation to B, it creates a new nonzero entry in position

(4; 3). We then apply a transformation on the right to columns 3 and 4 to restore B to

triangular form. When we apply this transformation to A, we recombine columns 3 and 4,

creating a new nonzero entry in position (6; 3). The pencil now has the form
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:

The bulge has now been pushed down and to the right one position. The cost was two

rotations on the left, accompanied by two compensatory rotations on the right.

Chasing a bulge of arbitrary degree m follows the same principle. To push it forward

one notch, we need to apply m rotations on the left, accompanied by m compensatory

rotations on the right.

In our 6�6 example, the bulge is now near the bottom of A. The next step will push it

part way o� the bottom, and the �nal step (requiring only half as many transformations)

�nishes the job.

This is a very small example. The reader should envision a much bigger pencil with,

say, n = 100 or n = 1000. Then the bulge chase, which pushes the bulge all the way from

top to bottom of the matrix, is a much longer process.
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Typical implementations of the QZ algorithm have degree m = 1 or m = 2. There is

no theoretical reason why m cannot be higher, say 4 or 6.

1

Initiating the QZ iteration

Now that we know how to chase the bulge, we consider the question of getting the bulge

started. We will assume initially that B is nonsingular. The QZ iteration is the same as

an implicit QR iteration on AB

�1

. If we are going to do an iteration of degree m, we need

m shifts, �

1

; : : : ; �

m

. Choice of shifts will be discussed later. Given m shifts, we calculate

a vector

x = �(AB

�1

� �

1

I) � � � (AB

�1

� �

m

I)e

1

(1)

= �(A� �

1

B)B

�1

� � � (A� �

m

B)B

�1

e

1

;

where � is any convenient nonzero scale factor. Because A is upper Hessenberg and B is

upper triangular, only the �rst m+ 1 components of x are nonzero.

The next step is to build a unitary transformation Q whose �rst column is proportional

to x, i.e. Qe

1

= �x or Q

�1

x = �

�1

e

1

. If we think of Q

�1

as a matrix that introduces zeros

into the vector x, we see that one way to build Q

�1

is as a product of m Givens rotations.

The �rst, Q

�1

m

, acts on rows m and m + 1 and transforms x

m+1

to zero. The next, Q

m�1

,

acts on rows m � 1 and m and transforms the mth component of (the transformed) x to

zero. The next transformation annihilates the (m � 1)st component, and so on. In the

end, we can take

Q

�1

= Q

�1

1

Q

�1

2

� � �Q

�1

m

; (2)

and we have Q

�1

x = 
e

1

.

Next we transform the pencil by multiplying it by Q

�1

on the left. (This has the same

e�ect as the similarity transformation AB

�1

! Q

�1

AB

�1

Q.) If we apply the transfor-

mations Q

�1

i

one at a time, we can maintain the upper triangularity of B by following

each left transformation immediately by a compensating right transformation, just as in

the bulge chase. For example, when we apply Q

�1

m

, it recombines rows m and m + 1 of

B, creating a new nonzero entry in position (m + 1; m). We then immediately apply a

right transformation Z

m

, acting on columns m and m+1, that annihilates that new entry.

In the end we will have made a transformation A � �B ! Q

�1

(A � �B)Z (which also

corresponds to a similarity transformation AB

�1

! Q

�1

AB

�1

Q). The transformed B is

upper triangular, but the transformed A is no longer upper Hessenberg. It is easy to check

that it has a bulge that protrudes m diagonals beyond the superdiagonal. For example, in

1

However, shift blurring [3] limits the e�ectiveness of the QZ algorithm when m is large (e.g. m = 20).
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the case m = 2, the transformed pencil looks like
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:

Now the preliminary transformation is complete. The rest of the QZ iteration consists

of chasing the bulge through the matrix, as described above. The resulting transformation

of A � �B is the same as that of an iteration of the QR algorithm of degree m on AB

�1

[2], [1], [5].

4 The objective of the QZ iteration

The iteration begins with the choice of m shifts. A common strategy is to take them to be

the eigenvalues of the lower right hand m�m subpencil. That is, if

A� �B =

"

A

11

A

12

A

21

A

22

#

� �

"

B

11

B

12

0 B

22

#

;

where A

22

� �B

22

is m �m, then we take the shifts to be the eigenvalues of A

22

� �B

22

.

The hope is that these shifts will be good approximations to eigenvalues of the pencil.

Notice that A

21

has only one nonzero entry, a

n�m+1;n�m

. If this entry is small, all of the

shifts will be excellent approximations to eigenvalues of the pencil, except in ill-conditioned

situations.

The progress that one makes on a QZ iteration is, roughly speaking, determined by

ratios of eigenvalues of the matrix

p(AB

�1

) = (AB

�1

� �

1

I)(AB

�1

� �

2

I) � � � (AB

�1

� �

m

I): (3)

If �

1

; : : : ; �

n

are the eigenvalues of the pencil A� �B, then p(�

1

); : : : ; p(�

n

) are the eigen-

values of p(AB

�1

). Suppose we number the eigenvalues so that jp(�

1

) j � jp(�

2

) j � � � � �

jp(�

n

) j. Then the ratios

jp(�

k+1

)=p(�

k

) j k = 1; : : : ; n� 1;

determine the progress one makes. If any one of these ratios is much less than 1, the step will

make good progress toward convergence.

2

If jp(�

k+1

)=p(�

k

) j � 1, we will typically have

j â

k+1;k

j � ja

k+1;k

j, where â

k+1;k

denotes the entry after the iteration. Indeed (typically)

j â

k+1;k

j � jp(�

k+1

)=p(�

k

) j ja

k+1;k

j;

2

Technically the ratios determine asymptotic convergence rates that would be achieved if the same shifts

were used over and over again. Strictly speaking, they should not be applied to a single step. However,

experience indicates they usually do give a good indication of what will happen in a single step as well.
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Since â

k+1;k

is much smaller than a

k+1;k

, we have made good progress toward block trian-

gular form and a de
ation.

Our shift strategy aims to choose shifts that are very close to eigenvalues. If �

1

; : : : ; �

m

are very close to �

n�m+1

; : : : ; �

n

, then p(�

n�m+1

), . . . , p(�

n

) will all be small numbers, typi-

cally much smaller than the next smallest eigenvalue p(�

n�m

). Thus the ratio jp(�

n�m+1

)=p(�

n�m

) j

will be small, so â

n�m+1;n�m

will be much smaller than a

n�m+1;n�m

. Our next iteration

will use the eigenvalues of the subpencil

^

A

22

� �

^

B

22

as shifts. Since â

n�m+1;n�m

is much

smaller than a

n�m+1;n�m

, the new shifts will be much better estimates of eigenvalues than

the previous ones were, and the new ratio j p̂(�

n�m+1

)=p̂(�

n�m

) j will be much better than

the previous one. Thus the next step will make much better progress than the previous one

did. The positive feedback cycle of improving shifts and improving convergence results in a

quadratic local convergence rate [4], [5]. In practice only a few iterations are needed before

a

n�m+1;n�m

becomes small enough that we can set it to zero and de
ate an m�m chunk

from the problem. We then go to work on the remaining submatrix. A few iterations later,

we de
ate o� another m�m chunk, and so on. In practice, the de
ations sometimes occur

in bigger or smaller chunks. Keep in mind that m � n; small chunks are being de
ated

from the bottom of the pencil.

5 Transmission of shifts

The whole point of the previous section was to demonstrate that shifts are important.

Good shifts lead to rapid convergence. If one reviews what happens in a QZ iteration, one

sees that the shifts are used only at the very beginning, in the determination of the vector

x = p(AB

�1

)e

1

, which is used to build the initial bulge at the top of the pencil. The shifts

are then forgotten in the ensuing bulge chase. Yet the good shifts are what causes the

rapid convergence, which takes place at or around a

n�m+1;n�m

, i.e. near the bottom of the

pencil.

To summarize, we can say that the shifts go in at the top and cause rapid convergence

at the bottom. Thus it makes sense to ask how the shifts are transmitted through the

matrix during the bulge chase. This question was answered for the standard eigenvalue

problem in [3]. For the generalized problem, the answer turns out to be about the same.

We brie
y sketch it here, as it is the key to our understanding of the e�ects of in�nite

eigenvalues.

The bulge pencil

Consider a pencil that has a bulge somewhere in the middle. Say the initial bulge has

been created, and it has been chased j � 1 positions down and to the right. The current

pencil A

j

��B

j

has a bulge (in A

j

) starting in column j. If the degree of the QZ iteration

is m, the tip of the bulge is at a

j+m+1;j

. We de�ne the bulge pencil C

j

� �F

j

to be the

(m + 1) � (m + 1), non-principal subpencil of A

j

� �B

j

consisting of rows j + 1 through

7



j +m + 1 and columns j through m. Thus

C

j

=

2

6

6

6

6

6

6

6

4

a

j+1;j

a

j+1;j+1

a

j+1;j+2

� � � a

j+1;j+m

a

j+2;j

a

j+2;j+1

a

j+2;j+2

� � � a

j+2;j+m

.

.

.

.

.

.

.

.

.

a

j+m;j

a

j+m;j+1

a

j+m;j+2

� � � a

j+m;j+m

a

j+m+1;j

a

j+m+1;j+1

a

j+m+1;j+2

� � � a

j+m+1;j+m

3

7

7

7

7

7

7

7

5

(4)

and

F

j

=

2

6

6

6

6

6

6

6

4

0 b

j+1;j+1

b

j+1;j+2

� � � b

j+1;j+m

0 0 b

j+2;j+2

� � � b

j+2;j+m

.

.

.

.

.

.

.

.

.

0 0 0 � � � b

j+m;j+m

0 0 0 � � � 0

3

7

7

7

7

7

7

7

5

: (5)

The bulge pencil is centered on the subdiagonal of the big pencil, and it is just big enough

to accommodate the bulge. One can show by induction on j that the entry a

j+m+1;j

cannot

be zero (The original A is properly upper Hessenberg). F

j

is strictly upper triangular. If

all of the superdiagonal entries of F

j

are nonzero (as is the case when B is nonsingular),

then the degree of the characteristic polynomial det(C

j

� �F

j

) is exactly m. In this case

the bulge pencil has m �nite eigenvalues and one in�nite eigenvalue.

The main theorem is that the m �nite eigenvalues of the bulge pencil are the shifts �

1

,

. . . , �

m

. Thus the shifts are transmitted from top to bottom of the matrix as eigenvalues

of the bulge pencil. In order to prove this, we need to introduce a \zeroth" bulge pencil.

The zeroth bulge

De�ne the zeroth bulge pencil C

0

� �F

0

by

C

0

=

2

6

6

6

6

6

6

6

4

x

1

a

1;1

� � � a

1;m�1

a

1;m

x

2

a

2;1

� � � a

2;m�1

a

2;m

.

.

.

.

.

.

.

.

.

.

.

.

x

m

0 � � � a

m;m�1

a

m;m

x

m+1

0 � � � 0 a

m+1;m

3

7

7

7

7

7

7

7

5

and

F

0

=

2

6

6

6

6

6

6

6

4

0 b

1;1

� � � b

1;m�1

b

1;m

0 0 � � � b

2;m�1

b

2;m

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � 0 b

m;m

0 0 � � � 0 0

3

7

7

7

7

7

7

7

5

:

The entries x

1

, x

2

, . . . , x

m+1

are the nonzero entries of the vector x de�ned by (1), and

the entries a

ij

and b

ij

are from the pencil A � �B before the beginning of the iteration.
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The \bulge" in this pencil is caused by x. We can view C

0

� �F

0

as a subpencil of the

augmented pencil obtained by adjoining a \zeroth" column x��0 to the pencil A��B. If

we take this view, then C

0

� �F

0

is not so di�erent from the other bulge pencils C

j

� �F

j

.

Because A is Hessenberg and B is triangular, the computation of x (cf. (1)) uses only

the upper left-hand corner entries of A and B. One easily checks that the entries that

participate in the computation are exactly those that are contained in C

0

� �F

0

. This is

the only part of the computation that uses the shifts. We therefore expect that it should

be possible to recover the shifts from C

0

� �F

0

.

Notice also that we can compute x even if B is singular; all that is needed is that the

upper left-hand m�m submatrix of B is nonsingular, i.e. b

kk

6= 0 for k = 1; : : : ; m.

Theorem 5.1 Suppose b

kk

6= 0 for k = 1; : : : ; m. Then the eigenvalues of the zeroth bulge

pencil C

0

� �F

0

are the shifts �

1

, . . . , �

m

and 1.

Proof. Since A is properly upper Hessenberg, we deduce easily that x

m+1

6= 0. This

condition and the conditions b

kk

6= 0, k = 1; : : : ; m, together imply that the characteristic

polynomial det(C

0

��F

0

) has degree exactly m. Thus C

0

��F

0

has one in�nite eigenvalue

and m �nite eigenvalues. To see that each shift �

i

is an eigenvalue of C

0

� �F

0

, write

p(AB

�1

) (cf. 3) in partially factored form: p(AB

�1

) = (A � �

i

B)B

�1

q(AB

�1

), where q

has degree m� 1. Then x = (A� �

i

B)y, where y = B

�1

q(AB

�1

). Let ŷ be the subvector

of y consisting of the �rst m entries. Notice that the rest of y is zero. Then the equation

x = (A� �

i

B)y can be recast as

(C

0

� �

i

F

0

)

"

1

�ŷ

#

= 0:

Thus �

i

is an eigenvalue of C

0

� �F

0

.

This argument holds even if B

�1

does not exist; all that is needed is that the upper

left-hand corner of B is invertible.

If �

1

, . . . , �

m

are distinct, then there can be no other �nite eigenvalues. If �

1

, . . . , �

m

are not distinct, we draw the same conclusion by a continuity argument: Perturb the shifts

slightly so that they are distinct. This implies a small perturbation of x. The m perturbed

shifts are the m �nite eigenvalues of the slightly perturbed bulge pencil. Now move the

shifts continuously back to their original values and invoke continuity of eigenvalues of a

pencil. 2

Theorem 5.2 Suppose b

kk

6= 0 for k = 1; : : : ; m. Then all of the bulge pencils C

j

� �F

j

,

j = 0; 1; 2; : : : have �

1

, . . . , �

m

and 1 as their eigenvalues.

Proof. The proof is by induction. We just need to show that C

j+1

� �F

j+1

has the same

eigenvalues as C

j

� �F

j

.

Suppose we have pushed the bulge forward to the point where we have reached the

pencil A

j

� �B

j

. The bulge begins in column j. In preparation for pushing the bulge

9



further, consider the (m+2)� (m+2) subpencil of A

j

��B

j

that consists of C

j

��F

j

plus

one additional column on the right and one additional row on the bottom. This augmented

bulge pencil, which we will call

^

C

j

� �

^

F

j

has the same eigenvalues as C

j

� �F

j

, except for

one additional in�nite eigenvalue. The transformation that moves the bulge one row down

and one column to the right transforms

^

C

j

� �

^

F

j

to a new pencil

�

C

j

� �

�

F

j

, which has

the same eigenvalues, because the transformation is a strict equivalence. If we now delete

the �rst row and column from

�

C

j

� �

�

F

j

, we obtain the new bulge pencil C

j+1

� �F

j+1

.

The e�ect of the deletion is just to remove an in�nite eigenvalue. Thus C

j+1

� �F

j+1

has

exactly the same eigenvalues as C

j

� �F

j

.

This argument is applicable even in the case j = 0. The transformation Q

�1

(2) that

is used to set up the initial bulge is exactly the transformation one would use to chase the

\bulge" x from C

0

� �F

0

. Thus C

1

� �F

1

is produced from C

0

� �F

0

in exactly the same

way as each subsequent bulge pencil is produced from its predecessor. This completes the

proof. 2

6 The singular case

If B is singular, at least one of the entries b

kk

is zero. A simple procedure for removing

the zero and de
ating an in�nite eigenvalue is given in [1, x7.7.5]. We have a choice of

removing all such zeros by this de
ation procedure or going ahead with the QZ algorithm

without �rst removing the zeros.

The cost of de
ation is not great. The de
ation procedure chases the zero to one end

of the matrix or the other. The in�nite eigenvalue is then de
ated at either the top or the

bottom. Thus zeros near either the top or the bottom of B can be removed at negligible

cost. Zeros near the middle are the most expensive to remove; the cost is about half that

of a single QZ iteration.

Now let us consider what happens if we simply perform QZ iterations without �rst

removing the zeros. How do the QZ iterations a�ect the zeros? What e�ect do the zeros

have on the QZ iteration? We consider the �rst question �rst.

Suppose b

kk

= 0. We consider the e�ect of a QZ iteration of degree one on this zero.

The bulge consists of a single entry that is chased from position a

31

to a

42

to a

53

, and so

on. Eventually it arrives at position a

k;k�2

. At this point the zero entry at b

kk

has not

been touched. Annihilation of the bulge at a

k;k�2

is done by a rotator on rows k � 1 and

k. When this rotator is applied to B, it touches b

kk

. Focus on the 2 � 2 submatrix of B

consisting of rows and columns k � 1 and k. Before the rotator, it has the form

"

b

k�1;k�1

b

k�1;k

0 0

#

:

Its rank is obviously one. When the rotator is applied, it disturbs both of the zeros. The

submatrix now looks like

"

~

b

k�1;k�1

~

b

k�1;k

~

b

k;k�1

~

b

k;k

#

;
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but its rank is still one. The next step in the QZ iteration is to apply a rotator to columns

k � 1 and k to annihilate

~

b

k;k�1

. Application of this rotator transforms the submatrix to

"

0

^

b

k�1;k

0

^

b

k;k

#

;

since the rank is still one. The zero has been moved from position b

kk

to position b

k�1;k�1

.

The rest of the QZ iteration leaves that entry untouched. Thus the e�ect of a single QZ

iteration is to move the zero up by one position.

If one studies a QZ iteration of degree m in the same way, one easily deduces that its

e�ect is to move the zero up by m positions. This is to be expected, since an iteration of

degree m is equivalent to m iterations of degree 1.

After k � 1 iterations of degree 1, the zero has been moved to the top. An in�nite

eigenvalue can now be de
ated.

3

E�ect of zeros on the performance of QZ iterations

We have seen that QZ iterations automatically move zeros upward and into position for

de
ation. We now ask whether or not the presence of those zeros has any adverse e�ect

on the QZ iterations.

The key to e�ective QZ iterations is e�ective transmission of shifts. Theorem 5.2 tells

how this is done, in theory at least (and perhaps also in practice). The key observation

is that Theorem 5.2 holds even if B is singular. All that is needed is that b

kk

6= 0 for

k = 1; : : : ; m. If there are some zero entries b

kk

for k > m, then, according to the theorem,

these zeros should not adversely a�ect the transmission of the shifts. As the zeros gradually


oat upward through the matrix, accurate shifts are transmitted in the bulge, through

these zeros, to the bottom of the pencil, resulting in rapid convergence and de
ation of

eigenvalues at the bottom.

The hypothesis

b

kk

6= 0 for k = 1; : : : ; m

is important; we cannot even compute (nor de�ne) the vector x nor the zeroth bulge pencil

unless the upper left-hand m �m submatrix of B is nonsingular. This means that if we

are doing QZ iterations of degree m, as soon as a zero 
oats up into the �rst m positions

of B, it must be removed by the de
ation procedure outlined in [1, x7.7.5]. The cost of

this is negligible since m is small.

We call Theorem 5.2 a theoretical result because it ignores the e�ects of roundo� errors,

which can be signi�cant. In [3] it was shown that if m is large (e.g. m = 20), roundo�

3

The �nite emergence of in�nite eigenvalues at the top of the pencil is consistent with the conver-

gence theory of the QZ algorithm [5]. The largest (in magnitude) eigenvalues should emerge at the top.

Suppose the pencil has j in�nite eigenvalues. The rate at which they should converge (assuming, for

simplicity, we are using a �xed spectral transformation polynomial p) should be determined by the ra-

tio jp(�

j+1

) j=jp(�

j

) j, which is zero since �

j

= 1. Thus the convergence should be superlinear. Finite

emergence is certainly superlinear.
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errors often prevent the e�ective transmission of shifts. This is cause for caution. We

cannot say for sure that the shift transmission mechanism will work well unless we try it

on the computer.

Here we are not concerned about large m. We want to ascertain whether the shift

mechanism works well for small values of m in the presence of in�nite eigenvalues. We

conducted numerous experiments with pencils of various sizes and types and found that it

does.

We will report on just a couple of examples. Consider �rst a random, complex 20 �

20 Hessenberg-triangular pencil with no in�nite eigenvalues, to which we apply the QZ

algorithm with m = 1. Although we are discussing a single pencil, the results reported

here are typical of many examples that we looked at. We �nd that at each point in the

bulge chase, the single �nite eigenvalue of the bulge pencil agrees with the intended shift

to �fteen or more decimal places. Thus the shift is transmitted e�ectively. Checking the

convergence pattern, we observe that the �rst four eigenvalues are de
ated after 9, 12, 16,

and 23 iterations, respectively. Each eigenvalue converges quadratically, as evidenced by

the rate at which the bottom subdiagonal entry tends to zero.

Now suppose we alter the pencil by setting b

5;5

and b

15;15

to zero. Since the zeros are

pushed up by one position per iteration, we expect to de
ate in�nite eigenvalues at the top

after 4 and 13 iterations, and we do. At the same time we hope to have normal convergence

behavior at the bottom of the pencil. Checking the single �nite eigenvalue of the bulge

pencil, we �nd that at each stage of the bulge chase it agrees with the shift to �fteen or more

decimal places. Thus the shift is transmitted e�ectively. We have no reason to believe that

the altered pencil will have the same convergence pattern as the original pencil, but we hope

that it will be comparable. Indeed it is; the �rst four eigenvalues are de
ated after iterations

8, 11, 15, and 18, respectively. Quadratic convergence is observed. For example, Table 1

iteration ja

20;19

j shift transmission error

3 2:1� 10

�2

1:2� 10

�15

4 4:3� 10

�3

1:1� 10

�15

5 1:8� 10

�4

3:3� 10

�16

6 1:1� 10

�6

1:0� 10

�15

7 3:9� 10

�11

4:4� 10

�16

8 5:2� 10

�20

7:0� 10

�16

Table 1: Quadratic convergence of eigenvalue

shows the values of ja

20;19

j in iterations three through eight. The approximate doubling

of the exponent of a

20;19

from one iteration to the next indicates quadratic convergence

to zero. Thus a

20;20

converges quadratically to an eigenvalue. The presence of in�nite

eigenvalues does not in any way impede convergence. The shift transmission error given in

Table 1 is the di�erence between the intended shift and the �nite eigenvalue of the bulge

pencil when the bulge pencil has reached the bottom of the matrix. We see that these

errors are always tiny.
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It is interesting to see how the algorithm behaves if we neglect to de
ate in�nite eigen-

values as they emerge. Table 2 shows the same information as Table 1, except that in this

iteration ja

20;19

j shift transmission error

3 2:1� 10

�2

1:2� 10

�15

4 4:3� 10

�3

1:1� 10

�15

5 2:2� 10

�3

1:7� 10

�1

6 2:2� 10

�3

7:1� 10

0

7 2:2� 10

�3

9:7� 10

0

Table 2: Breakdown caused by failure to de
ate in�nite eigenvalue

run we do not de
ate out the in�nite eigenvalue that emerges after the fourth iteration.

In principle the algorithm should crash because of a division by zero (b

11

). In practice it

does not, because roundo� errors prevent b

11

from being exactly zero. Instead we have a

breakdown of the shift-transmission process, as evidenced by the large shift transmission

errors. As a consequence, the convergence process stalls.

Our second example is also a random Hessenberg-triangular pencil, but this one is

30 � 30 and has real entries. We apply the double-shift QZ algorithm (m = 2). The

�rst four pairs of eigenvalues are de
ated after 9, 12, 17, and 19 iterations, respectively.

Quadratic convergence of a

n�1;n�2

to zero is observed.

Calculating the two �nite eigenvalues of the bulge pencil near the end of the bulge

chase, we observe that they never di�er from the intended shifts by more then 2� 10

�14

.

Thus the shift transmission error is a bit larger than in the case m = 1 but still tiny.

If we modify the pencil by setting b

13;13

and b

17;17

to zero, we get comparable results.

Since the zeros 
oat up by two positions per iteration, we de
ate an in�nite eigenvalue at

the top after six iterations, and again after seven. While this is happening, �nite eigenvalues

are emerging at the bottom. The �rst four pairs of �nite eigenvalues are de
ated from the

bottom after 7, 14, 20, and 26 iterations, respectively.

4

Quadratic convergence is observed.

Comparing the intended shifts with the eigenvalues of the bulge pencil near the end of

the bulge chase, we �nd that the shift transmission error never exceeds 1:3� 10

�13

. Thus

the shifts are transmitted e�ectively.

These good results depend upon de
ation of the in�nite eigenvalues as they emerge.

If we fail to do this, the shift transmission mechanism breaks down, and progress toward

convergence comes to a halt.

4

Some of the eigenvalues are real, and they don't always emerge in pairs. For example, the \pair" of

eigenvalues that emerged after 14 iterations was really two real eigenvalues that were de
ated after 12 and

14 iterations, respectively.
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7 Avoidance of in�nite shifts

The in�nite eigenvalues move naturally to the top of the pencil. If we wish to de
ate �nite

eigenvalues rapidly at the bottom, then we should always use �nite shifts. This means that

if we choose our shifts in the usual way, i.e. as eigenvalues of the lower right-hand m�m

subpencil A

22

��B

22

, we should make sure that none of the main diagonal entries of B

22

is

zero. If one of them is zero, we can chase the zero to the bottom at trivial cost and de
ate

an in�nite eigenvalue there [1, x7.7.5]. Alternatively we can just ignore the in�nite shift,

replacing it by some �nite shift chosen in any way. The subsequent QZ iteration will move

the zero up and out of B

22

.

Finally we note that if the Hessenberg-triangular form was obtained by the standard

reduction algorithm [1, x7.7.4], then zero diagonal entries will not be found in B

22

; they

will be at the the top of B. This is so because the reduction algorithm has the same

e�ect of moving zeros upward as the QZ iteration has. The reduction algorithm begins by

transforming B to upper triangular form by a QR decomposition. Then it transforms A

to Hessenberg form one entry at a time. Each entry is eliminated by a rotator on the left.

The triangular form of B is then restored by a compensating rotator on the right. If these

rotators act in the (j�1; j) plane, and if there is a zero entry at b

jj

, the combined e�ect of

these two rotators will be to move the zero entry from the b

jj

position up to b

j�1;j�1

. The

upward sweeping e�ect of the reduction algorithm is much stronger than that of the QZ

iteration, because there are many more entries to eliminate from the full matrix A, and

hence many more rotators are applied. In fact, the QZ iteration is just a sparse special

case of the reduction algorithm.
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