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1 Introduction

In this paper we design preconditioning operators for the system of grid equations ap-

proximating the following boundary value problem.
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(x)u = f(x); x 2 
;

u(x) = 0; x 2 �

(1.1)

We suppose that 
 is a bounded and polygonal domain, where � does denote its boundary.

Let 
 be a union of n+ 1 nonoverlapping subdomains 


i

, such that


 =

n

[

i=0




i

; 


i

\ 


j

= ;; i 6= j;

holds. Here we have the polygonal subdomains 


i

in the interior of 
. Their boundaries

are given by �

i

, i = 1; : : : ; n. The domain 


0

is de�ned to be multiple connected having the

boundary �

S

(

n

S

i=1

�

i

). We denote by H

i

= diam(


i

) the diameter of the i-th subdomain,

i = 1; : : : ; n. We assume small parameters H

i

such that

0 < H

i

� 1

is valid. Furthermore, for any subdomain 


i

, if there exists a subdomain 


j

such that

dist(


i

;


j

) � �

1

H

i

holds, then the conditions

H

j

= O(H

i

) and �

2

H

i

� dist(


i

;


j

)

must be ful�lled, where �

1

and �

2

are constants which are independent of the parameter

H

i

; i = 1; : : : ; n. This means that for any subdomain 


i

there is no other subdomain in

the neighbourhood determined by O(H

i

).

Let us introduce the bilinear form

a(u; v) =

Z




0

@

2

X

i;j=1

a

ij

(x)

@u

@x

j

@v

@x

i

+ a

0

(x)uv

1

A

dx

and the linear functional

`(v) =

Z




f(x)vdx:

We suppose that the coe�cients of the problem (1.1) are such that a(u; v) is a symmetric

bilinear form in the Sobolev space H

1

0

(
). Let the inequalities

�

3

a(u; v) �

Z




"(x)jgrad(u)j

2

dx � �

4

a(u; v) 8u 2 H

1

0

(
):

be ful�lled with positive constants �

3

; �

4

, which are independent of the parameter ". Here

we �x

"(x) = const = "

i

; 8x 2 


i

;

1



where we have

"

0

= 1; 0 < "

i

� 1; i = 1; : : : ; n : (1.2)

The linear functional `(v) is continuous in H

1

0

(
). The weak formulation of (1.1) is given

as follows. Find u 2 H

1

0

(
) such that the following is valid for all v 2 H

1

0

(
)

a(u; v) = `(v) : (1.3)

Let 


h

=

n

S

i=0




h

i

be a quasiuniform triangulation of the domain 
, which can be charac-

terized by the parameter h.

We denote byW the space of real continuous functions being linear on the triangles of the

triangulation 


h

. Using the �nite elementmethod, see e.g. [2], the variational formulation

(1.3) can be transfered to the well known system of linear algebraic equations

Au = f : (1.4)

The condition number of the matrix A depends on the parameters h;H

i

and "

i

, and can

be large. Our purpose is the design of a preconditioner B for the problem (1.4), such that

the following inequalities are valid for all vectors u 2 R

N

c

1

(Bu; u) � (Au; u) � c

2

(Bu; u) : (1.5)

Here the symbol N denotes the dimension of the space W , and c

1

and c

2

are positive

constants independent of the parameters h;H

i

; and "

i

. Furthermore, the multiplication

of a vector by B

�1

should be easy to implement numerically causing low costs.

The preconditioning operator B is constructed by using the nonoverlapping and over-

lapping (but without "overlapping" in the coe�cients) domain decomposition methods.

Here we follow to [13]. The analysis of these methods refers to the well known Neumann-

Dirichlet domain decomposition method. However, the suggested methods do not require

the exact solution of subproblems with Dirichlet boundary condition.

2 Nonoverlapping domain decomposition

The construction of the preconditioner for the system (1.4) is performed by means of the

Additive Schwarz Method, see e.g. [1],[3],[4]. To design the preconditioning operator B,

we use [8],[10] decomposing the space W into a sum of subspaces as follows

W =W

0

+W

1

We divide the nodes of the triangulation 


h

into two groups, those which lie inside of




h

i

; i = 1; : : : ; n and those which lie in 


h

0

. The subspace W

0

does correspond to the �rst

set. Let us introduce the following sets

S =

n

[

i=1

@


h

i

;

W

0

=

n

u

h

2 W j u

h

(x) = 0; x 2 


h

0

o

;

W

0;i

= fu

h

2 W

0

j u

h

(x) = 0; x =2 


h

i

g; i = 1; 2; : : : ; n:

2



It is clear that W

0

represents the direct sum of the orthogonal subspaces W

0;i

with respect

to the scalar product in H

1

0

(
)

W

0

=W

0;1

� : : :�W

0;n

:

The subspace W

1

corresponds to the second group of nodes in 


h

and can be de�ned as

follows. Let the set V be the trace space of the functions given by W on S, i.e. we have

V = f'

h

j '

h

(x) = u

h

(x); x 2 S; u

h

2 Wg:

To de�ne the subspace W

1

, we need a norm preserving extension operator of functions

given on S into 


h

. The corresponding construction is based on the following trace lemma.

Lemma 2.1 Let 
 be a bounded domain with piecewisely smooth boundary � satisfying

the Lipschitz condition. Let

diam(
) = H :

And let 


h

be a quasiuniform triangulation of 
. We denote

k'k

2

H

1=2

(�)

= Hk'k

2

L

2

(�)

+ j'j

2

H

1=2

(�)

;

k'k

2

L

2

(�)

=

Z

�

'

2

(x)dx;

j'j

2

H

1=2

(�)

=

Z

�

Z

�

('(x)� '(y))

2

jx� yj

2

dxdy :

Then, there exists a positive constant c

1

, which is independent of the parameters h;H,

such that

k'

h

k

H

1=2

(�)

� c

1

ku

h

k

H

1

(
)

and

j'

h

j

H

1=2

(�)

� c

1

ju

h

j

H

1

(
)

hold for any function u

h

2 W , where '

h

2 V is the trace of u

h

on the boundary �. Vice

versa, there exists a positive constant c

2

, which is independent of h and H, such that for

any function '

h

2 V we have the function u

h

2 W with

u

h

(x) = '

h

(x); x 2 � ;

ku

h

k

H

1
� c

2

k'

h

k

H

1=2

(�)

;

ju

h

j

H

1
� c

2

j'

h

j

H

1=2

(�)

:

To de�ne the subspace W

1

, let us use the explicit extension operator

t

h

: V ! W; (2.6)

which was suggested for second order elliptic problems with smooth coe�cients, such that

for all '

h

2 V

ku

h

k

H

1

(
)

= kt

h

'

h

k

H

1

(
)

� c

3

k'

h

k

H

1=2

(S)

holds, where the corresponding norm is given by

k'k

2

H(S)

=

n

X

i=1

k'k

2

H

1=2

(�

i

)

:

3



For de�ning and implementing the numerical algorithm see [5],[6],[8]. Now, we can de�ne

the subspace W

1

as follows

W

1

= fu

h

j u

h

(x) = (t

h

'

h

)(x); x 2 


i

; i = 1; : : : ; n; '

h

(x) = v

h

(x); x 2 S;

u

h

(x) = v

h

(x); x 2 


h

0

; v

h

2 Wg:

Obviously we have

W =W

0

+W

1

;

and this decomposition of the space W is stable in the following sense.

Lemma 2.2 There exists a positive constant c

4

, which is independent of the parameters

h;H

i

and "

i

, such that for any function u

h

2 W there exist functions u

h

i

2 W

i

; i = 0; 1,

such that we have

u

h

0

+ u

h

1

= u

h

;

a(u

h

0

; u

h

0

) + a(u

h

1

; u

h

1

) � c

4

a(u

h

; u

h

) :

Let C

i

; i = 0; 1; : : : ; n be the preconditioning operators in the �nite element subspaces

H

1

0

(


i

). Hence, we have the following inequalities for all u

h

2 W \H

1

0

(


i

)

c

5

ku

h

k

2

H

1

(


i

)

� (C

i

u; u) � c

6

ku

h

k

2

H

1

(


i

)

; (2.7)

where the constants c

5

; c

6

are independent of the parameters h and H

i

. For example,

these operators C

i

can be constructed using the �ctitious space lemma in [9],[10],[12],[14].

We extend the operator C

i

outside of 


i

by zero and denote by C

+

i

the pseudo-inverse

operator belonging to this extension. We introduce the following operator

B

�1

nov

= tC

+

0

t

�

+

1

"

1

C

+

1

+ � � �+

1

"

n

C

+

n

:

Here the operator t

�

is the adjoint to t. The following theorem holds.

Theorem 2.1 There exist positive constants c

7

; c

8

, which are independent of the param-

eters h;H

i

and "

i

, such that the following inequalities are ful�lled for all u 2 R

N

c

1

(B

nov

u; u) � (Au; u) � c

2

(B

nov

u; u) :

3 Overlapping domain decomposition

The goal of this section is the design of the preconditioning operators for the problem

(1.4) without using the extension operator t given in (2.6).

Let C be the preconditioning operator in the �nite element space W , such that for all

functions u

h

2 W we have

c

1

ku

h

k

2

H

1

(
)

� (Cu; u) � c

2

ku

h

k

2

H

1

(
)

;

where the constants c

1

; c

2

are independent of h. We denote the preconditioner B

�1

ov

as

follows

B

�1

ov

= C

�1

+

1

"

1

C

+

1

+ � � �+

1

"

n

C

+

n

:

Here the pseudoinverses C

+

i

are given by (2.7). The following theorem holds.

4



Theorem 3.1 There exist positive constants c

3

; c

4

, which are independent of the param-

eters h;H

i

and "

i

, such that the inequalities

c

3

(B

ov

u; u) � (Au; u) � c

4

(B

ov

u; u)

are ful�lled for all u 2 R

N

.

Proof:

In the case of "

i

= 1 ; i = 1; : : : ; n, using Theorem 2.1 there exist constants c

5

; c

6

, which

are independent of h and H

i

, such that

c

5

(C

�1

u; u) � tC

+

0

t

�

+ C

+

1

+ � � � + C

+

n

� c

6

(C

�1

u; u)

holds for all u 2 R

N

. From (1.2) we get

0 � (C

+

i

u; u) �

1

"

i

� (C

+

i

u; u) 8u 2 R

N

:

Hence, we have

(B

�1

nov

u; u) = tC

+

0

t

�

+

1

"

1

C

+

1

+ � � �+

1

"

n

C

+

n

� tC

+

0

t

�

+ C

+

1

+ � � �+ C

+

n

+

1

"

1

C

+

1

+ � � � +

1

"

n

C

+

n

� maxfc

6

; 1g((C

�1

+

1

"

1

C

+

1

+ � � � +

1

"

n

C

+

n

)u; u) = maxfc

6

; 1g(B

�1

ov

u; u)

� maxfc

6

; 1gmaxf

1

c

5

; 1g(tC

+

0

t

�

+ C

+

1

+ � � �+ C

+

n

+

1

"

1

C

+

1

+ � � � +

1

"

n

C

+

n

)u; u)

� 2 maxfc

6

; 1gmaxf

1

c

5

; 1g(B

�1

nov

u; u) :

Remark The above Theorem 3.1 can be proved directly without using the extension

operator t.

The same technique can be used for the construction of preconditioning operators for

anisotropic problems.

Denote by a

i

(u; v) the restriction of the bilinear form a(u; v) on 


i

a

i

(u; v) =

Z




i

0

@

2

X

i;j=1

a

ij

(x)

@u

@x

j

@v

@x

i

+ a

0

(x)uv

1

A

dx

Assume that for any 


i

; i = 1; :::; n there exists some Cartesian coordinate system

(s

i

; n

i

) such that

�

4

a

i

(u; v) �

Z




i

 

"

i

�

@u

@s

i

�

2

+

�

@u

@n

i

�

2

!

d
 � �

5

a

i

(u; v) 8u 2 H

1

0

(
):

Here the parameters "

i

satisfy (26) and the constants �

4

; �

5

are independent of "

i

and

H

i

. In the domain 


0

the parameter "

0

= 1.

Let C

i

; i = 1; :::; n be anisotropic preconditioning operators in the �nite element

subspaces of H

1

0

(


i

) :

c

7

a

i

(u

h

; u

h

) � (C

i

u; u) � c

8

a

i

(u

h

; u

h

); 8u

h

2 W \H

1

0

(


i

);

5



Set

B

�1

ani

= C

�1

+ C

+

1

+ :::+ C

+

n

;

where C

�1

is from the isotropic case.

The following theorem holds.

Theorem 3.2 There exist positive constants c

9

; c

10

, independent of h;H

i

; "

i

such that

c

9

(B

ani

u; u) � (Au; u) � c

10

(B

ani

u; u); 8u 2 R

N

:

Proof of the theorem is based on the following evident inequalities

0 �

Z




i

 

"

i

�

@u

@s

i

�

2

+

�

@u

@n

i

�

2

!

d
 �

Z




i

 

�

@u

@s

i

�

2

+

�

@u

@n

i

�

2

!

d


4 Analysis of Poincare - Steklov operators for anisotropic el-

liptic problems

In this section, we consider a model anisotropic problem which generates the bilinear form

a(u; v) =

Z




 

p

1

@u

@x

@v

@x

+ p

2

@u

@y

@v

@y

!

dx;

where

p

1

= const > 0;

p

2

= const > 0:

Assume that p

1

< p

2

. Let 
 be the unit square. The analysis of Poincare - Steklov

operators which correspond to the bilinear form a(u; v) is equivalent to the analysis of

traces of functions on the boundary � of the domain 
 with respect to the norm

kuk

2

= a(u; u):

Using evident scaling of variables, we can reduce analysis of traces with respect to the

anisotropic norm kuk to analysis with respect to the isotropic norm but in the anisotropic

domain

~




kuk = (p

1

=p

2

)

1=2

kuk

H

1

(

~


)

:

Here

~


 = f(x; y)j0 < x < 1; 0 < y < Hg ;

where

H = (p

1

=p

2

)

1=2

:

Denote by k an integer part of 1=H and set

H

1

= 1=k;

S

�

i

= f(x; 0)j(i� 1)H

1

� x < (i+ 1)H

1

g ;

S

+

i

= f(x;H)j(i� 1)H

1

� x < (i+ 1)H

1

g ; i = 1; :::; k � 1;

L = f(0; y)j0 � y < Hg ;

6



R = f(1; y)j0 � y < Hg ;

S

�

0

= L [ S

�

1

;

S

+

0

= L [ S

+

1

;

S

�

k

= R [ S

�

k�1

;

S

+

k

= R [ S

+

k�1

:

De�ne

k'k

2

H

1=2

(�)

= Hk'k

2

L

2

(�)

+ j'j

2

H

1=2

(�)

;

k'k

2

L

2

(�)

=

Z

�

'

2

(x)dx;

j'j

2

H

1=2

(�)

=

k

X

i=0

Z

S

�

i

Z

S

�

i

('(x)� '(y))

2

jx� yj

2

dxdy +

Z

S

+

i

Z

S

+

i

('(x)� '(y))

2

jx� yj

2

dxdy

+

Z

S

�

i

Z

S

+

i

('(x)� '(y))

2

jx� yj

2

dxdy:

The following lemma holds [11].

Lemma 4.1 There exists a positive constant c

1

independent of H, such that

k'k

H

1=2

(�)

� c

1

kuk

H

1

(
)

j'j

H

1=2

(�)

� c

1

juj

H

1

(
)

for any function u 2 H

1

(
), where ' 2 H

1=2

(�) is the trace of u at the boundary �. Con-

versely, there exists a positive constant c

2

, independent of H, such that for any function

' 2 H

1=2

(�) there exist u 2 H

1

(
) such that

u(x) = '(x); x 2 �;

kuk

H

1
� c

2

k'k

H

1=2

(�)

juj

H

1
� c

2

j'j

H

1=2

(�)

:

Unfortunately, in the case of �nite element spaces the above norm works only for

isotropic grids in

~


. To consider anisotropic grids, we need to de�ne grid dependent

norms. Assume that there is a rectangular grid in 
 with grid steps h

1

(in x direction)

and h

2

(in y direction). Denote by H

h

(
) the piecewise linear �nite element space for this

grid. The sides of 
 denote by

I

1

= f(x; 0)j0 < x < 1g ;

I

2

= f(x; 1)j0 < x < 1g ;

I

3

= f(0; y)j0 < y < 1g ;

I

4

= f(1; y)j0 < y < 1g ;

For any �nite element function '

h

2 H

h

(�) we put in correspondence the vector ' in

the standard way.

The following lemmas hold.

7



Lemma 4.2 Let '

h

2 H

h

(�) such that

'

h

(x) = 0; x 2 I

2

[ I

3

[ I

4

De�ne the matrix S

(S';') = inf ju

h

j

2

H

1

(
)

for any u

h

2 H

h

(
) such that

u

h

(x) = '

h

(x); x 2 �:

Then there exist constants c

1

; c

2

, independent of h

1

and h

2

, such that

c

1

(S';') � k'

h

k

2

H

1=2

(�)

+ h

2

j'j

2

H

1

(I

1

)

� c

2

(S';'):

Lemma 4.3 Let '

h

2 H

h

(I

1

). De�ne the matrix S

(S';') = inf ju

h

j

2

H

1

(
)

for any u

h

2 H

h

(
) such that

u

h

(x) = '

h

(x); x 2 I

1

:

Then there exist constants c

1

; c

2

, independent of h

1

and h

2

, such that

c

1

(S';') � j'

h

j

2

H

1=2

(I

1

)

+ h

2

j'j

2

H

1

(I

1

)

� c

2

(S';'):

Lemma 4.4 Let '

h

2 H

h

(I

1

). De�ne the matrix S

(S';') = inf ku

h

k

2

H

1

(
)

for any u

h

2 H

h

(
) such that

u

h

(x) = '

h

(x); x 2 I

1

:

Then there exist constants c

1

; c

2

, independent of h

1

and h

2

, such that

c

1

(S';') � k'

h

k

2

H

1=2

(I

1

)

+ h

2

j'j

2

H

1

(I

1

)

� c

2

(S';'):

Finally, we have the following theorem.

Theorem 4.1 Let '

h

2 H

h

(�). De�ne the matrix S

(S';') = inf ku

h

k

2

H

1

(
)

for any u

h

2 H

h

(
) such that

u

h

(x) = '

h

(x); x 2 �:

Then there exist constants c

1

; c

2

, independent of h

1

and h

2

, such that

c

1

(S';') � k'

h

k

2

H

1=2

(�)

+ h

2

(j'j

2

H

1

(I

1

)

+ j'j

2

H

1

(I

2

)

) + h

1

(j'j

2

H

1

(I

3

)

+ j'j

2

H

1

(I

4

)

) � c

2

(S';'):
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5 Numerical examples

In this section we present a small number of numerical examples which demonstrate the

e�ciency of the overlapping domain decomposition method introduced above. For these

examples we consider the unit square 
 with the squared subdomains 


i

; i = 1; :::; 9 of

the diameter H, where

H = 1=11:

The distance between neighbouring subdomains is equal to 2H (see Figure 1).




i




0

�-

H

Figure 1

Let 


h

be a uniform triangulation with mesh step h. In the domain 
 we consider

the following bilinear form

a(u; v) =

Z




"(x)jgrad(u)j

2

dx;

where "(x) is from (1.2) and "

i

= "; i = 1; :::; 9. The matrix A is from (1.4) and in the

construction of the operator B

�1

ov

direct solvers in the squares 
;


1

; :::;


9

were used. In

Table 1 we present condition numbers of B

�1

ov

A with respect to the mesh step h and the

parameter ".

h

"

H=4 H=8 H=16 H=32

10

�1

2:5625 2:7335 2:8609 2:9548

10

�3

2:7313 2:9732 3:1598 3:3011

10

�5

2:7333 2:9761 3:1634 3:3054

Table 1
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