Technische Universität Chemnitz Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Sergei V. Nepomnyaschikh

Domain decomposition for isotropic and anisotropic elliptic problems

Preprint SFB393/99-16

The work was partially supported by the German Research Foundation (DFG), Sonderforschungsbereich 393.

Author's address:

Sergei V. Nepomnyaschikh Russian Academy of Sciences ICM \& MG, Lavrentiev Av. 6 Novosibirsk, 630090, Russia
e-mail: svnep@oapmg.sscc.ru

1 Introduction

In this paper we design preconditioning operators for the system of grid equations approximating the following boundary value problem.

$$
\left\{\begin{array}{l}
-\sum_{i, j=1}^{2} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+a_{0}(x) u=f(x), \quad x \in \Omega, \tag{1.1}\\
u(x)=0, \quad x \in \Gamma
\end{array}\right.
$$

We suppose that Ω is a bounded and polygonal domain, where Γ does denote its boundary. Let Ω be a union of $n+1$ nonoverlapping subdomains Ω_{i}, such that

$$
\bar{\Omega}=\bigcup_{i=0}^{n} \bar{\Omega}_{i}, \quad \Omega_{i} \cap \Omega_{j}=\emptyset, \quad i \neq j
$$

holds. Here we have the polygonal subdomains Ω_{i} in the interior of Ω. Their boundaries are given by $\Gamma_{i}, i=1, \ldots, n$. The domain Ω_{0} is defined to be multiple connected having the boundary $\Gamma \cup\left(\bigcup_{i=1}^{n} \Gamma_{i}\right)$. We denote by $H_{i}=\operatorname{diam}\left(\Omega_{i}\right)$ the diameter of the i-th subdomain, $i=1, \ldots, n$. We assume small parameters H_{i} such that

$$
0<H_{i} \leq 1
$$

is valid. Furthermore, for any subdomain Ω_{i}, if there exists a subdomain Ω_{j} such that

$$
\operatorname{dist}\left(\Omega_{i}, \Omega_{j}\right) \leq \alpha_{1} H_{i}
$$

holds, then the conditions

$$
H_{j}=O\left(H_{i}\right) \quad \text { and } \quad \alpha_{2} H_{i} \leq \operatorname{dist}\left(\Omega_{i}, \Omega_{j}\right)
$$

must be fulfilled, where α_{1} and α_{2} are constants which are independent of the parameter $H_{i}, i=1, \ldots, n$. This means that for any subdomain Ω_{i} there is no other subdomain in the neighbourhood determined by $O\left(H_{i}\right)$.

Let us introduce the bilinear form

$$
a(u, v)=\int_{\Omega}\left(\sum_{i, j=1}^{2} a_{i j}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}}+a_{0}(x) u v\right) d x
$$

and the linear functional

$$
\ell(v)=\int_{\Omega} f(x) v d x .
$$

We suppose that the coefficients of the problem (1.1) are such that $a(u, v)$ is a symmetric bilinear form in the Sobolev space $H_{0}^{1}(\Omega)$. Let the inequalities

$$
\alpha_{3} a(u, v) \leq \int_{\Omega} \varepsilon(x)|\operatorname{grad}(u)|^{2} d x \leq \alpha_{4} a(u, v) \quad \forall u \in H_{0}^{1}(\Omega) .
$$

be fulfilled with positive constants α_{3}, α_{4}, which are independent of the parameter ε. Here we fix

$$
\varepsilon(x)=\text { const }=\varepsilon_{i}, \quad \forall x \in \Omega_{i},
$$

where we have

$$
\begin{equation*}
\varepsilon_{0}=1, \quad 0<\varepsilon_{i} \leq 1, \quad i=1, \ldots, n . \tag{1.2}
\end{equation*}
$$

The linear functional $\ell(v)$ is continuous in $H_{0}^{1}(\Omega)$. The weak formulation of (1.1) is given as follows. Find $u \in H_{0}^{1}(\Omega)$ such that the following is valid for all $v \in H_{0}^{1}(\Omega)$

$$
\begin{equation*}
a(u, v)=\ell(v) . \tag{1.3}
\end{equation*}
$$

Let $\Omega^{h}=\bigcup_{i=0}^{n} \Omega_{i}^{h}$ be a quasiuniform triangulation of the domain Ω, which can be characterized by the parameter h.
We denote by W the space of real continuous functions being linear on the triangles of the triangulation Ω^{h}. Using the finite element method, see e.g. [2], the variational formulation (1.3) can be transfered to the well known system of linear algebraic equations

$$
\begin{equation*}
A u=f . \tag{1.4}
\end{equation*}
$$

The condition number of the matrix A depends on the parameters h, H_{i} and ε_{i}, and can be large. Our purpose is the design of a preconditioner B for the problem (1.4), such that the following inequalities are valid for all vectors $u \in R^{N}$

$$
\begin{equation*}
c_{1}(B u, u) \leq(A u, u) \leq c_{2}(B u, u) . \tag{1.5}
\end{equation*}
$$

Here the symbol N denotes the dimension of the space W, and c_{1} and c_{2} are positive constants independent of the parameters h, H_{i}, and ε_{i}. Furthermore, the multiplication of a vector by B^{-1} should be easy to implement numerically causing low costs.
The preconditioning operator B is constructed by using the nonoverlapping and overlapping (but without "overlapping" in the coefficients) domain decomposition methods. Here we follow to [13]. The analysis of these methods refers to the well known NeumannDirichlet domain decomposition method. However, the suggested methods do not require the exact solution of subproblems with Dirichlet boundary condition.

2 Nonoverlapping domain decomposition

The construction of the preconditioner for the system (1.4) is performed by means of the Additive Schwarz Method, see e.g. [1],[3],[4]. To design the preconditioning operator B, we use [8],[10] decomposing the space W into a sum of subspaces as follows

$$
W=W_{0}+W_{1}
$$

We divide the nodes of the triangulation Ω^{h} into two groups, those which lie inside of $\Omega_{i}^{h}, i=1, \ldots, n$ and those which lie in $\bar{\Omega}_{0}^{h}$. The subspace W_{0} does correspond to the first set. Let us introduce the following sets

$$
\begin{gathered}
S=\bigcup_{i=1}^{n} \partial \Omega_{i}^{h}, \\
W_{0}=\left\{u^{h} \in W \mid \quad u^{h}(x)=0, x \in \bar{\Omega}_{0}^{h}\right\}, \\
W_{0, i}=\left\{u^{h} \in W_{0} \mid \quad u^{h}(x)=0, \quad x \notin \Omega_{i}^{h}\right\}, \quad i=1,2, \ldots, n .
\end{gathered}
$$

It is clear that W_{0} represents the direct sum of the orthogonal subspaces $W_{0, i}$ with respect to the scalar product in $H_{0}^{1}(\Omega)$

$$
W_{0}=W_{0,1} \oplus \ldots \oplus W_{0, n} .
$$

The subspace W_{1} corresponds to the second group of nodes in Ω^{h} and can be defined as follows. Let the set V be the trace space of the functions given by W on S, i.e. we have

$$
V=\left\{\varphi^{h} \mid \quad \varphi^{h}(x)=u^{h}(x), \quad x \in S, \quad u^{h} \in W\right\} .
$$

To define the subspace W_{1}, we need a norm preserving extension operator of functions given on S into Ω^{h}. The corresponding construction is based on the following trace lemma.

Lemma 2.1 Let Ω be a bounded domain with piecewisely smooth boundary Γ satisfying the Lipschitz condition. Let

$$
\operatorname{diam}(\Omega)=H
$$

And let Ω^{h} be a quasiuniform triangulation of Ω. We denote

$$
\begin{aligned}
\|\varphi\|_{H^{1 / 2}(\Gamma)}^{2} & =H\|\varphi\|_{L^{2}(\Gamma)}^{2}+|\varphi|_{H^{1 / 2}(\Gamma)}^{2}, \\
\|\varphi\|_{L^{2}(\Gamma)}^{2} & =\int_{\Gamma} \varphi^{2}(x) d x \\
|\varphi|_{H^{1 / 2}(\Gamma)}^{2} & =\int_{\Gamma} \int_{\Gamma} \frac{(\varphi(x)-\varphi(y))^{2}}{|x-y|^{2}} d x d y .
\end{aligned}
$$

Then, there exists a positive constant c_{1}, which is independent of the parameters h, H, such that

$$
\left\|\varphi^{h}\right\|_{H^{1 / 2}(\Gamma)} \leq c_{1}\left\|u^{h}\right\|_{H^{1}(\Omega)}
$$

and

$$
\left|\varphi^{h}\right|_{H^{1 / 2}(\Gamma)} \leq c_{1}\left|u^{h}\right|_{H^{1}(\Omega)}
$$

hold for any function $u^{h} \in W$, where $\varphi^{h} \in V$ is the trace of u^{h} on the boundary Γ. Vice versa, there exists a positive constant c_{2}, which is independent of h and H, such that for any function $\varphi^{h} \in V$ we have the function $u^{h} \in W$ with

$$
\begin{aligned}
u^{h}(x) & =\varphi^{h}(x), \quad x \in \Gamma, \\
\left\|u^{h}\right\|_{H^{1}} & \leq c_{2}\left\|\varphi^{h}\right\|_{H^{1 / 2}(\Gamma)}, \\
\left|u^{h}\right|_{H^{1}} & \leq c_{2}\left|\varphi^{h}\right|_{H^{1 / 2}(\Gamma)} .
\end{aligned}
$$

To define the subspace W_{1}, let us use the explicit extension operator

$$
\begin{equation*}
t^{h}: V \rightarrow W \tag{2.6}
\end{equation*}
$$

which was suggested for second order elliptic problems with smooth coefficients, such that for all $\varphi^{h} \in V$

$$
\left\|u^{h}\right\|_{H^{1}(\Omega)}=\left\|t^{h} \varphi^{h}\right\|_{H^{1}(\Omega)} \leq c_{3}\left\|\varphi^{h}\right\|_{H^{1 / 2}(S)}
$$

holds, where the corresponding norm is given by

$$
\|\varphi\|_{H(S)}^{2}=\sum_{i=1}^{n}\|\varphi\|_{H^{1 / 2}\left(\Gamma_{i}\right)}^{2}
$$

For defining and implementing the numerical algorithm see [5],[6],[8]. Now, we can define the subspace W_{1} as follows

$$
\begin{aligned}
W_{1}=\left\{u^{h} \mid u^{h}(x)\right. & =\left(t^{h} \varphi^{h}\right)(x), \quad x \in \Omega_{i}, \quad i=1, \ldots, n, \quad \varphi^{h}(x)=v^{h}(x), \quad x \in S, \\
u^{h}(x) & \left.=v^{h}(x), \quad x \in \Omega_{0}^{h}, \quad v^{h} \in W\right\} .
\end{aligned}
$$

Obviously we have

$$
W=W_{0}+W_{1},
$$

and this decomposition of the space W is stable in the following sense.
Lemma 2.2 There exists a positive constant c_{4}, which is independent of the parameters h, H_{i} and ε_{i}, such that for any function $u^{h} \in W$ there exist functions $u_{i}^{h} \in W_{i}, i=0,1$, such that we have

$$
\begin{gathered}
u_{0}^{h}+u_{1}^{h}=u^{h}, \\
a\left(u_{0}^{h}, u_{0}^{h}\right)+a\left(u_{1}^{h}, u_{1}^{h}\right) \leq c_{4} a\left(u^{h}, u^{h}\right) .
\end{gathered}
$$

Let $C_{i}, i=0,1, \ldots, n$ be the preconditioning operators in the finite element subspaces $H_{0}^{1}\left(\Omega_{i}\right)$. Hence, we have the following inequalities for all $u^{h} \in W \cap H_{0}^{1}\left(\Omega_{i}\right)$

$$
\begin{equation*}
c_{5}\left\|u^{h}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2} \leq\left(C_{i} u, u\right) \leq c_{6}\left\|u^{h}\right\|_{H^{1}\left(\Omega_{i}\right)}^{2}, \tag{2.7}
\end{equation*}
$$

where the constants c_{5}, c_{6} are independent of the parameters h and H_{i}. For example, these operators C_{i} can be constructed using the fictitious space lemma in [9],[10],[12],,[14]. We extend the operator C_{i} outside of Ω_{i} by zero and denote by C_{i}^{+}the pseudo-inverse operator belonging to this extension. We introduce the following operator

$$
B_{\mathrm{nov}}^{-1}=t C_{0}^{+} t^{*}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+} .
$$

Here the operator t^{*} is the adjoint to t. The following theorem holds.
Theorem 2.1 There exist positive constants c_{7}, c_{8}, which are independent of the parameters h, H_{i} and ε_{i}, such that the following inequalities are fulfilled for all $u \in R^{N}$

$$
c_{1}\left(B_{\text {nov }} u, u\right) \leq(A u, u) \leq c_{2}\left(B_{\text {nov }} u, u\right) .
$$

3 Overlapping domain decomposition

The goal of this section is the design of the preconditioning operators for the problem (1.4) without using the extension operator t given in (2.6).

Let C be the preconditioning operator in the finite element space W, such that for all functions $u^{h} \in W$ we have

$$
c_{1}\left\|u^{h}\right\|_{H^{1}(\Omega)}^{2} \leq(C u, u) \leq c_{2}\left\|u^{h}\right\|_{H^{1}(\Omega)}^{2}
$$

where the constants c_{1}, c_{2} are independent of h. We denote the preconditioner B_{ov}^{-1} as follows

$$
B_{\mathrm{ov}}^{-1}=C^{-1}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+} .
$$

Here the pseudoinverses C_{i}^{+}are given by (2.7). The following theorem holds.

Theorem 3.1 There exist positive constants c_{3}, c_{4}, which are independent of the parameters h, H_{i} and ε_{i}, such that the inequalities

$$
c_{3}\left(B_{\mathrm{ov}} u, u\right) \leq(A u, u) \leq c_{4}\left(B_{\mathrm{ov}} u, u\right)
$$

are fulfilled for all $u \in R^{N}$.

Proof:

In the case of $\varepsilon_{i}=1, i=1, \ldots, n$, using Theorem 2.1 there exist constants c_{5}, c_{6}, which are independent of h and H_{i}, such that

$$
c_{5}\left(C^{-1} u, u\right) \leq t C_{0}^{+} t^{*}+C_{1}^{+}+\cdots+C_{n}^{+} \leq c_{6}\left(C^{-1} u, u\right)
$$

holds for all $u \in R^{N}$. From (1.2) we get

$$
0 \leq\left(C_{i}^{+} u, u\right) \leq \frac{1}{\varepsilon_{i}} \leq\left(C_{i}^{+} u, u\right) \quad \forall u \in R^{N}
$$

Hence, we have

$$
\begin{aligned}
\left(B_{\text {nov }}^{-1} u, u\right) & =t C_{0}^{+} t^{*}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+} \\
& \leq t C_{0}^{+} t^{*}+C_{1}^{+}+\cdots+C_{n}^{+}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+} \\
& \leq \max \left\{c_{6}, 1\right\}\left(\left(C^{-1}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+}\right) u, u\right)=\max \left\{c_{6}, 1\right\}\left(B_{\text {ov }}^{-1} u, u\right) \\
& \left.\leq \max \left\{c_{6}, 1\right\} \max \left\{\frac{1}{c_{5}}, 1\right\}\left(t C_{0}^{+} t^{*}+C_{1}^{+}+\cdots+C_{n}^{+}+\frac{1}{\varepsilon_{1}} C_{1}^{+}+\cdots+\frac{1}{\varepsilon_{n}} C_{n}^{+}\right) u, u\right) \\
& \leq 2 \max \left\{c_{6}, 1\right\} \max \left\{\frac{1}{c_{5}}, 1\right\}\left(B_{\text {nov }}^{-1} u, u\right) .
\end{aligned}
$$

Remark The above Theorem 3.1 can be proved directly without using the extension operator t.

The same technique can be used for the construction of preconditioning operators for anisotropic problems.

Denote by $a_{i}(u, v)$ the restriction of the bilinear form $a(u, v)$ on Ω_{i}

$$
a_{i}(u, v)=\int_{\Omega_{i}}\left(\sum_{i, j=1}^{2} a_{i j}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}}+a_{0}(x) u v\right) d x
$$

Assume that for any $\Omega_{i}, i=1, \ldots, n$ there exists some Cartesian coordinate system $\left(s_{i}, n_{i}\right)$ such that

$$
\alpha_{4} a_{i}(u, v) \leq \int_{\Omega_{i}}\left(\varepsilon_{i}\left(\frac{\partial u}{\partial s_{i}}\right)^{2}+\left(\frac{\partial u}{\partial n_{i}}\right)^{2}\right) d \Omega \leq \alpha_{5} a_{i}(u, v) \quad \forall u \in H_{0}^{1}(\Omega) .
$$

Here the parameters ε_{i} satisfy (26) and the constants α_{4}, α_{5} are independent of ε_{i} and H_{i}. In the domain Ω_{0} the parameter $\varepsilon_{0}=1$.

Let $C_{i}, \quad i=1, \ldots, n$ be anisotropic preconditioning operators in the finite element subspaces of $H_{0}^{1}\left(\Omega_{i}\right)$:

$$
c_{7} a_{i}\left(u^{h}, u^{h}\right) \leq\left(C_{i} u, u\right) \leq c_{8} a_{i}\left(u^{h}, u^{h}\right), \quad \forall u^{h} \in W \cap H_{0}^{1}\left(\Omega_{i}\right),
$$

Set

$$
B_{a n i}^{-1}=C^{-1}+C_{1}^{+}+\ldots+C_{n}^{+},
$$

where C^{-1} is from the isotropic case.
The following theorem holds.
Theorem 3.2 There exist positive constants c_{9}, c_{10}, independent of $h, H_{i}, \varepsilon_{i}$ such that

$$
c_{9}\left(B_{a n i} u, u\right) \leq(A u, u) \leq c_{10}\left(B_{a n i} u, u\right), \quad \forall u \in R^{N} .
$$

Proof of the theorem is based on the following evident inequalities

$$
0 \leq \int_{\Omega_{i}}\left(\varepsilon_{i}\left(\frac{\partial u}{\partial s_{i}}\right)^{2}+\left(\frac{\partial u}{\partial n_{i}}\right)^{2}\right) d \Omega \leq \int_{\Omega_{i}}\left(\left(\frac{\partial u}{\partial s_{i}}\right)^{2}+\left(\frac{\partial u}{\partial n_{i}}\right)^{2}\right) d \Omega
$$

4 Analysis of Poincare - Steklov operators for anisotropic elliptic problems

In this section, we consider a model anisotropic problem which generates the bilinear form

$$
a(u, v)=\int_{\Omega}\left(p_{1} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+p_{2} \frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right) d x
$$

where

$$
\begin{aligned}
& p_{1}=\text { const }>0, \\
& p_{2}=\text { const }>0 .
\end{aligned}
$$

Assume that $p_{1}<p_{2}$. Let Ω be the unit square. The analysis of Poincare - Steklov operators which correspond to the bilinear form $a(u, v)$ is equivalent to the analysis of traces of functions on the boundary Γ of the domain Ω with respect to the norm

$$
\|u\|^{2}=a(u, u)
$$

Using evident scaling of variables, we can reduce analysis of traces with respect to the anisotropic norm $\|u\|$ to analysis with respect to the isotropic norm but in the anisotropic domain $\tilde{\Omega}$

$$
\|u\|=\left(p_{1} / p_{2}\right)^{1 / 2}\|u\|_{H^{1}(\tilde{\Omega})} .
$$

Here

$$
\tilde{\Omega}=\{(x, y) \mid 0<x<1,0<y<H\},
$$

where

$$
H=\left(p_{1} / p_{2}\right)^{1 / 2}
$$

Denote by k an integer part of $1 / H$ and set

$$
\begin{gathered}
H_{1}=1 / k, \\
S_{i}^{-}=\left\{(x, 0) \mid(i-1) H_{1} \leq x<(i+1) H_{1}\right\}, \\
S_{i}^{+}=\left\{(x, H) \mid(i-1) H_{1} \leq x<(i+1) H_{1}\right\}, i=1, \ldots, k-1, \\
L=\{(0, y) \mid 0 \leq y<H\},
\end{gathered}
$$

$$
\begin{gathered}
R=\{(1, y) \mid 0 \leq y<H\}, \\
S_{0}^{-}=L \cup S_{1}^{-}, \\
S_{0}^{+}=L \cup S_{1}^{+}, \\
S_{k}^{-}=R \cup S_{k-1}^{-}, \\
S_{k}^{+}=R \cup S_{k-1}^{+} .
\end{gathered}
$$

Define

$$
\begin{aligned}
\|\varphi\|_{H^{1 / 2}(\Gamma)}^{2}= & H\|\varphi\|_{L^{2}(\Gamma)}^{2}+|\varphi|_{H^{1 / 2}(\Gamma)}^{2} \\
\|\varphi\|_{L^{2}(\Gamma)}^{2}= & \int_{\Gamma} \varphi^{2}(x) d x \\
|\varphi|_{H^{1 / 2}(\Gamma)}^{2}= & \sum_{i=0}^{k} \int_{S_{i}^{-}} \int_{S_{i}^{-}} \frac{(\varphi(x)-\varphi(y))^{2}}{|x-y|^{2}} d x d y+\int_{S_{i}^{+}} \int_{S_{i}^{+}} \frac{(\varphi(x)-\varphi(y))^{2}}{|x-y|^{2}} d x d y \\
& \quad+\int_{S_{i}^{-}} \int_{S_{i}^{+}} \frac{(\varphi(x)-\varphi(y))^{2}}{|x-y|^{2}} d x d y
\end{aligned}
$$

The following lemma holds [11].
Lemma 4.1 There exists a positive constant c_{1} independent of H, such that

$$
\begin{aligned}
\|\varphi\|_{H^{1 / 2}(\Gamma)} & \leq c_{1}\|u\|_{H^{1}(\Omega)} \\
|\varphi|_{H^{1 / 2}(\Gamma)} & \leq c_{1}|u|_{H^{1}(\Omega)}
\end{aligned}
$$

for any function $u \in H^{1}(\Omega)$, where $\varphi \in H^{1 / 2}(\Gamma)$ is the trace of u at the boundary Γ. Conversely, there exists a positive constant c_{2}, independent of H, such that for any function $\varphi \in H^{1 / 2}(\Gamma)$ there exist $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u(x) & =\varphi(x), \quad x \in \Gamma \\
\|u\|_{H^{1}} & \leq c_{2}\|\varphi\|_{H^{1 / 2}(\Gamma)} \\
|u|_{H^{1}} & \leq c_{2}|\varphi|_{H^{1 / 2}(\Gamma)} .
\end{aligned}
$$

Unfortunately, in the case of finite element spaces the above norm works only for isotropic grids in $\tilde{\Omega}$. To consider anisotropic grids, we need to define grid dependent norms. Assume that there is a rectangular grid in Ω with grid steps h_{1} (in x direction) and h_{2} (in y direction). Denote by $H_{h}(\Omega)$ the piecewise linear finite element space for this grid. The sides of Ω denote by

$$
\begin{aligned}
& I_{1}=\{(x, 0) \mid 0<x<1\}, \\
& I_{2}=\{(x, 1) \mid 0<x<1\}, \\
& I_{3}=\{(0, y) \mid 0<y<1\}, \\
& I_{4}=\{(1, y) \mid 0<y<1\},
\end{aligned}
$$

For any finite element function $\varphi^{h} \in H_{h}(\Gamma)$ we put in correspondence the vector φ in the standard way.

The following lemmas hold.

Lemma 4.2 Let $\varphi^{h} \in H_{h}(\Gamma)$ such that

$$
\varphi^{h}(x)=0, \quad x \in I_{2} \cup I_{3} \cup I_{4}
$$

Define the matrix S

$$
(S \varphi, \varphi)=\inf \left|u^{h}\right|_{H^{1}(\Omega)}^{2}
$$

for any $u^{h} \in H_{h}(\Omega)$ such that

$$
u^{h}(x)=\varphi^{h}(x), \quad x \in \Gamma
$$

Then there exist constants c_{1}, c_{2}, independent of h_{1} and h_{2}, such that

$$
c_{1}(S \varphi, \varphi) \leq\left\|\varphi^{h}\right\|_{H^{1 / 2}(\Gamma)}^{2}+h_{2}|\varphi|_{H^{1}\left(I_{1}\right)}^{2} \leq c_{2}(S \varphi, \varphi) .
$$

Lemma 4.3 Let $\varphi^{h} \in H_{h}\left(I_{1}\right)$. Define the matrix S

$$
(S \varphi, \varphi)=\inf \left|u^{h}\right|_{H^{1}(\Omega)}^{2}
$$

for any $u^{h} \in H_{h}(\Omega)$ such that

$$
u^{h}(x)=\varphi^{h}(x), \quad x \in I_{1} .
$$

Then there exist constants c_{1}, c_{2}, independent of h_{1} and h_{2}, such that

$$
c_{1}(S \varphi, \varphi) \leq\left|\varphi^{h}\right|_{H^{1 / 2}\left(I_{1}\right)}^{2}+h_{2}|\varphi|_{H^{1}\left(I_{1}\right)}^{2} \leq c_{2}(S \varphi, \varphi)
$$

Lemma 4.4 Let $\varphi^{h} \in H_{h}\left(I_{1}\right)$. Define the matrix S

$$
(S \varphi, \varphi)=\inf \left\|u^{h}\right\|_{H^{1}(\Omega)}^{2}
$$

for any $u^{h} \in H_{h}(\Omega)$ such that

$$
u^{h}(x)=\varphi^{h}(x), \quad x \in I_{1} .
$$

Then there exist constants c_{1}, c_{2}, independent of h_{1} and h_{2}, such that

$$
c_{1}(S \varphi, \varphi) \leq\left\|\varphi^{h}\right\|_{H^{1 / 2}\left(I_{1}\right)}^{2}+h_{2}|\varphi|_{H^{1}\left(I_{1}\right)}^{2} \leq c_{2}(S \varphi, \varphi) .
$$

Finally, we have the following theorem.
Theorem 4.1 Let $\varphi^{h} \in H_{h}(\Gamma)$. Define the matrix S

$$
(S \varphi, \varphi)=\inf \left\|u^{h}\right\|_{H^{1}(\Omega)}^{2}
$$

for any $u^{h} \in H_{h}(\Omega)$ such that

$$
u^{h}(x)=\varphi^{h}(x), \quad x \in \Gamma .
$$

Then there exist constants c_{1}, c_{2}, independent of h_{1} and h_{2}, such that $c_{1}(S \varphi, \varphi) \leq\left\|\varphi^{h}\right\|_{H^{1 / 2}(\Gamma)}^{2}+h_{2}\left(|\varphi|_{H^{1}\left(I_{1}\right)}^{2}+|\varphi|_{H^{1}\left(I_{2}\right)}^{2}\right)+h_{1}\left(|\varphi|_{H^{1}\left(I_{3}\right)}^{2}+|\varphi|_{H^{1}\left(I_{4}\right)}^{2}\right) \leq c_{2}(S \varphi, \varphi)$.

5 Numerical examples

In this section we present a small number of numerical examples which demonstrate the efficiency of the overlapping domain decomposition method introduced above. For these examples we consider the unit square Ω with the squared subdomains $\Omega_{i}, i=1, \ldots, 9$ of the diameter H, where

$$
H=1 / 11 .
$$

The distance between neighbouring subdomains is equal to $2 H$ (see Figure 1).

Figure 1
Let Ω^{h} be a uniform triangulation with mesh step h. In the domain Ω we consider the following bilinear form

$$
a(u, v)=\int_{\Omega} \varepsilon(x)|\operatorname{grad}(u)|^{2} d x,
$$

where $\varepsilon(x)$ is from (1.2) and $\varepsilon_{i}=\varepsilon, i=1, \ldots, 9$. The matrix A is from (1.4) and in the construction of the operator $B_{o v}^{-1}$ direct solvers in the squares $\Omega, \Omega_{1}, \ldots, \Omega_{9}$ were used. In Table 1 we present condition numbers of $B_{o v}^{-1} A$ with respect to the mesh step h and the parameter ε.

ε	h			
	$H / 4$	$H / 8$	$H / 16$	$H / 32$
10^{-1}	2.5625	2.7335	2.8609	2.9548
10^{-3}	2.7313	2.9732	3.1598	3.3011
10^{-5}	2.7333	2.9761	3.1634	3.3054

Table 1

Acknowledgment The author wishes to thank U. Langer and J. Schoeberl from the Johannes-Kepler-University in Linz (Austria) for promoting and helpfully discussing the topic of this paper and Jari Toivanen from the University of Jyväskylä (Finland) for numerical experiments.

References

[1] P.L. Lions, On the Schwarz alternating method, I. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, (R.Glowinski, G.H. Golub, G. Meurant and J. Périaux, eds.), SIAM, Philadelphia, 1988
[2] G.I. Marchuk, Methods of Numerical Mathematics, Springer, New York, 1982
[3] A.M. Matsokin and S.V. Nepomnyaschikh, Schwarz alternating method in subspaces, Soviet Mathematics, 29(1985), pp. 78-84.
[4] A.M. Matsokin and S.V. Nepomnyaschikh, Norms in the space of traces of mesh functions, Sov. J. Numer. Anal. Math. Modeling, 3(1988), 199-216.
[5] A.M. Matsokin and S.V. Nepomnyaschikh, Method of fictitious space and explicit extension operators, Zh. Vychisl. Mat. Mat. Fiz. , 33(1993), 52-68.
[6] S.V. Nepomnyaschikh, Domain decomposition and Schwarz methods in a subspace for the approximate solution of elliptic boundary value problems, Thesis, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR, 1986.
[7] S.V. Nepomnyaschikh, Domain decomposition method for elliptic problems with discontinuous coefficients, Proc. 4th Conference on Domain Decomposition methods for Partial Differential Equations, Philadelphia, PA, SIAM, 1991, 242-251.
[8] S.V. Nepomnyaschikh, Method of splitting into subspaces for solving elliptic boundary value problems in complex-form domains, Sov. J. Numer. Anal. Math. Modelling, 6(1991), 151-168.
[9] S.V. Nepomnyaschikh, Mesh theorems on traces, normalization of function traces and their inversion, Sov. J. Numer. Anal. Math. Modelling, 6(1991), 223-242.
[10] S.V. Nepomnyaschikh, Decomposition and fictitious domain methods for elliptic boundary value problems, 5th Conference on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA , SIAM, 1992.
[11] S.V. Nepomnyaschikh, The method of partitioning the domain for elliptic problems with jumps of the coefficients in thin strips, Russian Acad. Sci. Dokl. Math., 45(1992), No. 2, 488-491.
[12] S.V. Nepomnyaschikh, Fictitious space method on unstructured meshes, East-West J. Numer. Math., 3(1995), No. 1, 71-79.
[13] S.V. Nepomnyaschikh, Preconditioning operators for elliptic problems with bad parameters, 11th Conference on Domain Decomposition Methods for Partial Differential Equations, London, 1998.
[14] J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing, 56(1996), 215-235.

