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Abstrat

We study theoretially the exiton absorption on a ring threaded by a mag-

neti ux. For the ase when the attration between eletron and hole is

short-ranged we get an exat solution of the problem. We demonstrate that,

despite the eletrial neutrality of the exiton, both the spetral position of

the exiton peak in the absorption, and the orresponding osillator strength

osillate with magneti ux with a period �

0

|the universal ux quantum.

The origin of the e�et is the �nite probability for eletron and hole, reated

by a photon at the same point, to tunnel in the opposite diretions and meet

eah other on the opposite side of the ring.
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One of the manifestations of the Aharonov-Bohm (AB) e�et [1℄ in the ring geometry

[2,3℄ is the periodi dependene of the transmission oeÆient for an eletron traversing the

ring on the magneti ux � through the ring [4,5℄. The period of osillations is equal to

�

0

= h=e | the universal ux quantum.

For one-dimensional (1D) ontinuum interating quantum systems with translational

invariane there is also a periodiity of many-partile states as a funtions of ux [6{9℄.

In 1D lattie systems, the lifting of Galilean invariane allows for various periodiities of

the states [6,7℄. For the ground state, this behavior an be interpreted, aording to the

above de�nition of �

0

, as a signature of the existene of elementary exitations with multiple

| sometimes even frational | harges [6,10{13℄. In the ase of strong eletron-eletron

interation the adequate desription of the many-body states is based on exitations of the

Wigner-rystal [14,15℄. Furthermore, the absene of sensitivity to the ux in suh systems

is an indiation of the onset of the Mott transition [7,16,17℄. Similarly, the sensitivity of

single-partile energies to the ux [18℄ an be used as a riterion of the Anderson-type

metal-insulator transition in disordered systems [19℄. Combined e�ets of interations and

disorder in 1D have reeived muh attention in the last deade [17,20{22℄. Numerial studies

of pairing e�ets for two partiles with repulsive interation in a disordered environment were

arried out using the AB setting [23℄. Other physial manifestations of the AB e�et in the

ring geometry onsidered in the literature inlude the evolution of eletron states for a time-

dependent ux [24℄, and a ux-dependent equilibrium distortion of the lattie aused by

eletron-phonon interations [25℄.

The physial origin of the ux sensitivity of an eletron on the ring is its harge whih

ouples to the vetor potential. Correspondingly, the oupling to the ux has the opposite

sign for an eletron and a hole. For this reason an exiton, being a bound state of eletron

and hole and thus a neutral entity, should not be sensitive to the ux. However, due to

the �nite size of the exiton, suh a sensitivity will emerge. This e�et is demonstrated

in the present paper. Below we study the AB-osillations both in the binding energy and

in the osillator strength of the exiton absorption. We hoose as a model a short-range
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attration potential between eletron and hole, whih allows to solve the three-body problem

(eletron, hole, and a ring) exatly. From this exat solution, we trae the behavior of the

AB osillations when inreasing the radius of the ring or the strength of the eletron-hole

attration.

Denote with '

e

and '

h

the azimuthal oordinates of the eletron and hole, respetively.

In the absene of interation the wave funtions of eletrons and holes are given by
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Here � is the radius of the ring, and m

e

, m

h

stand for the e�etive masses of eletron and

hole, respetively. In the presene of an interation V
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) is the distane between eletron and hole, we searh for the wave funtion of

the exiton in the form
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The oeÆients A
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are to be found from the equation
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where � is the energy of the exiton. The formal expression for A

N;N

0

follows from Eq. (4)

after multiplying it by

h
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At this point we make use of the assumption that the potential V

h

R('

e

� '

h

)

i

is short-

ranged. This implies that the integral over '

h

is determined by a narrow interval of '

h

lose to '

e

. Then we an replae '

h

by '

e

in the rest of the integrand. As a result, Eq. (5)

simpli�es to
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where the onstant V
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< 0 is de�ned as
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Finally we derive a losed equation, whih determines the exiton energies. This equation

follows from Eqs. (3) and (6) as a self-onsisteny ondition. Indeed, by setting in Eq. (3)
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Substituting (6) into (8) we arrive at the desired ondition
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For eah integer N

0

the solutions of Eq. (9) form a disrete set, �
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(non-normalized) wave funtions have the form
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The exponential fator in front of the sum insures that in the dipole approximation only

the exitons with N

0

= 0 an be reated by light. The frequeny dependene of the exiton

absorption, �(!), an be presented as
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where E

g

is the band-gap of the material of the ring; the oeÆients F

m

stand for the

osillator strengths of the orresponding transitions. A general expression for F

m

through

the eigenfuntion, 	

m
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, of the exitoni state reads
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Upon substituting Eq. (10) into Eq. (12) and making use of Eq. (9), we obtain
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The latter expression an be presented in a more ompat form by introduing the rate

of hange of the exiton energy with the interation parameter V

0

. Indeed, taking the

di�erential of Eq. (9), yields
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We note that the summation in Eq. (9) an be arried out in a losed form by using the

identity
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For the most interesting ase N
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and � = m

e
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) denotes the redued mass of eletron and hole. Then the equation

(9) for the exiton energies takes the form
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This equation is our main result. It is seen from Eq. (18) that the struture of the exitoni

spetrum is determined by a dimensionless ratio jV

0
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0

. From the de�nition (7) it follows

that, with inreasing the radius � of the ring, V

0

falls o� as 1=�. Thus, jV
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is proportional

to �. In the limit of large �, when jV
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, the spetrum an be found analytially. The

ground state orresponds to negative energy and is given by
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We note that the prefator �

2

V

2

0

="

0

is independent of �. It is equal to the binding energy of

an exiton on a straight line. It is easy to see that in the limit under onsideration we have

j�

0

0

j � jV

0

j � "

0

.

The seond term in the brakets of Eq. (19) desribes the AB e�et for the exiton.

In the limit of large � its magnitude is exponentially small. The physial meaning of the

exponential prefator an be understood after rewriting it in the form exp(�2��), where

 = �jV

0

j

�

2�=�h

2

"

0

�

1=2

is the inverse deay length of the wave funtion of the internal motion

of eletron and hole in the limit �!1. Thus, the magnitude of the AB e�et in the limit

of large � represents the amplitude for bound eletron and hole to tunnel in the opposite

diretions and meet eah other \on the opposite side of the ring" (opposite with respet to

the point where they were reated by a photon). This qualitative onsideration allows to

speify the ondition that the interation potential is short-ranged. Namely, for Eq. (19)

to apply, the radius of potential should be muh smaller than 

�1

. It is also lear from

the above onsideration that, within a prefator, the magnitude of the AB e�et is given

by exp(�2��) for arbitrary attrative potential, as long as the deay length 

�1

is smaller

than the perimeter of the ring. In Fig. 1 we plot the numerial solution of Eq. (18) for

various values of � together with the asymptoti solution (19) valid in the limit of large

�. We see that the maximum possible hange in exiton energy by threading the ring with

a ux �

0

=2 is 25% of the size-quantization energy "

0

. The asymptoti expression of (19)

is good down to � � �

�1

. In Fig. 2, we show the variation of the exiton energy with �

within one period. As expeted, the AB osillations are lose to sinusoidal for large values

of 2��, whereas for 2�� = 1, unharmoniity is already quite pronouned. The inrease

of the exiton energy as the ux is swithed on has a simple physial interpretation. If the

single-eletron energy (2) grows with � then the single-hole energy is redued with � and vie

versa. This suppresses the eletron-hole binding. Fig. 2 illustrates how the amplitudes of the

AB osillations derease with inreasing ring perimeter 2�� as desribed by Eq. (19). The

AB osillations in the osillator strength are plotted in Fig. 3. As expeted, the shift is most

pronouned for � = �

0

=2, and the relative magnitude is nearly 80% for the smallest value
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of 2��. For larger values of 2��, the osillations in F

0

(�) beome inreasingly sinusoidal

as an be seen by di�erentiating Eq. (19) with respet to V

0

.

In the onsideration above we assumed the width of the ring to be zero. In fat, if

the width is �nite but smaller than the radius of the exiton, 
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, it an be taken into

aount in a similar fashion as in [26℄ by adding �h
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to the

single-eletron and single-hole energies (2), respetively. Here, W stands for the width of

the ring and a hard-wall on�nement in the radial diretion is assumed. This would leave the

AB osillations unhanged. In the opposite ase W � 

�1

the osillations are suppressed.

The preise form of the suppression fator as a funtion of (W)

�1

is unknown and depends

on the details of the on�nement.

Let us briey address the exited states of the exiton orresponding m > 0. In the limit
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In ontrast to the ground state as in (19) the AB ontribution to the energy �

m

0

is not

exponentially small. Still the AB term is small (in parameter "

0

=jV

0

j � 1) ompared to the

level spaing at � = 0.

An alternative way to derive Eq. (18) is to follow the Bethe ansatz approah [27℄. The

intimate relation between Eq. (18) and a Bethe ansatz equation beomes most apparent in

the absene of magneti ux, � = 0, when (18) an be rewritten as

2��k

m

= 2�m+ 2 artan

�

�k

m



�

; (21)

where k

m

= (2�

m

0

�)

1=2

=�h is the wave vetor and  = 2��V

0

�

2

=�h

2

parameterizes the strength

of the attration analogously to the well-known Æ-funtion gas [28{30℄. At �nite ux, the

struture of the Bethe ansatz equations will be very similar to the equations for a 1D

Hubbard model [31℄ in the presene of a spin ux oupling to the spin-up and spin-down

degrees of freedom of the eletrons [10,17℄.

First experimental studies of the AB e�et were arried out on metalli rings [32℄. The

next generation of rings were based on GaAs/AlGaAs hetereostrutures as in Refs. [33℄ and
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[34℄ and had a irumferene of � 6000nm and 3000nm, respetively. For suh rings the

magnitude of the exitoni AB osillations will be very small. However, quite reently muh

more ompat ring-shaped dots of InAs in GaAs with a irumferene of � 250nm were

demonstrated to exist [35℄. This was ahieved by modi�ation of a standard growth proe-

dure [36℄ used for the fabriation of arrays of self-assembled InAs quantum dots in GaAs.

Reent light absorption experiments on nano-rings reveal an exitoni struture [37℄. How-

ever, it is muh more advantageous to searh for the AB osillations proposed in the present

paper not in absorption, but in luminesene studies. This is beause near-�eld tehniques

developed in the last deade allow to "see" a single quantum dot and thus avoid the inhomo-

geneous broadening. This tehnique was applied to many strutures ontaining ensembles

of quantum dots (e.g., GaAs/AlGaAs [38℄, ZnSe [39℄). In partiular, extremely narrow and

temperature insensitive (up to 50K) luminesene lines from a single InAs quantum dot in

GaAs were reorded in [40℄.

In onlusion, we have demonstrated the AB osillations for a neutral objet. This

onstitutes the main qualitative di�erene between our paper and previous onsiderations

[41℄ for two interating eletrons on a ring. Lastly, we note that the possibility of the related

e�et of Aharonov-Casher osillations for an exiton was onsidered previously in [42℄. The

underlying physis in [42℄ is that even a zero-size exiton having zero harge an still have

a �nite magneti moment.
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FIG. 1. The exiton energy �="

0

at ux � = 0 (solid lines), �

0

=4 (dashed line), and �

0

=2

(dot-dashed line) through the ring are plotted versus the dimensionless perimeter of the ring 2��.

The thik and thin lines represent the exat solution of Eq. (18) and the asymptoti result of Eq.

(19), respetively.
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FIG. 2. The Aharonov-Bohm osillations of the exiton energy is shown for three values of the

dimensionless ring perimeter 2�� = 1 (solid lines), 2 (dashed lines) and 3 (dot-dashed lines). As

in Fig. 1, the thik and thin lines are drawn from Eq. (18) and Eq. (19), respetively.
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FIG. 3. The Aharonov-Bohm osillations of the osillator strength for the three values of the

dimensionless ring perimeter 2�� = 1 (solid line), 2 (dashed line) and 3 (dot-dashed line).
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