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Abstract

The investigations of the present work are intended to contribute to improvements in dy-

namic subgrid-scale (SGS) modelling for large-eddy simulation (LES) on high-performance

parallel computers. Overall, thirteen SGS models, viz. nine dynamic-type closures proposed

in this study along with four subgrid parametrizations known from the literature, have been

tested numerically in a two-stage approach. The e�ects of varying �lters and model para-

meters have been analyzed and, as a result, superior variants have been selected.

Starting from problems encountered in dynamic subgrid-scale modelling, re�ned closure

principles are introduced, and advanced dynamic SGS models originating from algebraic

Smagorinsky, scale-similarity and linear-combination types are presented which have been

derived from a generalized use of the Germano identity at tensor and scalar levels. A dis-

tinctive feature of the subgrid parametrizations proposed in this paper consists in the for-

mulation of localized space- and time-dependent model coe�cients which are either assigned

to the individual tensor components of the SGS stresses (generalized anisotropic models

with component-speci�c coe�cients) or which are determined as scalar coe�cients from

physically meaningful relations taking subgrid-scale dissipation into consideration (realiz-

able single-coe�cient model versions). In addition, the approximate localization approach

due to Piomelli et al. [Phys. Fluids 7, 839 (1995)] has been adopted in most of the subgrid

closures suggested here.

These models, combined with spatial �lters of several types and widths, have been stud-

ied comparatively in a systematic two-stage testing procedure for a fully developed turbulent

pipe ow. Model performance has been assessed in comparison with each other and with the

known SGS parametrizations as well as with published experimental and numerical pipe-ow

data available.

The �rst stage of model evaluation comprises a priori tests of the closures using a direct

numerical simulation (DNS) database. The test quantities cover not only subgrid terms at

tensor, vector and scalar levels but also the individual terms of the Germano identity at

these levels and energy uxes between several ranges of scales to gain a more detailed insight

into interscale energy transfer. The a priori -test results for all the proposed SGS models and

particularly for the versions of scale-similarity and combined types with component-speci�c

coe�cients proved to be superior to those of the known subgrid parametrizations and were

inspected to �nd model/�lter combinations designated for further investigations.

As the second testing stage, actual �nite-di�erence large-eddy simulations have been

performed primarily for the last-mentioned model/�lter combinations, and sensitivity to

variations in input parameters has been examined. Backscatter, which has been observed in

about a third of the total number of grid points, was identi�ed to be a crucial problem of

the LES computations. In the a posteriori tests, the best predictive capability of all SGS clo-

sures implemented was established for the generalized anisotropic Smagorinsky-type model

with coe�cient clipping, whereas the scale-similarity and mixed models gave acceptable LES

predictions of statistical �rst- and second-order one-point moments of the GS velocity �eld

only if applied in conjunction with imposed backscatter limitations.

Among the employed �lters of physical-space top-hat and spectral sharp-cuto� types,

discrete top-hat kernels and especially approximations by means of Simpson's rule resulted

in the overall closest agreement with the relevant comparative data in both testing stages.
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I Introduction

Large-Eddy Simulation (LES) has been developed into a promising and potentially powerful

technique for ow modelling and numerical simulation, which is gaining increasing importance

in computing technological and geophysical turbulent and transitional ows as well as in inves-

tigating the dynamics of large-scale structures.

The underlying principle of directly solving the basic equations of motion for the large-scale

(grid-scale, GS) turbulence components while modelling the interactions between grid-scale and

subgrid-scale (SGS) components is motivated not only by special features of large eddies and

�ne-scale turbulence but also by the progressive advancement of computer technology and high-

performance scienti�c computing.

In numerous applications to a variety of ow types ranging from "building block ows" to fairly

complex real-world problems, results of LES-based studies have indicated the need for further

research concerning all aspects of the method, i. e. the averaging operation for GS/SGS decom-

position, the subgrid-scale model, the grid system and numerical schemes as well as the sensitive

balance between them.

The investigations of the present work contribute to the model and �lter components of LES

within the framework of the dynamic modelling approach. Starting from problems encountered

in dynamic subgrid-scale modelling, which are addressed below, a number of advanced dynamic

SGS models (closure hypotheses for the subgrid-stress tensor in the �ltered equations of motion

for incompressible uids) are proposed in this paper. Combined with several spatial �lters,

these models have been subjected to a systematic two-stage testing procedure for a particular

well-documented "building block ow" to evaluate their performance in comparison with each

other and with known subgrid parametrizations. The complementary approaches of a priori

and a posteriori testing have been applied here because the former, as the �rst stage, gave

valuable indications of model performance and �lter inuence and was e�ciently used to select

those SGS closures to be primarily studied in the more expensive large-eddy simulations, which

provided the ultimate tests. The two main objectives of this investigation are (i) to identify

advantages and limitations of the proposed dynamic subgrid-scale parametrizations including

the inherent modelling principles and (ii) to �nd out the superior model/�lter combinations for

further research and future LES applications.

Characteristics and Problems of Dynamic SGS Modelling

A large class of extremely appealing and potentially e�cient "re�ned adaptive subgrid-scale

models" [1] is represented by the dynamic SGS models due to Germano [2], [3]. Owing to the

basic idea of dynamically evaluating spatially and temporally varying model coe�cients adjusted

to local instantaneous ow dynamics rather than ad hoc specifying �xed model constants, this

approach to SGS modelling o�ers a great potential for accurately simulating a wide range of ow

types. These cover statistically unsteady, nonequilibrium and strongly inhomogeneous turbulent

as well as laminar, transitional and intermittent ows. In addition, near-wall ow behaviour

and backscatter energy transfer, the simulation of which still presents considerable challenges,

can be addressed.

Starting from the de�nition of a spatial grid-�ltering operation and a second test �lter at

a generally coarser level, dynamic procedures take advantage of an algebraic relation between

subgrid-scale stresses arising from the application of these �lters { the well-known Germano

identity (see Sec. II.B.1). This tensor equation relates the test-�ltered subgrid-scale stresses,

the subtest-scale stresses and the associated resolved turbulent stresses. When replacing the

former two by SGS parametrizations, the model coe�cients involved can be evaluated from

the Germano identity. This basic concept to dynamically determine space- and time-dependent

model coe�cients by exploiting the information on the smallest resolved scales aims at subgrid-

scale models of universal applicability. They are designed to overcome limits of performance of

classical SGS models without considerably increasing the models' complexity.

The most common approach to dynamic modelling in the line of Germano is based on the

direct application of the test �lter with a �xed width and the straightforward use of the tensorial
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Germano identity to solve for the model coe�cients as functions of space and time. Alternatively,

modi�ed approaches including ensemble averaging [4], averaging along uid-particle trajectories

in a Lagrangian frame of reference [5], [6], [7], [8] or starting from Taylor series expansions of

the test-�ltered quantities in the Germano identity with taking the limit for the test-�lter width

tending to zero [9] have been suggested, too.

However, in developing dynamic modelling procedures especially within the framework of

the original methodology [2] considered below, several assumptions have been incorporated

which indicate problems, inconsistencies and the need for further investigations with respect

to mathematical and physical foundations as well as numerical implementation. Subsequently,

�ve problems (P1 { P5) are speci�ed:

(P1) As a �rst hypothesis in deriving dynamic SGS closures, subgrid- and subtest-scale

stresses have been parametrized by the same functional dependence on large-scale quantities.

This includes model coe�cients that are assumed to be the same at the two di�erent �lter

levels the stresses are related to. Though not stringent for evaluating the Germano identity,

this supposition has frequently been taken as a basis and has been justi�ed by scale-invariance

arguments [2], [9], [10], [11], [12], [13], which in turn are motivated by the presumption of a well-

developed inertial range [14], [15]. Limitations of this approach may be relevant to applications

with substantially di�erent widths and/or types of the grid �lter and the �lter associated with

the consecutive application of grid- and test-�ltering operations [4], [9]. Several attempts to

account for scale dependence in dynamic Smagorinsky-type models are outlined in [5] and [11].

Especially, generalized formulations with individual coe�cients for the subgrid- and subtest-

scale stresses have been suggested by Meneveau [11], Moin [16], [17] and Ronchi et al. [12].

Multiple-scale �ltering can provide additional information on how model coe�cients and errors

depend on scale [13].

Concerning the �lters involved, to ensure compatibility of dynamic procedures with the self-

similarity assumption, in [14], a re-interpretation of the grid- and test-�ltering operations has

been presented which enforces self-similarity of grid and test�grid �lters independently of the

test-�lter type.

(P2) A serious problem in using the Germano identity to evaluate the model coe�cients

results from the fact that they appear inside the integral convolution operators representing

test �ltering applied to the subgrid-scale stresses. So, this identity leads to a system of integral

equations for the coe�cients to be determined. For the purpose of reducing these integral re-

lations to algebraic ones, in previous formulations [2], [18], the spatial variability of the model

coe�cients in the test-�ltered subgrid-scale stresses has been neglected, and the coe�cients have

been taken out of the �ltering operation as if they were constants. An a priori assessment of

this assumption for particular SGS parametrizations was conducted in [10].

Ghosal et al. [19] pursued an approach in the context of a variational formulation implying the

numerically iterative solution of the ensuing Fredholm's integral equation of the second kind to

determine the coe�cient �eld at each time step. Thereby they generalized the dynamic proce-

dure to fully inhomogeneous ows.

As a computationally e�cient treatment of the problem, Piomelli et al. [20] proposed to es-

timate the model coe�cients in the test-�ltered subgrid-scale stresses by approximate values

from previous time steps (or iterations) of the numerical solution process. Their approximate

localization procedure resulted in a localized model formulation of general applicability.

(P3) Depending on the number of coe�cients to be calculated for the subgrid- and subtest-

scale stress models from the Germano identity (and, if necessary, from additional conditions),

problems may arise concerning their unique determination. Thus, evaluating this tensor equa-

tion for a scalar model coe�cient gives rise to the overspeci�cation problem. It has been solved

by contracting the Germano identity with several second-order tensors [2], [18], [20], in the

original work [2] without giving reasons, later on substantiated by a local least-squares error-

minimization technique [18] as well as by means of a nonlocal generalization based on a varia-

tional approach [19]. In a few publications, e. g. [21], [22], the use of tensorial model coe�cients

has been recommended.
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(P4) Up to now, dynamic models of Smagorinsky type have generally been subjected to the

instability/singularity problem. Ill-conditioned behaviour of such models may be attributed to

negative values of the resulting total viscosity (sum of molecular and SGS turbulence viscosities),

to model coe�cients that frequently change their sign and exhibit strong spatial and temporal

uctuations, particularly in connection with pointwise vanishing or small denominators in the

expressions for the coe�cients. The problem has been reduced by applying various global or

local spatial (in some cases also temporal) averages to the model coe�cient as a whole [23] or to

its numerator and denominator separately for the purpose of numerical stabilization, for example

averages in statistically homogeneous directions or over neighbouring grid cells in [2], [15], [22],

[24], [25], [26], [27], [28], [29], [30], [31], [32]. In addition, error minimization of the Germano

identity along uid-particle trajectories has been used to establish a Lagrangian dynamic SGS

model including the solution of additional di�erential equations [5], [6], [7], [8]. Moreover, a priori

bounds (lower and upper ones e. g. in [33], [34]) have been speci�ed for clipping the dynamic

model coe�cients. Speci�cally, the total viscosity has been constrained to be nonnegative [20],

[21], [29], [31], [32], [35], [36], [37], [38]. Physically meaningful lower bounds have also been

derived from an entropy condition imposed on the total dissipation (sum of viscous, SGS and

numerical dissipations > 0) [34], [39] or within the framework of the constrained minimization

procedure [19].

(P5) A central issue has been the modelling of backscatter from subgrid to grid scales.

With respect to dynamic models of eddy-viscosity/Smagorinsky type, contrary to molecular

viscosities, there exist no constraints following from the basic laws of thermodynamics for SGS

turbulence viscosities to be nonnegative. However, backscatter-related numerical instabilities

encountered in case of negative total viscosities, as discussed for example in [19], [40], [41],

point out limitations and drawbacks of eddy-viscosity approaches, which remain to be further

investigated. It is common practice to limit the amount of backscatter by enforcing the above-

mentioned lower bounds to the SGS turbulence viscosity and, correspondingly, to the dynamic

Smagorinsky-model coe�cients.

Alternative approaches to the modelling of local instantaneous reverse energy transfer in the

context of dynamic procedures have mainly been provided by SGS models of scale-similarity

and mixed types [29], [42], [43], [44], [45], [46], with arti�cial backscatter control included in

[47], by the addition of stochastic forcing terms [40], or by the use of di�erential transport

equations for subgrid-scale turbulence energies [12], [19], [48].

Scope of the Present Work

Motivated by the advantages and the adaptive potential of dynamic modelling procedures on

the one hand and by the problems and de�ciencies of popular dynamic SGS parametrizations on

the other hand, in the present paper, nine re�ned dynamic subgrid-scale models are suggested.

Within the framework of the standard dynamic modelling approach by means of applying a

test �lter of nonvanishing width and directly evaluating the Germano identity to determine the

model coe�cients, the proposed models aim at

� the computationally e�cient solution of conceptual problems of this approach, viz. the

treatment of model coe�cients inside the integral test-�ltering operation (P2), overspeci-

�cation (P3), and the instability/singularity problem (P4),

� a exible capturing of the anisotropy and of the near-wall behaviour of the SGS-stress

tensor,

� a proper approximation to local instantaneous backscatter energy transfer.

Moreover, some of the models have been designed to ful�l formal conditions imposed on the

modelled SGS-stress tensor such as realizability for nonnegative �lter functions in physical space

[49], [50], [51] and to overcome limitations of the underlying nondynamic base parametrizations.

Model development, which is outlined in Sec. II.B, is mainly based on

� the generalized use of the Germano identity at the tensor level of the SGS stresses and of

deduced relations at the scalar level,
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� the formulation of locally de�ned model coe�cients either related to the individual com-

ponents of the SGS-stress tensor or scalar ones which may be mathematically uniquely

determined from physically motivated conditions,

� the approximate localization in the line of Piomelli et al. [20] to e�ciently treat the

model coe�cients inside the integral convolution operators of the test-�ltered subgrid-

scale stresses.

With respect to the base parametrizations, in this study, three model types are included, which

imply di�erent approaches to backscatter modelling as well as to the approximation of local and

nonlocal energy transfer processes in wavenumber space. The models under investigation are

introduced and motivated in more detail in Sec. II.B. Combined with spatial �lters of several

widths and types, they have been evaluated for a fully developed turbulent pipe ow in a two-

stage testing procedure.

The �rst stage comprises a priori tests of the proposed models in conjuntion with various

grid and test �lters using a DNS database which had been generated on the massively parallel

computer Parsytec GC/PowerPlus-128 of Chemnitz University of Technology. The a priori -

testing methodology and the computed test quantities are explained in Sec. III.A, the �ndings

are presented in Sec. III.B. The a priori -test results have been analyzed to select representatives

of the three model types and the most promising model candidates in particular, which were

subjected to further testing.

As the second testing stage, actual large-eddy simulations have been performed applying

these models with variations in input data such as model parameter bounds, grid density and

�lters.

Concerning the spatial �lters involved in dynamic modelling, discrete approximations to

the top-hat and to the spectral sharp-cuto� kernels de�ned in physical space and speci�ed in

Sec. II.C have been tested comparatively to study the e�ect of �lters that qualitatively di�er

in the separation of grid and subgrid scales in physical and wavenumber spaces. De�niteness

properties of the resulting SGS-stress tensor are also a�ected by this �lter choice.

The test-ow conditions, especially the values of the Reynolds number, Re

�

= u

�

R=� = 180

and 1;050 for DNS and LES, respectively, have been selected to be comparable with published

results of numerical and experimental pipe-ow investigations. Flow parameters and the basic

LES equations are reviewed in Sec. II.A. The computer code is based on a second-order �nite-

di�erence discretization of the governing conservation equations in cylindrical coordinates on

a 3D staggered-grid system. The numerical procedure, input data and details of �ltering and

model implementation are briey described in Sec. II.D. Some aspects of parallelization are also

addressed.

A survey of the large-eddy simulation runs performed is given in Sec. IV.A. The model-

and �lter-related results of the a posteriori tests concerning mean ow quantities and turbulence

characteristics are discussed in Sec. IV.B, a comparison with experimental and numerical pipe-

ow data being included. Finally, conclusions are drawn from the comparative evaluation of the

investigated model/�lter combinations (summarized in Sec.V), from the outcome of a priori and

a posteriori tests as well as from the sensitivity of the LES results to variations in input data.
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II Modelling and Numerical Procedure

II.A Flow Speci�cation and Basic LES Equations

The numerical experiments of the present study are devoted to a fully developed turbulent

ow of an incompressible uid through a straight cylindrical pipe. The test ow is considered to

be statistically steady as well as homogeneous in the axial and circumferential directions. This

particular application has been chosen as a geometrically and uid dynamically simple "building

block ow", which is often encountered in the various engineering �elds and for which numerical

and experimental data are available for comparison.

In the DNS, which provided the database for the a priori tests, a Reynolds number of Re

�

=

u

�

R=� = 180 based on pipe radius R and wall-friction velocity u

�

is implemented, corresponding

to Re

CL

= u

CL

R=� � 3;500 in terms of centerline velocity u

CL

. These test-ow conditions were

selected to reproduce the ones of the pipe-ow direct numerical simulations described in [52],

[53], [54], [55], [56] and agree with those of the experimental investigations performed by Adrian

et al. [57], [58]. To be compatible with [52], the Reynolds number of the large-eddy simulations

equals Re

�

= 1;050, equivalent to Re

CL

� 25;000.

The computational domain is represented by a circular cylinder de�ned by (r; '; z) 2

[0; R] � [0; 2�] � [0; L] ; where r; '; z denote cylindrical coordinates as usual. The length L

is to be chosen su�ciently large as compared with the radius R in view of periodic boundary

conditions to be applied in the longitudinal direction. Particularly, the spatial two-point corre-

lation functions should be vanishingly small for separation distances of the order of 0:5L so that

the largest ow structures can be captured. Following [52], the lengths L = 10R and L = 8R

were speci�ed for DNS and LES, respectively. The latter at least guarantees that the computed

statistical one-point moments are not substantially inuenced by this choice.

The direct and large-eddy simulations are based on the system of fundamental equations of

uid dynamics following from mass and momentum conservation principles for incompressible

Newtonian uids. Applying a linear �ltering operation (see Secs. II.B.1 and II.C), denoted by an

overbar and assumed to be commutative with respect to space and time derivatives, yields the

governing LES equations which may be written in cylindrical (r; '; z)-coordinates as follows

@

@r

(ru ) +

@

@'

(v ) +

@

@z

(rw ) = 0 ;

@u

@t

+

1

r

n

@

@r

[r(uu -�

11

+p)]+

@

@'

[(v u -�

21

)]+

@

@z

[r(wu -�

31

)]

o

+

1

r

(-v v +�

22

) = f

1

;

@v

@t

+

1

r

n

@

@r

[r(u v -�

12

)]+

@

@'

[(v v -�

22

+p)]+

@

@z

[r(w v -�

32

)]

o

+

1

r

(v u -�

21

) = f

2

; (1)

@w
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+

1

r

n

@

@r

[r(uw -�

13

)]+

@

@'

[(v w -�

23

)]+

@
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[r(ww -�

33
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o

= f

3

;

� = �

vis

+ t
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; t

SGS

ij

= �(u

i

u

j

� u

i

u

j

); �

vis

ij

= 2 � S

ij

;

S

11

=
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; S

22

=

1

r

�
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+ u
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=
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@'

+
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;
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23

= S
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=
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�

; S

13

= S
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=

1

2

�

@w
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+
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�

:

In (1), u

1

= u; u

2

= v; u

3

= w represent the physical GS velocities in the radial, circumferential

and axial directions. Throughout this paper, the subscripts r; '; z will be used interchangeably

with 1; 2; 3. For the pipe ow considered, a constant driving axial gradient of the statistically

mean pressure (divided by the density), dhpi=dz = �2u

2

�

=R ; is imposed, which was incorporated

into the right-hand side f

3

so as to make the grid-scale pressure p periodic in the streamwise

direction. Referring to the stresses (divided by the density), the notations �

ij

; �

vis

ij

are adopted
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for the total and viscous stress tensors, respectively; t

SGS

ij

(with the superscript omitted below)

denotes the (generalized) subgrid-scale stress tensor arising from �ltering the nonlinear convec-

tive terms and representing the subgrid closure problem, which will be dealt with in the following

subsection.

II.B Dynamic Subgrid-Scale Models

II.B.1 Modelling Principles

Dynamic approaches to subgrid modelling proceed from the de�nition of two spatial �ltering

operations { the grid �lter denoted by an overbar and associated with kernel G of width � > 0 ;

f(x; t) =

Z

R

3

G(x;y;�)f(y; t) dy ; (2)

and the test �lter indicated by a hat and associated with kernel

b

G of width

b

� > 0, generally

b

� > �,

b

f(x; t) =

Z

R

3

b

G(x;y;

b

�)f(y; t) dy ; (3)

where f represents some turbulent �eld. Consecutively applying G and

b

G yields a third �lter

b

G(x;y;

b

�) =

Z

R

3

b

G(x; z;

b

�)G(z;y;�) dz (4)

of width

b

� >

b

�. As usual, the grid-�ltering operation in case of LES is implicitly tied to the

discretization method. For the �lters considered in this study, the functions G;

b

G and thus

b

G are homogeneous in the sense that they depend only on the di�erence between the position

arguments with the �lter widths being constant and the right-hand sides of Eqs. (2), (3) as

well as the analogous expression for

b

f(x; t) representing convolution integrals. In addition, the

kernels are required to be normalized so that constants are invariant under �ltering. In deriving

the governing LES equations, the �ltering operators have to commute with di�erentiation, too.

The main idea in dynamic modelling, which is independent of any subgrid model and not

restricted to a particular �lter type, is based on the well-known Germano identity as an universal

relation between the SGS stresses associated withG- and

b

G-�lter levels, i. e. between the subgrid-

scale stresses t

ij

= �(u

i

u

j

�u

i

u

j

) ; the subtest-scale stresses T

ij

= �(

d

u

i

u

j

�

b

u

i

b

u

j

) , and the related

resolved turbulent stresses L

ij

= �(

d

u

i

u

j

�

b

u

i

b

u

j

) :

T

ij

= L

ij

+

b

t

ij

; i; j 2 f1; 2; 3g ; (5)

interpreted by Germano as a consistency rule and a similarity rule [3]. For Eq. (5) not to result

in a trivial identity, the �lters are required to satisfy (see also [59])

b

G 6� G ;

b

� > � : (6)

In this paper, it is proposed not only to exploit the kinematic identity (5) at the tensor level

of the stresses but also to found model development and evaluation on the following consequences

at the vector and scalar levels:

� vector level { divergence of the subtest-scale stress tensor entering the

b

G-�ltered Navier-

Stokes equations (subtest forces)

P

j

@T

ij

@x

j

=

P

j

@L

ij

@x

j

+

P

j

@

b

t

ij

@x

j

; i 2 f1; 2; 3g ; (7)
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� scalar level { terms representing the energetic interactions between large- and small-scale

components associated with �lter

b

G

P

i;j

b

u

i

@T

ij

@x

j

=

P

i;j

b

u

i

@L

ij

@x

j

+

P

i;j

b

u

i

@

b

t

ij

@x

j

; (8)

� scalar level { the part of this interaction term corresponding to �ne-scale dissipation at

b

G-level and representing the net energy transfer between the large-scale velocity �eld

b

u

and the related small-scale �eld, f02 23 =

P

i;j

T

ij

b

S

ij

,

P

i;j

T

ij

b

S

ij

=

P

i;j

L

ij

b

S

ij

+

P

i;j

b

t

ij

b

S

ij

; (9)

which is decomposed into the contributions from the energy ux f12 23 =

P

i;j

L

ij

b

S

ij

between scales of motion larger than

b

� and those intermediate between � and

b

� ("local

contribution" according to [47]) and from the energy ux f01 23 =

P

i;j

b

t

ij

b

S

ij

between

scales of motion larger than

b

� and scales smaller than � ("not-so-local contribution"

according to [47]). (Here, the uxes are de�ned to be positive in case of energy drain

towards smaller scales. The ux notation has been chosen according to the boundaries of

the two ranges of scales involved in energy transfer, where the numbers 0 and 3 represent

the size of the smallest and largest scales of motion, respectively; 1 and 2 are assigned to

the �lter widths � and

b

�, respectively. To illustrate this further, the symbol f01 13 =

P

ij

t

ij

S

ij

will be adopted to denote the energy ux between subgrid and grid scales at

G-level with the sign being opposite to that of the SGS dissipation.)

Basically, the present investigation of large and small scales interactions at both G- and

b

G-levels focuses on the SGS-dissipation term, while the SGS-di�usion part is not studied,

mainly for reasons explained e. g. in [15] and [60].

Another important relation is given by the scalar equation that results from taking the trace of

Eq. (5) and that connects the small-scale kinetic energy at

b

G-level, the test-�ltered SGS energy

of the grid level and the related resolved turbulence energy:

�

1

2

P

i

T

ii

= �

1

2

P

i

L

ii

�

1

2

P

i

b

t

ii

: (10)

Particular equations selected from the above consequences of the Germano identity have been

used to mathematically uniquely and e�ciently determine space- and time-dependent model

coe�cients of dynamic SGS parametrizations and to evaluate model performance.

Following the most common practice in modelling the subgrid- and subtest-scale stresses,

they are approximated by the same type of model in terms of the respective large-scale quanti-

ties including identical model coe�cients.

One of the key assumptions of the generalized-anisotropic model versions proposed in this pa-

per consists in the use of individual model coe�cients related to the particular tensor compo-

nents of the SGS stresses. By introducing additional degrees of freedom, it is thus intended to

avoid overspeci�cation (P3) and to allow for a more exible account of SGS-stress anisotropy,

which is especially pronounced in wall-bounded turbulent shear ows. This type of coe�cients

is expected to exhibit reduced uctuations and a more favourable numerical behaviour. The

component-related model coe�cients are assigned to the individual SGS stress-tensor compo-

nents as spatially and temporally varying adaptive weighting factors, which, obviously, depend

on the coordinate system chosen. As distinguished from tensor components, they will subse-

quently be denoted by indices in parentheses.

Also, alternative models are formulated with a scalar coe�cient each calculated from physically

meaningful conditions related to subgrid-scale dissipation.

Unlike SGS parametrizations with globally averaged expressions for their model coe�cients

as proposed by Germano [2], all the models suggested by the authors of the present work use

8



locally de�ned coe�cients, that is essentially without any kind of global averaging. These

localized formulations are designed to achieve a greater capability of adequately reproducing

local subgrid-scale stresses t

ij

and SGS dissipation "

SGS

= �f01 13 as well as local backscatter

energy transfer "

+

= 1=2 ("

SGS

+ j"

SGS

j) [61] and to o�er a wider range of applicability. For

stability reasons, after having been calculated from their formulae, the model coe�cients were

suitably modi�ed (see Sec. II.D.4).

In favour of the localized approach, it has been suggested in recent publications [23] to keep

the important local information as much as possible in the dynamic model formulation. Improved

results by using dynamic SGS closures with localized coe�cients have already been obtained,

for example, in [5], [19], [20]. The need for further investigations into dynamic model versions

with locally formulated coe�cients has been pointed out in [22] and, concerning intermittency

of SGS dissipation, in [62].

With respect to the treatment of the model coe�cients inside the test-�ltered modelled

SGS stresses

b

t

mod

ij

in (5) or related equations, the approximate localization approach due to

Piomelli and Liu [20] is mainly adopted since this technique is considered to be a computationally

e�cient alternative to solving the Fredholm's integral equation of the second kind. So either

the subgrid-scale stress tensor as a whole or the model coe�cients involved are replaced by

approximate values calculated during the numerical solution procedure from the previous time

step and subsequently marked with a superscribed asterisk.

As to the base model type, the tested closures comprise dynamic subgrid-scale parametriza-

tions of algebraic Smagorinsky, scale-similarity and mixed types the coe�cients of which are

evaluated as space- and time-dependent parameters from algebraic equations without having to

solve additional di�erential or integral equations. Compared with known dynamic SGS models,

the closure assumptions introduced below are not substantially more complex.

For assessing model performance in both a priori and a posteriori tests, particularly with

respect to reproducing ow features at scales between � and

b

�, Eqs. (5) and (7) { (10) can be

used, too. In a priori tests, the average error in satisfying these equations with modelled subgrid

and subtest-scale stresses as well as correlation coe�cients between left- and right-hand sides

are computable. The idea of explicitly evaluating the average square error of the Germano

identity with particular models for t

ij

and T

ij

was introduced and tested in [13]. Furthermore,

Meneveau and Katz proposed to apply this approach to dynamically choose among available

SGS parametrizations in LES.

II.B.2 Smagorinsky-Type Models

Before turning to the proposed modi�ed versions, three well-known SGS models which, for

comparison, have been incorporated into the a priori and a posteriori tests of this investigation

will be outlined �rst.

Model 1 (smag): The �rst base type for model development and evaluation originates from

the traditional Smagorinsky model [63] for the deviatoric part of the (generalized) SGS-stress

tensor as a function of the local grid-scale strain-rate tensor S

ij

: The model involves the classical

eddy-viscosity assumption in physical space

t

mod

ij

�

�

ij

3

P

k

t

mod

kk

= 2 �

SGS

S

ij

(11)

and the algebraic formulation of the subgrid-scale eddy viscosity

�

SGS

= (f

D

C

S

�)

2

jSj ; (12)

where jSj = (2

P

i;j

S

ij

S

ij

)

1=2

, C

S

denotes the empirical Smagorinsky constant, � stands for

a length scale representative of the subgrid-scale motion, and f

D

means an ad hoc damping

function which reduces the turbulent length and velocity scales near solid walls. For the pipe-

ow application of the present study, C

S

= 0:1 and a Van-Driest-type exponential wall function

f

D

(r

+

) = [1 � exp(�r

a

+

=A

a

+

)]

b

; r

+

= (1 � r)u

�

=�; A

+

= 25, with a = b = 1 or, alternatively,
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a = 3; b = 1=2, are adopted. The speci�cation of the SGS length scale in terms of unidirectional

grid spacings is based here on the quadratic mean and is given in Sec. II.C; another de�nition in

widespread use is the geometric-mean-based formula introduced in [64] and generalized to highly

anisotropic grids in [65] and [66]. (For its derivation, the underlying hypotheses and intrinsic

de�ciencies of this absolutely dissipative model, see for example [23], [59], [67], [68], [69], [70],

[71], [72], [73], [74], [75].)

Models 2 (lilly) and 3 (pio): As dynamic versions thereof, the popular models due to

Lilly [18] and Piomelli, Liu [20] are tested, both starting from the usual hypotheses for the

anisotropic parts of the (generalized) subgrid- and subtest-scale stresses, respectively,

t

mod

ij

�

�

ij

3

P

k

t

mod

kk

= C�

ij

; �

ij

= 2�

2

jSjS

ij

; (13)

T

mod

ij

�

�

ij

3

P

k

T

mod

kk

= C�

ij

; �

ij

= 2

b

�

2

j

b

Sj

b

S

ij

; (14)

and using the following equation resulting from the Germano identity (5)

L

ij

�

�

ij

3

P

k

L

kk

= T

ij

�

�

ij

3

P

k

T

kk

�

b

t

ij

+

�

ij

3

P

k

b

t

kk

(15)

to determine the model coe�cient.

In the model due to Lilly [18], the coe�cient appearing inside of the test-�ltered subgrid-scale

stresses in (15) was extracted from the test-�ltering operation without taking account of its

space dependence. To solve the overspeci�cation problem (P3), Lilly introduced a least-squares

minimization procedure. In addition, a spatial averaging operation h ::: i in homogeneous ow

directions was applied to both the numerator and denominator of the resulting expression for C

in order to enhance computational stability. For the pipe ow considered in the present paper,

this results in

C(r; t) =

D

P

i;j

L

ij

M

ij

E

';z

.D

P

k;l

M

kl

M

kl

E

';z

(16)

with M

ij

= �

ij

�

b

�

ij

.

The approach followed by Piomelli and Liu [20] subsequently termed approximate localization

approach is characterized by using an estimated value C

�

for the model coe�cient inside the inte-

gral convolution operator of

b

t

mod

ij

in Eq. (15). The estimate C

�

is computed during the numerical

solution procedure from previous time (or iteration) steps. This approximate localization idea

has been adopted in [38], [76], and [77]. Further, contracting (15) with �

ij

to locally minimize

the sum of the squares of the residual gives the localized model coe�cient

C(x; t) =

�

P

i;j

(L

ij

+

\

C

�

�

ij

)�

ij

�.

P

k;l

�

kl

�

kl

: (17)

In accordance with [20], the resulting subgrid-scale eddy viscosity was bounded from below to

guarantee nonnegative values of the total viscosity �+�

SGS

> 0 . An additional local averaging of

the model coe�cient over the test-�ltering volume as performed by the last-mentioned authors

was found to be not necessary for reasons of stability and is, therefore, not included in the

computations of the present work.

Model 4 (smagc): As distinguished from the known dynamic models presented above, the

modelling approach suggested by the authors of this paper introduces generalized Smagorinsky-

type closures for the subgrid- and subtest-scale stresses,

t

mod

ij

= C

(ij)

�

ij

; (18)

T

mod

ij

= C

(ij)

�

ij

; (19)

containing component-related space- and time-dependent model coe�cients C

(ij)

(x; t) =

C

(ji)

(x; t). Contrary to the popular subgrid parametrizations of this base type, modelling is

thus extended to the whole of the SGS-stress tensor instead of just the deviatoric part. Con-

sequently, the GS pressure, the SGS normal stresses and hence the subgrid-scale kinetic energy

are directly computable, and realizability of the modelled subgrid-stress tensor can be veri�ed.
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Figure 1: Mean values of stresses L

ij

=u

2

�

, t

def

ij

=u

2

�

, L

T

ij

=u

2

�

, L

ij

=u

2

�

, L

T

ij

=u

2

�

,

T

def

ij

=u

2

�

(computed with top-hat type grid and test �lters from DNS data) versus radial coordinate

r=R

Using component-speci�c model coe�cients is intended to generalize the scalar turbulence vis-

cosity and the classical linear stress/strain relationship to overcome their limitations.

Inserting Eqs. (18), (19) into the tensorial Germano identity (5) and adopting the approximate

localization approach [20] to replace the model coe�cients in

b

t

mod

ij

by C

�

(ij)

-values calculated in

the preceding time step yields

C

(ij)

=

�

L

ij

+

\

C

�

(ij)

�

ij

�.

�

ij

: (20)

The model (18), (20) was implemented in the e�ective-viscosity form t

mod

ij

= 2 �

SGS

(ij)

S

ij

; �

SGS

(ij)

=

C

(ij)

�

2

jSj ; with the model coe�cients bounded from below according to � + �

SGS

(ij)

> 0 . A

clipping of the coe�cients with respect to upper bounds was also tested.

II.B.3 Scale-Similarity-Type Models

Because of well-known de�ciencies and limitations of the classical Smagorinsky base model

regarding the gradient-type of the closure, the generally unsatisfactory approximation to the

local SGS stresses, the underlying assumption of local equilibrium between SGS turbulence

energy production and dissipation, as well as the primary account of the nonlocal component

of energy transfer in wavenumber space and also in view of the instability/singularity problem

connected with negative SGS eddy viscosities, subgrid-scale parametrizations of scale-similarity

type have been incorporated into the tests as alternatives.

The modelling principle due to Bardina [78] is physically based on scale similarity of tur-

bulence, which has been con�rmed by the results of numerous experimental and numerical

investigations of turbulent ow. The outcome of the direct numerical simulation of turbulent

pipe ow performed in the present study also shows a remarkable similarity between turbulence

characteristics of di�erent length scales not only with respect to statistical means as functions

of the radial coordinate (Fig. 1) but even at the level of instantaneous quantities along axial

(r = const:; ' = const:) and radial (' = const:; z = const:) lines (Fig. 2). This applies to the

individual terms of the Germano identity (dashed lines in Fig. 1), to the subgrid- and subtest-

scale stresses and equally to the following stresses computable from the resolved-scale �eld:

L

ij

= �(u

i

u

j

� u

i

u

j

) (modi�ed) Leonard stresses according to [79] ,
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Figure 2: Instantaneous values of stresses L

13

=u

2

�

, t

def

13

=u

2

�

, L

13

=u

2

�

(computed with

top-hat type grid and test �lters from DNS data) along an axial line and along a radial line

L

T

ij

= �(

d

u

i

u

j

�

b

u

i

b

u

j

) ;

L

ij

= �(

d

u

i

u

j

�

b

u

i

b

u

j

) resolved turbulent stresses ,

L

T

ij

= �(

d

u

i

u

j

�

b

u

i

b

u

j

) :

Figures 1 and 2 particularly suggest the use of the (modi�ed) Leonard stresses L

ij

as parametri-

zation tensor for t

ij

, whereas the GS strain-rate tensor S

ij

can be shown to be less appropriate

from the similarity point of view.

In modelling the terms representing the interactions between GS and SGS components within

the framework of the scale-similarity concept, importance is primarily attached to local energy

transfer in wavenumber space between turbulence components of roughly equal size with pos-

tulating similarity between the interacting components. Accordingly, closures of this type are

aimed at approximating the major interactions between the smallest resolved (GS) and the

largest unresolved (SGS) scales (transfer �eld) in such a way that the latter are represented by

di�erences between single- and double- (or multiple-) �ltered velocities. Ultimately, this leads

to parametrizations of t

ij

in terms of (generalized) stresses computable from the resolved-scale

�elds such as L

ij

or L

ij

. The resulting closure hypotheses stand out for improved approxima-

tions at the tensor level of local stresses [43], [44] and for advantages concerning the modelling of

transitional and laminar ow regions ("behaviour across di�erent ow regimes" [47]) as well as

of wall-bounded ows (asymptotic near-wall behaviour of the modelled SGS-stress tensor, repro-

duction of typical near-wall structures [43], [47], [60]). Above all, however, models of this type

are not purely dissipative and admit deterministic backscatter simulation [80] without resort-

ing to negative turbulence viscosities, which may give rise to numerical instabilities. Whereas

classical nondynamic scale-similarity models turned out to be not dissipative enough, their dy-

namic counterparts were found to be superior also in this respect. In the context of dynamic

SGS modelling, scale-similarity-based parametrizations have met with renewed interest in recent

publications [29], [42], [43], [45], [46], [47], [60], [70], [81], which often showed these models to

be e�ective and su�ciently dissipative even without adding a supplementary Smagorinsky-type

model component.

Further work is still needed to give a conclusive evaluation of the a posteriori performance of

dynamic similarity models with respect to the approximation of SGS dissipation and backscat-

ter as well as regarding the conceptual weakness of a mismatch in characteristic length scales

between the modelled and de�ned SGS-stress �elds [47], [82], [83].

Model 5 (leo): As the starting point and a simple candidate for testing scale-similarity

closures, the following nondynamic base parametrization in terms of the (modi�ed) Leonard

stresses

t

mod

ij

= DL

ij

(21)

with the model constant D = 1 is used. Scale-similarity arguments due to Bardina applied

to the individual stress components ensuing from the classical decomposition of the SGS-stress
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tensor (into Leonard, cross and true SGS Reynolds stresses) along with Galilean invariance

considerations formed the background of the original model [78], which is formulated here for

the total (generalized) SGS-stress tensor. (The resulting parametrization (21) is, obviously,

Galilean invariant irrespective of the value of D.)

Model 6 (sc1): On the pattern of model 4 (smagc), by adopting Eqs. (18), (19), the tensorial

Germano identity (5) and the approximate localization approach applied to the whole SGS-stress

tensor inside of the test-�ltering operation, the similarity-like dynamic model

t

mod

ij

= D

(ij)

(L

ij

+

b

t

�

ij

) ; D

(ij)

= �

ij

=�

ij

; (22)

is straightforwardly derived, where, essentially, the parametrization tensor and the numerator

of the model coe�cient are interchanged as compared with model 4 (smagc).

The following dynamic SGS models are proposed by taking a (generalized) scale-similarity

closure as a basis formulated in terms of the (modi�ed) Leonard stresses for the subgrid-scale

stresses and, analogously, in terms of L

T

ij

for the subtest-scale stresses

t

mod

ij

= D

(ij)

L

ij

; T

mod

ij

= D

(ij)

L

T

ij

: (23)

The component-related coe�cients D

(ij)

are evaluated by means of the tensorial Germano iden-

tity (5).

Model 7 (sc2): If the model coe�cients of the test-�ltered SGS stresses involved are treated

in the way proposed in [2], [18] with their spatial variability being neglected in

b

t

mod

ij

; the scale-

similarity model coe�cients

D

(ij)

=

L

ij

L

T

ij

�

b

L

ij

= �

L

ij

d

u

i

u

j

�

b

u

i

b

u

j

(24)

are obtained. The resulting dynamic model may also be rewritten in terms of the resolved

stresses as the parametrization tensor

t

mod

ij

= D

(ij)

L

ij

; where D

(ij)

=

u

i

u

j

� u

i

u

j

d

u

i

u

j

�

b

u

i

b

u

j

: (25)

Model 8 (sc3): Replacing the subgrid-scale stresses inside the test-�ltered part of the Ger-

mano identity (5) by approximate values t

�

ij

yields the SGS model

t

mod

ij

= D

(ij)

L

ij

; D

(ij)

=

L

ij

+

b

t

�

ij

L

T

ij

; (26)

which was �nally implemented in terms of the parametrization tensor of model 6 (sc1)

t

mod

ij

= D

(ij)

(L

ij

+

b

t

�

ij

) : (27)

The related model coe�cients

D

(ij)

= L

ij

=L

T

ij

; (28)

as compared with (22), are gradient-free and contain the (modi�ed) Leonard stresses and their

counterpart assigned to the

b

G-level.

For all the models with component-speci�c coe�cients introduced above, realizability [49],

[50], [51] in case of nonnegative �lter functions in physical space cannot be proven and is,

indeed, partly violated. Therefore, a simple "clipping" approximation [50] has been tested to

additionally impose the weak realizability conditions

�t

mod

ii

> 0 8i 2 f1; 2; 3g ; (29)

(t

mod

ij

)

2

6 t

mod

ii

t

mod

jj

8i; j 2 f1; 2; 3g ; (30)

on the modelled subgrid-scale stress tensor.

Going on from the preceding generalized anisotropic scale-similarity models, the following

one-parameter versions with a scalar coe�cient each are put forward as alternatives designed
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to obey the realizability constraints for the �lter types mentioned above. To get an expression

for the scalar model coe�cient, the subgrid-scale energy dissipation is taken into consideration

on account of the model's primary function. Speci�cally, the coe�cient of the following three

parametrizations is determined in such a way that the resulting model produces the same SGS

dissipation as its counterpart with component-speci�c coe�cients.

Model 9 (ss1): Starting from

t

mod

ij

= D (L

ij

+

b

t

�

ij

) ; D > 0 ; (31)

the SGS dissipation identical with that of model 8 (sc3) is enforced by setting

D

P

k;l

(L

kl

+

b

t

�

kl

)S

kl

=

P

i;j

D

(ij)

(L

ij

+

b

t

�

ij

)S

ij

: (32)

The resulting model coe�cient

D =

2

4

�

P

i;j

D

(ij)

(L

ij

+

b

t

�

ij

)S

ij

�

�

P

k;l

(L

kl

+

b

t

�

kl

)S

kl

�

3

5

+

(33)

may be evaluated by de�ning D

(ij)

according to Eq. (28) and is restricted to nonnegative values

as indicated by the subscript "+". This model retains the realizability property of the SGS-stress

tensor for nonnegative �lters in physical space provided that a positive semi-de�nite initial guess

is chosen for �t

�

ij

.

Model 10 (ss2): For the resolved-stress-related model

t

mod

ij

= DL

ij

; D > 0 ; (34)

to generate the same subgrid-scale dissipation as model 7 (sc2) and to be realizable, the model

coe�cient has to be taken as

D =

h�

P

i;j

D

(ij)

L

ij

S

ij

�. �

P

k;l

L

kl

S

kl

�i

+

; (35)

where D

(ij)

is de�ned according to (25).

Model 11 (ss3): By direct analogy, the dynamic Leonard-stress-based parametrization

t

mod

ij

= DL

ij

; D > 0 ; (36)

can be derived by equating its SGS dissipation with that caused by model 7 (sc2), which leads

to

D =

h�

P

i;j

D

(ij)

L

ij

S

ij

�. �

P

k;l

L

kl

S

kl

�i

+

(37)

with D

(ij)

being taken from Eq. (24).

Model 12 (ss4): As a modi�ed approach to establishing a scalar model coe�cient, it is

proposed to use the scalar-level equation (9), which results from the Germano identity and is

related to the �ne-scale dissipation associated with

b

G-level. Supposing

t

mod

ij

= DL

ij

; T

mod

ij

= DL

T

ij

; D > 0 ; (38)

and adopting approximate values t

�

ij

from the previous time step in evaluating the test-�ltered

SGS stresses of (9), another dynamic model of scale-similarity type is obtained, given by t

mod

ij

=

DL

ij

and

D =

h�

P

i;j

(L

ij

+

b

t

�

ij

)

b

S

ij

�.�

P

k;l

L

T

kl

b

S

kl

�i

+

: (39)

If applied in conjuntion with nonnegative �lters in physical space, models 9 (ss1) to 12 (ss4)

not only satisfy conditions (29) and (30) but, by construction, ensure realizability in the stronger

sense that the matrix representing �t

mod

ij

is positive semi-de�nite.
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II.B.4 Mixed-Type Model

The third class of SGS closures investigated comprises mixed parametrizations consisting in

a linear combination of a Smagorinsky-type model with a scale-similarity model. By supple-

menting a model which is absolutely dissipative in its classical version and mainly intended for

representing the global energy drain with a model which is capable of predicting backscatter

and is superior in approximating the local SGS stresses, it is attempted to bene�t from the

advantages of either type as well as to put less burden on the dynamic coe�cient related to

the Smagorinsky part (reduced uctuations, e. g. [13], [29], [45], [84]). With regard to spectral

energy transfer, the component that is local in wavenumber space and its nonlocal component

are essentially modelled separately by this type of closure. Especially, when using a very coarse

grid, the Smagorinsky term is required to represent the interaction of the grid scales with the

distinctly smaller subgrid scales [10], [85]. Improved results have been attained in both a priori

and a posteriori tests by applying recent models of mixed type such as those proposed by Zang

et al. [29], Vreman et al. [46], Salvetti, Banerjee et al. [45], [84], Horiuti [10], Liu et al. [44] and

Meneveau, Katz [13] (dynamic mixed nonlinear model).

Model 13 (comb): As a representative of dynamic mixed-type parametrizations, the follow-

ing model was tested, which combines the generalized Smagorinsky closure including component-

related coe�cients with a similarity part proportional to the (modi�ed) Leonard stresses.

Proceeding from parametrizations similar to the models proposed in [29] for the subgrid- and

subtest-scale stresses, respectively,

t

mod

ij

= C

(ij)

�

ij

+ L

ij

; T

mod

ij

= C

(ij)

�

ij

+ L

T

ij

; (40)

the tensorial Germano identity (5) and the approximate localization approach [20] are employed

to deduce the coe�cients of the Smagorinsky submodel as

C

(ij)

=

L

ij

�L

T

ij

+

b

t

�

ij

�

ij

: (41)

Within the framework of the resulting mixed model, which may also be written as

t

mod

ij

=

�

ij

�

ij

�

L

ij

+

b

t

�

ij

�L

T

ij

�

+ L

ij

; (42)

SGS parametrization is e�ectively restricted to the part of the (generalized) SGS-stress ten-

sor which contains subgrid velocities, i. e. the (modi�ed) cross stresses + (modi�ed) true SGS

Reynolds stresses = unresolved residual stresses according to the notation in [79], while the

remaining component L

ij

is explicitly calculated by de�nition from the GS velocity �eld.

II.C Grid and Test Filters

As introduced in Sec. II.B.1, the averaging operation that is applied as grid and test �lter in

the a priori tests and that is used for �ltering the GS quantities in the large-eddy simulations is

of the form

~

f(x; t) =

Z

R

3

~

G(x� y;

~

�)f(y; t) dy ; (43)

where the tilde stands for grid and test �ltering, respectively. The �ltering kernel

~

G is de�ned

to be the product of one-dimensional �lter functions

~

G(x� y;

~

�) =

3

Y

i=1

~

G

i

(x

i

� y

i

;

~

�

i

) (44)

with individual widths

~

�

i

in the ith direction. The latter are usually related to the unidirectional

grid spacings �x

i

by �

i

= 2�x

i

and

b

�

i

= 2�

i

= 4�x

i

. From these, the scalar �lter width

~

�
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a

0

a

1

a

2

a

3

�

1

�

2

f1 0.5 0.5 0 0 0 0

f2 2/3 1/3 0 0 0 0

f3a 0.499455 0.776523 0.343418 0.0663499 �0.0014544 0.6872

f3b 0.5 0.8056734 0.4684092 0.1627358 0 0.936818

F1 0.25 0.5 0.25 0 0 0

F2 1/6 2/3 1/6 0 0 0

F3 0.035365 0.07763 0.0266322 0.0556008 �1.301218 0.496446

Table I: Filter coe�cients

used as subgrid-scale length scale is chosen here in the cylindrical coordinates as the quadratic

mean

~

� =

�

1

3

�

(

~

�

r

)

2

+ (r

~

�

'

)

2

+ (

~

�

z

)

2

�

�

1

2

: (45)

In agreement with other published works concerning LES of wall-bounded ows [2], [10],

[20], [36], [61], [80], [86], [87] and in view of unresolved issues, �ltering is performed only in

the two directions where the ow is statistically homogeneous, i. e. no �ltering is applied in the

radial direction, which is distinguished by insu�cient spatial resolution and the complicating

wall e�ects. Accordingly,

b

�

r

was set equal to 0.

As the basic �lter types, the top-hat (or box) �lter in physical space and the spectral sharp-

cuto� �lter are considered (for their de�nition, advantages and disadvantages, see e. g. [15] and

[88]). These �lter functions are associated with di�erent properties concerning their support

in physical and wavenumber spaces and thus the GS/SGS separation. Furthermore, the tensor

�t

ij

resulting from the application of the (nonnegative) top-hat kernel is positive semi-de�nite,

as opposed to its nonrealizable counterpart associated with the spectral sharp-cuto� �lter.

The clearest separation of small and larger scales of a uctuating function is attained with

the spectral sharp-cuto� �lter fsc in wavenumber space de�ned by the one-dimensional transfer

function

~

G

i

(k

~

�

i

) =

�

1 if k

~

�

i

6 � ;

0 otherwise ,

(46)

with k representing an one-dimensional wavenumber. When a LES is performed in physical

space, it may be not possible or too expensive to use the sharp-cuto� �lter. Lele [89] examines

the following class of discrete one-dimensional �lters of 5-point-implicit{7-point-explicit type,

working on uniformly spaced grids:

~

f

j

+

2

X

l=1

�

l

~

f

j�l

+

~

f

j+l

2

=

3

X

l=0

a

l

f

j�l

+ f

j+l

2

; (47)

where f

j

denotes the value of f at node j,

~

f

j

is the corresponding �ltered value, and the subscripts

j � l; j+ l indicate neighbouring node values in direction i. The most common �lters belonging

to this class are of 3-point-explicit type and approximate the top-hat kernel in physical space

~

G

i

(�;

~

�

i

) =

(

1

~

�

i

if j�j 6

~

�

i

2

;

0 otherwise ,

(48)

by means of simple explicit integration rules { the trapezoidal rule (�lter f1) and Simpson's rule

(�lter f2). For the coe�cients of the �lters, see Table I.

If the function f in (47) is de�ned on the interval [0; L

i

] of the independent variable x

i

, the

�lter transfer function associated with (47) is given by

~

G

i

(k�x

i

) =

P

3

l=0

a

l

cos(k l�x

i

)

1 +

P

2

m=1

�

m

cos(km�x

i

)

; (49)
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where k = 2�n=L

i

represents a scaled wavenumber with n denoting an integer. The �rst picture

in Fig. 3 shows the grid-�lter transfer functions of f1 and f2 as continuous functions of k�x

i

along with the tranfer function G

i

of the sharp-cuto� grid �lter. Obviously, the simple 3-point

�lters are far away from the sharpness of �lter fsc, and the same applies to all the other explicit

�lters of class (47).

k�x

i
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i

� �
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1
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Figure 3: Filter transfer functions

The two implicit �lters f3a and f3b in Table I try to use the full potential of (47) to

approximate the transfer function of the sharp-cuto� kernel at the grid level.

Filter f3a can be deduced from (47) under the following conditions: fourth order accuracy,

G

i

(0) = 1 , G

i

(1:2) = 0:95 , G

i

(� � 1:2) = 0:05 , G

i

(�) = 0 , G

00

i

(�) = 0 . Filter f3b is described

in [90], it is a linear combination of a least-squares approximation to the sharp-cuto� grid �lter

with one of the sixth-order formulas constructed in [89].

For the corresponding test �lters to be realized within the framework of (47), the coe�cients

are speci�ed according to the lower part of Table I. Filters F1 and F2 again use the trapezoidal

and Simpson's rules quadrature to approximate the top-hat �lter, F3 is a discrete approximation

to the sharp-cuto� �lter at the test level Fsc. It is derived from (47) by imposing the constraints:

fourth order accuracy,

b

G

i

(0) = 1 ,

b

G

i

(�=4 � 0:25) = 0:95 ,

b

G

i

(1:1) = 0 ,

b

G

i

(1:7) = 0:03 ,

b

G

i

(2:5) = 0 .

If consecutively applied, grid and test �lters G

i

;

b

G

i

yield the �lter

b

G

i

, the width of which

enters some of the models investigated. To evaluate

b

�

i

, for spectral sharp-cuto� �lters G

i

and

b

G

i

with

b

�

i

> �

i

, it is used that

b

G

i

�

b

G

i

and

b

�

i

=

b

�

i

. For the class of top-hat �lters,

b

G

i

is

easily shown to be a "trapezoid" �lter. Considering the least-squares approximation by a third

top-hat �lter, its width was de�ned as

b

�

i

2

= �

i

2

+

b

�

i

2

(see also [46]).

II.D Numerical Procedure

II.D.1 Discretization in Space and Time, Initial and Boundary Conditions

Equations (1) are discretized on a staggered grid system in the cylindrical coordinates. The

dimensionless grid spacings follow from the number of unknowns in the three directions: �r=R =

1=N

r

; r�'=R = 2� r=(RN

'

); �z=R = L=(RN

z

) . (N

r

; N

'

; N

z

) was set to (96; 128; 256) for

the DNS and to one of the triples (8; 32; 64), (16; 64; 128), (32; 128; 256) for LES so as to match

the spatial resolution characteristics of the simulations reported in [52]. For comparison, the spa-

tial Kolmogorov microscale normalized by the pipe radius R is estimated to be about 2:2 � 10

�3

in the LES test ow and 8:7 � 10

�3

in case of the DNS Reynolds number.

The di�erence scheme is of second order in space and characterized by favourable conservation
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properties. Time integration is performed as described in [52] using the Euler/Leapfrog tech-

nique with some necessary modi�cations. With respect to the velocity, the algorithm is explicit

in r- and z-directions but implicit in '-direction to avoid strong time-step restrictions resulting

from the at cells near the axis of the coordinate system. Because of the convective part of the

momentum balance, the equations to be solved in '-direction are not diagonal dominant. Thus,

an algorithm which solves cyclic tridiagonal equation systems with pivoting has to be applied

to enable maximal time increments �t.

Mass conservation is guaranteed by adopting a splitting method resulting in a Poisson equation

for the pressure correction, which is solved via FFT at every time step.

Periodic boundary conditions are implemented in the circumferential ('-) and axial (z-) di-

rections.

With respect to wall-boundary conditions, a no-slip condition for the velocity components is

imposed at r = R. In the large-eddy simulations, corresponding to the small mesh numbers in

the radial direction, the wall layer is not resolved, but approximate wall-boundary conditions

are applied instead to evaluate the wall-shear stresses. Based on the law of the wall and using an

analytic expression for the measured radial pro�le of the mean axial velocity, the shear stresses

�

r'

and �

rz

in positions at the wall are calculated according to the shifted boundary condition

model due to Piomelli et al. [91] (without having introduced a streamwise displacement as yet).

At the axis, where the singularity of the coordinate system is located, a number of assumptions

was needed to make the simulations feasible. Special features of the computed near-axis be-

haviour of some dependent variables are probably related to this.

For the axial velocity, which in the mean attains a maximum at r = 0, a zero-gradient bound-

ary condition is adopted. The axis-boundary values of the remaining two velocity components

are calculated in LES from the arithmetic mean of the corresponding grid-point values in the

circumferential cell layer nearest to the axis. On the �nest grid used in DNS, however, von-

Neumann-type boundary conditions are also prescribed for the radial and azimuthal velocity

components and, generally, for the subgrid turbulence viscosities as well.

Axis-boundary conditions for the SGS stresses in case of scale-similarity and mixed-type models

are speci�ed in terms of GS velocities at the axis so as to be compatible in the statistical mean

with expressions for the axis values of <t

rr

� t

''

>; <t

r'

>; <t

rz

> and <t

'z

> following from

the kinematics of homogeneous axisymmetric turbulence [92] as well as from the statistically av-

eraged dynamic equations for the GS velocity �eld taking statistically steady and (with respect

to ' and z) homogeneous ow conditions into account. Axis-boundary values for t

zz

and one

of the other two SGS normal stresses have been provided by means of an averaging procedure

from values in neighbouring grid points adjacent to the axis.

For the very �rst simulation, initial conditions were based on measured mean velocity pro�les

with random perturbations superimposed chosen to �t measured rms values. Later on, simu-

lations were started from data �elds of previous runs on the present grid or using interpolated

results obtained on coarser grids.

The time-step size �t in the di�erence method was chosen as large as possible within the

stability limits, maximally this is a value of 0.0004 for the DNS at its �nal stage and 0.005,

0.0015, 0.0004 for the LES on the three di�erent grids.

According to [52], to prevent the simulated ow from becoming laminar, the DNS was started

with a Reynolds number of Re

�

= 1;000, which was gradually reduced to its �nal value of 180

during the �rst 2;500 time steps.

Afterwards, the direct numerical simulations were continued for 12 nondimensional time units

until a statistically steady state was established, and then the ow statistics were collected.

In the large-eddy simulations, the ow was integrated forward in time for six characteristic time

scales.
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II.D.2 Parallelization

The numerical procedure described above was implemented on a GC/PowerPlus-128, which

belongs to the MIMD class of parallel computers. Following the domain decomposition tech-

nique, the computational grid is partitioned into subgrids containing all points within a �xed

z-range. Moreover, each processor stores a copy of ow variables from the nearest points of the

two adjacent processors in order to reduce data transmission during the computations.

The chosen decomposition is favourable to solving the equation systems in '-direction for u; v; w

and u; v; w, respectively, because no data exchange between the processors is needed. To solve

the Poisson equation for the pressure, FFT can be applied in '- and z-directions. In our case,

an outer "parallel" FFT [93] is adopted in z-direction. The inner FFT in '-direction and the

solution of the remaining tridiagonal equation systems can be realized on the subgrids without

any interprocessor communication.

II.D.3 Filtering

The underlying storage management is advantageous to implementing explicit 3-point �lters.

In case of implicit �lters, there arise two problems. The �rst is the problem of solving a set

of cyclic pentadiagonal equations on a single processor. It is a problem of linear algebra which

is not desired to be discussed here. The second problem concerns �ltering in z-direction. The

question is how to solve a set of equations with the structure mentioned above on a multi-

processor system. It was accomplished using a special procedure for a data exchange of each

processor with each other. As a result, the quantities to be �ltered are rearranged, and each

processor has the complete data within a �xed '-range. The program that solves the cyclic

pentadiagonal equations on a single processor can be used now to �lter in z-direction. A second

exchange step stores all �ltered quantities in their original positions.

II.D.4 Model Implementation

In calculating the local model coe�cients C

(ij)

;D

(ij)

and D

(ij)

as quotients of two tensor

components, a special approach was chosen in order to avoid excessively uctuating coe�cients

and to prevent peak coe�cient values from entering into the modelled SGS stresses. To illustrate

the numerical behaviour of these model coe�cients, some instantaneous raw data computed in

LES for D

(13)

of model 8 (sc3) in the grid points of a cross-section z = const:, linearly arranged

with increasing r along the abscissa, are plotted in Fig. 4. Among the proposed SGS closures with

component-speci�c coe�cients, the computed coe�cient values of this model are distinguished

by the smallest range of variations, the lowest frequence and smallest magnitude of peaks.

In case of extremely small or vanishing denominators occuring in the expression for the model

coe�cients, a local mean value was adopted which was calculated from the values of the model

coe�cients in those neighbouring grid points where the quotient lies within a permissible interval.

If it failed to determine such a local mean, an user-prescribed global mean (in terms of the

radial coordinate) was used instead. Though this additional ow-dependent input is required,

it is, however, available from the results of preceding a priori tests or large-eddy simulations,

respectively, and entered the pipe-ow computations of the present work in less than 0:1% of

the total number of grid points.

After this procedure, the model coe�cients were subjected to an additional cutting with the

bounds speci�ed as a function of model and �lters and corresponding to a range of � one to

three times the mean (scale-similarity and combined models) or � 10 times the mean for model

4 (smagc). For the upper bound to D

(13)

of model 8 (sc3), confer the horizontal dashed line in

Fig. 4. The lower bound to D

(ij)

;D

(ij)

of models 6 (sc1) to 8 (sc3) and to D or D, respectively,

of models 9 (ss1) to 12 (ss4) was set to zero in applications of nonnegative �lters in physical

space.

For the former group of models with component-related coe�cients, the values of the co-

e�cients associated with the SGS shear stresses were, if necessary, diminished further by the
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Figure 4: Original component-related model coe�cient

D

(13)

of parametrization 8 (sc3) computed with top-

hat type grid and test �lters from LES data in the grid

points of a cross-section z = const:, linearly arranged

with increasing r along the abscissa

"clipping" approximation to ensure the realizability condition (30).

Since backscatter turned out to be of crucial inuence in the large-eddy simulations, a priori

and a posteriori tests of the proposed scale-similarity and combined models with an arti�cially

limited amount of backscatter were performed in addition. Several modi�cations have been

tested. Common to all, the modelled ux f01 13

mod

= �"

mod

SGS

=

P

i;j

t

mod

ij

S

ij

is considered and,

generally, expressed in terms of a scalar subgrid-scale turbulence viscosity as introduced in (11).

For models 9 (ss1) to 12 (ss4) with a scalar coe�cient each, the model coe�cient was clipped

from above in such a way that only backscatter values "

mod

+

corresponding to a nonnegative

scalar total (hypothetical SGS + molecular) viscosity were retained.

In models 7 (sc2), 8 (sc3) and 13 (comb), similar to model 4 (smagc), the component-related

backscatter [t

mod

ij

S

ij

]

�

was limited to values associated with nonnegative component-speci�c

total viscosities. The resulting upper bounds were imposed on the model coe�cients under the

same condition as for models 9 to 12, i. e. in those grid points where the modelled total ux

f01 13

mod

showed backscatter strong enough to result in a negative scalar total viscosity (model

13) or, alternatively, where f01 13

mod

indicated backscatter of any intensity (models 7 and 8).

For model 6 (sc1), yet another modi�cation was tested. Here, the model coe�cients and hence

the SGS stresses were, if necessary, multiplied by a common nonnegative weighting factor less

than unity in order to bound the backscatter part of f01 13

mod

, again according to a nonnegative

total viscosity.

When calculating the modelled subgrid-scale stresses, a special treatment was required for

those models that contain the test-�ltered SGS stresses

b

t

�

ij

(or test-�ltered values of their gen-

eralized Smagorinsky-type parametrization C

�

(ij)

�

ij

in case of model 4). In the a priori tests,

two approaches were followed. First,

b

t

�

ij

was computed by de�nition using DNS data of the

present time step (method dt

�

). However, since this information was not available in the actual

large-eddy simulations, as an alternative, stored approximate values t

�

ij

were adopted instead

which had been generated according to the model formulation from DNS data of previous time

steps (method mt

�

). This imitates the approximate localization approach applied in LES by

means of the model's SGS-stress predictions obtained for the preceding time step. To initialize

t

�

ij

, the (modi�ed) Leonard stresses were used in most of the a priori and a posteriori tests.
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III Apriori Tests

III.A Methodology

As a �rst stage of evaluating the models presented above, a priori tests have been performed

using DNS data for the pipe test ow, Re

�

= 180 equivalent to Re

CL

� 3;500, in the domain

[0; R] � [0; 2�] � [0; L]; L = 10R.

According to the basic principle of this approach to model testing as pioneered by Clark et al.

[94] for statistically homogeneous turbulence and employed e. g. in [2], [10], [42], [44], [45], [47],

[60], [71], [80], [83], [95], [96], [97], [98], [99], [100], [101], [102], [103], several test quantities

containing subgrid terms are computed from DNS data by their de�nition on the one hand and

using the model formulation on the other hand. (If necessary, these quantities are marked with

the superscripts def and mod.) A comparison between the corresponding results is made here on

both an instantaneous and a statistical level. With respect to the former, the "exact" and mod-

elled values of the test quantities along speci�ed axial and radial lines (r = const:; ' = const:)

and (' = const:; z = const:), respectively, are visualized for a point-by-point comparison at

a particular time instant. Concerning statistical evaluation, 40 data �les from DNS separated

by �t = 0:1 nondimensional time intervals are accumulated in order to provide statistically

independent samples.

By averaging the quantities calculated from these instantaneous DNS �elds and by spatial av-

eraging over the homogeneous directions, statistical one-point data are generated and plotted

as functions of the radial coordinate: mean values (subsequently denoted by <:::>) and rms

values as well as correlation coe�cients and L

1

-norms of di�erences between the "exact" values

and those obtained with the di�erent models.

In total, 53 tensor, 18 vector, and 83 scalar test quantities have been analyzed in more than

200 a priori tests, which were performed on the local superscalar cluster HP9000/889 K460.

The test quantities chosen comprise the subgrid terms at the tensor level of the SGS stresses

t

ij

along with the anisotropy tensor b

ij

= (t

ij

� 1=3 �

ij

P

k

t

kk

)=

P

l

t

ll

; i; j 2 f1; 2; 3g ; the SGS

force terms at the vector level

P

j

@t

ij

=@x

j

; i 2 f1; 2; 3g ; and the subgrid terms at the scalar

level

P

i;j

u

i

@t

ij

=@x

j

; as well as the individual terms of the Germano identity at tensor, vector

and scalar levels in Eqs. (5), (7) { (9). On account of the energetic primary function of SGS

models, the energy uxes f01 13; f01 23; f02 23; f12 23 (de�ned in Sec. II.B.1) and f01 12 =

f01 13�f01 23 between several regions of scales bounded by the characteristic widths � and

b

�

of the �lters G and

b

G, respectively, are included in the evaluation. In addition, kinetic energies

of �ne-scale structures related to both these �lters, �1=2

P

i

t

ii

; �1=2

P

i

T

ii

, and the resolved

turbulence energy, �1=2

P

i

L

ii

, have been computed. Of particular interest in this context

is the models' capability to reproduce outscatter ("

�

-) and backscatter ("

+

-) contributions to

energy transfer between grid and subgrid scales associated with G-level.

Following the methodology of statistical a priori testing in the line of Meneveau [104], some

necessary conditions for the SGS-stress statistics to correctly predict the mean velocity and

pressure as well as second-order moments of the resolved velocity have also been scrutinized.

As distinguished from the LES calculations, the a priori tests reported in the following subsection

are based on the �ne DNS grid with 96 � 128 � 256 � 3:15 million nodes in order to avoid

additional data manipulations prior to grid- and test-�ltering procedures and to get highly

resolved test quantities. For comparison, reference tests have additionally been carried out with

data sampled on the medium LES grid (consistent a priori tests in the terminology of [47]).

Despite some critical assessments of this testing methodology including di�culties in inter-

preting the results [2], [15], [104], [105], [106] and regardless of the need for further research

e�orts in the �eld of SGS-model testing, a priori tests o�er considerable promise as a �rst step

towards examining model capabilities and serve as an e�cient tool for studying the e�ects of

�lters [107] without having to solve di�erential equations. Speci�cally, DNS data yield valuable

information on spatiotemporal behaviour of the quantities to be modelled and on their depen-

dence on the �lters used. In addition, the a priori investigations of the present study provided
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Figure 5: Mean values of de�ned SGS stress t
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�

and

corresponding modelled stress t

mod

rz

=u

2

�

for Smagorinsky-

type SGS models as functions of the radial coordinate

r=R

guidelines how to specify bounds for dynamically determined model coe�cients and were useful

in reducing the number of SGS models to be tested thoroughly in LES by selecting the most

promising candidates. In this respect, a priori tests proved to be a supporting complementary

approach to the more expensive large-eddy simulations in SGS-model development and veri�ca-

tion.

On the other hand, when evaluating the a priori -test results, one has to take into account that

quantities derived from DNS data and from LES results are related to di�erent Reynolds num-

bers in this study and that the complex dynamical GS/SGS interactions do not exist in a priori

tests. Thus, a priori tests alone do not provide conclusive evaluation of a SGS model. Rather,

the model's performance in LES, i. e. its net e�ect on the computed GS �eld, will ultimately be

the decisive factor.

III.B Results

A comparative evaluation of the models' performance in a priori tests on the �ne DNS grid

will �rst be outlined for a reference �lter combination using the top-hat �lter approximated by

Simpson's rule at the grid and test levels, G

i

= f2 and

b

G

i

= F2, i 2 f2; 3g. The inuence of

�lter variations will be discussed in the second part of this subsection.

III.B.1 Model Performance

In assessing model performance at tensor, vector and scalar levels, a comprehensive compari-

son with the results of the well-known Smagorinsky-type subgrid models 1 (smag), 2 (lilly) and 3

(pio) is not possible without resorting to further assumptions since the actual GS pressure, SGS

normal stresses and quantities derived therefrom are not directly accessible for these closures.

Speci�cally for these parametrizations, the modelled subgrid terms have been evaluated against

their de�ned counterparts computed from the deviatoric SGS-stress-tensor part.

Starting with the tensor level of the local subgrid stresses, the mean subgrid terms per-

taining to the SGS normal stresses are hardly captured by models 1 (smag) to 3 (pio) associated

with an extremely low level of these modelled quantities. (For the standard Smagorinsky model,

these �ndings are consistent with the channel-ow a priori -test results in [83].) Applying the

generalized anisotropic Smagorinsky-type model 4 (smagc) to the DNS data, the mean SGS

normal stresses <t

def

rr

> and <t

def

''

> as functions of the radial coordinate are reproduced sat-

isfactorily or moderately well, respectively, in terms of both their magnitude and their radial

pro�le. For the statistically mean subgrid-scale stress <t

def

zz

>, which, in the present application,

assumes the largest absolute values of all the SGS-stress-tensor components, the peak value is

considerably underestimated in its absolute magnitude by this model. Accordingly, the values
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grid eddy viscosities �
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(ij)

=� for Smagorinsky-type SGS

model 4 (smagc) as functions of the radial coordinate

r=R. Insert: The same functions plotted for a smaller

range of ordinates

given by model 4 (smagc) for the SGS energy corresponding to the grid �lter G as well as that

for the �ne-scale energy associated with the

b

G-level exhibit a markedly lower maximum than

the related de�ned energies.

With respect to the SGS shear stresses, the di�erences between the a priori predictions of the

tested models are especially pronounced for t

rz

, the component most relevant to pipe ow

(Fig. 5). The absolute values of <t

def

rz

> are clearly underpredicted by all dynamic Smagorinsky-

type parametrizations, whereas the classical model 1 (smag) yields an underestimation roughly

within 0 < r=R < 0:9 yet excessively large absolute values of <t

mod

rz

> within the remaining

radial subrange with the peak being located too close to the wall. In spite of this poor local

agreement between modelled and de�ned <t

rz

>-values, the Smagorinsky model, nevertheless,

provides a reasonable overall approximation to the integral

R

R

0

<t

rz

>dr, which (along with the

corresponding integral of the GS part of the rz-Reynolds stress in the integrated shear-stress

balance) directly contributes to the value of the mean longitudinal velocity component at the

axis.

The ensemble means of the associated scalar SGS turbulence viscosity due to closures 1

(smag), 2 (lilly) and 3 (pio) vary in their values and pro�les according to Fig. 6, where for model

1 this quantity, again, peaks at a smaller distance from the wall.

Fig. 7 illustrates the �nding that in case of component-speci�c Smagorinsky-type model coe�-

cients there are substantial di�erences between the individual subgrid eddy viscosities �

SGS

(ij)

. For

the pipe-ow application, the SGS viscosity related to the component t

mod

zz

displays a pronounced

peak extremely exceeding the level of the other SGS viscosities.
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Figure 9: Representative correlations between de�ned

and modelled subgrid terms at tensor, vector and scalar

levels for Smagorinsky SGS model 1 (smag) (lower

curves) and for scale-similarity SGS model 8 (sc3) (up-

per curves) as functions of the radial coordinate r=R

The a priori -test results obtained with the scale-similarity- and combined-type parametriza-

tions, apart from model 6 (sc1), are generally distinguished from the Smagorinsky-type predic-

tions by a fairly good qualitative and quantitative agreement between the mean subgrid terms

computed from de�nition and using the model formulation. At the tensorial level, this applies to

all the SGS-stress components and is exempli�ed for t

rz

in Figs. 8 (mean values) and 9 (tensor-

level correlation). This important subgrid stress is best reproduced by models 8 (sc3), 7 (sc2)

and 12 (ss4) while remarkably underestimated by model 6 (sc1). The other two, smaller SGS

shear stresses, t

r'

and t

'z

(both not shown), are particularly well approximated by closures 7

(sc2), 8 (sc3) and 13 (comb). With respect to the SGS normal stresses (not shown), model 6

(sc1) and also model 9 (ss1) yield the largest absolute values of these components as well as an

overestimation of the mean subgrid energy at G-level, whereas this quantity is typically slightly

underpredicted by all the other scale-similarity and combined models. For the dominant SGS

normal stress, t

zz

, the best a priori -test results have been established with models 13 (comb), 8

(sc3) and 9 (ss1).

Considering SGS-stress anisotropy, the tensor b

ij

and especially its greatest (zz-) component is

a priori well captured by the scale-similarity and combined-type closures. Contrary to this, the

degree of anisotropy of the SGS normal stresses t

''

and t

zz

in the near-wall region is grossly

underestimated by the Smagorinsky-type model 4 (not shown).

According to their performance in the a priori tests, the proposed dynamic models of scale-

similarity and mixed types are essentially classi�ed into three groups: Models 8 (sc3), 7 (sc2) and

13 (comb) with component-speci�c coe�cients are rated as the most promising parametrizations

characterized by an excellent a priori correspondence between de�ned and modelled test quanti-

ties at all levels. For these models, the average absolute values of the di�erences between de�ned
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P
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.0358 .0327 .1562 .00009 .0221 .00032 .1515 .0017 .1815 2.6215

1 (smag) .0398 .0427 .0826 .00008 .0213 .00035 .4947 .0257 .4332 4.1662

2 (lilly) .0398 .0427 .0825 .00009 .0152 .00035 .4961 .0258 .1273 1.5789

3 (pio) .0376 .0436 .0810 .00008 .0113 .00026 .4902 .0256 .0852 0.9683

4 (smagc) .0019 .0046 .0644 .00004 .0112 .00011 .0161 .0012 .1123 0.9395

5 (leo) .0082 .0050 .0388 .00002 .0039 .00004 .0517 .0005 .0463 0.6645

6 (sc1) .0070 .0096 .0301 .00003 .0053 .00006 .0385 .0010 .0752 0.7546

6 (sc1)

�

.0016 .0022 .0066 .00002 .0022 .00002 .0109 .0006 .0323 0.3539

7 (sc2) .0025 .0010 .0134 .00001 .0007 .00002 .0203 .0003 .0149 0.2092

8 (sc3) .0017 .0008 .0096 .00001 .0007 .00001 .0140 .0002 .0115 0.1654

9 (ss1) .0024 .0041 .0055 .00003 .0031 .00011 .0198 .0010 .0240 0.3844

10 (ss2) .0044 .0008 .0132 .00003 .0020 .00010 .0412 .0009 .0262 0.3896

11 (ss3) .0035 .0006 .0124 .00002 .0009 .00005 .0283 .0006 .0157 0.2255

12 (ss4) .0040 .0011 .0122 .00002 .0007 .00004 .0302 .0006 .0108 0.1812

13 (comb) .0010 .0009 .0048 .00001 .0011 .00002 .0111 .0003 .0236 0.2670

Table II: Representative average L

1

-norms of di�erences between de�ned and modelled subgrid terms

at tensor, vector and scalar levels for the SGS models tested and the reference �lter combination

(

�

corresponds to

b

G

i

� G

i

� f2; the head of the table contains the de�nition of the subgrid terms and,

below, their average L

1

-norms with the subgrid stresses computed according to de�nition)

and modelled subgrid stresses (L

1

-norms of the error at the tensor level, see Table II) are very

small, and the qualitative close agreement between de�ned and modelled subgrid terms at the

tensor level is reected in correlation coe�cients of nearly 1.0 (see Fig. 9 for the t

rz

-correlation

coe�cients and Table III). The a priori performance of the nondynamic SGS closure 5 (leo)

comes close to that of the group one models. In the second place, the parametrizations 12 (ss4)

and 11 (ss3) in terms of the (modi�ed) Leonard stresses with scalar coe�cients follow, which

give typical tensor-level correlations of about 0.95. The third group comprises the resolved-

stress-related models 9 (ss1) and 10 (ss2) resulting in average SGS-stress correlation coe�cients

roughly between 0.8 and 0.9.

Model 6 (sc1), if combined with top-hat grid and test �lters of the usual �lter-width ratio

b

�

i

=�

i

= 2, belongs to the third group. However, for the special choice of the box test-�lter

width

b

�

i

= �

i

(see Sec. III.B.2), this model may rather be assigned to the second group (

�

in

Tables II and III).

At the vector level of the divergence-type subgrid terms entering the �ltered momentum

equations, the correlations are typically reduced against the tensor level. In Fig. 9, correlation

coe�cients are plotted for the third component of the divergence vector along with those at

the scalar level. While the vector- and scalar-level correlations for the best group of models

are only slightly lower than their counterparts at the tensor level, the former are signi�cantly

decreased for the parametrizations of the second group and even more diminished for the group

three models. These correlations of the proposed dynamic scale-similarity and combined SGS

models are contrasted with considerably lower correlation coe�cients for the Smagorinsky-type

closures, especially for the known models 1 (smag), 2 (lilly) and 3 (pio) (Table III).

Among the vector-level test quantities, the divergence of the SGS stresses entering the w-

equation turned out to be noticeably sensitive to the subgrid-scale model used in the a priori

tests. Due to larger derivatives d<t

mod

rz

>=dr within about 0:9 < r=R < 1:0 (Fig. 5), the classi-

cal Smagorinsky model generated substantially more pronounced peaks closer to the wall in the

mean value of this quantity, whereas its pro�le obtained with the three dynamic Smagorinsky-

type parametrizations and with model 6 (sc1) exhibits too low extrema as compared with the

de�ned curve. Superior to these results, the streamwise force component is more accurately

reproduced by the dynamic scale-similarity and linear-combination models 7 (sc2) to 13 (comb),
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1 (smag) .2013 .1303 .2336 .0645 .2234 .0163 .0995 .0869 .2225 .2462

2 (lilly) .2020 .1323 .2330 .0663 .2298 .0193 .1224 .0877 .2258 .2540

3 (pio) .4024 .3046 .3440 .2795 .5265 .1680 .2515 .1764 .3815 .4004

4 (smagc) .6592 .6886 .7889 .7007 .7299 .7884 .2574 .3218 .4532 .4558

5 (leo) .9873 .9935 .9875 .9885 .9831 .9910 .9779 .9867 .9730 .9726

6 (sc1) .7877 .8402 .8681 .8153 .8167 .9009 .2867 .3867 .4817 .4807

6 (sc1)

�

.9510 .9670 .9665 .9531 .9496 .9762 .5801 .6811 .7430 .7449

7 (sc2) .9943 .9984 .9945 .9910 .9888 .9941 .9725 .9831 .9689 .9684

8 (sc3) .9962 .9986 .9959 .9901 .9899 .9933 .9713 .9811 .9691 .9689

9 (ss1) .8166 .8026 .8565 .8524 .8722 .8705 .3287 .3889 .4840 .4900

10 (ss2) .8579 .8559 .8972 .8821 .8954 .9023 .3834 .4527 .5504 .5547

11 (ss3) .9394 .9344 .9551 .9530 .9576 .9594 .5450 .6174 .7171 .7226

12 (ss4) .9424 .9396 .9611 .9564 .9637 .9631 .5662 .6381 .7473 .7531

13 (comb) .9770 .9917 .9858 .9881 .9869 .9929 .8461 .8987 .9152 .9145

Table III: Representative average correlation coe�cients between de�ned and modelled subgrid terms

at tensor, vector and scalar levels for the SGS models tested and the reference �lter combination
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Figure 10: Terms in the third equation of the sta-

tistically mean vector-level Germano identity (7) (nor-

malized by u

2

�

=R) with the subgrid- and subtest-scale

stresses computed from SGS model 12 (ss4)

above all closures 8 (sc3), 7 (sc2) and 12 (ss4). Similar �ndings characterize model performance

at the scalar level (Fig. 9, Tables II and III).

In the a priori tests of those models which include an evaluable parametrization of the

subtest-scale stresses, the deviations from the statistically mean Germano identity at tensor,

vector and scalar levels computed with the modelled subgrid- and subtest-scale stresses have

been monitored. For model 12 (ss4), the coe�cients of which have been derived from the scalar-

level Germano identity (9), the individual terms in the third equation of the averaged vector-level

Germano identity (7) are plotted along with the di�erence between left- and right-hand sides in

Fig. 10.

The analysis of energy transfer reveals that all (total and component-related, forward and

backward) energy uxes and the mean ux <f01 13>= �<"

SGS

> between grid and subgrid

scales (Fig. 11) with its forward scatter and backscatter (Fig. 12) contributions in particular are

fairly well approximated by the scale-similarity and mixed-type parametrizations 7 (sc2) to 13

(comb) in the a priori tests. This applies to both their radial distribution and their magnitude

with the latter being typically slightly underestimated by these models.

The absolutely largest "local" uxes between the supertest range and adjacent ranges of
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Figure 12: Mean values of backscatter contribution

to ux f01 13 = �"

SGS

(normalized by u

3

�

=R) for

Smagorinsky-, scale-similarity- and mixed-type SGS

models as functions of the radial coordinate r=R

smaller scales, f02 23 and f12 23, which have been computed for models with evaluable subtest-

stress parametrization, are faithfully reproduced by the concerned closures of scale-similarity

type such as 12 (ss4) (Fig. 13). The smaller ux f01 13 = �"

SGS

(Figs. 11, 14) between grid and

subgrid scales associated withG-level and the smallest ux f01 12 (Figs. 14, 15) of "local" nature

between subgrid scales and the adjacent part of the grid scales intermediate between � and

b

�

(as well as their forward scatter parts) are generally slightly underestimated by models 7 (sc2) to

13 (comb), which are thus considered to be somewhat underdissipative. The approximation of

the latter ux has been identi�ed as a minor de�ciency of the proposed scale-similarity models

in the a priori tests. In this regard, the mixed model 13 (comb) provides the most accurate

results (Fig. 15).

Total backscatter (Fig. 12) as well as the inverse scatter part of f01 12 computed from the DNS

data according to models 7 (sc2) to 12 (ss4) are also found to be at most insigni�cantly lower

in their absolute values than the de�ned counterparts. Here, the predictions by models 7 (sc2)

and 12 (ss4) are nearly identical with the de�ned curve, while the linear-combination model 13

(comb) gives rise to a slightly excessive amount of backscatter.

For the "not-so-local" ux contribution f01 23 (Fig. 13) between subgrid scales and the supertest

range, which in its maximum ranks next to f01 13, the quality of approximation with models 7

(sc2) to 13 (comb) is similar to that of the latter ux.

By comparison, the energy transfer study for the Smagorinsky-type model 4 (smagc) indi-

cates a more pronounced underestimation of the maximum amount of mean net SGS dissipation

and of the maximum mean forward scatter part of f01 13 with the peak occuring at a greater

distance from the wall than in the de�ned curve (Fig. 11). Due to the involved backscatter
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malized by u
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=R) with the subgrid-scale stresses com-

puted from de�nition and using SGS model 12 (ss4)

limitation according to nonnegative component-related total viscosities, the amount of backscat-

ter is severely underpredicted by this model, mainly within 0:6 < r=R < 1 (Fig. 12). With

respect to uxes between other ranges of scales, the model yields too low a peak in the mean

"local" uxes f02 23 and f12 23. Above all, however, the maximum value of the mean modelled

"not-so-local" contribution f01 23 is noticeably smaller than its de�ned counterpart, while the

mean "local" f01 12 ux (Fig. 15) is strongly overestimated by parametrization 4 (smagc).

Related to common modelling assumptions but di�erent backscatter treatment, closure 6

(sc1) as against 4 (smagc) gives qualitatively similar a priori -test results for energy uxes with

widely di�ering backscatter. For model 6 (sc1), the mean "local" ux f01 12 (Fig. 15) is less

overpredicted, and an extremely overestimated backscatter (Fig. 12) along with the smallest

amount of net SGS dissipation (Fig. 11) among all the proposed closures are indicative of model

performance.

For models 4 (smagc), 6 (sc1), 8 (sc3), 9 (ss1), 12 (ss4) and 13 (comb), which, in their

parametrization tensor or coe�cient formulation, contain the test-�ltered SGS stresses t

�

ij

(or

the Smagorinsky-type model coe�cients in the test-�ltered C

�

(ij)

�

ij

-form), these were calculated

from the best information available according to method dt

�

in the reference a priori tests

(Tables II and III). On applying the more realistic method mt

�

, model performance, as expected,

declines. Typically, the correlation coe�cients were reduced by 1% (model 12) up to 8% (model

9) for the SGS normal stresses, by 1% (models 12 and 13) up to 6% (model 4) for the SGS

shear stresses, and by 3% (model 12) up to 15% (model 9) at the vector/scalar level. For the

promising model 8 (sc3), a reduction of 2 to 3% and 6 to 7% in tensor and vector/scalar level
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type SGS models as functions of the radial coordinate
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correlations, respectively, was established.

Of the other model parameters that have been varied in the a priori tests, the backscatter

limitation applied to models 6 (sc1) to 8 (sc3) and 13 (comb) with component-related coef-

�cients had the strongest e�ect. This modi�cation essentially involved a deterioration of the

representative average correlation coe�cients and L

1

-error norms at all levels, and it enabled

only a few improvements to be achieved just for model 6 (sc1), which was found to produce

excessive backscatter. In contrast to that, the total-ux-related backscatter manipulation of

models 9 (ss1) to 12 (ss4) with a scalar coe�cient each resulted in only weak changes as against

the respective reference tests.

Concerning realizability of the models with component-speci�c coe�cients in combination

with top-hat-type �lters, to enforce condition (30), the modelled shear stresses have been modi-

�ed in at most 25% (model 6), 9% (model 13) and no more than 5% (models 7 and 8) of the total

number of grid points. For the Smagorinsky-type model 4 (smagc), as expected, condition (30)

is violated in a larger percentage of the computational points (35% and more). In comparison

with the original model versions without any realizability modi�cation, this correction did not

give a de�nite global improvement in the a priori model performance. For models 4 (smagc), 7

(sc2), 8 (sc3) and 13 (comb), it caused a slight increase in the correlation coe�cients pertaining

to the SGS shear stresses and to the vector and scalar levels, whereas the mean L

1

-distances

of these modelled subgrid terms from their de�ned counterparts grew larger for models 7 and 8

and were only partly decreased for models 4, 6 and 13.

As another parameter variation, in models of Smagorinsky type, 1 (smag) to 4 (smagc), and

models with a Smagorinsky ingredient, 6 (sc1) and 13 (comb), the scalar SGS length scale �

in proportion to the grid size (�

i

in terms of �x

i

) has been chosen equal to once or twice the

latter for comparison. Adopting models 2 (lilly), 3 (pio), 6 (sc1) and 13 (comb), the modelled

SGS stresses and all quantities derived therefrom are independent of or hardly inuenced by

the ratio of the subgrid length scale to the grid spacing. A weak sensitivity to variations in

this quantity appeared for model 4 with � entering the modelled subgrid stresses via �

ij

, the

dynamic coe�cients C

(ij)

and the upper bounds chosen for them. For the classical Smagorinsky

model 1, where the modelled subgrid stresses depend on the square of the SGS length scale, the

a priori -test results { especially those for the SGS shear stresses and the scalar-level subgrid

term { suggest to prefer the value 1 for the ratio considered.

In addition, in this model's empirical wall-damping function for the SGS length scale, the expo-

nents a = 3; b = 1=2 (�tted to the wall-limiting behaviour of SGS stresses) caused an increase in

near-wall �

SGS

-values as well as in some of the L

1

-error norms and gave no de�nitive improvement

upon the values a = b = 1 in the a priori tests on the DNS grid.

The comparative consistent a priori tests performed on the medium LES grid (16� 64� 128

nodes) using the reference �lter combination essentially yielded similar results in terms of
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qualitative behaviour regardless of some noticeable quantitative di�erences. As compared with

the �ner DNS grid, tensor-level correlations for the proposed models are typically diminished

here by 0:5% (model 8) up to about 40% (model 4). Proceeding from tensor to vector level,

correlations on the coarser grid do not decrease as much as on the �ner DNS grid; their values are

37% below (model 4), 1% below (model 8) up to even 74% above (model 9) the corresponding

vector-level values in Table III. For the subgrid terms at the scalar level, correlation coe�cients

are smaller by 23% for model 4 (smagc), by 1% for model 8 (sc1) or greater up to 11% for

model 9 (ss1) than their counterparts on the DNS grid.

III.B.2 Filter Inuence

For the purpose of a comparative evaluation of the implemented �lters, all the SGS mod-

els have been combined with the approximated top-hat �lters f1, f2 and F1, F2, respectively.

Especially the scale-similarity and mixed parametrizations require a �ltering with su�cient

localization in physical space as provided by the top-hat type [10], [15], [47]. Following the

recommendations related to consistency between model and �lter in [103], the Smagorinsky-

type model 4 (smagc) has been coupled with spectral sharp-cuto�-type �lters as well, and so

has the Leonard-stress-free model 6 (sc1). In addition to the 5-point-implicit{7-point-explicit

approximations f3a, f3b and F3, the "exact" sharp-cuto� �lter (46) with

~

�

i

= 2�x

i

; 4�x

i

and

8�x

i

; i 2 f2; 3g, implemented via FFT, has been tested.

The inuence of variations in grid and test �lters with respect to their widths and types

clearly came out in the a priori -test results for most of the test quantities, and, generally, it was

even more pronounced than the e�ect of changing model parameters.

Considering the widths of the �lters involved in the Germano identity (and assuming grid and

test �lters to be of the same type), according to (6), the dynamic modelling procedure adopted

in this paper requires

b

�

i

> �

i

, a relation that implies

b

�

i

> �

i

for �lters of sharp-cuto� type

in spectral space, which satisfy Reynolds' averaging postulates. Within this class of �lters, the

most common ratio

b

�

i

=�

i

= 2 has been chosen here. As distinguished from �lters generating

a spectrally sharp GS/SGS separation, for graded �lters with spectral overlapping between GS

and SGS components, even

b

�

i

= �

i

is admissible. So, in applying approximations to the top-hat

�lter, the case

b

G

i

� G

i

has also been examined in particular a priori tests.

For all the dynamic SGS parametrizations proposed in Sec. II.B except models 11 (ss3) and 12

(ss4), qualitatively and quantitatively superior results (in terms of both correlations and relative

L

1

-error norms) were achieved by means of box-type grid and test �lters with

b

�

i

= �

i

= 2�x

i

.

This applies individually to the trapezoidal and Simpson's rule approximations of the top-hat

�lter and is especially marked for models 6, 9, 10 and 13, which contain test-�ltering in both

their parametrization tensor and the dynamic coe�cients.

As compared with the variant

b

�

i

= 2�

i

and

b

�

i

2

� 5�

i

2

, this test-�ltering over a smaller

interval,

b

�

i

= �

i

and

b

�

i

2

� 2�

i

2

, enables less local information to be averaged out and a

more pronounced similarity between G- and

b

G-�ltered quantities to be attained. Concerning

the proposed scale-similarity models, the special case

b

G

i

� G

i

for box-type �lters means that a

smaller and more intermittent range of scales (between �

i

and

b

�

i

) is incorporated into modelling

and that the resolved-stress and the (modi�ed) Leonard-stress tensors coincide, L

ij

� L

ij

.

The a priori -test results in [107] also suggest that, for scale-similarity and mixed models, the

second �lter type in the computation of the parametrization tensor should be as similar as

possible to the grid �lter. With respect to the width, it was concluded in [107] that in applications

along with high-order �nite-di�erence schemes, it may be more appropriate to use the (modi�ed)

Leonard stresses, i. e. the second �lter of the same width as the grid �lter, instead of the resolved-

stress tensor and a test �lter of width

b

�

i

= 2�

i

.

For all the subgrid-scale models tested herein, the top-hat �lter approximated by Simpson's

rule and for models 4 (smagc), 6 (sc1) to 8 (sc3), 9 (ss1), 10 (ss2) and 13 (comb), the choice

b

G

i

� G

i

� f2 with

b

�

i

= �

i

= 2�x

i

in particular yielded the overall closest agreement between
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Figure 16: Mean values of de�ned subgrid-scale energy

(normalized by u

2

�
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grid �lters G

i

of width 2�x

i

on the DNS grid as func-

tions of the radial coordinate r=R

modelled and de�ned quantities both in a qualitative and a quantitative sense. The most

striking improvement in performance by changing the test �lter from

b

G

i

� F2 to

b

G

i

� G

i

� f2

was observed with model 6 (sc1) (see

�

in Tables II and III).

Overall, in nearly every respect, the best a priori test of the model/�lter combinations under

study was established for model 8 (sc3) { followed by models 7 (sc2), 13 (comb) and 6 (sc1) {

all applied along with the �lters

b

G

i

� G

i

� f2. This particular �lter/�lter combination typically

produced the smallest absolute values of de�ned (and also numerous modelled) "local" energy

uxes f01 12; f01 13; f02 23; f12 23, subgrid- and subtest-scale stresses and energies as well as

forward scatter and backscatter contributions to net SGS dissipation within the class of discrete

approximations to the top-hat �lter.

Adopting sharp-cuto�-type grid and test �lters instead with

b

�

i

= 2�

i

, the performance of

models 4 (smagc) and 6 (sc1) deteriorates as is mainly indicated by a strong decrease in the

level of correlations and a considerable increase in the average L

1

-distances between de�ned and

modelled subgrid terms compared with the reference �lter combination. This may be attributed

to the spectrally sharp GS/SGS separation, which results in lower absolute values of de�ned

subgrid stresses and energies arising only from small-scale turbulence components below the

cuto� and being modelled by means of a spectrally disjoint range of larger scales. Contrary to

the top-hat type, cuto� �lters exhibit an oscillating physical-space behaviour with varying sign,

which, in [15] and [47], is considered a cause of reduced correlation between local ow features.

For the "exact" sharp-cuto� �lter, the grid-/test-�lter combination with widths �

i

= 4�x

i

;

b

�

i

=

8�x

i

turned out to be more favourable with respect to the correlation coe�cients and relative

L

1

-error norms than the variant of smaller grid and test �ltering with �

i

= 2�x

i

;

b

�

i

= 4�x

i

.

The latter, among all the �lter combinations tested for the two models mentioned above, gave

the smallest de�ned and modelled energies of subgrid-scale motion (Fig. 16) and at the subtest-

scale level in addition to appreciably smaller absolute values of de�ned subgrid- and subtest-scale

stresses than box-type �lters of the same width. Concerning energy transfer, it characteristi-

cally generated the smallest de�ned uxes f01 23 as well as f01 13 = �"

SGS

with the absolutely

largest forward scatter and backscatter contributions.

With regard to the 5-point-implicit{7-point-explicit sharp-cuto� approximations, they are com-

parable in computing time with the FFT realization of (46), and, on the DNS grid, the �lter

combination G

i

= f3a,

b

G

i

= F3 seems to imitate the pair of original sharp-cuto� �lters of widths

�

i

= 2�x

i

and

b

�

i

= 4�x

i

more closely than G

i

= f3b,

b

G

i

= F3 (for SGS energy, see Fig. 16).
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IV Large-Eddy Simulations { Aposteriori Tests

IV.A Simulation Overview

In the second and indispensable stage of evaluation, the proposed subgrid models have been

thoroughly tested a posteriori by performing large-eddy simulations for the fully developed tur-

bulent pipe ow, Re

�

= 1;050 equivalent to Re

CL

� 25;000, in the domain [0; R]� [0; 2�]� [0; L];

L = 8R. To study model performance in LES, the e�ect of �lters and computational grids

as well as the sensitivity of numerical results to variations in model parameters, in total, over

80 simulations have been analyzed. The �ndings will be presented in the following subsec-

tion mainly for the medium LES grid and a �lter choice corresponding to the reference �lter

combination de�ned in Sec. III.B.

As suggested by the outcome of the a priori tests, simulation e�orts have been focused on

scale-similarity models of the �rst group with component-speci�c coe�cients and, among them,

model 8 (sc3) in particular. Of the remaining models with scalar coe�cients, the Leonard-stress-

related model 12 (ss4) and the resolved-stress-based parametrization 10 (ss2) as representatives

of the groups 2 and 3, respectively, have been primarily tested in LES. In another series of

simulations, the generalized Smagorinsky-type model 4 (smagc) has been applied in combination

with various test �lters including those of sharp-cuto� type. For comparison, simulation results

obtained with the known models 1 (smag) to 3 (pio) and 5 (leo) are again incorporated in

the evaluation, which was performed against numerical [52] and experimental [108], [109], [110]

pipe-ow data.

The LES input quantities were largely chosen to match the values assigned in the reference

a priori tests. In addition, model parameters such as bounds for the dynamic model coe�cients,

the subgrid-scale length scale in relation to the grid size for Smagorinsky-type model components

and the exponents of the Van-Driest-type wall-damping function of the classical Smagorinsky

model have been varied. Furthermore, in employing models with component-speci�c coe�cients

along with top-hat �lters, the "clipping" approximation for realizability (30) was optionally

activated. Concerning the proposed models of scale-similarity type, LES results are presented

with the backscatter modi�cations (outlined in Sec. II.D.4) included. For the promising model

8 (sc3), these a posteriori tests are supplemented with simulation runs without any backscatter-

related modi�cation and those performed with �lter variations. The favourable e�ect of grid

re�nement was demonstrated for model 6 (sc1), by way of example.

The large-eddy simulations reported here have been started from the same initial data �eld

for each of the Smagorinsky-type models 1 (smag) to 4 (smagc) and of the scale-similarity-/

combined-type models 5 (leo) to 13 (comb), and they have been carried out for six characteristic

time scales. Statistical data evaluation, which has been conducted by applying the same methods

to the GS velocity �eld as used in the a priori tests, is based on 45 LES realizations separated

by �t = 0:12 nondimensional time units. Here, the initial time development of the simulated

ow has been excluded from the computation of statistical quantities.

The analyzed statistics comprise not only �rst- and second-order one-point moments of the

GS velocity �eld, which will be discussed in the following subsection, but also higher-order

turbulence characteristics (third- and fourth-order moments) as well as spatial two-point auto-

correlation functions of GS velocities in various directions and the associated one-dimensional

energy spectra, which will only partly be outlined here.

IV.B Results

IV.B.1 Model Performance

The LES results obtained on the medium grid using the Simpson's rule approximations to

the top-hat �lter, f2 and F2, showed small to great quantitative and, in parts, also qualitative

di�erences in the analyzed statistics for SGS models or model groups 4 (smagc), 6 (sc1), and 7
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, for scale-similarity-type SGS models as func-

tions of the radial coordinate r=R

(sc2) to 13 (comb) in comparison with each other and with the known subgrid closures 1 (smag)

to 3 (pio) and 5 (leo). For the classical Smagorinsky model 1 (smag), the �ndings presented

here closely agree with those in [52].

The computed radial pro�les of the mean axial velocity component, <w>=<w>, have

been evaluated against experimental pipe-ow data by Browne and Dinkelacker [108]. Among the

Smagorinsky-type models, the base model 1 (smag) gave slightly overestimated <w>-values near

the axis (Fig. 17). In this respect, improved <w>-curves have been established by means of the

dynamic model versions 3 (pio) and, �rst of all, 2 (lilly) (not drawn). The mean axial velocity ob-

tained with the latter model nearly coincides with that of the proposed model 4 (smagc), which,

applied along with the test �lter

b

G

i

= f2 of width 2�x

i

, provided the best <w>-predictions

of all the SGS models tested. Deviations can be noticed in the underresolved near-wall region,

which, for the Smagorinsky model 1, was treated with an O(r

+

) exponential wall-damping func-

tion, whereas no supplementary near-wall modi�cations have been incorporated into all the other

parametrizations. With respect to the scale-similarity-type models, the amount of backscatter

in LES has been found to have a strong e�ect on the resulting mean axial velocity pro�le. To

illustrate this, the <w>-pro�le computed with the nondynamic scale-similarity model 5 (leo) is

depicted in Fig. 18. This curve is similar to the mean axial velocities produced by the original

formulations of models 7 (sc2) and 8 (sc3) without any backscatter-related modi�cation (not

drawn). For these <w>-pro�les, the value on the axis is much too small, and the curves as

functions of the radial coordinate are too at. This is connected with too large an integral

of the absolute value of the rz-Reynolds shear stress (sum of GS part and mean SGS stress)

�

R

<u (w �<w>)>dr = �

R

<u (w �<w>)>dr +

R

<t

rz

>dr with respect to r from 0 to

R and also within radial subranges excluding the near-wall region.

The latter results are contrasted with the <w>-predictions by models 6 (sc1) to 13 (comb)
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Figure 20: Rms values of radial velocity compo-

nent, u

rms

=u

�

, for Smagorinsky- and scale-similarity-

type SGS models as functions of the radial coordinate

r=R

with an arti�cially limited amount of backscatter as described in Sec. II.D.4. For models 7 (sc2)

to 12 (ss4), the computed <w>-pro�les within the radial subrange 0 6 r=R 6 0:5 compare

satisfactorily well with the measured one. The mean axial velocity values obtained with models

9 (ss1) to 12 (ss4) with a scalar coe�cient each are generally located below the experimental

data with the largest deviations occuring roughly within 0:5 6 r=R 6 0:9 (see representatives

10 and 12 in Fig. 18).

Within the group of SGS closures with scale-similarity part, the mixed model 13 (comb) enabled

slightly superior <w>-predictions to be achieved within this radial subrange (Fig. 17), whereas

parametrizations 7 (sc1) to 12 (ss4) resulted in too strong a decrease in the <w>-pro�le in the

direction towards the wall.

The exceptional behaviour of model 6 (sc1) is evident from the mean axial velocity pro�le, which,

from the axis to the near-wall region, lies above the <w>-values measured in experiment and

those predicted by all the other models tested (Fig. 18).

Velocity rms values have been computed from the three GS velocity components (without

having included an estimate for the SGS contributions) and have been compared with experi-

mental data for rms values of the statistical velocity uctuations u

rms

; v

rms

taken from [109] and

w

rms

from [108]. The measured rms values of the axial velocity component, w

rms

, are reasonably

well reproduced by models 1 (smag), 6 (sc1) and 10 (ss2) in particular (Fig. 19). In connection

with the empirical wall-boundary conditions and the current coarse resolution of the near-wall

region, the peak close to the wall is, however, not captured adequately. The w

rms

-level generated

by model 2 (lilly) is typically higher than the measured one, while all the other models produced

values mostly below the experimental curve, which additionally includes the contributions from

the subgrid scales. Similarly, the levels of the measured radial and circumferential velocity rms

34



0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.2 0.4 0.6 0.8 r/R      

1 (smag)
3 (pio)

4 (smagc)
7 (sc2)

10 (ss2)

Figure 21: Mean values of GS energy, <E

GS

>=u

2

�

, for

Smagorinsky- and scale-similarity-type SGS models as

functions of the radial coordinate r=R

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.2 0.4 0.6 0.8 r/R      

1 (smag)
2 (lilly)
3 (pio)

4 (smagc)
7 (sc2)
9 (ss1)

10 (ss2)

Figure 22: Mean values of SGS energy, <E
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,

for Smagorinsky- and scale-similarity-type SGS models

as functions of the radial coordinate r=R

values are generally slightly underpredicted within the subrange 0 6 r=R 6 0:7 with the agree-

ment between measured and computed values being fairly close for the Smagorinsky-type models

1 (smag) to 4 (smagc). In Fig. 20, rms values of the radial velocity component are displayed;

the v

rms

-level is not much higher, and the quality of approximation is comparable with that of

u

rms

.

InGS and SGS energies, remarkable di�erences can be observed between the mean values

obtained with the di�erent models. The computed mean GS energy, which is de�ned here to

be the statistically averaged uctuating part of grid-scale energy (GS part of kinetic turbulence

energy), <E

GS

> = 1=2 (<u

2

+ v

2

+ w

2

> � <w>

2

), is plotted in Fig. 21. Within the radial

subrange 0 6 r=R 6 0:7, the highest <E

GS

>-levels have been generated by models 2 (lilly) (not

drawn) and 3 (pio). The largest near-wall peak values of this quantity have resulted from the

application of models 4 (smagc) and 6 (sc1) (not drawn), followed by the known Smagorinsky-

type models 1 (smag) to 3 (pio). Lower mean values of the energy of grid-scale motion have been

established with models 9 (ss1) to 12 (ss4) (see representative 10 in Fig. 21) and with model 13

(comb). The lowest <E

GS

>-level is typical of models 7 (sc2) and 8 (sc3) (not drawn).

The even more pronounced di�erences in magnitude and radial distribution of the mean

subgrid-scale energy, <E

SGS

> = �1=2

P

i

<t

ii

>, are obvious from Fig. 22. It indicates that,

with some models and the current spatial resolution, a relatively large maximum amount of

turbulent kinetic energy is present in the unresolved scales. For the known Smagorinsky-type

models 1 (smag) to 3 (pio), <E

SGS

> has been approximated according to the estimate given

by Lilly [67]: <E

SGS

> = <�

2

SGS

>=(C

�

�)

2

with C

�

= 0:094 . Adopting model 3 (pio), this

estimate caused the largest peak of <E

SGS

> located at the greatest distance from the wall

as well as the largest SGS-energy level from the axis to the near-wall region. Compared with
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Figure 24: Mean values of �t

SGS

rz

=u

2

�

for Smagorinsky-,

scale-similarity- and mixed-type SGS models as func-

tions of the radial coordinate r=R

that, the maximum of <E

SGS

> turned out to be smaller and closer to the wall for the group of

models 9 (ss1) to 12 (ss4). Among these parametrizations with a scalar coe�cient each, 9 (ss1)

gave an exceptionally large peak value of <E

SGS

> which in its magnitude comes close to that

resulting from model 3 (pio). Scale-similarity- and combined-type-models 6 (sc1) to 8 (sc3) and

13 (comb) rank next (see representative 7 in Fig. 22). The lowest level of computed or estimated

subgrid energy is discernible for the Smagorinsky-type closures 2 (lilly), 4 (smagc) and, above

all, 1 (smag). In the near-wall region, the <E

SGS

>-curves for the proposed models 7 (sc2) to

13 (comb) as against the known Smagorinsky-type parametrizations 1 (smag) to 3 (pio) take far

higher values up to the wall and have their maximum at roughly r=R � 0:97.

Based on LES data for model 8 (sc3), Fig. 23 represents the radial pro�le of the statistically

averaged total rz-shear stress, <�

sum

rz

>, along with the individual contributions from the

grid-scale part of the rz-Reynolds stress and the mean values of the associated subgrid-scale and

viscous stresses, which add up to the linear pro�le characteristic of the fully developed steady-

state turbulent pipe-ow considered: <�

sum

rz

> = �<u (w �<w>)> +<t

rz

>+ � d<w>=dr .

The magnitude of the individual contributions shown in Fig. 23 is exemplary of the results

attained with models 7 (sc2) to 13 (comb), while larger GS shear-stress contributions and

considerably smaller SGS stresses <t

rz

> (Fig. 24) within nearly the whole radial range in-

cluding the near-wall region have generally been obtained with the Smagorinsky-type models

1 (smag) to 4 (smagc) and with model 6 (sc1). Fig. 24 especially illustrates the low <t

rz

>-

level resulting from models 4 (smagc) and 6 (sc1) and, for the remaining proposed dynamic

scale-similarity parametrizations, the nearly uniform growth of �<t

rz

> up to its near-wall
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Figure 26: Streamwise one-dimensional (normalized)

energy spectra S

��

(k)R=u

2

�

of the GS velocities for SGS

model 8 (sc3) in the radial position r=R � 0:2 versus

wavenumber k (log-log plot)

maximum at r=R � 0:94.

To evaluate the correlation coe�cient (spatial one-point correlation function normalized

by the rms values) between the axial and radial velocity components, from the great number of

available and widely di�ering experimental results for this quantity, measured data by Sabot [110]

have been employed for comparison with the values of C

rz

= <u (w �<w>)>=(u

rms

w

rms

)

computed from the GS velocity �eld. The measured values drawn in Fig. 25 are moderately well

reproduced, at least by models 6 (sc1) and 4 (smagc). Here, for most of the SGS parametrizations

used, the computed correlations within the radial subrange 0 6 r=R 6 0:6 typically exceed their

experimental counterparts. This is connected with (for this range) mostly too small velocity

rms values u

rms

; w

rms

computed from the GS �eld.

With respect to the analyzed statistical one-point moments of higher order, the skewness of

the three GS velocities has been described quite well as against experimental data adopted from

[110]. However, in view of the chosen number of realizations from which to evaluate statistics,

the GS velocity atness values near the axis were greatly varying from one simulation to the

next.

Among the computed two-point statistics, especially the two-point autocorrelation func-

tions in the radial direction of the axial velocity component proved to be sensitive to the SGS

model. Di�erences between the results obtained for the models or model groups under study can

also be seen in the associated streamwise one-dimensional (normalized) energy spectra of the

three GS velocities. A typical visualization of these spectra in the radial position r=R � 0:2 is

given for model 8 (sc3) in Fig. 26, where a log-log spectral plot is presented. It is common to the
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spectra for all the models tested that they have too steep a slope within the high-wavenumber

range and lack a well-developed k

�5=3

-behaviour. The spectra resulting from model 4 (smagc)

and the proposed scale-similarity- and combined-type parametrizations, 6 (sc1) to 13 (comb), if

backscatter is limited arti�cially, exhibit a characteristic "kink" at the high-wavenumber end.

This is most pronounced for model 6 (sc1), which was found to underpredict SGS dissipation

and to overpredict backscatter.

Of the tested variations in models and LES input parameters, the backscatter treatment

turned out to have great inuence. Without any backscatter limitation, scale-similarity-type

models caused numerical instabilities in some applications or they typically resulted in clearly too

at radial pro�les of mean axial velocity, in larger near-wall velocity rms values and considerable

amounts of average GS and SGS energies. Speci�cally, the maxima of these energies as well as

those of the absolute values of the GS part of the rz-Reynolds stress and of the associated mean

SGS stress come close to each other in both magnitude and radial position.

A quantitative analysis of backscatter reveals that the SGS stresses computed according to def-

inition from DNS data give rise to a reverse energy ow on the DNS grid in about 34% and on

the medium LES grid in roughly 30% to 31% of the total number of grid points. Applying the

proposed parametrizations, modelled backscatter was observed in the a priori tests on the DNS

grid in nearly 30% (model 9) to 36% (model 6) and on the medium LES grid in 24% (model

9) to 36% (model 6) of the total number of computational points. As against that, in LES,

approximately 32% (model 9) up to 40% (model 6) of the grid points encountered backscatter.

Considering the di�erent models, the backscatter part computed according to de�nition is un-

derestimated in the a priori tests using the proposed models with a scalar coe�cient by 1%

(model 12) to 7% (model 9), and it is recovered extremely well by models 7 (sc1), 8 (sc2) and

13 (comb). Closure 6 (sc1), when compared with all the other parametrizations tested, was

found to generate a backward energy ux in the largest part of the computational points and

to overpredict the de�ned backscatter fraction.

In addition, the LES results indicated the general tendency for the Leonard-stress-related models

7 (sc2), 11 (ss3) and 12 (ss4) to produce more backscatter than the resolved-stress-related clo-

sures 8 (sc3), 9 (ss1), 10 (ss2) and the linear-combination model 13 (comb). Among the models

with component-speci�c coe�cients, in the a priori tests closure 8 (sc3) and in LES parametriza-

tions 13 (comb) and 8 (sc3) brought about backscatter occuring in the smallest fraction of the

grid points.

With respect to the amount, an inverse energy ux corresponding to a negative total viscosity

was established in the a priori tests in no more than 2% or at most 7% (model 6) of the total

number of grid points, while in LES (at a greater Reynolds number) as much as over 20%

to almost 30% of the discretization points on the same grid experienced backscatter of this

intensity.

Realizability modi�cations for models with component-related coe�cients applied along with

box-type �lters have been performed in LES in a far greater fraction of the computational points

than in the a priori tests on the DNS grid, viz. in 15% to 18% (models 7, 8 and 13) and in about

45% (models 4 and 6) of the total number of grid points. As a result of these modi�cations, the

absolute values of<t

rz

> clearly decreased, and the GS part of the rz-Reynolds stresses increased

(by smaller values) so that there was a general tendency towards a rise in the mean axial velocity

values at the axis and, mostly, up to the near-wall region. Accordingly, the performance of the

considered models in LES improved (model 4) or declined (model 6), respectively, by applying

additional realizability modi�cations.

In large-eddy simulations similar to the a priori tests, the variation of the ratio of the SGS

length scale � to the grid size (�

i

=�x

i

) in the Smagorinsky part of models 2 (lilly), 3 (pio),

6 (sc1) and 13 (comb) had hardly any observable e�ect on the results, especially for the mean

axial velocity pro�le, the velocity rms values and the rz-shear stress balance. Adopting for this

ratio the value 2 instead of 1, no stable simulations were accomplished for model 4 (smagc), and

the computed mean and rms values of velocity deteriorated for model 1 (smag).

With regard to the near-wall reduction of the SGS length scale in this model, the Van-Driest-type

wall-damping function with the exponents a = 3; b = 1=2 gave a more pronounced peak in SGS
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turbulence viscosity close to the wall but altogether, on the LES grid, no decisive improvements

upon the O(r

+

) damping.

Not only in this underresolved near-wall region, the impact of grid density became apparent.

In changing from coarse to medium LES grid, the expected qualitative behaviour of SGS stresses

as well as those of GS and SGS parts of kinetic turbulence energy in terms of grid size has been

observed, and signi�cant improvements in the computed statistics were achieved. On the �nest

as compared with the medium LES grid, for model 6 (sc1), a partial increase in performance

with respect to the mean axial velocity pro�le succeeded. According to local hardware facilities

currently available, thorough large-eddy simulations with all the considered models on the �nest

LES grid were, however, beyond reach in the present study. Therefore, a posteriori tests of the

proposed SGS closures on �ner grids and, above all, in properly resolved near-wall ow regions

remain to be performed.

IV.B.2 Filter Inuence

In a series of large-eddy simulations, for model 8 (sc3) as a representative, four combinations

of discrete box-type �lters at the grid-level (applied in calculating model coe�cients from the GS

�eld) and at the test level (entering the parametrization tensor and the coe�cients) have been

tested comparatively: G

i

� f1 has been coupled with

b

G

i

� F1 and with

b

G

i

� f1. Analogously,

for the Simpson's rule approximation, G

i

� f2 and

b

G

i

� F2 (reference �lter combination) or

b

G

i

� f2 have been chosen alternatively.

Mean velocity pro�les proved to be rather insensitive to these �lter variations and nearly co-

incided for the �rst two �lter combinations (trapezoidal-rule quadrature) equally as for the

latter two (Simpson's-rule quadrature), which yielded <w>-curves in slightly closer agreement

with experiment. For both types of discrete approximations to the top-hat kernel, by adopting

b

G

i

� G

i

compared with the test �lter of greater width, a larger SGS and, conversely, a smaller

GS energy were predicted together with larger absolute values of the mean SGS stress <t

rz

>

and smaller absolute values of the GS contribution to the rz-Reynolds stress. Speci�cally, for

the �lters

b

G

i

� G

i

� f1, the maximum of the mean SGS energy reaches that of the mean GS

energy in magnitude and radial position, and for

b

G

i

� G

i

� f2 the same applies to the maximum

absolute values of <t

rz

> and of the GS part of the rz-Reynolds stress.

In all, for the considered model, the reference �lter combination resulted in the smallest absolute

values of mean SGS energy, <E

SGS

>, and SGS stress <t

rz

> and o�ered the best comparison

with experimental ow data available.

For model 4 (smagc), simulations succeeded by adopting the test �lters of width

b

�

i

= 2�x

i

along with setting

b

�

i

2

= 5 (�x

i

)

2

(top-hat type) and

b

�

i

2

= 4 (�x

i

)

2

(sharp-cuto� type),

whereas LES runs with test �lters of greater widths encountered numerical instabilities.

The �lter-induced di�erences in the evaluated statistics for this model are primarily of quan-

titative nature. Typically, the LES results obtained with sharp-cuto� instead of top-hat-type

test �lters of the speci�ed width are characterized by lower levels of subgrid energy and smaller

absolute values of SGS stresses. Of the applied test �lters

b

G

i

� f1, f2, f3a, f3b and the "exact"

sharp-cuto� �lter fsc, the latter was associated with the smallest mean subgrid-scale energy,

while the trapezoidal-rule approximation to the top-hat �lter, f1, gave the largest <E

SGS

>-

values. Comparing the sharp-cuto� approximations f3a and f3b in LES applications of model 4

(smagc) on the medium grid, f3a produced smaller SGS energies, whereas f3b seemed to more

closely emulate the e�ect of the "exact" sharp-cuto� �lter on the mean velocity pro�le.

As against experimental data, for the concerned model,

b

G

i

� f2 enabled the best results to be

achieved, especially with respect to the mean axial velocity, which, mainly within 0:7 6 r=R 6

0:9, was overpredicted with all the other test �lters and those of sharp-cuto� type in particular.

Generally, in the present �nite-di�erence LES computations, sharp-cuto�-type �lters turned

out to be more problematic from a numerical point of view and inferior to top-hat-type �lters

in reproducing experimental data for statistical turbulence characteristics.
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V Final Model/Filter Evaluation

The common Smagorinsky model 1 (smag) gave a poor local performance in the a priori

tests at all levels. This is especially manifested in an excessive peak located too close to the wall

in the mean relevant SGS stress <t

mod

rz

> and hence in the vector-level subgrid term containing

d<t

mod

rz

>=dr just as in the subgrid term at the scalar level. From the axis up to this near-

wall peak, however, the absolute values of <t

def

rz

> are most strongly underestimated by this

purely dissipative model. Globally, a reasonable approximation to the integral

R

R

0

<t

rz

>dr

was established by the Smagorinsky model. This result, considered in connection with the

approximation to the corresponding integral of the GS part of the rz-Reynolds stress in the

integrated shear-stress balance, gives, at least to some extent, an explanation of the model's

satisfactory overall e�ect on the mean axial velocity pro�le computed in LES.

For the dynamic Smagorinsky-type model 2 (lilly) as distinguished from the nondynamic

base parametrization, the a priori -test results indicated underestimated absolute values of the

mean relevant SGS shear stress, <t

rz

>, within the whole radial range as well as an underestima-

tion of the extrema in the third component of the divergence of the mean SGS-stress tensor and

of the peaks in the mean scalar-level subgrid term. For these quantities, the L

1

-error norms are

reduced, and the correlation coe�cients are slightly increased against those resulting from model

1 (smag). In other respects, however, the a priori model performance is not considerably im-

proved upon the Smagorinsky closure, and the dynamic SGS modelling potential appears to be

not exhausted by the Lilly model. In LES, this parametrization gave a mean axial velocity pro-

�le in extremely close agreement with the measured curve along with slightly overpredicted rms

values of this velocity component. Typically, the computed or estimated <E

GS

>-, <E

SGS

>-

and <t

rz

>-levels are mostly higher than those generated by the original nondynamic model.

A similar behaviour has been observed for the dynamic Smagorinsky-type model 3 (pio)

with a localized coe�cient. As compared with model 2 (lilly), it produced larger peak values

of <�

SGS

>, <E

SGS

> and <t

rz

> in both testing stages. Consequently, the a priori model

performance is further improved primarily with respect to the test quantities t

13

;

P

j

@t

3j

=@x

j

;

P

ij

u

i

@t

ij

=@x

j

and also t

23

; t

12

. However, the simulation results, especially those for the mean

axial velocity, suggest that the potential advantages of the localized coe�cient formulation in

this model are not equally reected in improved LES predictions.

For the proposed generalized anisotropic Smagorinsky-type model 4 (smagc), the

a priori -test results revealed pronounced di�erences between the individual component-speci�c

subgrid eddy viscosities and also against the scalar SGS turbulence viscosity of the known

Smagorinsky-type closures. In comparison with models 1 (smag) to 3 (pio), mainly the local

a priori performance at the tensor level and that with respect to the �rst and second components

of the vector-level subgrid term is improved as can be seen from the correlation coe�cients and

L

1

-error norms. The de�ned peak values of the mean dominant SGS normal stress, <t

zz

>, of

the mean subgrid-scale energy, <E

SGS

>, and of the mean relevant SGS shear stress, <t

rz

>,

are, however, noticeably underestimated by this model. Likewise, in the a posteriori tests of

model 4 (smagc), <t

rz

>- and <E

SGS

>-levels have been computed which lie below or slightly

above, respectively, those given by the classical Smagorinsky model; and the largest near-wall

peak values of grid-scale energy have resulted from LES applications of model 4 (smagc). Con-

cerning energy transfer analyzed in the a priori tests, the de�ned "local" ux between subgrid

scales and the adjacent range of the grid scales smaller than

b

� is grossly overpredicted, while

the de�ned "not-so-local" ux between subgrid and supertest ranges is underpredicted. As for

the net ux between grid and subgrid scales, model 4 (smagc) turned out to be underdissipa-

tive in the a priori tests, and, due to the imposed clipping of the model coe�cients according to

nonnegative component-related total viscosities, the amount of backscatter is extremely reduced

against its de�ned counterpart.

In the large-eddy simulations, this model combined with a top-hat �lter of width 2�x

i

(Simp-

son's rule approximation) provided the best predictions for both mean and rms values of velocity

among all the SGS models tested. For the mean axial velocity component, the computed radial
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pro�le is, apart from the underresolved near-wall region, in closest agreement with experimental

data, and the reproduced rms values are improved upon those obtained with the Lilly model.

Model 6 (sc1), though of scale-similarity type, has a number of closure assumptions in

common with model 4 (smagc), but no backscatter limitation is incorporated in its original

formulation. Accordingly, in the a priori - and a posteriori -test results of model 6 (sc1), quali-

tative similarities have been observed yet also substantial di�erences in comparison with model

4 (smagc) and with the scale-similarity parametrizations 7 (sc2) to 12 (ss4). Apriori tests of

model 6 (sc1) showed an overestimation of the mean values of SGS normal stresses and hence

of subgrid-scale energy as well as improvements upon closure 4 (smagc) with respect to <t

zz

>,

<t

rz

> and in the near-wall region in general. Compared with the latter model, the absolute

values of the mean relevant shear stress, <t

rz

>, in the a priori tests (and also in LES) are

typically larger, and the modelled "local" ux between grid scales smaller than

b

� and subgrid

scales is less pronounced yet still greater than the de�ned one. As the most prominent feature

of a priori model performance, a severely overestimated backscatter has been found along with

the smallest peak of SGS dissipation among the results from all subgrid closures proposed. For

this parametrization, remarkable further improvements in the a priori model performance have

been achieved by applying the smaller variant of top-hat test-�ltering. In LES, the particular

e�ect of this model on the computed velocity �eld is manifested in a mean axial velocity pro�le

that essentially lies above the values measured in experiment and those predicted by the other

closures tested. In this respect, an increase in performance was observed for this model on the

�nest LES grid.

For the scale-similarity- and mixed-type models 7 (sc2) to 13 (comb), a fairly good

a priori performance with a substantially higher overall degree of correlation has been estab-

lished showing these closures to be superior to the known models 1 (smag) to 3 (pio) and the

parametrizations 4 (smagc) and 6 (sc1) in the �rst stage of evaluation. According to the a priori -

test results at tensor, vector and scalar levels of comparison, the proposed models 7 to 13 were

essentially subdivided into three groups: The group of the most promising parametrizations

comprises the scale-similarity- and mixed-type closures 8 (sc3), 7 (sc2) and 13 (comb) with

component-speci�c coe�cients and is distinguished by an excellent qualitative and quantitative

agreement between de�ned and modelled subgrid terms at all levels. This implies very small

L

1

-error norms and tensor-level correlation coe�cients of nearly 1. As the second group, the

parametrizations 12 (ss4) and 11 (ss3) in terms of the (modi�ed) Leonard stresses with a scalar

coe�cient each follow, which are characterized by typical tensor-level correlations of about 0.95

and a marked decrease in correlation coe�cients at vector and scalar levels. The third group

contains the resolved-stress-related one-parameter closures 10 (ss2) and 9 (ss1) giving average

stress-correlation coe�cients roughly between 0.8 and 0.9 along with vector- and scalar-level

correlations decreased to values between 0.3 and 0.6. In a priori reproducing subgrid terms, the

mean absolute values of SGS normal stresses and thus of subgrid energy, of the relevant SGS

shear-stress component, <t

rz

>, and also the mean absolute values of subgrid terms at vector

and scalar levels are typically slightly underpredicted by the considered models with only model

9 (ss1) resulting in overestimated absolute values of the mentioned tensor-level test quantities.

Interscale energy transfer was found to be reasonably well approximated a priori by models 7

(sc2) to 13 (comb). Characteristically, the peaks of the absolute values of nearly all mean uxes

computed from the modelled SGS stresses are insigni�cantly lower than their de�ned counter-

parts. Backscatter is a priori at most slightly underpredicted in its absolute values and best

reproduced by models 7 (sc2) and 12 (ss4), whereas the linear-combination model 13 (comb)

gives rise to a somewhat excessive amount of backward energy ux. The closures 7 (sc2) to 13

(comb) tend to underestimate the forward scatter from grid to subgrid scales by a little greater

amount than the backscatter and, accordingly, are considered to be somewhat underdissipative

in the a priori tests. Di�erences between the models' a priori -test results are small yet most pro-

nounced for the "local" ux between subgrid scales and the adjacent part of grid scales smaller

than

b

�. For this quantity, the mixed model 13 (comb) provides the closest approximation.

With the backscatter modi�cations incorporated and along with the reference �lter
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combination, models 7 (sc2) to 13 (comb) yielded acceptable predictions of statistical quantities

in LES. For the computed mean axial velocity pro�le, the quality of approximation provided by

these parametrizations is partly inferior to that of model 4 (smagc). Within the radial subrange

where the largest deviations from the measured <w>-curve were found, the linear-combination

closure 13 (comb) gave slightly superior predictions among this group of models. For the single-

coe�cient models 9 (ss1) to 12 (ss4), the computed mean axial velocity values are generally

smaller than their experimental counterparts, and both <E

GS

>- and <E

SGS

>-levels as well as

the peak values of the mean relevant SGS shear stress, <t

rz

>, are typically higher than those

obtained with parametrizations 7 (sc2), 8 (sc3) and 13 (comb). In qualitative agreement with

the a priori -test results, the peak values of <E

SGS

> and <t

rz

> are most pronounced in the

predictions of model 9 (ss1).

Measured turbulence intensities, apart from the near-wall rms values, have been reproduced

reasonably well by all the proposed scale-similarity- and combined-type models with a general

tendency towards a slight underprediction.

With respect to the implemented �lters of several types and widths, the e�ect of changing

grid and test �lters in the a priori tests was more striking than the inuence of �lter variations

on the computed statistics in LES.

Both a priori and a posteriori tests indicated that, as compared with the top-hat �lter of the

same width, the spectral sharp-cuto� type is characteristically associated with smaller absolute

values of (de�ned and generally also modelled) SGS stresses and thus smaller energies of subgrid

motion together with smaller amounts of SGS dissipation yet larger amounts of backscatter.

This is most pronounced for the "exact" sharp-cuto� �lter of width 2�x

i

. The latter has been

approximated in physical space with comparable computational e�ort and, for the major part of

the test quantities, more closely by the proposed discrete 5-point-implicit{7-point-explicit �lter

f3a as against f3b due to Spyropoulos and Blaisdell [90]. Here, the quality of approximation

to the original spectral �lter was found to be dependent on grid density. In applications along

with models 4 (smagc) and 6 (sc1), the agreement between de�ned and modelled subgrid terms

in the a priori tests as well as those between experimental data and the statistics evaluated

in LES was clearly poorer for the sharp-cuto� than for the top-hat �lters. With respect to

numerical behaviour, too, the �lters of top-hat type proved to be superior to those of sharp-cuto�

type. Of the two adopted discrete versions of the top-hat �lter, the approximation by means

of Simpson's rule generally gave better a priori - and a posteriori -test results for all the models

under investigation than the trapezoidal-rule approximation. Assuming equal �lter widths, the

former typically involves smaller absolute values of de�ned SGS stresses, subgrid energies, SGS

dissipation and backscatter.

Considering the test-�lter width, in the a priori tests for the majority of the proposed closures

and for model 6 (sc1) most pronounced, the choice of the top-hat kernel of width

b

�

i

= �

i

= 2�x

i

as against that of twice the grid-�lter width turned out to be more favourable in terms of

correlation coe�cients and relative L

1

-error norms. This is motivated in view of the amount of

local informations utilized in modelling and the degree of similarity between G- and

b

G-�ltered

quantities used to approximate subgrid and subtest-scale stresses.

Concerning LES, however, one has to take into consideration that the unknown "�lter" inher-

ent in the discretization method di�ers from the de�ned grid �lter and that model performance

is a�ected by truncation errors, which may produce strong e�ects near the grid scale.

The a posteriori tests also suggested to combine model 4 (smagc) with a test �lter of width

2�x

i

.

For the dynamic scale-similarity and mixed-type models, the mean axial velocity pro�les pre-

dicted in LES were found to be comparatively insensitive to the adopted variations in test-�lter

width. Altogether, for the proposed models of scale-similarity and linear-combination types,

the reference �lter combination, i. e. Simpson's rule approximations to the top-hat �lter with

b

�

i

= 2�

i

= 4�x

i

, generally produced LES results with the smallest absolute values of mean

SGS stresses and subgrid energies and established the closest agreement with measured ow

statistics available.
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VI Summary and Conclusions

The advantages and potentialities o�ered by dynamic subgrid-scale modelling in general as

contrasted with particular problems encountered in deriving, implementing and applying popular

dynamic SGS closures as well as the need for further improvements in their performance formed

the motivation of the present study.

Within the framework of the most common approach to dynamic subgrid modelling, re�ned

principles of developing and evaluating SGS models were suggested, from which nine dynamic

subgrid parametrizations of three types were derived. As the essence of modelling, it was pro-

posed to use the Germano identity [2] in a more general sense including also consequences at

vector and scalar levels to uniquely and e�ciently determine model coe�cients. This opens

up the possibility of addressing the overspeci�cation problem by selecting a proper subset of

identities equal in number to that of the model coe�cients to be evaluated dynamically.

Related to this, the most prominent feature of the proposed generalized anisotropic models con-

sists in the use of component-speci�c coe�cients assigned to the individual SGS stresses. These

subgrid closures with additional degrees of freedom thus avoid overspeci�cation in evaluating

the model coe�cients from the tensorial Germano identity and are intended to overcome some

of the inherent limitations of the scalar-coe�cient base parametrizations they originate from.

Speci�cally, they enabled a more exible capturing of the near-wall SGS-stress-tensor anisotropy

to be achieved. In addition, the models with component-related coe�cients aim at a proper ap-

proximation to local instantaneous backscatter energy transfer, which, however, turned out to

be a serious problem in LES.

Proceeding from these generalized anisotropic closures, as another model group, versions with a

scalar coe�cient each were designed to ful�l strong realizability conditions for nonnegative �lter

functions in physical space. Here, the single model coe�cient was evaluated from a physically

meaningful scalar equation taking SGS dissipation into consideration.

Common to all the proposed subgrid parametrizations, their model coe�cients are de�ned lo-

cally, i. e. essentially without using any kind of global averaging. These localized formulations

are expected to improve the predictive capability on a local level and to o�er a wider range

of applicability beyond ows with homogeneous directions or statistically steady ows, by way

of example. For numerical stabilization, a clipping of the model coe�cients combined with a

special procedure employed in case of small denominators was found to be appropriate.

To evaluate the SGS stresses or the involved model coe�cients appearing inside the test-�ltering

operation of the Germano identity or related equations, the generally applicable and compu-

tationally e�cient approximate localization approach due to Piomelli et al. [20] was mainly

adopted, and the use of approximate values computed in the preceding time step proved suc-

cessful.

Within the proposed modelling framework, the usual assumption of identical model coe�-

cients assigned to both the subgrid- and subtest-scale stress parametrizations may, if required,

be discarded in favour of a more general approach.

In addition, as distinguished from known SGS models for only the deviatoric part of the subgrid-

stress tensor, the modelling principles introduced in the present paper permit a more compre-

hensive model evaluation including also GS pressure, SGS normal stresses and quantities derived

therefrom. Particularly, realizability [49], [50], [51] of the modelled SGS-stress tensor is veri�-

able.

Useful further information for model evaluation in both a priori and a posteriori tests or for dy-

namically choosing among available SGS parametrizations in LES [13] can also be obtained from

the tensorial Germano identity and consequences at vector and scalar levels, e. g. by analyzing

the error in satisfying these equations with the subgrid- and subtest-scale stresses replaced by

the models under study.

The dynamic closures presented comprise a generalized anisotropic Smagorinsky-type model,

4 (smagc); three scale-similarity models with component-speci�c coe�cients, 6 (sc1) to 8 (sc3);

four parametrizations of scale-similarity type with a scalar coe�cient each, 9 (ss1) to 12 (ss4);
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and a linear-combination model with component-related coe�cients in the Smagorinsky part,

13 (comb). For each of the three base model types, a special motivation and particular aims

were formulated.

Applied to a fully developed turbulent pipe ow described in cylindrical (r; '; z)-coordinates,

these models along with several �lters were evaluated in a systematic two-stage testing procedure.

Using a self-generated DNS database pertaining to a Reynolds number of Re

�

= u

�

R=� = 180,

a priori tests as the �rst stage were performed. Their results, mainly via correlation coe�cients

and L

1

-norms of the di�erences between de�ned and modelled subgrid terms at tensor, vector

and scalar levels provided �rst informations on model performance and �lter e�ects, from which

to select model/�lter combinations primarily designated for further studying.

In actual �nite-di�erence large-eddy simulations (Re

�

= 1;050) as the second testing stage, the

models' predictive capability was examined as well as the sensitivity of simulation results to

variations in �lters and other input parameters. Models were evaluated against experimental

and numerical pipe-ow data, and model performance was assessed in comparison with each

other and with the classical Smagorinsky model 1 (smag) [63], the dynamic versions 2 (lilly)

due to Lilly [18] and 3 (pio) by Piomelli et al. [20] together with a simple nondynamic Leonard-

stress-based parametrization, 5 (leo) following [78].

As against these known SGS closures, considerable improvements in local a priori perfor-

mance at all levels were demonstrated for the proposed subgrid models and particularly for those

of scale-similarity and combined types with component-speci�c coe�cients. In the a posteriori

tests, the generalized anisotropic Smagorinsky-type model including coe�cient clipping proved

most successful and stood comparison with the known subgrid parametrizations, whereas prob-

lems were encountered with the scale-similarity and mixed models in their original formulation,

and additional procedures were needed to limit excessive backscatter. In both testing stages, the

top-hat �lter approximated by means of Simpson's rule enabled the overall closest agreement

with the relevant comparative data to be achieved.

Following this rough outline of the results, a more detailed model- and �lter-related evalua-

tion is presented subsequently.

Regardless of its de�ciencies mainly with respect to reproducing the dominant SGS normal stress

and the relevant SGS shear stress, subgrid dissipation and backscatter in the a priori tests, the

generalized anisotropic Smagorinsky-type model 4 (smagc) with coe�cient cutting provided the

best LES predictions for velocity mean and rms values among all SGS closures tested.

As distinguished from model 4 (smagc), the dynamic scale-similarity- and combined-type clo-

sures 6 (sc1) to 13 (comb) gave a superior performance in the a priori tests. Their results

led to a classi�cation of these models into three groups with the group of the most promising

parametrizations comprising models 8 (sc3), 7 (sc2) and 13 (comb) with component-speci�c co-

e�cients. In addition, as the prime candidate of the second group and a representative of the

single-coe�cient models, the Leonard-stress-related closure 12 (ss4), which was derived from the

scalar-level Germano identity, is designated for further studies. Especially these models o�er a

great potential for reproducing the subgrid terms at tensor, vector and scalar levels as well as

interscale energy transfer including SGS dissipation and backscatter. Typically, these models

only slightly underpredicted the various net energy uxes computed from the DNS data and

turned out to be somewhat underdissipative in the �rst stage of evaluation.

As contrasted with the appealing a priori -test results, the potential advantages of these models

did, however, not produce adequate e�ects in LES. Instead, in the complex dynamics of GS/SGS

interaction with these models, backscatter was found to be a crucial problem of the large-eddy

simulations. Applied in their original formulation, the models typically resulted in clearly too

at mean axial velocity pro�les and considerable amounts of SGS energy in the LES computa-

tions or even caused numerical instabilities in some simulations.

A quantitative backscatter analysis reveals that, with the reference �lter combination on the

medium grid mainly used in LES, the SGS stresses computed according to de�nition from DNS

data give rise to a reverse energy ux in about 30% to 31% of the total number of grid points.

That backscatter essentially doesn't exceed an intensity corresponding to a negative total viscos-

ity. This is well captured by models 7 (sc2) to 13 (comb) in the consistent a priori tests. In LES
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(at a greater Reynolds number), however, backscatter was established with these models in 32%

to 38% of the nodes, and as much as over 20% to 25% of the discretization points experienced

an amount of backscatter corresponding to a negative total viscosity. These facts indicate the

need for further research into backscatter, whose importance, mechanisms and suitable mod-

elling without the risk of generating numerical instabilities are still controversial. Though not

satisfactory from a theoretical point of view, an arti�cial backscatter limitation via modi�ed

model coe�cients proved to be feasible in the present LES computations.

With backscatter modi�cations similar to the imposed clipping of model coe�cients according

to nonnegative component-related total viscosities in closure 4 (smagc), these models generally

yielded acceptable LES predictions of statistical one-point moments of the GS velocity �eld.

Speci�cally for the computed mean axial velocity pro�le, the quality of approximation provided

by these parametrizations is partly inferior to that achieved with the Smagorinsky-type model 4

(smagc). Here, among the SGS closures with scale-similarity part, the mixed model 13 (comb)

produced slightly more favourable results.

Within the group of the proposed scale-similarity parametrizations, an exceptional behaviour

was found for model 6 (sc1), which has a number of closure assumptions in common with model

4 (smagc) yet another parametrization tensor and no backscatter modi�cation in its original

formulation. As the most striking feature of a priori performance, an extremely overestimated

amount of backscatter was observed along with the smallest SGS dissipation within this group

of subgrid closures. The particular model e�ects on the computed statistics in LES were most

evident from the mean axial velocity pro�le and spatial one-dimensional energy spectra in the

mean ow direction.

With respect to the parametrization tensor of the scale-similarity closures, the (modi�ed)

Leonard stresses generally proved to be superior to the resolved-stress tensor in the a priori

tests as can be concluded from the comparative evaluation of the models in conjunction with

test �lters of the usual (twice the grid �lter) width and those equal in width to the grid �lter.

In the large-eddy simulations, the di�erences in the computed one-point statistics appeared to

be less pronounced, and, for the Leonard-stress-related models, backscatter was observed in a

greater fraction of the computational points.

As the base types of spatial �lters involved in dynamic modelling, 3-point-explicit approxi-

mations to the top-hat kernel by means of trapezoidal and Simpson's rules as well as 5-point-

implicit{7-point-explicit approximations to the spectral sharp-cuto� type were applied in phys-

ical space along with the "exact" sharp-cuto� �lter implemented via FFT.

For models compatible with a spectrally sharp GS/SGS separation, their combination with

spectral sharp-cuto� type �lters resulted in typically smaller absolute values of mean subgrid

stresses and SGS energies yet considerably larger amounts of backscatter and, generally, in a

decline in model performance as against the top-hat �lter of the same width. Both a priori - and

a posteriori -test results suggest to prefer Simpson's rule approximation to the top-hat �lter to

be used in �nite-di�erence large-eddy simulations.

A test �lter of this type and equal in width to twice the grid size was most successfully combined

in LES with the generalized anisotropic Smagorinsky-type model 4 (smagc). For the majority of

the proposed scale-similarity- and mixed-type models 6 (sc1) to 13 (comb), the particular choice

of a top-hat �lter of width equal to twice the grid spacing and approximated by Simpson's rule

as both grid and test �lter yielded the overall closest qualitative and quantitative agreement

between modelled and de�ned subgrid terms in the a priori tests. As against the usual choice

of test-�lter width, this produced smaller absolute values of de�ned subgrid stresses, SGS en-

ergy and energy uxes of "local" nature. In LES applications, simulation results were rather

insensitive to the adopted variations in test-�lter width, and, in all, the choice of the reference

�lter combination (Simpson's rule approximation to the top-hat �lter with the usual test-�lter

width) turned out to be more favourable with respect to reproducing experimental ow data.

In establishing these results by means of the applied two-stage approach, the a priori tests

in the present study at least gave useful indications of the relative performance of the individual

models of each of the three types, which were roughly con�rmed in LES. The a priori -testing

methodology failed, however more than expected, in capturing the e�ects of the di�erent types
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of closure in their dynamical interactions with the GS �eld and with respect to backscatter in

particular, which showed limitations of this approach.

Concerning numerical aspects, the proposed models are not substantially more complex than

known dynamic SGS parametrizations. Obviously, model variants with component-related coef-

�cients imply increased storage requirements in comparison with the traditional one-parameter

models, and scale-similarity as against Smagorinsky-type closures are associated with additional

computational e�ort according to the number of �ltering operations involved. By way of ex-

ample, for top-hat type �lters and a grid with about 131,000 nodes, CPU times of LES are

increased by factors of roughly 2 (model 4) up to 8 (models 7 and 8) as compared with the stan-

dard Smagorinsky model (simulations with 32 processors on a Parsytec GC/PowerPlus-128).

In both a priori and a posteriori tests, apart from reduced storage requirements, hardly any

advantage of the one-parameter model versions with a scalar coe�cient were seen in terms of

results and computational e�ciency.

In evaluating the uctuating component-related model coe�cients, the most appealing numeri-

cal behaviour as reected in the smallest range of variations, the lowest frequence and smallest

magnitude of peaks was observed with model 8 (sc3).

For these models with component-speci�c coe�cients, the tested modi�cations to ensure real-

izability in case of top-hat type �lters did not indicate a de�nite global increase in the a priori

model performance and typically caused a rise in mean axial velocity values computed in LES,

which implies improvements for model 4 (smagc).

In addition to backscatter treatment, �lters and realizability modi�cations, other model

parameters were varied which produced weaker e�ects or which are of minor importance within

the scope of the present work.

Variations in grid resolution were also studied. The a priori tests were mainly performed using

the original highly-resolved DNS raw data on a grid with approximately 3.15 million nodes.

These investigations were supplemented by consistent a priori tests on a coarser (LES) grid,

which, apart from some observable quantitative di�erences, gave similar qualitative results.

In LES, the e�ect of spatial resolution on model performance was examined using three grid

levels, and the sensitivity of the simulation results to grid density was noticed not only in the

underresolved near-wall region. Simulations were focused on the medium LES grid with about

131,000 cells. Proceeding to the �nest LES grid level with roughly 1.05 million nodes, a partial

improvement in a posteriori performance was achieved for model 6 (sc1) with respect to the mean

axial velocity pro�le. Local computer facilities, however, did not permit a thorough a posteriori

testing of all the proposed models on this or even more re�ned grids. Consequently, further

grid re�nement studies for model evaluation are required to be made, and, particularly, a higher

resolution of near-wall regions is desirable in the context with dropping arti�cial wall-boundary

conditions.

On account of the complex interactions between the LES components, higher-order di�erence

schemes have to be included in model testing, which is to be extended to other ow types and

more irregular geometries.

Since all dynamic SGS models proposed in this paper proved to be superior to the known

subgrid parametrizations in the a priori tests and largely came up to the expectations in the

�rst stage of evaluation, our future research e�orts will focus on LES applications of the most

promising model versions 4 (smagc), 7 (sc2), 8 (sc3), 12 (ss4) and 13 (comb) to more fully

exploit their potential a posteriori. Special attention will be paid to the discretization of the

computational domain and of the governing di�erential equations as well as to the issue of

backscatter.
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