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1 Introduction

In the last 40 years linear systems theory (control theory) has evolved into a mature �eld

that has found a stable position on the borderline between applied mathematics, engineer-

ing and computer science. The major success is not only due to the fact that beautiful

mathematical theories (like linear algebra, ring theory, representation theory and others)

�nd direct application but also since the results have immediately found their ways into

production code software packages like MATLAB toolboxes [48, 49] or the SLICOT sub-

routine library [13], which can be and are directly used by engineers working in practice.

In this paper we will discuss several problems of linear control theory, as there are pole as-

signment, stabilization, linear quadratic control and H

1

control. In the solution techniques

for these problems important developments have taken place in recent years, which have

lead to changes in viewpoints in particular what the numerical solution of these problems is

concerned. In our opinion there are three central questions that need to be studied in more

detail in the context of numerical methods for the solution of control problems and it is

the aim of this paper to initiate more research and software developments in this direction.

First of all, as is well-known, di�erent mathematically equivalent formulations of the same

problem may lead to drastically di�erent sensitivity of the problem to perturbations (such

as round-o� errors) and thus it is important to �nd the best formulation for numerical

solution.

The second issue is that the numerical methods should re
ect the physical properties of

the problem in the maximal way, to get higher e�ciency but also to guarantee even in

�nite arithmetic results that the computed results are physically meaningful.

The third important topic is that with the growing complexity of problems, in particular

in the context of large scale control problems, solution approaches and numerical methods

have to be reviewed and completely new methods have to be developed.

We will only discuss the �rst two issues but large scale control problems are currently a

very important research topic.

Consider linear constant coe�cient dynamical systems of the form

_x = Ax +Bu; x(t

0

) = x

0

; (1)

where x(t) 2 R

n

is the state, x

0

is an initial vector, u(t) 2 R

m

is the control input of the

system and the matrices A 2 R

n;n

, B 2 R

n;m

are constant. The topics that we discuss here

also apply in a similar fashion to problems with output and also to complex problems, but

for the sake of brevity we only discuss real problems.
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The classical pole placement problem is to �nd a state feedback control law

u = Fx (2)

such that the closed loop system

_x = (A+BF )x: (3)

has desired poles, or in linear algebra terminology, that the spectrum of the closed loop

system matrix A+BF is a given set of complex numbers. Here, the case of stabilization,

where the closed loop poles are desired to be in the open left half plane represents an

important special case.

For a discussion of the classical theory of the pole placement problem and related problems,

we refer the reader to monographs in linear control theory, e.g., [7, 44, 73, 37, 40, 26, 59].

In Section 2 we discuss some new perturbation results and the resulting consequences for

numerical methods. These results indicate that the numerical solution of the classical

formulation of the pole placement problem is often and in particular for large n and small

m a highly ill-conditioned problem that should be modi�ed.

This analysis and the resulting conclusions hold also for the stabilization problem which

alternatively may be solved also via the solution of a linear quadratic control problem.

For this the objective is to �nd a control law u(t) such that the closed loop system is

asymptotically stable and such that the performance criterion

S(x; u) =

Z

1

t

0

�

x(t)

u(t)

�

T

�

Q S

S

T

R

� �

x(t)

u(t)

�

dt (4)

is minimized, where Q = Q

T

2 R

n;n

, R = R

T

2 R

m;m

is positive de�nite and

�

Q S

S

T

R

�

is positive semide�nite.

The basics for this problem can be found in classical monographs on linear control [7, 4,

44, 73, 37, 40, 26, 15, 52, 59, 45, 65].

Application of the maximum principle [62, 52] leads to the problem of �nding a stable

solution to the two-point boundary value problem of Euler-Lagrange equations

E

c

2

4

_x

_�

_u

3

5

= A

c

2

4

x

�

u

3

5

; x(t

0

) = x

0

; lim

t!1

�(t) = 0; (5)

with the matrix pencil

�E

c

� �A

c

:= �

2

4

I 0 0

0 �I 0

0 0 0

3

5

� �

2

4

A 0 B

Q A

T

S

S

T

B

T

R

3

5

: (6)

If R is well-conditioned with respect to inversion, then (5) may be reduced to the two-point

boundary value problem

�

_x

� _�

�

= H

�

x

��

�

; x(t

0

) = x

0

; lim

t!1

�(t) = 0 (7)
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with the Hamiltonian matrix

H =

�

F G

H �F

T

�

:=

�

A�BR

�1

S

T

BR

�1

B

T

Q� SR

�1

S

T

�(A� BR

�1

S

T

)

T

�

: (8)

The solution of the boundary value problems (5) and (7) can be obtained in many di�erent

ways. The classical way, that is implemented in most design packages is to determine

�rst X, the positive semide�nite (stabilizing) solution of the associated algebraic Riccati

equation

0 = H +XF + F

T

X �XGX; (9)

and then obtaining the optimal stabilizing feedback as

u(t) = �BR

�1

B

T

Xx(t): (10)

The solution of the algebraic Riccati equation is also often used for the decoupling of the

forward and backward integration. But one may also directly solve the two point boundary

value problem (5) or alternatively (7) without going via the Riccati equation and we will

show in Section 3 that this is actually numerically a much better approach and that the

Riccati equation presents an unnecessary and sometimes dangereous detour.

As we have already mentioned, we may use both linear quadratic control and pole place-

ment for the objective of stabilization. In Section 4, we compare pole assignment and the

solution of linear quadratic control problems for stabilization.

The third problem that we include into our discussion is the H

1

control problem which

arises in the context of robust control in frequency domain, see, e.g., the recent monographs

[31, 74]. In this problem one studies the linear system

_x = Ax+B

1

u+B

2

w; x(t

0

) = x

0

;

z = C

1

x +D

11

u+D

12

w;

y = C

2

x +D

21

u+D

22

w; (11)

where A 2 R

n;n

, B

k

2 R

n;m

k

, C

k

2 R

p

k

;n

for k = 1; 2, and D

ij

2 R

p

i

;m

j

for i; j = 1; 2. Here

w(t) 2 R

m

2

describes noise, modelling errors or an unknown part of the system, y(t) 2 R

p

2

describes measured outputs while z 2 R

p

1

describes the regulated outputs. The objective

of optimal H

1

control is to �nd a control law

_q =

^

Aq +

^

By

w =

^

Cq +

^

Dy (12)

to minimize the closed loop transfer function T

zw

from w to z in H

1

norm.

Under some mild assumptions, for a given parameter 
 > 0, a necessary and su�cient

condition for the existence of an admissible controller such that jjT

zw

jj

1

< 
, is that the

following conditions hold (e.g., [74, Theorem 16.4, p. 419]):
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(A1) For the matrix

H

1

:=

�

A 


�2

B

1

B

T

1

� B

2

B

T

2

�C

T

1

C

1

�A

T

�

; (13)

there exists matrices Q

1

; Q

2

2 R

n;n

such that

H

1

�

Q

1

Q

2

�

=

�

Q

1

Q

2

�

T

x

; (14)

and T

x

has only eigenvalues with non positive real parts, Q

1

is nonsingular, and

X

1

:= Q

2

Q

�1

1

is symmetric positive semide�nite.

(A2) For the matrix

J

1

:=

�

A �B

1

B

T

1




�2

C

T

1

C

1

� C

T

2

C

2

�A

T

�

; (15)

there exist matrices U

1

; U

2

2 R

n;n

such that

�

U

1

U

2

�

T

J

1

= T

y

�

U

1

U

2

�

T

; (16)

and T

y

has only eigenvalues with non positive real parts, U

1

is nonsingular, and

Y

1

:= U

2

U

�1

1

is symmetric positive semide�nite.

(A3) For the matrices X

1

; Y

1

we have that 


2

> �(X

1

Y

1

), where �(A) denotes the

spectral radius of the matrix A.

The optimal H

1

control is then obtained by �nding the smallest admissable 
 so that

conditions (A1){(A3) still hold. The optimal controller yields system (12) with

^

A := A + 


�2

B

1

B

T

1

X

1

+ B

2

^

C �

^

BC

2

;

^

B := (I � 


�2

Y

1

X

1

)

�1

Y

1

C

T

2

;

^

C := �B

T

2

X

1

;

^

D := 0: (17)

We see that for the conditions (A1), (A2) we have Hamiltonian matrices which (except for

the inde�niteness of blocks) are similar to the Hamiltonians arising in the linear quadratic

control problem, and hence the analysis and improvements for the linear quadratic control

problem should also hold for the H

1

problem. We discuss this topic in Section 6.

Before go into details, let us recall that we have the following objectives in mind. We want

to determine the best formulation of the problem for the use in numerical solution methods

and furthermore we wish to obtain methods that are best adapted to all the underlying

physical and mathematical structures in order to obtain e�cient and accurate solution

methods.
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2 Pole Placement

As we have discussed in the introduction, in linear algebra terminology the pole placement

problem is as follows:

Problem 1 For given matrices A 2 R

n;n

, B 2 R

n;m

and a given set of n complex numbers

P = f�

1

; : : : ; �

n

g � C , (closed under conjugation), �nd a matrix F 2 R

m;n

, such that the

set of eigenvalues of A+BF is equal to P.

It is well-known, see e.g., [37, 72], that a feedback gain matrix F exists for all possible sets

P � C , (closed under conjugation) if and only if (A;B) is controllable, i.e.,

rank[A� �I

n

; B] = n; 8� 2 C : (18)

There is a large literature on this problem. Extensions of Ackermann's explicit formula [1]

for the single-input case were given in [54, 67] and also many numerical algorithms were

developed for this problem, see [38, 57, 60, 64, 71]. For some of these methods, numerical

backward stability has been established, see e.g. [6, 24, 25, 38, 57, 60]. However, it is

nevertheless often observed that the numerical results are very inaccurate. If a numerically

stable method yields highly inaccurate results then this is due to ill-conditioning of the

problem. Therefore the conditioning of the pole placement problem was analyzed but the

conclusions are typically quite di�erent, see [5, 33, 41, 42] and there are several reasons for

these di�erences.

First of all pole assignment is usually approached via a two-step procedure, which �rst

brings the pair (A;B) to a simpler form and then assigns the poles in this simpler form.

But in such a two-step procedure it may sometimes happen that although the original

problem was well-conditioned (i.e., small perturbations in the data only lead to small

changes in the solution), one of the intermediate steps is very ill-conditioned. To avoid this

problem a good method for the initial reduction has to be used. For the pole assignment

problem the best reduction is given by the staircase form of Van Dooren [69, 68] which

essentially does not a�ect the perturbations except for situations where the problem is

very near to an uncontrollable problem, i.e., a problem (A;B) for which the distance to

uncontrollability de�ned as

d

u

(A;B) := min

�2C

�

n

[A� �I; B]; (19)

see [28], is small. Here �

n

(A) is the smallest singular value of the matrix A. It is clear

that the distance to uncontrollability (if small) is an important factor in the perturbation

analysis of the pole placement problem but as we will see below other factors are equally

or even more important.

The second reason for confusion in the evaluation of the pole placement problem is that one

has to de�ne clearly what the solution of the problem is. This could be the feedback F , the

closed loop matrix A +BF or its spectrum, respectively. All of these are solutions of the

pole placement problem but they exhibit largely di�erent pertubation results. A striking
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example of a stabilization problem is given in [53], see Example 1 below, which shows that

even though the feedback F is computed analytically, and the distance to uncontrollability

is large, the (presumingly) stabilized closed loop system has eigenvalues with positive real

part, something which could be a disaster in a practical application.

In our opinion the most important goal of pole placement is that the poles of the closed

loop system obtained with the computed feedback are close to the desired ones and in the

case of stabilization the resulting closed loop system is robustly stable. If the desired poles

of the exact closed loop system are very sensitive to perturbations then this ultimate goal

usually cannot be guaranteed. And this may happen if the computation of F is reliable or

even exact.

With this goal in mind, a new analysis and new explicit solution formulas that cover all

the aspects of the problem have recently been given in [53, 54] and we will interpret some

of these results here. The major conclusions can be obtained from the following result

which generalizes a perturbation result of [66]. For this result we need the scaled spectral

condition number of a matrix A given by kTDkk(TD)

�1

k, where T is the matrix that

transforms A to Jordan canonical form and D is a diagonal matrix that scales the columns

of T to have all unit norm, see [27].

Theorem 1 [54] Given a controllable matrix pair (A;B), and a set of poles P = f�

1

; : : : ; �

n

g.

Consider a perturbed system (

^

A;

^

B) which is also controllable and a perturbed set of poles

^

P = f

^

�

1

; : : : ;

^

�

n

g: Set

^

A � A =: �A,

^

B � B =: �B and

^

�

k

� �

k

=: ��

k

, k = 1; : : : ; n.

Suppose that both the pole placement problems with A;B;P and

^

A;

^

B;

^

P have solutions

with a diagonalizable closed loop matrix. Set

� := jj[�A; �B]jj (20)

and suppose that

max

i

�+ j��

i

j

�

n

([A� �

i

I; B])

<

3

4

: (21)

Then there exists a feedback gain

^

F := F + �F of (

^

A;

^

B) such that

jj�F jj <

5

p

n

4

�

r

1 +

�

�

�

�

�

�

^

F

�

�

�

�

�

�

2

max

i

(

p

1 + (jjB

y

(A� �

i

I)jj)

2

(� + j��

i

j)

�

n

([A� �

i

I; B])

)

; (22)

the spectrum of (

^

A+

^

B

^

F ) is

^

P and

^

A +

^

B

^

F is diagonalizable.

Moreover, for each eigenvalue �

i

of the closed loop matrix A + B

^

F , (i.e., the perturbed

feedback is used for the unperturbed system), there is a corresponding �

i

2 P such that

j�

i

� �

i

j < j��

i

j+ ��̂

r

1 +

�

�

�

�

�

�

^

F

�

�

�

�

�

�

2

: (23)

Here �, �̂ are the scaled spectral condition numbers of A + BF and

^

A +

^

B

^

F , respectively

and B

y

is the Moore-Penrose pseudoinverse of B.
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Note that under additional mild assumptions in the bounds (22) and (23) the terms �̂;

^

F

can be replaced by � and F , respectively. If this is not possible then the problem is

extremely ill-conditioned and hence not suitable for numerical computation anyway.

Theorem 1 only gives upper bounds for the perturbations. This is the usual situation in

most perturbation results. But these bounds are usually quite tight and very well describe

the major di�culties of the pole placement problem. Consider the following numerical

example from [54]. For this and all the other numerical examples the results were obtained

on an HP-700 workstation with machine precision eps = 2:22 � 10

�16

, under MATLAB

Version 5.2.

Example 1 Let A = diag(1; : : : ; 20), P = f�1; : : : ;�20g, let B be formed from the �rst

m columns of a random 20� 20 orthogonal matrix.

The MATLAB pole placement code place of the control system toolbox Version 4.1 which is

an implementation of the method given in [38], was used to compute the feedback gain F .

We ran m from 1 to 20 and in each case we computed 20 times with 20 random orthogonal

matrices B. In Table 1 we list the geometric means (over the 20 experiments) of �̂,

^

F ,

bound=eps jj[A;B]jj �̂

r

1 +

�

�

�

�

�

�

^

F

�

�

�

�

�

�

2

, and err=max

1�i�20

j�

i

� �

i

j, with �

i

and the real parts

of �

i

arranged in increasing order.

m �̂

^

F Bound Err

1

2 1:1� 10

9

2:5� 10

6

1:2� 10

1

2:0� 10

1

3 4:6� 10

8

1:3� 10

6

2:6 1:2� 10

1

4 9:6� 10

6

2:3� 10

5

9:6� 10

�3

1:2� 10

�3

5 3:0� 10

5

3:4� 10

4

4:6� 10

�5

1:6� 10

�6

6 3:0� 10

4

1:0� 10

4

1:3� 10

�6

3:1� 10

�8

7 5:6� 10

3

4:2� 10

3

1:0� 10

�7

1:3� 10

�9

8 1:6� 10

3

2:1� 10

3

1:5� 10

�8

1:3� 10

�10

9 5:3� 10

2

1:1� 10

3

2:6� 10

�9

1:9� 10

�11

10 2:7� 10

2

8:9� 10

2

1:1� 10

�9

6:3� 10

�12

11 1:2� 10

2

5:2� 10

2

2:7� 10

�10

1:8� 10

�12

12 7:6� 10

1

4:0� 10

2

1:4� 10

�10

8:3� 10

�13

13 4:4� 10

1

2:7� 10

2

5:3� 10

�11

3:6� 10

�13

14 3:0� 10

1

1:9� 10

2

2:6� 10

�11

2:0� 10

�13

15 2:4� 10

1

1:6� 10

2

1:7� 10

�11

1:5� 10

�13

16 1:9� 10

1

1:3� 10

2

1:1� 10

�11

9:5� 10

�14

17 1:5� 10

1

1:2� 10

2

7:8� 10

�12

6:9� 10

�14

18 1:3� 10

1

1:1� 10

2

6:8� 10

�12

6:6� 10

�14

19 9:0 8:8� 10

1

3:5� 10

�12

4:5� 10

�14

20 1:0 4:0� 10

1

1:8� 10

�13

3:2� 10

�14

Table 1
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It should be noted that for all 400 tests the values of min

i

�

n

([A � �

i

I; B]) varied from

2:0 to 2:24, so the factor in the denominator of (22) is negligible. Furthermore in all cases

the pair (A;B) was controllable with a large distance to uncontrollability. Nevertheless

for m = 1 the method produced an error message "Can't place eigenvalues there" and for

m = 2; 3 a warning "Pole locations are more than 10% in error" was displayed. Other pole

placement algorithms have similar di�culties for small m, see [53, 54].

The results of Example 1 and most other examples with n � m large lead to the inter-

pretation that the sensitivity (conditioning) of all possible results of the pole placement

problem, i.e., the feedback gain F as well as the poles of the the closed-loop system A+B

^

F

obtained with the perturbed feedback

^

F , depends heavily on the size of n �m as well as

on the factor

S := �

q

1 + jjF jj

2

(24)

even if the distance to uncontrollability is large. The additional factor d := 1=min

i

�

n

[A�

�

i

I; B] in the perturbation bound only plays a role if the distance to uncontrollability is

small. It is obvious that if d

u

(A;B) is small then d may be very large and the problem

to compute F is de�nitely ill-conditioned. If, however, d

u

(A;B) is large, then clearly d is

small and may be neglected.

The factor S has been analyzed in detail in [53, 54], where it was observed that in the

single-input case S is essentially given by the condition number of the Cauchy matrix

C = [

1

�

i

��

j

], where the �

i

are the eigenvalues of A and the �

i

are the desired poles. This

condition number is very large if n is large. In the multi-input case the solutions are given

in terms of solutions of linear systems with Vandermonde-like matrices which are usually

also very ill-conditioned (see [36, Chapter 21] and the references therein), in particular if

n�m is large.

This analysis indicates that serious numerical di�culties may arise in the pole placement

problem if n�m is large. Furthermore the analysis demonstrates that the currently used

strategies to resolve the freedom in F in the numerical method, which is to minimize kFk,

see [57, 14, 39, 60, 64, 71] or � as in [38], may both be not su�cient to get good results.

A better choice would be to minimize S := �

q

1 + jjF jj

2

; since this factor describes the

perturbation very well. We can actually formulate this strategy as a re�ned robust pole

placement problem.

Problem 2 For given matrices A 2 R

n;n

, B 2 R

n;m

and a given set of n complex numbers

P = f�

1

; : : : ; �

n

g � C , (closed under conjugation), �nd a matrix F 2 R

m;n

, such that the

set of eigenvalues of A+BF is equal to P, and that minimizes S := �

q

1 + jjF jj

2

.

A solution to this problem for small systems can actually be obtained via standard opti-

mization software by using the explicit formula for F given in [54]. In practice one probably

does not even need the global minimum, but just one, where S is small enough to guarantee

small bounds (22) and (23), which then can be actually computed and used as condition

estimator.
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But we propose to go even further in the reformulation of the pole placement problem, see

also [33]. One should �rst ask the following question.

Does one really have a �xed set of poles or does one rather have a speci�c region in the

complex plane where one wants the closed loop poles to be?

If the latter is the case then not only the minimization over the freedom in F but also a

minimization over the position of the poles in the given set should be used. This would

lead to the optimized robust pole placement problem:

Problem 3 For given matrices A 2 R

n;n

, B 2 R

n;m

and a given set P � C , �nd a matrix

F 2 R

m;n

, such that the set of eigenvalues of A + BF is contained in P and at the same

time a robustness measure is optimized.

A clear and practical formulation of such a general robust measure as well as suitable

algorithms to determine this optimized pole assignment will depend on the application

and on the set P. In the stabilization problem this is the left half plane or in the case of

damped stabilization a particular part of the left half plane, see [35]. If the set P is too

small, like when it has exactly n points, then, as we have demonstrated above, even an

optimization of some robustness measures may still yield a very sensitive system, but if

the set P is large then quite good results may be obtained, see for example [22].

In the case of stabilization the robustness measure would certainly include the distance

to instability, i.e., the smallest perturbation that makes the closed loop system have an

unstable eigenvalue. To make sure that the closed loop system is securely stable, a con-

straint should be added in the optimization that guarantees that the perturbation bounds

are smaller than the distance to instability. To verify and guarantee this constraint the

distance to instability as well as the perturbation bound have to be computed, which alone

is a di�cult numerical problem, see [21]. In the context of stabilization this would be a

part of the optimization loop and from this it may already be seen that the development

of good numerical methods for this optimized stabilization is an important but extremely

di�cult problem that needs a lot of further attention, see also [55].

For large control problems with only few unstable poles the situation can be reduced to a

small problem provided one can design a method for the separation of eigenvalues inside

P and outside of P. If this can be done, then the complexity of the optimization problem

can be drastically reduced, see [34].

As we have mentioned already before, for the stabilization problem there are also other

approaches to design a stabilizing feedback, such as the solution of Lyapunov or Riccati

equations or just the solution of the linear quadratic control problem which we discuss in

the next section. A comparison of stabilization via pole placement and linear quadratic

control is given in Section 4.

3 Linear quadratic control

For the solution of the linear quadratic control problem, i.e., to minimize (4) subject to (1),

a large number of approaches have been discussed in the literature, see the monographs
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[52, 59, 45, 65]. Let us compare the Riccati equation approach with the solution of the

two-point boundary value problem via a matrix pencil approach. An observation of Van

Dooren [69] is that it su�ces to study the de
ating subspaces of the pencil (E

c

;A

c

) in (6).

Suppose (E

c

;A

c

) has an n-dimensional de
ating subspace associated with eigenvalues in

the left half plane. Let this subspace be spanned by the columns of a matrix U , partitioned

analogous to the pencil as

U =

2

4

U

1

U

2

U

3

3

5

: (25)

Then, if U

1

is invertible, the optimal control is a linear feedback of the form u(t) =

U

3

U

�1

1

x(t). The solution of the associated Riccati equation (9) is X = U

2

U

�1

1

, see [52] for

details. We see that an explicit solution of the Riccati equation is not needed to determine

the feedback and it is also clear that the sensitivity of the computation of U

3

U

�1

1

x(t) may

be di�erent than that of the procedure to �rst compute X = U

2

U

�1

1

and then the feedback

u(t) = �BR

�1

B

T

Xx(t) from this. In particular if the matrix R is close to singular, then the

coe�cients in the Riccati equation (9) may be highly corrupted so that a solution approach

via the Riccati equation may be completely useless. We demonstrate these observations in

the following example.

Example 2 Let U be a randomly generated real orthogonal matrix, S = 0, A = U

�

2 0

0 1

�

U

T

,

B = U , R =

�

0:5 0

0 


�

and Q = U

�

6 0

0 3


�

U

T

, where 
 > 0.

The positive semide�nite (stabilizing) solution of the corresponding algebraic Riccati equa-

tion (9) is X = U

�

3 0

0 3


�

U

T

, the associated feedback gain matrix F = �

�

6 0

0 3

�

U

T

and the closed loop spectrum is f�4;�2g, both independent of the value of 
. Since U

is orthogonal, we see that kFk is small and hence we do not expect large perturbations

in the solution. The solution via the Riccati equation, however, depends on 
 and hence

we may expect that the feedback F when computed via the Riccati equation will depend

heavily on 
.

We applied the MATLAB m-�les are, care from di�erent versions of the MATLAB control

tool box [48] which are solvers for algebraic Riccati equations and compare the results with

those obtained by just computing the de
ating subspace by the MATLAB implementation

qz of the QZ-algorithm. The Riccati solution is used to compute F = �R

�1

B

T

X while via

the de
ating subspace (25) of �E

c

� �A

c

, the feedback F is directly obtained as U

3

U

�1

1

.

The method are uses the Hamiltonian matrix H as in (8) to determine the Riccati solution

X while the method care works on a balanced version of H if

�

min

(R)

�

max

(R)

�

p

eps and on the

extended pencil �E

c

� �A

c

as in (6) otherwise.

The relative error in X and F for all three methods and di�erent values of 
 are listed in

Table 2.
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 Method

jj

^

X�X

jj

2

jjXjj

2

jj

^

F�F

jj

2

jjF jj

2

are 7:6� 10

�16

2:1� 10

�14

10

�2

care 7:0� 10

�16

1:3� 10

�15

qz 2:4� 10

�16

4:9� 10

�15

are 3:5� 10

�11

5:7� 10

�7

10

�6

care 3:1� 10

�12

3:2� 10

�9

qz 2:6� 10

�15

4:7� 10

�11

are 1:8� 10

�8

9:1� 10

�1

10

�9

care 2:1� 10

�8

1:3� 10

�4

qz 1:6� 10

�15

5:9� 10

�9

are 7:7� 10

�5

1:2� 10

4

10

�13

care 9:2� 10

�5

3:9� 10

1

qz 1:7� 10

�15

5:0� 10

�4

Table 2

We see that the direct computation of the optimal control via the subspace yields much

smaller relative errors than the solution via the Riccati equation. Note that the subspace

method always computed the Riccati solution to high relative accuracy.

This example demonstrates that the solution of the linear quadratic control problem via

the solution of the algebraic Riccati equation presents a dangerous detour that may lead to

very bad results and is really not necessary, since the feedback and the closed loop matrix

can be computed from the de
ating subspace of the extended pencil directly. This is even

more critical in the situation that R is inde�nite or singular as in the H

1

problem discussed

below. The situation is even worse in the case of descriptor systems, see [8, 9, 52], where it

is known that the Riccati equation may not have anything to do with the solution of the

optimal control problem [43].

But also for the linear quadratic control problem the question of robustness has to be

asked in terms of the performance criterion, i.e., the choice of Q; S;R which, as we have

seen in Example 2, is already critical in the Riccati approach. But since this is a freedom

in the problem, we should make use of it to optimize the robustness. In the context of

stabilization or other regions P of the complex plane we may, therefore, formulate the

optimized linear quadratic control problem.

Problem 4 Given matrices A 2 R

n;n

, B 2 R

n;m

and a set P � C . Determine cost

matrices Q; S;R such the the closed loop system obtained via the solution of the associated

linear quadratic control problem has eigenvalues that are contained in P and at the same

time a robustness measure is optimized.

If the robustness measure in Problem 4 is the same as in Problem 3, then these two

problems are actually equivalent.
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Proposition 2 Given matrices A 2 R

n;n

, B 2 R

n;m

and a set P � C . Consider the op-

timized linear quadratic control problem 4 and the optimized robust pole assignment prob-

lem 3. If the same robustness measure is used in both problems, then the problems are

equivalent, i.e., they have the same solution sets.

Proof. Since the feedbacks in Problem 3 are not restricted, it is clear that the solution

set of Problem 3 contains the solution set of Problem 4. Suppose now that a feedback

gain F optimizes Problem 3. Choosing an arbitrary positive de�nite matrix R and setting

S = �F

T

R, Q = SR

�1

S

T

, it follows that the linear quadratic control generates the same

feedback gain matrix F as well as the same closed-loop system A+BF . Hence the solution

set of Problem 3 is contained in the solution set of Problem 4.

It should be noted, however, that in many applications cost functionals with S = 0 are

used. In this situation the optimal solution via Problem 4 may be worse than that of

Problem 3 as the following example demonstrates, see also Example 4.

Example 3 Consider the scalar system with A = 1 and B = 1 and the set P = fxjRex �

��; 0 < � < 1g. Obviously in this case the distance to uncontrollability satis�es d

u

(A;B) =

1, and the scaled spectral condition is �(A+BF ) = 1 for arbitrary F . Thus we only need

to minimize jjF jj

2

. For Problem 3 the optimal feedback is F = �(1+�) and the closed loop

system is A+BF = ��. However, for Problem 4 the optimal solution, i.e., the minimum

norm F , is F = �2 which is obtained with arbitary R > 0 and Q = 0. The associated

closed loop system is A + BF = �1. In fact for R > 0 and Q � 0 the pole of A + BF is

�

p

1 +Q=R which cannot be larger than �1.

It follows from this example that in order to obtain results which are as good as those from

optimized robust pole placement the block S in the cost functional has to be included in

the optimization.

As we have discussed already in the context of pole assignment, there are many di�erent

possibilities of general robust measures. These depend on the speci�c application and

lead to di�erent numerical methods. An analysis of di�erent criteria should deserve more

attention. Some numerical examples in the context of stabilization are discussed in the

next section.

4 Stabilization

In this section we compare the results obtained from optimized robust pole assignment and

optimized linear quadratic control for the speci�c problem of stabilization, i.e., the set P

is the open left half plane.

Our �rst example discusses the optimization of the condition number S in (24) in the

particular situation that in the cost functional we use S = 0.

Example 4 Consider the stabilization problem with A = diag(1; 2; 3; 4) andB = [1; 1; 1; 1]

T

and a stability margin of 0:5, i.e., P = f� 2 C jRe (�) � �0:5g.
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We used a heuristic 'random search' algorithm as in [55] to minimize the condition number

S in (24), where the implemented pole placement MATLAB code is based on the method

of Miminis and Paige [57]. (The MATLAB code place generated incorrect results in this

case.) The computed optimal poles, the norm of the feedback gain and the condition

number S are listed in Table 3. For comparison we used the solution of the optimized

linear quadratic control problem with a shift, see e.g. [35], to compute the feedback gain.

In the cost functional we chose S = 0 and R = 50 � jjBjj

2

=k with k = 1; : : : ; 100 as well as

R = jjBjj

2

=2

k+1

with k = 1; : : : ; 20. For each R we chose 100 randomly chosen unit norm

positive de�nite matrices Q. Then we used the MATLAB code surv based on the structure

preserving Algorithm 1 below to determine the feedback gains.

Note that as desired all eigenvalues of A +BF have real parts less than �0:5. Among all

tests the minimum of S was obtained for R = 1=2

6

(note jjBjj = 2). The results are shown

in Table 3 including the distance to instability of the closed loop matrix A+BF evaluated

by the method of Byers [21] displayed in column dis.

Method closed loop poles jjF jj S dis

Pole placement �0:5� 3:69i; �0:5� 1:02i 222 1:1� 10

5

0:005

LQ �12:6;�4:26;�3:04;�1:66 2:0� 10

3

3:9� 10

7

0:013

Table 3

We see from this example, as we have already discussed before, that optimized robust pole

assigment performs better than optimized linear quadratic control with S = 0. On the

other hand even for this small sized single input problem the optimal condition number is

very large.

Furthermore we observe and this is typical, see also [55], that the optimal condition number

is obtained with eigenvalues close to or on the boundary of the region. Thus if we choose

the region P to be the open left half plane then we will typically get a small distance to

instability. For this reason and to show that more theoretical investigation is necessary, in

the next example we compare di�erent optimality criteria.

Example 5 This example compares di�erent optimization objectives.

Let A =

�

1 1

0 2

�

, B = I

2

and P = f� 2 C jRe (�) � �1g. As robustness measures we

minimize �

F

, jjF jj

F

and S

F

= �

F

q

1 + jjF jj

2

F

, respectively, where the index F indicates that

always the Frobenius form is used. Clearly in this case F = G�G

�1

� A for an arbitrary

nonsingular real matrix G and arbitrary real � with eigenvalues in the required region.

If the scaled spectral condition number of the closed loop system is to be minimized, then

the optimal solution is obtained with an orthogonal matrix G and freely chosen �.

In the optimization of jjF jj

F

and S

F

the optimal case is that � has a pair of complex

conjugate eigenvalues. Let � =

�

� �

�� �

�

. The general form of G is G = 
G

s

�

a b

0 1

�

,

where 
; a 6= 0 and G

s

is a plane rotation. Since G

s

commutes with � and since 
 does

not a�ect the norms, we can set G

s

= I

2

and 
 = 1. To simplify the computation of the
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minimal S

F

we furthermore set b = 0, which only gives a suboptimal result. In Table 5

we give the resulting values of S

F

; jjF jj

F

as well as the distance to instability dis of the

associated closed loop matrix A +BF .

Here in the optimization of �

F

we have chosen both eigenvalues to be at �1.

objective closed loop poles jjF jj

F

�

F

S

F

dis

�

F

f�1g 3:74 2 7:75 1:0

jjF jj

F

�1� 0:5� 10

�8

i 3:54 2:4� 10

8

8:7� 10

8

0:56

S

F

�1� 0:52i 3:67 2:001 7:61 0:9994

Table 5

The associated feedback gain matrices in the three cases are

�

�

2 1

0 3

�

; �

�

2:4534 0

0:2056 2:5466

�

; �

�

2 0:4656

0:4988 3

�

;

respectively.

We see from this example that a pure optimization of jjF jj

F

may lead to drastically dif-

ferent results than an optimization of �

F

and S

F

but we also see that a detailed further

investigation is necessary to obtain the best possible criteria.

5 Structure preservation

In the context of the linear quadratic control problem the second important topic that

needs to be discussed, is the preservation of structure.

A feature of the pencils associated with the two-point boundary value problem (5) is that

they have algebraic structures which lead to a certain symmetry in the spectrum. Round-

o� errors can destroy this symmetry leading to physically meaningless results unless the

numerical method also preserves the algebraic structure, see [68]. Moreover, preservation

of the algebraic structure usually leads to more e�cient as well as more accurate numerical

methods. Let us brie
y introduce the relevant structures.

De�nition 3 Let J :=

�

0 I

n

�I

n

0

�

, where I

n

is the n� n identity matrix.

a) A matrix H 2 R

2n�2n

is Hamiltonian if (HJ)

T

= HJ and a matrix H 2 R

2n�2n

is

skew-Hamiltonian if (HJ)

T

= �HJ .

b) A matrix S 2 R

n�n

is symplectic if SJS

T

= J and a matrix U 2 R

2n�2n

is orthog-

onal symplectic if UJU

T

= J and UU

T

= I

2n

. The group of orthogonal symplectic

matrices in R

n�n

is denoted by US

2n

.
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c) We call a real matrix Hamiltonian quasi-triangular if it is Hamiltonian and has the

form

�

F G

0 �F

T

�

;

where F is quasi-triangular in real Schur form, see [30]. If a Hamiltonian matrix

H can be transformed into Hamiltonian quasi-triangular form by a similarity trans-

formation with a matrix U 2 US

2n

, then we say that U

T

HU has Hamiltonian Schur

form.

The reduced Euler-Lagrange equations (7) involve a Hamiltonian matrix, but the pencil (6)

does not directly have this structure. Nonetheless many of the properties of Hamiltonian

matrices carry over, see [52]. Furthermore, we may endow the pencil (6) with a similar

structure by embedding the Euler-Lagrange equations (5) into a larger system. If m is even

then this is easily done by splitting u(t); B; S; R into half sized parts and a permutation

of the pencil, see [8]. If m is odd then we may apply this splitting after introducing an

arti�cial input. The resulting pencil (after some permutation) has the form

�E

e

c

� �A

e

c

:= �

2

6

6

4

I 0 0 0

0 0 0 0

0 0 I 0

0 0 0 0

3

7

7

5

� �

2

6

6

4

A B

1

0 B

2

S

H

2

R

H

12

B

H

2

R

22

�Q �S

1

�A

H

�S

2

�S

H

1

�R

11

�B

1

H

�R

12

3

7

7

5

: (26)

with one Hamiltonian and one skew-Hamiltonian matrix.

The solution of the eigenproblem for Hamiltonian matrices and skew-Hamiltonian/Hamil-

tonian pencils has been a topic of several publications, see [8, 17, 46, 50, 51, 52] and the

references therein. The goal is to obtain a numerically backward stable method, that

has a complexity of O(n

3

) and at the same time preserves the structure. There are two

main reasons why this problem is di�cult. First of all one needs a triangular-like form

under orthogonal symplectic similarity transformations from which the desired invariant

subspaces can be read o�. Such a Hamiltonian Schur form was �rst suggested in [58]

but not every Hamiltonian matrix or skew-Hamiltonian/Hamiltonian pencil has such a

condensed form, see [47, 50, 51]. The second di�culty arises from the fact that even if a

Hamiltonian Schur form exists, it is still di�cult to construct a method with the desired

features, see [2, 3, 9, 10, 19, 20].

We dicuss here only the computation of the structured Schur form for Hamiltonian matri-

ces. For skew-Hamiltonian/Hamiltonian pencils we refer the reader to [9, 50, 51]. Necessary

and su�cient conditions for the Hamiltonian Schur form are given by the following theorem.

Theorem 4 [47] Let H be a real Hamiltonian matrix, let i�

1

; : : : ; i�

�

be its pairwise dis-

tinct nonzero purely imaginary eigenvalues and let U

k

, k = 1; : : : ; �, be the associated

invariant subspaces. Then the following are equivalent.

i) There exists a real symplectic matrix S such that S

�1

HS is real Hamiltonian quasi-

triangular.
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ii) There exists a real orthogonal symplectic matrix U such that U

T

HU is real Hamilto-

nian quasi-triangular.

iii) U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �, where J is always of the appropriate

dimension.

A similar theorem for skew-Hamiltonian/Hamiltonian pencils has been given in [50, 51].

This result shows that whenever a structured triangular form exists, then it also exists

under orthogonal transformations and hence there is hope that these forms and therefore

also the eigenvalues and invariant and de
ating subspaces can be computed with structure

preserving numerically stable methods.

Let us �rst discuss the computation of eigenvalues. It is well-known that if H is a Hamil-

tonian matrix, then H

2

is a skew-Hamiltonian matrix for which a structure preserving

method was suggested in [70]. This suggests computing the eigenvalues of H by taking

square roots of the eigenvalues of H

2

. Unfortunately, in a worst case scenario via this

approach one might obtain only half of the possible accuracy in the computed eigenvalues

[19, 70]. A way out of this dilemma was recently presented in [11]. This approach uses the

following decomposition.

Theorem 5 [11] Let H be Hamiltonian. Then there exist Q

1

; Q

2

2 US

2n

, such that

Q

T

1

HQ

2

=

�

H

11

H

12

0 H

22

�

; (27)

with H

11

upper triangular and H

T

22

quasi upper triangular. Furthermore the eigenvalues of

H are the square roots of the eigenvalues of �H

11

H

T

22

.

Note that the resulting matrix in (27) is neither Hamiltonian nor similar to H, but a

simple calculation shows that both Q

T

1

H

2

Q

1

and Q

T

2

H

2

Q

2

are real skew-Hamiltonian quasi-

triangular. For skew-Hamiltonian/Hamiltonian pencils similar results have been given

in [9]. After the form (27) has been computed, one can compute the eigenvalues of H

by solving 1 � 1 or 2 � 2 eigenvalue problems and taking square roots without loosing

accuracy. For algorithmic details, a detailed error analysis as well as illustrative numerical

examples, see [11], where it is demonstrated that these methods speed up the computation

of eigenvalues while still achieving full possible accuracy. This new approach has also been

extended to the computation of the desired de
ating and invariant subspaces. Let for

A 2 R

n�n

the sets �

�

(A); �

+

(A); �

0

(A) denote the part of the spectrum of A in the open

left half plane, in the open right half plane and on the imaginary axis, respectively and

denote the associated invariant subspaces by Inv

�

(A); Inv

+

(A), Inv

0

(A). In [10] it has been

observed that for A 2 R

n�n

and B =

�

0 A

A 0

�

, if one determines an orthogonal matrix

such that

B

�

Q

1

Q

2

�

=

�

Q

1

Q

2

�

R; (28)
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where

�

+

(B) � �(R) � �

+

(B) [ �

0

(B); (29)

then

rangefQ

1

+Q

2

g = Inv

+

(A) +N

1

; where N

1

� Inv

0

(A); (30)

rangefQ

1

�Q

2

g = Inv

�

(A) +N

2

; where N

2

� Inv

0

(A): (31)

Moreover, if we partition R =

�

R

11

R

12

0 R

22

�

with �(R

11

) = �

+

(B) and, accordingly, Q

1

=

�

Q

11

Q

12

�

, Q

2

=

�

Q

21

Q

22

�

, then

B

�

Q

11

Q

21

�

=

�

Q

11

Q

21

�

R

11

; (32)

and there exists an orthogonal matrix Z such that

p

2

2

(Q

11

+Q

21

) =

�

0 P

+

�

Z;

p

2

2

(Q

11

�Q

21

) =

�

P

�

0

�

Z; (33)

where P

+

, P

�

are orthogonal bases of Inv

+

(A), Inv

�

(A), respectively. In the case of a

Hamiltonian matrix H =

�

F G

H �F

T

�

one considers the block matrix B =

�

0 H

H 0

�

and, using the block permutation P =

2

6

6

4

I

n

0 0 0

0 0 I

n

0

0 I

n

0 0

0 0 0 I

n

3

7

7

5

; one obtains that

~

B := P

T

BP =

2

6

6

4

0 F 0 G

F 0 G 0

0 H 0 �F

T

H 0 �F

T

0

3

7

7

5

(34)

is again Hamiltonian. Furthermore it follows from Theorem 4 that

~

B has a Hamiltonian

Schur form.

Theorem 6 [10] Let H be Hamiltonian and let B =

�

0 H

H 0

�

. Then there exists U 2

U

4n

, such that

U

T

BU =

�

R D

0 �R

T

�

=: R (35)

is in Hamiltonian quasi-triangular form and �

�

(R) = ;: Moreover, U = PW with W 2

US

4n

, and

R =W

T

~

BW; (36)
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i.e., R is the Hamiltonian quasi-triangular form of the Hamiltonian matrix

~

B. Further-

more, if H has no purely imaginary eigenvalues, then R has only eigenvalues with positive

real part.

The structure preserving, numerically stable algorithm to compute the invariant subspace

of a Hamiltonian matrix associated with the eigenvalues in the left half plane is then as

follows.

Algorithm 1

Input: A Hamiltonian matrix H having an n-dimensional Lagrangian invariant subspace

associated with the eigenvalues in the left half plane.

Output: Y 2 R

2n�n

, with Y

T

Y = I

n

, such that the columns of Y span this invariant

subspace.

Step 1 Apply Algorithm 2 of [11] toH and compute orthogonal symplectic matrices Q

1

; Q

2

2

US

2n

such that

Q

T

1

HQ

2

=

�

H

11

H

12

0 H

22

�

is the decomposition (27).

Step 2 Determine an orthogonal matrix Q

3

, such that

Q

T

3

�

0 �H

T

22

H

11

0

�

Q

3

=

�

T

11

T

12

0 T

22

�

is in real Schur form ordered such that the eigenvalues of T

11

have positive real part

and the eigenvalues of T

22

have negative real part.

Step 3 Use the orthogonal symplectic reordering scheme of [20] to determine an orthogonal

symplectic matrix V 2 US

4n

such that with

U =

�

U

11

U

12

U

21

U

22

�

:=

�

Q

1

Q

3

0

0 Q

2

Q

3

�

V

we have the Hamiltonian quasi-triangular form

U

T

BU =

2

6

6

4

F

11

F

12

G

11

G

12

0 F

22

G

21

G

22

0 0 �F

T

11

0

0 0 �F

T

12

�F

T

22

3

7

7

5

;

where F

11

; F

22

are quasi upper triangular with eigenvalues only in the closed right half

plane.
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Step 4 Set

^

Y :=

p

2

2

(U

11

� U

21

). Compute Y , an orthogonal basis of rangef

^

Y g, using

any numerically stable orthogonalization scheme, for example a rank-revealing QR-

decomposition; see, e.g., [23].

End

Complex version of these results and algorithms are presented in [12]. Corresponding

methods for skew-Hamiltonian/Hamiltonian pencils have been constructed in [9].

It should be noted that these new methods are already very close to the desired structure

preserving methods but they are still not optimal, since not all structures are fully ex-

ploited. But the methods are more e�cient and at least as accurate than methods that do

not address structure preservation. This method works in principle also for Hamiltonian

matrices with eigenvalues on the imaginary axis provided the appropriate subspaces can

be seperated. When this is the case and how the numerical method can detect this, as

well as the perturbation analysis is still under investigation, see [56]. A complete analysis

of this case will be also very important for the treatment of H

1

control problems, that we

discuss in the next section.

6 H

1

control

The solution of the H

1

control problem addresses another robustness measure in the com-

putation of a feedback solution, which is di�erent from the criteria that we have discussed

so far. Nevertheless, we see that the solution of the H

1

control problem is closely related

in its structure to the solution of the linear quadratic control problem, since it essentially

involves the solution of two linear quadratic control problems plus a positivity check.

For the numerical solution of the H

1

control problem the usual procedure is to use a

optimization scheme to determine the smallest 
 > 0 so that all three conditions (A1),

(A2) and (A3) in Section 1 hold by determining the �rst value of 
 where one of these

conditions fail.

Typically in current design packages like the MATLAB robust control toolbox [49], the

solution is obtained by a procedure which uses the solution of algebraic Riccati equations

to determine X

1

and Y

1

.

In view of the discussion in Section 3 on the solution of linear quadratic control problems

and Riccati equations we should construct new methods for the H

1

control problem that

avoid the detour via the Riccati equation. This conclusion is complemented by the observa-

tion that during the optimization procedure, typically one or both of the Riccati solutions

becomes very large in norm. This leads to the question whether a numerical solution of

the H

1

via the solution of Riccati equations makes sense at all, since in order to obtain a

robust control, a highly ill-conditioned numerical problem has to be solved.

The usual way out of this dilemma in practice is to compute suboptimal controls, see

[61, 32]. But in view of the previous discussions one might ask whether this potential ill-

conditioning is inherent in the problem formulation or due to the approach for its solution.

Let us consider an example.
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Example 6 Let A = 1, B

1

= 2, B

2

= 1, C

1

= 1 and C

2

=

p

3. Then for 
 > 


x;1

=

p

2

the matrix H

1

in (13) has no purely imaginary eigenvalues and hence a Lagrange subspace

associated with the stable eigenvalues always exists. The stabilizing solution of the Riccati

equation, however, is X(
) =




2

+


p

2


2

�4




2

�4

. For 
 > 


x;2

= 2 we have that X(
) is positive

de�nite and for 
 < 


x;2

, X(
) is negative de�nite. For 
 = 


x;2

the Riccati solution is not

de�ned.

Analogously for the Riccati equation associated with J

1

in (15) we have 


y;1

=

2

p

13

13

and 


y;2

=

p

3

3

, and the associated stabilizing solution of the Riccati equation is Y (
) =




2

+


p

13


2

�4

3


2

�1

. It follows that the optimal parameter 


opt

must be larger than 


x;2

= 2.

For the third condition (A3) we have 


2

x;1

> �(X(


x;1

)Y (


x;1

)), since X(


x;1

) = �1 and

Y (


x;1

) =

2(1+

p

11)

5

. But 


x;1

is obviously not optimal. So in a typical optimization procedure

to determine the optimal 
 one needs �rst to determine 


x;2

and 


y;2

, but X(


x;2

); Y (


y;2

)

are not de�ned.

We see from this example that, as for the solution of the linear quadratic control problem,

the Riccati solutions X

1

and Y

1

should be avoided. Fortunately this can again be done

quite easily. In [74, Theorem 16.16, p. 445] it is shown that conditions (A1) { (A3) may

be replaced by the alternative conditions

(B1) There exist matrices Q

1

; Q

2

2 R

n;n

such that

H

1

�

Q

1

Q

2

�

=

�

Q

1

Q

2

�

T

x

;

and T

x

has only eigenvalues with nonpositive real parts, Q

T

1

Q

2

= Q

T

2

Q

1

.

(B2) There exist matrices U

1

; U

2

2 R

n;n

such that

�

U

1

U

2

�

T

J

1

= T

y

�

U

1

U

2

�

T

;

and T

y

has only eigenvalues with nonpositive real parts, and U

T

1

U

2

= U

T

2

U

1

.

(B3)

�

Q

T

2

Q

1




�1

Q

T

2

U

2




�1

U

T

2

Q

2

U

T

2

U

1

�

is symmetric positive semide�nite.

If these conditions hold then jjT

zw

jj

1

� 
 and the admissable controller is in descriptor

form

^

E _q =

^

Aq +

^

By

w =

^

Cq +

^

Dy; (37)

with

^

E = U

T

1

Q

1

� 


�1

U

T

2

Q

2

,

^

B = U

T

2

C

T

2

,

^

C = �B

T

2

Q

2

,

^

D = 0 and

^

A =

^

ET

x

�

^

BC

2

Q

1

=

T

y

^

E + U

T

1

B

2

^

C.
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Using this result, only the invariant subspaces of H

1

and J

1

are involved and they can

be determined via the same methods that we have discussed in Section 3.

Thus not only is it possible to avoid the ill-conditioned Riccati equation but also we can

employ structure preservation as described above and as in the case of the linear quadratic

control problem, the computation of these subspaces is usually much better conditioned

than the computation of the Riccati solutions.

Thus, the solution of the H

1

control problem should be approached via the usual opti-

mization procedures like in [18, 29, 32, 63], using in each optimization step Algorithm 1 to

determine the subspaces in (B1) and (B2) and a Cholesky factorization to check condition

(B3). An implementation and analysis of such a procedure is currently under investigation.

7 Conclusion

We have discussed several standard problems of linear control theory, like pole assignment,

stabilization, linear quadratic and H

1

control and have demonstrated some of the di�cul-

ties that arise in the numerical solution of these problems due to inherent ill-conditioning

in the problem. We have also suggested several reformulated versions of the problem,

which are sometimes more complicated to solve, but which yield results that are much

more robust to perturbations.
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