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1 Introduction 1

1 Introduction

The solution of elliptic boundary value problems may have anisotropic behaviour in parts

of the domain. That means that the solution varies signi�cantly only in certain direction-

s. Examples include di�usion problems in domains with edges and singularly perturbed

convection-di�usion-reaction problems where boundary or interior layers appear. In such

cases it is an obvious idea to reect this anisotropy in the discretization by using anisotrop-

ic meshes with a small mesh size in the direction of the rapid variation of the solution and

a larger mesh size in the perpendicular direction. Anisotropic meshes can also be advanta-

geous if surfaces with strongly anisotropic curvature (the front side of a wing of an airplane,

for example [31, Figure 6]) or thin layers of di�erent material are to be discretized.

In order to describe the elements of anisotropic meshes mathematically, consider an

elliptic boundary value problem posed over a polyhedral domain 
 � IR

d

, d = 2; 3. We

study the discretization error of the �nite element method on a family of meshes T

h

= fKg

with the usual admissibility conditions (see, for example, Conditions (T

h

1){(T

h

5) in [17,

Chapter 2]). Denote by h

L;K

the diameter of the �nite elementK, and by %

K

the supremum

of the diameters of all balls contained in K. Then it is assumed in the classical �nite

element theory that h

L;K

. %

K

. The notation a . b means the existence of a positive

constant C (which is independent of T

h

and of the function under consideration) such that

a � Cb. This assumption is no longer valid in the case of anisotropic meshes. Conversely,

anisotropic elements K are characterized by

h

L;K

%

K

!1

where the limit can be considered as h! 0 (as in the present paper) or "! 0 where " is

some (small perturbation) parameter of the problem.

Local interpolation error estimates for anisotropic elements are widely developed in the

literature [2, 3, 4, 6, 8, 11, 12, 13, 14, 19, 21, 22, 23, 26, 29, 30, 33, 35]. In particular the

improved estimates in [2, 4, 12, 13, 14, 26] are applied, for example, for the investigation of

Laplace type problems in domains with edges [3, 4, 7, 8, 25], layers in singularly perturbed

problems [5, 6, 20], and anisotropic phenomena in the solution of the Stokes problem [14].

However, all these applications are restricted to conforming �nite element methods.

Non-conforming methods are hardly treated. Such methods are of particular interest in

mixed methods for problems like the Stokes problem or the Mindlin-Reissner plate problem.

The aim of this paper is to provide basic results for a simple class of non-conforming

elements, namely the Crouzeix-Raviart element [18] and modi�cations thereof. We apply

them here to the simplest model problem, the Poisson problem. Other applications are

postponed to the upcoming papers [9, 10].

In Section 2 we describe a family of anisotropically graded �nite element meshes which

turned out to be suited for the treatment of edge singularities in the context of conforming

P

1

elements [2, 4, 7]. We show in this paper that this family is also suited for non-

conforming P

1

elements.
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The �nite element error of the non-conforming method can be estimated via the second

Strang lemma by the sum of an interpolation error and a consistency error. These errors

are considered in Sections 3 and 4. In particular, we derive for Crouzeix-Raviart triangular

and tetrahedral elements K [18] the interpolation error estimate

ju� I

h

u;W

1;2

(K)j . ju;W

1;2

(K)j (1.1)

from which we can derive easily

ju� I

h

u;W

1;2

(K)j .

d

X

i=1

h

i;K

j@

i

u;W

1;2

(K)j: (1.2)

We denote by d the space dimension, by h

i;K

suitably de�ned element sizes, by @

i

the

partial derivative @=@x

i

, and by k � ;Xk and j � ;Xj the usual norm and seminorm in the

Banach space X. A similar estimate is obtained for functions u from weighted Sobolev

spaces. Both estimates hold for a general triangle/tetrahedron, in particular without an

angle condition. We remark that related results were obtained in [1].

Note that (1.1) is not valid for Lagrangian interpolation on the conforming P

1

element.

Even (1.2) is not valid for the conforming tetrahedral element [3, 4]. Modi�ed interpolants

of Scott-Zhang type have been developed to overcome these de�ciencies [2], but until now

they are restricted to a special class of mesh. This is clearly an advantage of the non-

conforming element.

In Section 4 we prove for the more general equation�r� = f estimates of the consisten-

cy error. The proof made certain new ideas necessary since the standard proof [18] cannot

be applied to anisotropic elements. The reason for the generality is that hence these esti-

mates can be applied in the papers [9, 10] to the Stokes problem and the Reissner-Mindlin

plate problem, respectively.

Crouzeix-Raviart type rectangular elements, called parametric rotated Q

1

element and

non-parametric rotated Q

1

element were de�ned and investigated in [27] for isotropic

meshes. The anisotropic case was discussed in [15]. These authors proved that the non-

parametric element, together with the P

0

element for the pressure, yield a Stokes element

pairing that is stable independently of the aspect ratio. However, the estimation of the

consistency error was not addressed. We give in Sections 3 and 4 a complete treatment of

a modi�ed Crouzeix-Raviart type rectangular element. The modi�ed element generalizes

easily to a class of prismatic three-dimensional elements (pentahedra).

The results of Sections 3 and 4 are applied in Section 5 in order to prove the �nite

element error estimate for the model Laplace problem in the presence of edge singularities.

We obtain the optimal �nite element error estimate

ku� u

h

k

1;h

. hkf ;L

2

(
)k;

where h := max

K

h

L;K

, h

L;K

:= max

i

h

i;K

, and

k � k

2

m;h

:=

X

K

j � ;W

m;2

(K)j; m � 0;
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are mesh dependent (semi-)norms. For the assessment of this result it is essential to point

out that the number of elements/degrees of freedom is of the order h

�3

, that means, it is

asymptotically not larger than that for uniform meshes where only a reduced convergence

order h

�

is obtained.

In the �nal section of the paper we show by a numerical test example that these

asymptotical convergence orders can be observed in calculations with practical mesh sizes.

Furthermore, we compare the non-conforming with the conforming P

1

element.

Throughout the paper we use the following convention concerning indices. When all

indices play the same role we use the index set f1; : : : ; dg (recall that d is the space

dimension). In anisotropic elements, however, one direction is distinguished, that is the

stretching direction of the element. Since in two space dimensions this direction is usually

indexed by 1, and in three space dimensions by 3, we try to avoid confusion by using the

indices L (long, large) and S (short, small), in three dimensions S1; S2. In this sense we

denote the element sizes by h

L

and h

S

and the components of the vector function � by �

L

and �

S

. The aim is to compensate large norms of �

S

by small element sizes h

S

in direction

x

S

.

2 Discretization of the model problem

Consider the Poisson problem with Dirichlet boundary conditions in a three-dimensional

polyhedral domain 
,

��u = f in 
; u = 0 on @
; (2.1)

with a right hand side f 2 L

2

(
). It is well known that the solution has in general singu-

larities near corners and edges and near the lines where the type of the boundary condition

changes. As a result, the �nite element method on quasi-uniform meshes loses accuracy.

The rate of convergence is smaller in comparison with that for problems with smooth so-

lutions. It has been shown under di�erent assumptions that anisotropic mesh grading is

appropriate to compensate this e�ect and to obtain the optimal order of convergence for

the conforming �rst order element [2, 4, 7, 8].

In [2, 4, 7] we considered in particular a prismatic domain


 = G� Z (2.2)

where G � IR

2

is a bounded polygonal domain and Z := (0; z

0

) � IR is an interval.

This restriction was made there because we wanted to focus on edge singularities, and

such domains do not introduce additional corner singularities [32, 34]. The �nite element

meshes were graded perpendicularly to the edge and quasi-uniform in the edge direction.

In this section we state �rst the regularity of the solution of problem (2.1), (2.2), and

introduce then the family of non-conforming �nite element spaces. The estimation of the

�nite element error is postponed to Section 5.

Denote by V

0

� W

1;2

(
) the space of allW

1;2

(
)-functions which vanish at the bound-

ary. The variational form of problem (2.1) is given by

Find u 2 V

0

such that (ru;rv) = (f; v) for all v 2 V

0

: (2.3)
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The existence of a unique variational solution u follows from the Lax-Milgram lemma.

Let us assume that the cross-section G has only one corner with interior angle ! > �

at the origin; thus 
 has only one \singular edge" which is part of the x

L

-axis. The case

of more than one singular edge introduces no additional di�culties because the edge sin-

gularities are of local nature. The properties of the solution u can be described favourably

by using weighted Sobolev spaces

V

`;p

�

(
) := fv 2 D

0

(
) : kv;V

`;p

�

(
)k <1g; ` 2 IN; p 2 [1;1]; � 2 IR:

The norm is de�ned for p 2 [1;1) by

kv;V

`;p

�

(
)k

p

:=

X

i+j+k�`

kr

��`+i+j+k

@

i

1

@

j

2

@

k

3

v;L

p

(
)k

p

with the usual modi�cation for p =1.

Lemma 2.1 The solution u of problem (2.1), (2.2) satis�es

@u

@x

i

2 V

1;2

�

(
);









@u

@x

i

;V

1;2

�

(
)









. kf ;L

2

(
)k; i 2 fS1; S2g; � > 1�

�

!

; (2.4)

@u

@x

L

2 V

1;2

0

(
);









@u

@x

L

;V

1;2

0

(
)









. kf ;L

2

(
)k: (2.5)

Proof See for example [7, Section 2]. 2

We de�ne now families of meshes Q

h

= fQg and T

h

= fKg by introducing in G the

standard mesh grading for two-dimensional corner problems, see for example [24, 28]. Let

fTg be a regular isotropic triangulation of G; the elements are triangles. With h being the

global mesh parameter, � 2 (0; 1] being the grading parameter, r

T

being the distance of T

to the corner,

r

T

:= inf

(x

1

;x

2

)2T

(x

2

1

+ x

2

2

)

1=2

;

and with some constant R > 0, we assume that the element size h

T

:= diamT satis�es

h

T

�

8

<

:

h

1=�

for r

T

= 0;

hr

1��

T

for 0 < r

T

� R;

h for r

T

> R:

This graded two-dimensional mesh is now extended in the third dimension using a uniform

mesh size, h. In this way we obtain a pentahedral triangulation Q

h

or, by dividing each

pentahedron, a tetrahedral triangulation T

h

of 
, see Figure 2.1 for an illustration. Note

that the number of elements is of the order h

�3

for the full range of �. The notation is

extended to the three-dimensional case as follows. Let r

Q

and r

K

be the distance of an

element Q or K to the edge (x

3

-axis), respectively. Then the element sizes satisfy

h

L;Q

� h; h

S1;Q

� h

S2;Q

�

8

<

:

h

1=�

for r

Q

= 0;

hr

1��

Q

for 0 < r

Q

� R;

h for r

Q

> R:

: (2.6)
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h

1=�

h

Figure 2.1: Example for an anisotropic mesh.

The element sizes h

i;K

are used by analogy for tetrahedral elements, h

i;K

:= h

i;Q

if K � Q.

On T

h

we introduce the Crouzeix-Raviart �nite element space

V

h

:= fv

h

2 L

2

(
) : v

h

j

K

2 P

1

8K;

Z

F

[v

h

] = 0 8Fg (2.7)

where we denote faces of elements by F and by [v

h

] the jump of the function v

h

on the

faces F . For boundary faces we identify [v

h

] with v

h

. An appropriate choice of V

h

for

pentahedral meshes Q

h

is

V

h

:= fv

h

2 L

2

(
) : v

h

j

Q

2 P

1

� span fx

2

L

g 8Q;

Z

F

[v

h

] = 0 8Fg: (2.8)

We note that V

h

6� V

0

, that means the method is non-conforming. Thus rv

h

is not

de�ned on inter-element boundaries and we de�ne the �nite element solution u

h

by using

the weaker scalar product

(u; v)

h

:=

X

K

Z

K

uv or (u; v)

h

:=

X

Q

Z

Q

uv;

respectively, namely:

Find u

h

2 V

0h

such that (ru

h

;rv

h

)

h

= (f; v

h

) for all v

h

2 V

0h

: (2.9)

The �nite element error u� u

h

can be estimated in the norm k � k

1;h

by using the second

Lemma of Strang,

ku� u

h

k

1;h

. inf

v

h

2V

h

ku� v

h

k

1;h

+ sup

v

h

2V

h

j(ru;rv

h

)

h

� (f; v

h

)j

kv

h

k

1;h

: (2.10)

The terms are called approximation error and consistency error, respectively. The approx-

imation error is estimated by using v

h

= I

h

v with a suitably de�ned interpolation operator

I

h

, see the next section. A general discussion of the consistency error is given in Section 4.

We continue the estimation of the �nite element error for this model problem in Section 5.
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3 Local interpolation error estimates

Consider �rst simplicial (triangular or tetrahedral) elements K � IR

d

, d = 2; 3, with faces

(sides) F . The Crouzeix-Raviart interpolant I

h

, I

h

2 P

1

, is de�ned by

Z

F

u =

Z

F

I

h

u 8F � @K: (3.1)

Contrary to the Lagrangian interpolant (nodal values) this interpolant is de�ned for u 2

W

1;p

(K) for all p 2 [1;1]. Note further that

I

h

w = w 8w 2 P

1

: (3.2)

We start with a stability estimate from which the desired local interpolation error estimates

can be derived easily.

Lemma 3.1 For all p; q 2 [1;1] and u 2 W

1;p

(K) the estimate

k@

j

I

h

u;L

q

(K)k � (meas

d

K)

1=q�1=p

k@

j

u;L

p

(K)k; j = 1; : : : ; d

holds.

Proof The essential ingredient is that @

j

I

h

u is constant. Let n be the outward unit normal

to @K and n

j

be the projections of n to the x

j

-axis, j = 1; : : : ; d. By Green's formula and

(3.1) we obtain

@

j

I

h

u = (meas

d

K)

�1

Z

K

@

j

I

h

u = (meas

d

K)

�1

X

F

�

Z

F

I

h

u

�

n

j

= (meas

d

K)

�1

X

F

�

Z

F

u

�

n

j

= (meas

d

K)

�1

Z

K

@

j

u: (3.3)

The desired estimate is then a consequence of the H�older inequality,

k@

j

I

h

u;L

q

(K)k = (meas

d

K)

1=q

j@

j

I

h

uj

� (meas

d

K)

1=q�1

k@

j

u;L

1

(K)k

� (meas

d

K)

1=q�1=p

k@

j

u;L

p

(K)k:

2

Corollary 3.2 For p; q 2 [1;1], p � q, and u 2 W

1;p

(K) the estimate

k@

j

(u� I

h

u);L

q

(K)k . (meas

d

K)

1=q�1=p

k@

j

u;L

p

(K)k; j = 1; : : : ; d

holds.
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Note that Lemma 3.1 and Corollary 3.2 hold true for arbitrary elements K, without

any restriction to angles.

For the error estimate against second derivatives of u we utilize two ingredients which

need a condition on the elements K and a de�nition of element sizes h

i;K

. The �rst is the

validity of the embedding W

1;p

(K) ,! L

q

(K) in the form

kv;L

q

(K)k . (meas

d

K)

1=q�1=p

 

kv;L

p

(K)k+

d

X

i=1

h

i;K

k@

i

v;L

p

(K)k

!

: (3.4)

The second is a Deny-Lions or Bramble-Hilbert type argument, namely

8v 2 W

1;p

(K) 9w 2 P

0

: kv � w;L

p

(K)k .

d

X

i=1

h

i;K

k@

i

v;L

p

(K)k; (3.5)

which is, with w =M

K

v,

M

G

v := (meas

dimG

G)

�1

Z

G

v; (3.6)

in this simple case also a conclusion of the Poincar�e-Friedrichs inequality.

Both estimates are clearly satis�ed on a reference element

^

K with h

i;K

= 1. If K is a

triangle with two sides parallel to the coordinate axes then the estimates are satis�ed with

h

i;K

being the lengths of these sides. If K is a tetrahedron as constructed in Section 2

then the estimates are also satis�ed. We will omit the discussion of more general situations

here.

Lemma 3.3 Let K be a simplicial element with element sizes h

i;K

such that (3.4) and

(3.5) are valid where the numbers p; q 2 [1;1] are such that W

1;p

(K) ,! L

q

(K). Then for

u 2 W

2;p

(K) the estimate

k@

j

(u� I

h

u);L

q

(K)k . (meas

d

K)

1=q�1=p

d

X

i=1

h

i;K

k@

i

@

j

u;L

p

(K)k; j = 1; : : : ; d;

holds.

Proof From (3.5) we get the existence of a polynomial w 2 P

1

such that

k@

j

(u� w);L

p

(K)k .

d

X

i=1

h

i;K

k@

i

@

j

u;L

p

(K)k: (3.7)

Using this polynomial, equation (3.2), the triangle inequality, (3.4) with v = @

j

(u � w),

and Lemma 3.1, we obtain

k@

j

(u� I

h

u);L

q

(K)k

� k@

j

(u� w);L

q

(K)k+ k@

j

I

h

(u� w);L

q

(K)k

. (meas

d

K)

1=q�1=p

 

k@

j

(u� w);L

p

(K)k+

d

X

i=1

h

i;K

k@

i

@

j

(u� w);L

p

(K)k

!

:
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With (3.7) and @

i

@

j

w = 0 we conclude the desired estimate. 2

A similar result, but with derivatives in the direction of edges, was derived in [1] by

writing (3.3) as @

j

I

h

uj

K

= M

K

@

j

u and using estimates for kv �M

K

v;L

q

(K)k. The fact

R

^

K

@

j

(u� I

h

u) = 0 was already observed in [4, Table 2, No. 5] for the two-dimensional case.

Since the solution of problems with edge singularities are well described in terms of

weighted Sobolev spaces, see Lemma 2.1, we will derive also an estimate for such functions.

Lemma 3.4 Let K be a tetrahedron with r

K

= 0 and with element sizes h

S;K

and h

L;K

as

described in Section 2. For p; q 2 [1;1], �

j

2 (�1; 1] and @

j

u 2 V

1;p

�

j

(K) the estimate

k@

j

(u� I

h

u);L

q

(K)k . (meas

3

K)

1=q�1=p

h

1��

j

S;K

k@

j

u;V

1;p

�

j

(K)k; j = 1; : : : ; 3;

holds.

Proof Corollary 3.2 implies

k@

j

(u� I

h

u);L

q

(K)k . (meas

3

K)

1=q�1=p

k@

j

u;L

p

(K)k

. (meas

3

K)

1=q�1=p

kr

1��

;L

1

(K)k kr

��1

@

j

u;L

p

(K)k:

By observing kr

1��

;L

1

(K)k . h

1��

S;K

and kr

��1

@

j

u;L

p

(K)k � k@

j

u;V

1;p

�

(K)k the desired

estimate is obtained. 2

We will now investigate rectangular (quadrilateral) elements K. It has been known for

a long time that the space Q

1

= span f1; x

1

; x

2

; x

1

x

2

g is not unisolvent when the integral on

sides is prescribed as in (3.1). Therefore so-called rotated Q

1

elements have been investigat-

ed [27] where the polynomial space on the reference element

^

K is span f1; x

1

; x

2

; x

2

1

� x

2

2

g.

One property is that this space is preserved under a rotation of the coordinate system by

90 degrees. However, estimates as in Lemmata 3.1{3.4 are not valid, see Example 3.5. In

[15, 27] also the so-called non-parametric version of the rotated Q

1

element was investigat-

ed where the polynomial space is span f1; x

1

; x

2

; x

2

1

� x

2

2

g on the element K. It was proved

in [15] that jI

h

u;W

1;2

(K)j . ju;W

1;2

(K)j holds for elements with arbitrary aspect ratio.

However, the consistency error was not analyzed.

Example 3.5 Consider the element K = (0; h

L

)� (0; h

S

) and the reference element

^

K =

(0; 1)

2

. For the function u = x

2

L

we obtain by direct calculation

û = h

2

L

x̂

2

L

;

^

I

h

û = h

2

L

�

1

2

(x̂

2

L

� x̂

2

S

) +

1

2

x̂

L

+

1

2

x̂

S

�

1

12

�

;

I

h

u =

1

2

x

2

L

�

1

2

h

2

L

h

�2

S

x

2

S

+

1

2

h

L

x

L

+

1

2

h

2

L

h

�1

S

x

S

�

1

12

h

2

L

;

@

S

(u� I

h

u) = h

2

L

h

�2

S

x

S

�

1

2

h

2

L

h

�1

S

;

k@

S

(u� I

h

u);L

2

(K)k = h

2

L

h

�2

S

�

h

L

Z

h

S

0

�

x

S

�

1

2

h

S

�

2

dx

S

�

1=2

� h

2

L

h

�1

S

(h

L

h

S

)

1=2

;
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ju;W

1;2

(K)j =

�

Z

Q

(2x

L

)

2

�

1=2

� h

L

(h

L

h

S

)

1=2

;

X

i2fL;Sg

h

i

j@

i

u;W

1;2

(K)j = h

L

�

Z

Q

2

2

�

1=2

� h

L

(h

L

h

S

)

1=2

;

and, consequently,

k@

S

(u� I

h

u);L

2

(K)k

ju;W

1;2

(K)j

�

k@

S

(u� I

h

u);L

2

(K)k

P

i2fL;Sg

h

i

j@

i

u;W

1;2

(K)j

�

h

L

h

S

which can become arbitrary large.

We propose to use the space

P := span f1; x

L

; x

S

; x

2

L

g = P

1

� span fx

2

L

g

which has the key property @

S

w = const: for w 2 P. Since the element K is anisotropic

anyway, the space can be anisotropic as well. We could try to unify both types of trial

functions by including a dependence on the aspect ratio, for example by using the function

x̂

2

L

� h

�2

L

h

2

S

x̂

2

S

[15], but we try to keep the explanations as simple as possible. We prove

now estimates similar to the ones above. The interpolant is again de�ned by (3.1).

Lemma 3.6 A function v 2 P is well de�ned when the values

R

F

v are prescribed on the

four sides F of a rectangle K. The faces F are assumed to be parallel to the coordinate

axes.

Proof Since the space is invariant with respect to translation it is su�cient to consider

the rectangle K = (0; h

L

)� (0; h

S

). Set v = a

0

+a

L

x

L

+a

S

x

S

+a

LL

x

2

L

, then the coe�cients

are the solution of the system

0

B

B

B

@

h

L

1

2

h

2

L

0

1

3

h

3

L

h

S

h

L

h

S

1

2

h

2

S

h

2

L

h

S

h

L

1

2

h

2

L

h

L

h

S

1

3

h

3

L

h

S

0

1

2

h

2

S

0

1

C

C

C

A

0

B

B

B

@

a

0

a

L

a

S

a

LL

1

C

C

C

A

=

0

B

B

B

B

@

R

h

L

0

v(x; 0) dx

R

h

S

0

v(h

L

; x) dx

R

h

L

0

v(x; h

S

) dx

R

h

S

0

v(0; x) dx

1

C

C

C

C

A

:

The determinant of the matrix is

1

6

h

5

L

h

3

S

6= 0. 2

Lemma 3.7 Let K be a rectangular element with sides of length h

L

and h

S

being parallel

to the coordinate axes x

L

and x

S

. For p; q 2 [1;1], p � q, and u 2 W

1;p

(K) the estimates

k@

S

(u� I

h

u);L

q

(K)k . (meas

2

K)

1=q�1=p

k@

S

u;L

p

(K)k; (3.8)

k@

L

(u� I

h

u);L

q

(K)k . (meas

2

K)

1=q�1=p

ju;W

1;p

(K)j (3.9)
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hold. If p; q 2 [1;1] are such that W

1;p

(K) ,! L

q

(K), and if u 2 W

2;p

(K) then the

estimates

k@

S

(u� I

h

u);L

q

(K)k . (meas

2

K)

1=q�1=p

X

i2fL;Sg

h

i;K

k@

i

@

S

u;L

p

(K)k; (3.10)

k@

L

(u� I

h

u);L

q

(K)k . (meas

2

K)

1=q�1=p

X

i;j2fL;Sg

h

i;K

k@

i

@

j

u;L

p

(K)k (3.11)

hold.

Proof As in the proof Lemma 3.1 we derive

k@

S

I

h

u;L

q

(K)k � (meas

2

K)

1=q�1=p

k@

S

u;L

p

(K)k: (3.12)

For @

L

I

h

u we get only a weaker (yet su�cient) estimate since this term is not constant.

By using the de�nition of I

h

u we get for any p; q 2 [1;1]

k

^

@

L

I

h

û;L

q

(

^

K)k . kû;W

1;p

(

^

K)k:

Consequently,

k@

L

I

h

u;L

q

(K)k . h

�1

L

(meas

2

K)

1=q�1=p

0

@

ku;L

p

(K)k+

X

i2fL;Sg

h

i;K

k@

i

u;L

p

(K)k

1

A

: (3.13)

Estimate (3.8) is obtained by the triangle inequality from (3.12). For (3.9) we choose

w 2 P

0

such that (3.5) is satis�ed with v = u and conclude with (3.13) and by analogy to

the proof of Lemma 3.3

k@

L

(u� I

h

u);L

q

(K)k

� k@

L

(u� w);L

q

(K)k+ k@

L

I

h

(u� w);L

q

(K)k

. h

�1

L

(meas

2

K)

1=q�1=p

0

@

ku� w;L

p

(K)k+

X

i2fL;Sg

h

i;K

k@

i

(u� w);L

p

(K)k

1

A

� h

�1

L

(meas

2

K)

1=q�1=p

X

i2fL;Sg

h

i;K

k@

i

u;L

p

(K)k

which is even slightly sharper than (3.9).

The estimates (3.10) and (3.11) are proved as the the corresponding ones in Lemma

3.3. The additional terms appear in (3.11) due to the weaker estimate (3.13). 2

In full analogy we treat prismatic elements Q = T � I, where T is an isotropic triangle

of diameter h

S;Q

and I is an interval of length h

L;Q

. We use the polynomial space

P := P

1

� span fx

2

L

g; (3.14)

prove unisolvence and the following error estimates. For convenience of notation they are

formulated slightly weaker (yet su�cient for the application later on) than the correspond-

ing estimates in Lemma 3.7.
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Lemma 3.8 Let Q be a prismatic element as described above. For p; q 2 [1;1], p � q,

and u 2 W

1;p

(Q) the estimate

ju� I

h

u;W

1;q

(Q)j . (meas

3

Q)

1=q�1=p

ju;W

1;p

(Q)j (3.15)

holds. If p; q 2 [1;1] are such that W

1;p

(Q) ,! L

q

(Q), and if u 2 W

2;p

(Q) then the

estimate

ju� I

h

u;W

1;q

(Q)j . (meas

3

Q)

1=q�1=p

X

i2fS

1

;S

2

;Lg

h

i;Q

j@

i

u;W

1;p

(Q)j (3.16)

holds. If r

Q

= 0, p; q 2 [1;1], �

j

2 (�1; 1] and @

j

u 2 V

1;p

�

j

(Q), j 2 fS

1

; S

2

; Lg, then the

estimate

ju� I

h

u;W

1;q

(Q)j . (meas

3

Q)

1=q�1=p

X

j2fS

1

;S

2

;Lg

h

1��

j

S;Q

k@

j

u;V

1;p

�

j

(Q)k (3.17)

holds.

Proof The �rst two estimates are proved as Lemma 3.7. Estimate (3.15) can be written

as

ju� I

h

u;W

1;q

(Q)j . (meas

3

Q)

1=q�1=p

X

j2fS

1

;S

2

;Lg

k@

j

u;L

p

(Q)k;

and we obtain (3.17) in analogy to the proof of Lemma 3.4. 2

4 Consistency error estimates

4.1 General considerations in the two-dimensional case

The aim of this subsection is to explain the main di�culties and the ideas for the estimation

of the consistency error. Therefore we concentrate on the two-dimensional case and, for

later use in other applications [9, 10], on the general di�erential equation

�r � � = f in 
; (4.1)

with f 2 L

2

(
). For simplicity, let 
 be a union of rectangles with sides parallel to the

axes of a Cartesian coordinate system (x

L

; x

S

).

Let us consider a family fT

h

g

h!0

of triangulations T

h

= fKg of rectangular elements

K of size h

L;K

� h

S;K

, see Figure 4.1, left hand side, for an illustration. By dividing each

rectangle we obtain a triangular mesh, see Figure 4.1, right hand side. Since we need for

the considerations in this subsection only one element type at one time we denote both
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x

1

x

2

x

1

x

2

Figure 4.1: Meshes in two dimensions. Left: rectangular elements. Right: triangular

elements.

types of element by K. Faces (sides) of the elements are denoted by F . According to

Section 3 the corresponding �nite element spaces are

V

h

:= fv

h

2 L

2

(
) : v

h

j

K

2 P 8K;

Z

F

[v

h

] = 0 8Fg; (4.2)

P :=

�

P

1

for triangular elements,

P

1

� span fx

2

L

g for rectangular elements.

(4.3)

In the sense of (2.10) it is our aim to derive an estimate for

sup

v

h

2V

h

(�;rv

h

)

h

� (f; v

h

)

kv

h

k

1;h

:

Let us start in the usual way in order to see where di�culties arise. Denoting by n =

(n

L

; n

S

) the outward unit normal to @K we obtain by Green's formula and (4.1)

(�;rv

h

)

h

� (f; v

h

) =

X

K

Z

K

(� � rv

h

� fv

h

)

=

X

K

�

Z

@K

(� � n) v

h

�

Z

K

(r � � + f)v

h

�

=

X

K

X

F�@K

Z

F

(� � n) v

h

: (4.4)

Let M

F

: L

1

(F ) ! P

0

be the averaging operator on the face F which preserves poly-

nomials of degree zero, as de�ned in (3.6). Since

X

K

X

F�@K

F 6�@


Z

F

� � n = 0

and

M

F

v

h

= (meas

1

F )

�1

Z

F

v

h

= 0 for all F � @
 (4.5)



4.1 General considerations in the two-dimensional case 13

we can reformulate (4.4) by

(�;rv

h

)

h

� (f; v

h

) =

X

K

X

F�@K

Z

F

(� � n)(v

h

�M

F

v

h

): (4.6)

Furthermore, since

R

F

(v

h

�M

F

v

h

) = 0 for all F we continue with

(�;rv

h

)

h

� (f; v

h

) =

X

K

X

F�@K

Z

F

(� �M

F

�) � n (v

h

�M

F

v

h

): (4.7)

For the estimation of such terms the following lemma is useful.

Lemma 4.1 Let F be a face of an element K. Then the estimate

�

�

�

�

Z

F

(v �M

F

v)(v

h

�M

F

v

h

)

�

�

�

�

.

meas

1

F

meas

2

K

0

@

X

i2fL;Sg

h

2

i;K

k@

i

v;L

2

(K)k

2

1

A

1=2

0

@

X

i2fL;Sg

h

2

i;K

k@

i

v

h

;L

2

(K)k

2

1

A

1=2

holds for any v 2 W

1;2

(K), v

h

2 P.

Proof We obtain by transformation to the reference face

^

F �

^

K, the trace theorem, and

the Bramble-Hilbert lemma

kv �M

F

v;L

2

(F )k = (meas

1

F )

1=2

kv̂ �M

^

F

v̂;L

2

(

^

F )k . (meas

1

F )

1=2

jv̂;W

1;2

(

^

K)j:

The transformation from

^

K to K leads to

kv �M

F

v;L

2

(F )k . (meas

1

F )

1=2

(meas

2

K)

�1=2

0

@

X

i2fL;Sg

h

2

i;K

k@

i

v;L

2

(K)k

2

1

A

1=2

:

The application of the Cauchy-Schwarz inequality and twice the previous estimate yields

the desired result. 2

Consider now a small face F

S

� @K. Then we obtain by applying Lemma 4.1 the

estimate

�

�

�

�

Z

F

S

(� �M

F

S

�) � n (v

h

�M

F

S

v

h

)

�

�

�

�

=

�

�

�

�

Z

F

S

(�

L

�M

F

S

�

L

)(v

h

�M

F

S

v

h

)

�

�

�

�

. h

�1

L;K

0

@

X

i2fL;Sg

h

2

i;K

k@

i

�

L

;L

2

(K)k

2

1

A

1=2

0

@

X

i2fL;Sg

h

2

i;K

k@

i

v

h

;L

2

(K)k

2

1

A

1=2

(4.8)

�

0

@

X

i2fL;Sg

h

2

i;K

k@

i

�

L

;L

2

(K)k

2

1

A

1=2

jv

h

;W

1;2

(K)j: (4.9)
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This may be a su�ciently good estimate for small faces, however, for large faces we would

get a term of order h

�1

S;K

h

2

L;K

.

The idea is to introduce an auxiliary �nite element space

~

V

h

:= f~v

h

2 L

2

(
) : ~v

h

j

K

2 span f1; x

S

g 8K;

Z

F

L

[~v

h

] = 0 8F

L

g (4.10)

which is su�ciently close to V

h

but the above mentioned term will not appear.

For an arbitrary but �xed v

h

2 V

h

we de�ne ~v

h

2

~

V

h

such that

Z

F

L

v

h

=

Z

F

L

~v

h

8F

L

: (4.11)

Since triangles and rectangles have exactly two large faces F

L

this de�nition is meaningful

for both types of element.

Both @

S

v

h

and @

S

~v

h

are constant. Even better, by Green's formula and (4.11) we get

@

S

v

h

= @

S

~v

h

(4.12)

since

@

S

(v

h

� ~v

h

) = (meas

2

K)

�1

Z

K

@

S

(v

h

� ~v

h

) = (meas

2

K)

�1

X

F

L

�@K

Z

F

L

(v

h

� ~v

h

)n

S

= 0

holds. We are now prepared to prove an estimate for the consistency error.

Lemma 4.2 For rectangular and triangular meshes the estimate

sup

v

h

2V

h

(�;rv

h

)

h

� (f; v

h

)

kv

h

k

1;h

.

0

@

X

K

X

i;j2fL;Sg

h

2

i;K

k@

i

�

j

;L

2

(K)k

2

1

A

1=2

+

 

X

K

h

2

L;K

kf + @

L

�

L

;L

2

(K)k

2

!

1=2

holds provided that

� 2 [W

1;2

(
)]

2

(4.13)

and �; f satisfy (4.1).

Proof We introduce ~v

h

as above and modify (4.4) by using (4.12) and (4.1) as follows,

(�;rv

h

)

h

� (f; v

h

)

=

X

K

Z

K

(�

L

@

L

v

h

+ �

S

@

S

~v

h

� fv

h

)

= �

X

K

Z

K

(@

L

�

L

v

h

+ @

S

�

S

~v

h

+ fv

h

) +

X

K

Z

@


�

L

n

L

v

h

+

X

K

Z

@


�

S

n

S

~v

h

= �

X

K

Z

K

(f + @

L

�

L

)(v

h

� ~v

h

) +

X

K

X

F�@K

Z

F

�

L

v

h

n

L

+

X

K

X

F�@K

Z

F

�

S

~v

h

n

S

:(4.14)
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The reason of writing f + @

L

�

L

instead of �@

S

�

S

will become clear in the proof of Lemma

4.6. We will now treat the three terms separately.

Due to (4.11) we can apply the Poincar�e inequality. On the reference element we get

kv̂

h

�

~

v̂

h

;L

2

(

^

K)k . jv̂

h

�

~

v̂

h

;W

1;2

(

^

K)j:

After transformation toK and using (4.10), (4.12) and twice the Cauchy-Schwarz inequality

we obtain

kv

h

� ~v

h

;L

2

(K)k . h

L;K

k@

L

v

h

;L

2

(K)k (4.15)

�

�

�

�

Z

K

(f + @

L

�

L

)(v

h

� ~v

h

)

�

�

�

�

. h

L;K

kf + @

L

�

L

;L

2

(K)k k@

L

v

h

;L

2

(K)k

X

K

�

�

�

�

Z

K

(f + @

L

�

L

)(v

h

� ~v

h

)

�

�

�

�

.

 

X

K

h

2

L;K

kf + @

L

�

L

;L

2

(K)k

2

!

1=2

kv

h

k

1;h

: (4.16)

The second term of (4.14) can be estimated in the way described above, see (4.4){(4.9)

and Lemma 4.1. Indeed, we get

X

K

X

F�@K

Z

F

�

L

v

h

n

L

=

X

K

X

F�@K

n

L

Z

F

(�

L

�M

F

�

L

)(v

h

�M

F

v

h

)

.

X

K

X

F�@K

meas

1

F

meas

2

K

n

L

0

@

X

i2fL;Sg

h

2

i;K

k@

i

�

L

;L

2

(K)k

2

1

A

1=2

0

@

X

i2fL;Sg

h

2

i;K

k@

i

v

h

;L

2

(K)k

2

1

A

1=2

:

The point is that the factor meas

1

F (meas

2

K)

�1

n

L

is for all faces of order h

�1

L

or even zero,

so that we get

X

K

X

F�@K

Z

F

�

L

v

h

n

L

.

0

@

X

K

X

i2fL;Sg

h

2

i;K

k@

i

�

L

;L

2

(K)k

2

1

A

1=2

kv

h

k

1;h

(4.17)

by using the discrete version of the Cauchy-Schwarz inequality.

The third term can also be estimated in the same way. We mention only two new points.

The �rst is that M

F

~v

h

= 0 is in general only satis�ed for large faces F

L

� @
, compare

(4.5). For small faces F

S

� @
 we have to use that n

S

= 0. Second, since @

L

~v

h

= 0 the

term h

2

L;K

k@

L

~v

h

;L

2

(K)k

2

vanishes such that we can extract a factor h

S;K

kv

h

k

1;h

which is

used to compensate the factor meas

1

F (meas

2

K)

�1

for all types of face. Hence the estimate

reads

X

K

X

F�@K

Z

F

�

S

~v

h

n

S

=

X

K

X

F�@K

Z

F

(�

S

�M

F

�

S

)(~v

h

�M

F

~v

h

)n

S

.

X

K

X

F�@K

h

�1

S;K

0

@

X

i2fL;Sg

h

2

i;K

k@

i

�

S

;L

2

(K)k

2

1

A

1=2

h

S;K

k@

S

~v

h

;L

2

(K)k
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.

0

@

X

K

X

i2fL;Sg

h

2

i;K

k@

i

�

S

;L

2

(K)k

2

1

A

1=2

kv

h

k

1;h

(4.18)

where we have also used (4.12).

Combining (4.14) and (4.16){(4.18) we conclude the desired estimate. 2

4.2 The three-dimensional case under speci�c assumptions

In this subsection we want to extend the considerations of the previous one into three space

dimensions. The following two points are taken into account.

First, while the extension to prismatic elements is straightforward this is not the case

for tetrahedral elements. The main reason is that rectangular, triangular and prismatic

elements have exactly d (d is the space dimension) large faces which are used to de�ne ~v

in (4.11). One out of three tetrahedral elements has, however, four large sides. Therefore

the approach has to be modi�ed slightly.

Second, we assume in Lemma 4.2 that � 2 [W

1;2

(
)]

2

. In view of Lemma 2.1 we will

now weaken this assumption to

�

S1

; �

S2

2 V

1;2

�

(
); � 2 [0; 1); (4.19)

�

L

2 V

1;2

0

(
) ,! W

1;2

(
): (4.20)

Note that due to (4.1), (4.19), and (4.20) in general

@

S1

�

S1

; @

S2

�

S2

62 L

2

(
); but @

S1

�

S1

+ @

S2

�

S2

2 L

2

(
): (4.21)

In the sense of Section 2, but slightly more general, consider a family of pentahedral

triangulations Q

h

= fQg. The triangular faces F

S;Q

of each element Q are parallel to the

x

S1

; x

S2

-plane. They are isotropic with diameter h

S;Q

. When necessary we will also use the

notation h

S1;Q

and h

S2;Q

which are both identical with with h

S;Q

. The rectangular faces

F

L;Q

are parallel to the x

L

-axis and have a size of order h

L;Q

� h

S;Q

.

Each element Q 2 Q

h

can be divided into three tetrahedra K such that an admissible

tetrahedral triangulation T

h

= fKg is obtained. We denote the faces of the tetrahedra by

F

K

and introduce the element sizes h

L;K

, h

S;K

, h

S1;K

, and h

S2;K

by analogy to above.

Let us �rst prove a lemma which is analogous to Lemma 4.1.

Lemma 4.3 Let F be a face of a tetrahedral element K. Then the estimate

�

�

�

�

Z

F

(v �M

F

v)(v

h

�M

F

v

h

)

�

�

�

�

.

meas

2

F

meas

3

K

�

0

@

X

i2fL;S1;S2g

h

�2�

i;K

S;K

h

2

i;K

kr

�

i;K

@

i

v;L

2

(K)k

2

1

A

1=2

0

@

X

i2fL;S1;S2g

h

2

i;K

k@

i

v

h

;L

2

(K)k

2

1

A

1=2
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holds for any v 2 V

1;2

�

i;K

(K), �

i;K

2 [0; 1), v

h

2 P = P

1

. By r = (x

2

S1

+ x

2

S2

)

1=2

we denote

the distance to the x

L

-axis.

With adapted notation the statement holds for pentahedral elements Q with P := P

1

�

span fx

2

L

g as well.

Proof We modify the proof of Lemma 4.1 slightly. Instead of the Cauchy-Schwarz in-

equality we apply the H�older inequality to obtain

�

�

�

�

Z

F

(v �M

F

v)(v

h

�M

F

v

h

)

�

�

�

�

� kv �M

F

v;L

1

(F )k kv

h

�M

F

v

h

;L

1

(F )k: (4.22)

For the �rst factor we get in analogy to the proof of Lemma 4.1

kv �M

F

v;L

1

(F )k . (meas

3

K)

�1

(meas

2

F )

X

i2fL;S1;S2g

h

i;K

k@

i

v;L

1

(K)k:

The L

1

-norm can be estimated by a weighted L

2

-norm by using the Cauchy-Schwarz in-

equality and a direct calculation,

kw;L

1

(K)k � kr

��

i;K

;L

2

(K)k kr

�

i;K

w;L

2

(K)k � h

��

i;K

S;K

(meas

3

K)

1=2

kr

�

i;K

w;L

2

(K)k:

Note that kr

��

i;K

;L

2

(K)k is not �nite for �

i;K

� 1 and zero distance of K to the x

L

-axis.

Note further that the estimate is very coarse when K has non-zero distance to the x

L

-axis

and �

i;K

> 0. But this is not the interesting case.

The second factor of (4.22) is estimated by using that norms in �nite spaces are equiv-

alent,

kv

h

�M

F

v

h

;L

1

(F )k = kv̂

h

�M

^

F

v̂

h

;L

1

(

^

F )k

� kv̂

h

�M

^

F

v̂

h

;L

1

(

^

K)k

. kv̂

h

�M

^

F

v̂

h

;W

1;2

(

^

K)k:

Since

R

^

F

v̂

h

�M

^

F

v̂

h

= 0 we can use the Poincar�e inequality to get rid of the L

2

-part of the

norm on the right hand side. Using further that

^

@

i

M

^

F

v̂

h

= 0 and transforming from

^

K to

K we get

kv

h

�M

F

v

h

;L

1

(F )k . jv̂

h

;W

1;2

(

^

K)j . (meas

3

K)

�1=2

0

@

X

i2fL;S1;S2g

h

2

i;K

k@

i

v

h

;L

2

(K)k

2

1

A

1=2

:

Combining all these estimates leads to the desired result. 2

The �nite element space V

h

is de�ned in (2.7) and (2.8) for tetrahedral and pentahedral

meshes. Similarly to (4.10) we introduce an auxiliary �nite element space

~

V

h

:= f~v

h

2 L

2

(
) : ~v

h

j

Q

2 span f1; x

S1

; x

S2

g 8Q;

Z

F

L;Q

[~v

h

] = 0 8F

L;Q

g: (4.23)
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We point out that we have di�erent spaces V

h

for T

h

and Q

h

but in both cases the same

space

~

V

h

. In analogy to (4.11) we de�ne for an arbitrary but �xed v

h

2 V

h

a function

~v

h

2

~

V

h

such that

Z

F

L;Q

v

h

=

Z

F

L;Q

~v

h

8F

L;Q

: (4.24)

An equality like (4.12) can only be shown for pentahedral meshes. It does not hold in the

tetrahedral case since the derivative @

i

v

h

, i 2 fS1; S2g, is only piecewise constant in Q.

However, it turns out to be su�cient to have the following lemma.

Lemma 4.4 For any pentahedron Q 2 Q

h

which can be but needs not to be divided into

three tetrahedra K, the equation

Z

Q

@

i

(v

h

� ~v

h

) = 0; i 2 fS1; S2g; (4.25)

is valid.

Proof If v

h

is de�ned with respect to Q

h

then we simply have by Green's formula and

(4.24)

Z

Q

@

i

(v

h

� ~v

h

) =

X

F

L;Q

�@Q

n

i

Z

F

L;Q

(v

h

� ~v

h

) = 0; i 2 fS1; S2g;

where n

i

is the component of the outward unit normal n in direction of the x

i

-axis.

In the tetrahedral case we have intermediately more terms,

Z

Q

@

i

(v

h

� ~v

h

) =

X

K�Q

Z

K

@

i

(v

h

� ~v

h

) =

X

K�Q

Z

@K

(v

h

� ~v

h

)n

i

=

X

F�intQ

n

i

Z

F

([v

h

]� [~v

h

]) +

X

F

L;Q

�@Q

n

i

Z

F

L;Q

(v

h

� ~v

h

);

but also these terms vanish due to the de�nition of V

h

and

~

V

h

. 2

Since equality (4.12) was used to prove (4.15) we have to modify this estimate in the

tetrahedral case.

Lemma 4.5 For any pentahedron Q 2 Q

h

which is divided into three tetrahedra K, the

estimates

kv

h

� ~v

h

;L

q

(Q)k . (meas

3

Q)

1=q�1=p

X

K�Q

X

i2fL;S1;S2g

h

i;Q

k@

i

v

h

;L

p

(K)k; (4.26)

X

K�Q

k@

i

(v

h

� ~v

h

);L

q

(K)k . (meas

3

Q)

1=q�1=p

X

K�Q

jv

h

;W

1;p

(K)j; i 2 fL; S1; S2g; (4.27)

are valid for any p; q 2 [1;1].
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Proof Consider the reference element

^

Q := f(x̂

S1

; x̂

S2

; x̂

L

) 2 IR

3

: 0 < x̂

S1

< 1; 0 < x̂

S2

<

1� x̂

S1

; 0 < x̂

L

< 1g with three rectangular faces F

L;

^

Q

� @

^

Q. We have for any ŵ

h

2 V

h

j

^

Q

~

ŵ

h

=

X

F

L;

^

Q

(meas

2

F

L;

^

Q

)

�1

 

Z

F

L;

^

Q

ŵ

h

!

'̂

F

L;

^

Q

(4.28)

where '̂

F

L;

^

Q

2 span f1; x̂

S1

; x̂

S2

g is the polynomial which is equal to one on F

L;

^

Q

and

vanishes at the midpoints of the other two rectangular faces. Hence

k

~

ŵ

h

;L

q

(

^

Q)k . kŵ

h

;L

1

(

^

Q)k: (4.29)

We prove now that jjj � jjj,

jjj ŵ

h

jjj :=

X

^

K�

^

Q

jŵ

h

;W

1;p

(

^

K)j+

�

�

�

�

Z

^

Q

ŵ

h

�

�

�

�

; (4.30)

is a norm in V

h

j

^

Q

. It is simple to see that jjj � jjj is a seminorm. Assume now that jjj v̂

h

jjj = 0

for some v̂

h

2 V

h

j

^

Q

. Consequently jv̂

h

;W

1;p

(

^

K)j = 0 for any

^

K �

^

Q, this means that v̂

h

is piecewise constant. Since by de�nition (2.7)

R

^

F

[v̂

h

] = 0 on the interior faces, v̂

h

is even

constant in

^

Q. Since

R

^

Q

v̂

h

= 0 we obtain v̂

h

� 0. Hence jjj � jjj is a norm.

Since all norms in �nite spaces (V

h

j

^

Q

is ten-dimensional) are equivalent, we conclude

from (4.29), (4.30)

kŵ

h

�

~

ŵ

h

;L

q

(

^

Q)k . kŵ

h

;L

q

(

^

Q)k+ kŵ

h

;L

1

(

^

Q)k

.

X

^

K�

^

Q

jŵ

h

;W

1;p

(

^

K)j+

�

�

�

�

Z

^

Q

ŵ

h

�

�

�

�

:

Set ŵ

h

= v

h

�M

^

Q

v̂

h

and note that ŵ

h

�

~

ŵ

h

= v̂

h

�

~

v̂

h

by (4.28). Hence

kv̂

h

�

~

v̂

h

;L

q

(

^

Q)k .

X

^

K�

^

Q

jv̂

h

;W

1;p

(

^

K)j:

The a�ne transformation from

^

Q to Q leads to the estimate (4.26).

Estimate (4.27) is trivial for i = L since @

L

~v

h

= 0. For i 2 fS1; S2g we use the

equivalence of norms and Lemma 4.4 on the reference element,

k@

i

~

v̂

h

;L

q

(

^

Q)k �

�

�

�

�

Z

^

Q

@

i

~

v̂

h

�

�

�

�

=

�

�

�

�

�

�

X

^

K�

^

Q

Z

^

K

@

i

v̂

h

�

�

�

�

�

�

.

X

^

K�

^

Q

k@

i

v̂

h

;L

p

(

^

K)k:

Consequently

X

^

K�

^

Q

k@

i

(v̂

h

�

~

v̂

h

);L

q

(

^

K)k .

X

^

K�

^

Q

k@

i

v̂

h

;L

p

(

^

K)k:

By transformation from

^

Q to Q we conclude estimate (4.27). 2

We are now prepared to prove the consistency error estimate.
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Lemma 4.6 For pentahedral and tetrahedral meshes the estimate

sup

v

h

2V

h

j(�;rv

h

)

h

� (f; v

h

)j

kv

h

k

1;h

.

0

@

X

Q

X

i;j2fL;S1;S2g

h

�2�

i;j;K

S;K

h

2

i;Q

kr

�

i;j;K

@

i

�

j

;L

2

(Q)k

2

1

A

1=2

+

 

X

Q

h

2

L;Q

kf + @

L

�

L

;L

2

(Q)k

2

!

1=2

holds provided that � and f satisfy (4.1), (4.19) and (4.20), and �

i;j;K

2 [0; 1) for all K

and for all j 2 fL; S1; S2g.

We prove the lemma for the case of tetrahedral meshes. In the other case the proof is

analogous; some simpli�cations could be made.

Proof We introduce ~v

h

2

~

V

h

by (4.23), (4.24) and modify the proof of Lemma 4.2 by

using (4.25) instead of (4.12). Let us �rst write

(�;rv

h

)

h

� (f; v

h

) =

X

K

Z

K

[�

L

@

L

v

h

+ �

S1

@

S1

~v

h

+ �

S2

@

S2

~v

h

� fv

h

] +

X

K

Z

K

[�

S1

@

S1

(v

h

� ~v

h

) + �

S2

@

S2

(v

h

� ~v

h

)]: (4.31)

The �rst term is known from the proof of Lemma 4.2 and will be estimated similarly,

only taking into account the weaker assumption (4.19) instead of (4.13). By using Green's

formula and being careful about (4.21) we have

X

K

Z

K

[�

L

@

L

v

h

+ �

S1

@

S1

~v

h

+ �

S2

@

S2

~v
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� fv
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]

=

X

K

Z

K

[� � r~v

h

+ �

L

@

L

(v

h

� ~v

h

)� fv

h

]

=

X

K

Z

K

[�(r � �)~v

h

� @

L

�

L

(v

h

� ~v

h

)� fv

h

] +

X

K

Z

@K

((� � n)~v

h

+ �

L

(v

h

� ~v

h

)n

L

)

= �

X

Q

Z

Q

(f + @

L

�

L

)(v

h

� ~v

h

) +

X

K

Z

@K

(�

L

v

h

n

L

+ �

S1

~v

h

n

S1

+ �

S2

~v

h

n

S2

) (4.32)

The right hand side of (4.32) is analogous to that of (4.14). So we can proceed as in the

proof of Lemma 4.2. We have only to use Lemma 4.5 instead of estimate (4.15), Lemma

4.3 instead of Lemma 4.1, and the equality

X

K

Z

@K

(�

S1

n

S1

+ �

S2

n

S2

)~v

h

=

X

Q

Z

@Q

(�

S1

n

S1

+ �

S2

n

S2

)~v

h

:
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It remains to estimate the second term of (4.31). Using Lemma 4.4 and the operator

M

Q

: L

1

(Q)! P

0

, M

Q

w := (meas

3

Q)

�1

R

Q

w, we get

�

�

�

�

�

�

X
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X

Q
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@

j
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=

�

�

�

�

�

�

X

j2fS1;S2g

X

Q

X

K�Q

Z

K

(�
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�
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j

(v
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� ~v

h

)

�

�

�
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�
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�
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K�Q
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j

(v
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� ~v

h

);L

1

(K)k

!

: (4.33)

As in the proof of Lemma 4.3 we use the Poincar�e inequality and the H�older inequality to

get
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Combining (4.33), (4.34) and using Lemma 4.5 we conclude
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By using the discrete Cauchy-Schwarz inequality we �nish the proof. 2

5 Error estimates for the model problem

In view of the second Lemma of Strang, estimate (2.10), we have to bound the global

interpolation error and the consistency error for the family of meshes de�ned by (2.6). The

properties of u were stated in Lemma 2.1.

Theorem 5.1 Let u be a function satisfying (2.4), (2.5). Then the estimate
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. h kf ;L
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holds if � < �=!.
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Proof We prove the lemma for the case of tetrahedral meshes, pentahedral meshes can

be treated in the same way. The estimation of the global error is reduced to the evaluation

of the local errors where we distinguish between the elements far from the singular edge,

r

K

> 0, and the elements touching the edge, r

K

= 0.

For all elements K with r

K

> 0 we can apply Lemma 3.3 with p = q = 2, and use that
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for any � > 1 � �=!. We apply now the assumption (2.6) and obtain for r
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� R and

� = 1 � � the relation h
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Consider now the elements K with r

K

= 0. We use Lemma 3.4 with p = q = 2,
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We also used that h
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� h

(1��)=�

= h for � = 1� �.

Summing up the square of the estimates (5.2), (5.3) over all elements we obtain
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By applying Lemma 2.1 the theorem is proved. 2

Theorem 5.2 Let u be the solution of (2.1), (2.2). Then the estimate
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holds if � < �=!.
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Proof In view of Lemma 4.6 it remains to prove
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The second estimate is trivial since h
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the proof of Theorem 5.1, namely
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With � = 1 � � > 1 � �=!, by using the Cauchy-Schwarz inequality, and by applying

Lemma 2.1 we get the desired estimate (5.4). This �nishes the proof. 2

Corollary 5.3 Let u be the solution of (2.1), (2.2) and let u

h

be the �nite element solution

de�ned by (2.9). Assume that the mesh is re�ned according to � < �=!. Then the �nite

element error can be estimated by
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Proof The �rst estimate follows from Theorems 5.1 and 5.2 via (2.10). The second

estimate can be proved in the standard way by using the �rst estimate, see, for example,

[16, xIII.1]. 2

By analogy one can prove for �=! < � � 1 that
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for arbitrary small " > 0, compare [7]. That means that we get for the unre�ned mesh

(� = 1) only an approximation order �=! � ". We conjecture that the " can be omitted

but this needs another way of proof.

6 Numerical test

Consider the Laplace equation with Dirichlet boundary conditions,

��u = 0 in 
; u = g on @
;

in the three-dimensional domain


 = f(x

1

; x

2

; x

3

) = (r cos �; r sin�; z) 2 IR

3

: r < 1; 0 < � < 3�=2; 0 < z < 1g:

The right hand side g is taken such that

u = (10 + z) r

2=3

sin

2

3

�

is the exact solution of the problem. It has the typical singular behaviour at the edge.

We constructed tetrahedral meshes as described in Section 2, with � = 1 (quasi-

uniform) and � = 0:5 (anisotropically re�ned) and with di�erent numbers of elements.

The numerical solution was computed by using conforming and non-conforming P

1

ele-

ments. From these numerical solutions and the known exact solution, the energy norm

ku � u

h

k

1;h

and the L

2

-norm ku � u

h

;L

2

(
)k of the �nite element error was computed

in the four cases. Figures 6.1 and 6.2 show the plot of these norms against the number

N of unknowns and the number N

el

of elements, respectively. A double logarithmic scale

was used such that the slope of the curves corresponds to the approximation order. The

example veri�es the theoretically predicted convergence orders.

Comparing the conforming with the non-conforming strategy we see that the conform-

ing strategy is superior when the number of unknowns is considered whereas the non-

conforming strategy is superior when the number of elements is taken into consideration.

A good criterion for a comparison is computing time. The amount of computational work

is proportional to the number of elements in the assembling step and whereas it is propor-

tional to the number of unknowns in one iteration of the solver. The latter statement is,

however, only partially convincing since the amount of work depends also on the number
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Figure 6.1: Comparison of uniform vs. graded meshes and conforming vs. non-conforming

methods: energy norm of the error against number of nodes (left), energy norm of the

error against number of elements (right).
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of non-zero entries in the matrix and these numbers are di�erent multiples of the number

of unknowns for the conforming and the non-conforming strategy. Moreover, the number

of iterations can hardly be compared since optimal preconditioners for graded meshes near

edges are not available now.

Finally we like to remark that we did tests also with non-tensor product meshes as

they were described for the treatment of general polyhedral domains in [8]. The same

convergence rates were veri�ed so that we expect that the anisotropic non-conforming

strategy could also be proved for classes of more general meshes than we assumed in this

paper. This is a task for future work.
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