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Abstract

The recursive inverse eigenvalue problem for matrices is studied, where

for each leading principle submatrix an eigenvalue and associated left and

right eigenvectors are assigned. Existence and uniqueness results as well as

explicit formulas are proven, and applications to nonnegative matrices, Z-

matrices, M -matrices, symmetric matrices, Stieltjes matrices and inverse

M -matrices are considered.
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1 Introduction

Inverse eigenvalue problems are a very important subclass of inverse problems

that arise in the context of mathematical modeling and parameter identi�cation.

They have been studied extensively in the last 20 years, see e.g. [3, 5, 7, 11, 12, 14]

and the references therein. In particular, the inverse eigenvalue problem for non-

negative matrices is still a topic of very active research, since a necessary and

su�cient condition for the existence of a nonnegative matrix with a prescribed

spectrum is still an open problem, see [4, 11]. In this paper we study inverse

eigenvalue problems in a recursive matter, that allows to extend already con-

structed solutions if further data become available, as is frequently the case in

inverse eigenvalue problems, e.g. [3].

We investigate the following recursive inverse eigenvalue problem of order n:

Let F be a �eld, let s

1

; : : : ; s

n

2 F and let

l

1

=

h

l

1;1

i

; l

2

=

"

l

2;1

l

2;2

#

; : : : ; l

n

=

2

6

6

4

l

n;1

.

.

.

l

n;n

3

7

7

5

;

r

1

=

h

r

1;1

i

; r

2

=

"

r

1;2

r

2;2

#

; : : : ; r

n

=

2

6

6

4

r

1;n

.

.

.

r

n;n

3

7

7

5

be vectors with elements in F . Construct a matrix A 2 F

n;n

such that

8

>

<

>

:

l

T

i

Ahii = s

i

l

T

i

Ahiir

i

= s

i

r

i

i = 1; : : : ; n;

where Ahii denotes the i-th leading principal submatrix of A.

In the sequel we shall use the notation RIEP(n) for \the recursive inverse eigen-

value problem of order n".

In Section 2 we study the existence and uniqueness of solutions for RIEP(n) in the

general case. Our main result gives a recursive characterization of the solution

for RIEP(n). We also obtain a nonrecursive necessary and su�cient condition

for unique solvability as well as an explicit formula for the solution in case of

uniqueness.

The results of Section 2 are applied in the subsequent sections to special cases.

In Section 3 we discuss nonnegative solutions for RIEP(n) over the �eld IR of real

numbers. We also introduce a nonrecursive su�cient condition for the existence
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of a nonnegative solution for RIEP(n). Uniqueness of nonnegative solutions for

RIEP(n) is discussed in Section 4. In Section 5 we study Z-matrix andM -matrix

solutions for RIEP(n) over IR. In Section 6 we consider real symmetric solutions

for RIEP(n) over IR. In Section 7 we consider positive semide�nite real symmetric

solutions for RIEP(n) over IR. In Section 8 we combine the results of the previous

two sections to obtain analogous results for Stieltjes matrices. Finally, in Section

9 we investigate inverse M -matrix solutions for RIEP(n).

2 Existence and uniqueness results

In this section we study the existence and uniqueness of solutions for RIEP(n) in

the general case. For this purpose we introduce some further notation. For the

vectors l

i

; r

i

we set

~

l

i

=

2

6

6

4

l

i;1

.

.

.

l

i;i�1

3

7

7

5

; ~r

i

=

2

6

6

4

r

1;i

.

.

.

r

i�1;i

3

7

7

5

:

The case n = 1 is easy to verify.

Proposition 1 If l

1;1

= r

1;1

= 0 then every 1 � 1 matrix A solves RIEP(1). If

either l

1;1

6= 0 or r

1;1

6= 0 then A = [s

1

] is the unique solution for RIEP(1).

For n � 2 we have the following recursive characterization of the solution for

RIEP(n).

Theorem 2 Let n � 2. There exists a solution for RIEP(n) if and only if there

exists a solution B for RIEP(n-1) such that

l

n;n

= 0 =)

~

l

T

n

B = s

n

~

l

T

n

; (1)

and

r

n;n

= 0 =) B~r

n

= s

n

~r

n

: (2)

There exists a unique solution for RIEP(n) if and only if there exists a unique

solution for RIEP(n-1) and l

n;n

r

n;n

6= 0.

Proof. Let A be an n� n matrix. Partition A as

A =

"

B y

x

T

z

#

; (3)

where B is an (n-1) � (n-1) matrix. Clearly, A solves RIEP(n) if and only if B

solves RIEP(n-1) and

(s

n

I

n�1

� B)~r

n

= r

n;n

y; (4)

~

l

T

n

(s

n

I

n�1

� B) = l

n;n

x

T

; (5)

x

T

~r

n

+ zr

n;n

= s

n

r

n;n

; (6)

~

l

T

n

y + zl

n;n

= s

n

l

n;n

: (7)
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It thus follows that there exists a solution for RIEP(n) if and only if there exists

a solution B for RIEP(n-1) such that the equations (4){(7) (with unknown x, y

and z) are solvable. We now show that these equations are solvable if and only

if (1) and (2) hold. Distinguish between four cases:

1. r

n;n

= 0; l

n;n

6= 0. Here (4) is equivalent to (2), (5) is equivalent to

x

T

=

~

l

T

n

(s

n

I

n�1

�B)

l

n;n

; (8)

and (6) then follows from (4). For every y 2 F

n�1

we can �nd z 2 F such

that (7) holds.

2. l

n;n

= 0; r

n;n

6= 0. Here (5) is equivalent to (1), (4) is equivalent to

y =

(s

n

I

n�1

� B)~r

n

r

n;n

; (9)

and (7) then follows from (5). For every x 2 F

n�1

we can �nd z 2 F such

that (6) holds.

3. l

n;n

= r

n;n

= 0. Here (4) is equivalent to (2) and (5) is equivalent to (1).

For any x 2 F

n�1

with x

T

~r

n

= 0 we have (6), and for any y 2 F

n�1

with

~

l

T

n

y = 0 we have (7), where z can be chosen arbitrarily.

4. l

n;n

6= 0; r

n;n

6= 0. Here (4){(7) have a unique solution, given by (8), (9)

and

z = s

n

�

~

l

T

n

(s

n

I

n�1

� B)~r

n

l

n;n

r

n;n

: (10)

It follows that (4){(7) are solvable if and only if (1) and (2) hold.

To prove the uniqueness assertion, note that it follows from our proof that if

either l

n;n

= 0 or r

n;n

= 0 then a solution is not unique, since at least one of the

vectors x, y and z can be chosen arbitrarily. If both l

n;n

6= 0 and r

n;n

6= 0 then

every solution B for RIEP(n-1) de�nes a unique solution A for RIEP(n). The

uniqueness claim follows.

This result is recursive and allows to derive a recursive algorithm to compute

the solution, but we do not get explicit nonrecursive conditions that characterize

the existence of solutions. In order to get a necessary and su�cient condition

for unique solvability as well as an explicit formula for the solution in case of

uniqueness, we de�ne the n � n matrix R

n

to be the matrix whose columns are

r

1

; : : : ; r

n

with zeros appended at the bottom to obtain n-vectors. Similarly, we
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de�ne the n� n matrix L

n

to be the matrix whose rows are l

1

; : : : ; l

n

with zeros

appended at the right to obtain n-vectors. That is, we have

L

n

=

2

6

6

6

6

4

l

1;1

l

2;1

l

2;2

.

.

.

.

.

.

l

n;1

� � � l

n;n�1

l

n;n

3

7

7

7

7

5

; R

n

=

2

6

6

6

6

6

4

r

1;1

r

1;2

� � � r

1;n

r

2;2

.

.

.

.

.

.

r

n�1;n

r

n;n

3

7

7

7

7

7

5

: (11)

We denote

S

n

=

2

6

6

6

6

6

6

6

4

s

1

s

2

s

3

� � � s

n

s

2

s

2

s

3

� � � s

n

s

3

s

3

s

3

� � � s

n

.

.

.

.

.

.

s

n

s

n

� � � � � � s

n

3

7

7

7

7

7

7

7

5

: (12)

Also, we denote by � the Hadamard (or elementwise) product of matrices.

Proposition 3 A solution A for RIEP(n) satis�es

L

n

AR

n

= S

n

� (L

n

R

n

): (13)

Proof. We prove our claim by induction on n. For n = 1 the claim follows easily.

Assume that the assertion holds for n < k and let n = k. Partition A as in (3).

We have

L

n

AR

n

=

"

L

n�1

0

~

l

T

n

l

n;n

# "

B y

x

T

z

# "

R

n�1

~r

n

0 r

n;n

#

=

2

6

4

L

n�1

BR

n�1

L

n�1

(B~r

n

+ r

n;n

y)

(

~

l

T

n

B + l

n;n

x

T

)R

n�1

(

~

l

T

n

B + l

n;n

x

T

)~r

n

+ (

~

l

T

n

y + l

n;n

z)r

n;n

3

7

5

:

By the inductive assumption we have L

n�1

BR

n�1

= S

n�1

� (L

n�1

R

n�1

). Also, by

(4) we have B~r

n

+ r

n;n

y = s

n

~r

n

, by (5) we have

~

l

T

n

B + l

n;n

x

T

= s

n

~

l

T

n

, and by (7)

we have

~

l

T

n

y + l

n;n

z = s

n

l

n;n

. It thus follows that

L

n

AR

n

=

2

6

4

S

n�1

� (L

n�1

R

n�1

) s

n

L

n�1

~r

n

s

n

~

l

T

n

R

n�1

s

n

(

~

l

T

n

~r

n

+ l

n;n

r

n;n

)

3

7

5

= S

n

� (L

n

R

n

):

In general, the converse of Proposition 3 does not hold, that is, a matrix A satis-

fying (13) does not necessarily form a solution for RIEP(n), as is demonstrated

by Example 5 below.

Theorem 4 There is a unique solution for RIEP(n) if and only if

l

1;1

6= 0 or r

1;1

6= 0
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and

l

i;i

r

i;i

6= 0; i = 1; : : : ; n:

Furthermore, the unique solution is given by

A = L

�1

n

[S

n

� (L

n

R

n

)]R

�1

n

: (14)

Proof. The uniqueness claim follows from Proposition 1 and Theorem 2. The

fact that the unique solution for RIEP(n) is given by (14) follows immediately

from Proposition 3.

In the case that the solution is not unique, that is, whenever l

1;1

= r

1;1

= 0

or whenever l

i;i

or r

i;i

vanish for some i > 1, the matrices L

n

and R

n

de�ned

in (11) are not invertible. Therefore, in this case (14) is invalid. We conclude

this section by an example showing that, in general, a revised form of (14), with

inverses replaced by generalized inverses, does not provide a solution for RIEP(n).

Example 5 Let

s

1

= 1; s

2

= 2; s

3

= 3;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

0

0

#

; l

3

= r

3

=

2

6

4

0

1

1

3

7

5

:

We have

L =

2

6

4

1 0 0

0 0 0

0 1 1

3

7

5

; R = L

T

; S =

2

6

4

1 2 3

2 2 3

3 3 3

3

7

5

:

Let L

+

and R

+

be the Moore-Penrose inverses of L and R respectively, see [1].

We have

A = L

+

[S � (LR)]R

+

=

2

6

4

1 0 0

0 1:5 1:5

0 1:5 1:5

3

7

5

:

Since Ah2i does not have an eigenvalue 2, A is not a solution for RIEP(3). Note

that we still have L

n

AR

n

= S

n

� (L

n

R

n

).

In this section we have characterized solvability of RIEP(n) over a general �eld

F in terms of recursive conditions. We have also given a necessary and su�cient

condition for unique solvability and an explicit formula for the unique solution. In

the following sections we shall discuss the special cases of nonnegative matrices,

Z-matrices, M -matrices, real symmetric matrices, positive semide�nite matrices,

Stieltjes matrices and inverse M -matrices.
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3 Existence of nonnegative solutions

In this section we apply the results of Section 2 to nonnegative solutions for

RIEP(n) over the �eld IR of real numbers. A matrix A 2 IR

n;n

is said to be

nonnegative [positive] if all elements of A are nonnegative [positive]. In this case

we write A � 0 [A > 0]. For matrices A;B 2 IR

n;n

we write A � B if A�B � 0

and A > B if A� B > 0.

In order to state our results we de�ne a vector over IR to be unisign if its nonzero

components have the same sign.

Theorem 6 Let n � 2. There exists a nonnegative solution for RIEP(n) if and

only if we have

l

i

or r

i

is a unisign nonzero vector =) s

i

� 0; i = 1; : : : ; n; (15)

and there exists a nonnegative solution B for RIEP(n-1) satisfying

8

>

<

>

:

s

n

~r

n

r

n;n

�

B~r

n

r

n;n

; r

n;n

6= 0

s

n

~r

n

= B~r

n

; r

n;n

= 0

; (16)

8

>

>

<

>

>

:

~

l

T

n

s

n

l

n;n

�

~

l

T

n

B

l

n;n

; l

n;n

6= 0

~

l

T

n

s

n

=

~

l

T

n

B; l

n;n

= 0

; (17)

and

l

n;n

r

n;n

6= 0 =) s

n

(

~

l

T

n

~r

n

l

n;n

r

n;n

� 1) �

~

l

T

n

B~r

n

l

n;n

r

n;n

: (18)

There exists a positive solution for RIEP(n) if and only if there exists a positive

solution B for RIEP(n-1) such that (15){(18) hold with strict inequalities and

every nonzero unisign vector l

i

or r

i

has no zero components.

Proof. Let A 2 IR

n;n

. As in the proof of Theorem 2, partition A as in (3), and so

A solves RIEP(n) if and only if B solves RIEP(n-1) and (4){(7) hold. Therefore,

if A is a nonnegative solution for RIEP(n) then we have (16){(18). Also, it follows

from the nonnegativity of A that (15) holds. Conversely, assume that (15) holds

and that B forms a nonnegative solution for RIEP(n-1) satisfying (16){(18). We

show that in this case we can �nd nonnegative solutions x, y and z for (4){(7).

Distinguish between four cases:

1. r

n;n

= 0; l

n;n

6= 0. Here x is given by (8), y can be chosen arbitrarily,

and z should be chosen such that (7) holds. It follows from (17) that x is

nonnegative. If s

n

� 0 then we choose y = 0, we have z = s

n

, and so we

have a nonnegative solution for (4){(7). If s

n

< 0 then, by (15), l

n

is not

6



unisign and hence

~

l

T

n

l

n;n

has at least one negative component. It follows that

we can �nd a positive vector y such that

~

l

T

n

y

l

n;n

< s

n

. Since by (7) we have

z = s

n

�

~

l

T

n

y

l

n;n

, it follows that z > 0, and so again we have a nonnegative

solution for (4){(7).

2. l

n;n

= 0; r

n;n

6= 0. Here y is given by (9), x can be chosen arbitrarily, and z

should be chosen such that (6) holds. The proof follows as in the previous

case.

3. l

n;n

= r

n;n

= 0. Here x and y should be chosen such that x

T

~r

n

=

~

l

T

n

y = 0

and z can be chosen arbitrarily. In order to obtain a nonnegative solution

we can choose x, y and z to be zero.

4. l

n;n

6= 0; r

n;n

6= 0. Here x is given by (8), y is given by (9), and z is given

by (10). It follows from (17), (16) and (18) that x, y and z are nonnegative.

Assume now that A is a positive solution for RIEP(n). It is easy to verify that in

this case (15){(18) should hold with strict inequalities. Also, for every nonzero

unisign vector l

i

[r

i

], the vector l

T

i

Ahii [Ahiir

i

] has no zero components, implying

that l

i

, [r

i

] has no zero components. Conversely, assume that (15) holds with a

strict inequality, that every nonzero unisign vector l

i

or r

i

has no zero components,

and that B forms a positive solution for RIEP(n-1) satisfying (16){(18) with strict

inequalities. We show that in this case we can �nd positive solutions x, y and z

for (4){(7). Note that in Case 1 above, the vector x now becomes positive. Also,

since the inequality in (15) is now strict, we have either s

n

> 0, in which case

we can choose positive y su�ciently small such that z is positive, or s

n

� 0, in

which case y can be chosen positive as before and the resulting z is positive. The

same arguments hold for Case 2. In Case 4, it follows from the strict inequalities

(17){(18) that x, y and z are positive. Finally, in Case 3, since l

n

and r

n

both

have at least one zero component, it follows that both vectors are not unisign.

Hence, we can �nd positive x and y such that x

T

~r

n

=

~

l

T

n

y = 0. We assign any

positive number to z to �nd a positive solution A for RIEP(n).

By the Perron-Frobenius theory, see e.g. [8, 2], the largest absolute value �(A)

of an eigenvalue of a nonnegative n � n matrix A is itself an eigenvalue of A,

the so called Perron root of A, and it has an associated nonnegative eigenvector.

Furthermore, if A is irreducible, that is, if either n = 1 or n � 2 and there

exists no permutation matrix P such that P

T

AP =

"

B C

0 D

#

where B and D

are square, then �(A) is a simple eigenvalue of A with an associated positive

eigenvector. If A is not necessarily irreducible then we have the following, see

e.g. [2].

7



Theorem 7 If B is a principal submatrix of a nonnegative square matrix A

then �(B) � �(A). Furthermore, �(A) is an eigenvalue of some proper principal

submatrix of A if and only if A is reducible.

Note that if we require that the s

i

are the Perron roots of the principal submatrices

Ahii, i = 1; : : : ; n, then, by Theorem 7, we have

0 � s

1

� s

2

� : : : � s

n

: (19)

If, furthermore, all the leading principal submatrices of A are required to be

irreducible, then

0 � s

1

< s

2

< : : : < s

n

: (20)

Condition (19) is not su�cient to guarantee that a nonnegative solution A for

RIEP(n) necessarily has s

1

; : : : ; s

n

as Perron roots of Ahii, i = 1; : : : ; n, as is

demonstrated by the following example.

Example 8 Let

s

1

= s

2

= 1; s

3

= 2;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

1

0

#

; l

3

= r

3

=

2

6

4

1

0

1

3

7

5

:

The nonnegative matrix

2

6

4

1 0 1

0 3 0

1 0 1

3

7

5

solves RIEP(3). Note that �(A) = 3 > s

3

.

In order to see cases in which s

1

; : : : ; s

n

are the Perron roots of Ahii, i = 1; : : : ; n,

respectively, we prove

Proposition 9 If the vector l

n

or r

n

is positive then for a nonnegative solution

A for RIEP(n) we have �(A) = s

n

.

Proof. The claim follows immediately from the known fact that a positive eigen-

vector of a nonnegative matrix corresponds to the spectral radius, see e.g. The-

orem 2.1.11 in [2, p. 128].

Corollary 10 If for every i 2 f1; : : : ; ng we have either l

i

> 0 or r

i

> 0 then for

every nonnegative solution A for RIEP(n) we have �(Ahii) = s

i

, i = 1; : : : ; n.

Lemma 11 Assume that there exists a nonnegative solution A for RIEP(n) such

that �(Ahn-1i) < s

n

. If r

n

6= 0 or l

n

6= 0 then �(A) = s

n

.

8



Proof. Since r

n

6= 0 or l

n

6= 0 it follows that s

n

is an eigenvalue of A. Assume that

s

n

6= �(A). It follows that the nonnegative matrix A has at least two eigenvalues

larger than or equal to s

n

. By [6, p. 473], see also [10, Corollary 1], it follows

that �(Ahn-1i) � s

n

, which is a contradiction. Therefore, we have s

n

= �(A).

Corollary 12 If for every i 2 f1; : : : ; ng we have either r

i

6= 0 or l

i

6= 0, and if

(20) holds then for every nonnegative solution A for RIEP(n) we have �(Ahii) =

s

i

, i = 1; : : : ; n.

Proof. Note that Ah1i) = [s

1

] and so �(Ah1i) = s

1

. Our result follows using

Lemma 11 repeatedly.

Lemma 13 Assume that r

n

� 0 and r

n;n

6= 0 or that l

n

� 0 and l

n;n

6=

0. Then for every nonnegative solution A for RIEP(n) we have �(A) =

max f�(Ahn-1i); s

n

g.

Proof. Without loss of generality, we consider the case where r

n

� 0 and r

n;n

6= 0.

If r

n

is positive then, by Proposition 9, we have �(A) = s

n

and, since by the

Perron-Frobenius theory we have �(Ahn-1i) � �(A), the result follows. Other-

wise, r

n

has some zero components. Let � be the set of indices i such that r

i;n

> 0

and let �

c

be the complement of � in f1; : : : ; ng. Note that since r

n

is a nonnega-

tive eigenvector of the nonnegative matrix A it follows that the submatrix A[�

c

j�]

of A, with rows indexed by �

c

and columns indexed by �, is a zero matrix. It fol-

lows that A is a reducible matrix and �(A) = max f�(A[�

c

j�

c

]); �(A[�j�])g. Note

that the subvector r

n

[�] of r

n

indexed by � is a positive eigenvector of A[�j�]

associated with the eigenvalue s

n

. It thus follows that �(A[�j�]) = s

n

. Since

n 2 � it follows that A[�

c

j�

c

] is a submatrix of Ahn-1i. Thus, by the Perron-

Frobenius theory we have �(A[�

c

j�

c

]) � �(Ahn-1i) � �(A). Hence, it follows that

�(A) = max fs

n�1

; s

n

g.

Corollary 14 Assume that for every i 2 f1; : : : ; ng we have either r

i

� 0 and

r

i;i

6= 0 or l

i

� 0 and l

i;i

6= 0. Then for every nonnegative solution A for RIEP(n)

we have �(Ahii) = max

j=1;:::;i

fs

j

g.

Proof. Note that Ah1i) = [s

1

] and so �(Ah1i) = s

1

. Our result follows using

Lemma 13 repeatedly.

Corollary 15 Assume that for every i 2 f1; : : : ; ng, we have either r

i

� 0 and

r

i;i

6= 0 or l

i

� 0 and l

i;i

6= 0. If (19) holds then for every nonnegative solution A

we have �(Ahii) = s

i

, i = 1; : : : ; n.

Another interesting consequence of Theorem 4 is the following relationship be-

tween the matrix elements and the eigenvectors associated with the Perron roots

of the leading principal submatrices of a nonnegative matrix.

9



Corollary 16 Let n � 2. Let A 2 IR

n;n

be a nonnegative matrix, let s

i

; l

i

and r

i

be the Perron roots and associated left and right eigenvectors of Ahii, i = 1; : : : ; n,

respectively, and assume that (20) holds. Let S

n

; L

n

; R

n

be de�ned as in (11) and

(12). Then

Ahii = L

�1

i

[S

i

� (L

i

R

i

)]R

�1

i

; i = 1; : : : ; n: (21)

Proof. Since (20) holds, it follows that s

i

is not an eigenvalue of Ahi-1i, i =

2; : : : ; n. Therefore, it follows from (1) and (2) that l

i;i

r

i;i

6= 0. Also, since l

1

and

r

1

are eigenvectors of Ah1i, we have l

1;1

r

1;1

6= 0. It now follows from Theorem 4

that Ahii is the unique solution for RIEP(i), and is given by (21).

While Theorem 6 provides a recursive characterization for nonnegative solvability

of RIEP(n), in general nonrecursive necessary and su�cient conditions for the

existence of nonnegative solution are not known. We now present a nonrecursive

su�cient condition.

Corollary 17 Assume that the vectors l

i

; r

i

; i = 1; : : : ; n are all positive and

that the numbers s

1

; : : : ; s

n

are all positive. Let

M

r

i

= max

j=1;:::;i�1

r

j;i

r

j;i�1

; m

r

i

= min

j=1;:::;i�1

r

j;i

r

j;i�1

;

M

l

i

= max

j=1;:::;i�1

l

i;j

l

i�1;j

; m

l

i

= min

j=1;:::;i�1

l

i;j

l

i�1;j

:

If we have

s

i

m

r

i

� s

i�1

M

r

i

; i = 2; : : : ; n; (22)

s

i

m

l

i

� s

i�1

M

l

i

; i = 2; : : : ; n; (23)

and

s

i

(

~

l

T

i

~r

i

� l

i;i

r

i;i

) � s

i�1

max

n

m

r

i

~

l

T

i

r

i�1

; m

l

i

l

T

i�1

~r

i

o

; i = 2; : : : ; n; (24)

then there exists a (unique) nonnegative solution A for RIEP(n).

Furthermore, if all the inequalities (22)-(24) hold with strict inequality then there

exists a (unique) positive solution A for RIEP(n).

Proof. We prove our assertion by induction on n. The case n = 1 is trivial. By

the inductive assumption we can �nd a nonnegative solution B for RIEP(n-1).

Note that

M

r

n

r

n�1

� ~r

n

� m

r

n

r

n�1

: (25)

Therefore, it follows from (22) that

s

n

~r

n

� s

n

m

r

n

r

n�1

� s

n�1

M

r

n

r

n�1

= M

r

n

Br

n�1

� B~r

n

;

and so (16) holds. Similarly we prove that (17) holds. To prove that

(18) holds note that by (25) we have B~r

n

� Bm

r

n

r

n�1

= s

n�1

m

r

n

r

n�1

.

10



Similarly, we have

~

l

T

n

B � s

n�1

m

l

n

l

T

n�1

. Hence, it follows that

~

l

T

n

B~r

n

�

s

n�1

max

n

m

r

n

~

l

T

n

r

n�1

; m

l

n

l

T

n�1

~r

n

o

. By (24) applied to i = n we obtain (18). By

Theorem 6, there exists a nonnegative solution for RIEP(n). The proof of the

positive case is similar.

The conditions in Corollary 17 are not necessary as is demonstrated by the fol-

lowing example.

Example 18 Let s

1

= 1; s

2

= 2; s

3

= 3 and let

r

1

= l

1

=

h

1

i

; r

2

= l

2

=

"

1

1

#

; r

3

=

2

6

4

3

5

1

3

7

5

; l

3

=

2

6

4

2

1

3

3

7

5

:

We have m

r

3

= 3, M

r

3

= 5, m

l

3

= 1 and M

l

3

= 2. Note that both (22) and

(23) do not hold for i = 3. Nevertheless, the unique solution for RIEP(3) is the

nonnegative matrix

2

6

4

1 1 1

1 1 7

1 0 0

3

7

5

:

4 Uniqueness of nonnegative solutions

When considering uniqueness of nonnegative solutions for RIEP(n), observe that

it is possible that RIEP(n) does not have a unique solution but does have a unique

nonnegative solution, as is demonstrated by the following example.

Example 19 Let

s

1

= s

2

= 0;

and let

l

1

= r

1

=

h

1

i

; l

2

=

"

1

0

#

; r

2

=

"

1

1

#

:

By Theorem 2, there is no unique solution for RIEP(2). Indeed, the solutions for

RIEP(2) are all matrices of the form

"

0 0

a �a

#

:

Clearly, the zero matrix is the only nonnegative solution for RIEP(2).

Observe that, unlike in Theorem 2, the existence of a unique nonnegative solution

for RIEP(n) does not necessarily imply the existence of a unique nonnegative

solution for RIEP(n-1), as is demonstrated by the following example.
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Example 20 Let

s

1

= s

2

= 0; s

3

= 2;

and let

l

1

= r

1

=

h

1

i

; l

2

=

"

1

0

#

; r

2

=

"

1

�1

#

; l

3

= r

3

=

2

6

4

1

1

1

3

7

5

:

Observe that all matrices of the form

"

0 0

a a

#

solve RIEP(2), and hence there is no unique nonnegative solution for RIEP(2).

However, the only nonnegative solution for RIEP(3) is the matrix

2

6

4

0 0 2

1 1 0

1 1 0

3

7

5

:

We remark that one can easily produce a similar example with nonnegative vec-

tors r

i

and l

i

, i = 1; : : : ; n.

In order to introduce necessary conditions and su�cient conditions for uniqueness

of nonnegative solutions for RIEP(n) we prove

Lemma 21 Let n � 2, and assume that B forms a nonnegative solution for

RIEP(n-1) satisfying (15){(18). Then there exist unique nonnegative vectors x,

y and z such that the matrix

"

B y

x

T

z

#

solves RIEP(n) if and only if either

l

n;n

r

n;n

6= 0, or s

n

= 0 and l

n

is a unisign vector with no zero components, or

s

n

= 0 and r

n

is a unisign vector with no zero components.

Proof. We follow the proof of Theorem 6. Consider the four cases in that proof.

In Case 1, the vector x is uniquely determined and any nonnegative assignment

for y is valid as long as z = s

n

�

~

l

T

n

y

l

n;n

� 0. If s

n

> 0 then every nonnegative vector

y su�ciently small will do. If s

n

< 0 then, as is shown in the proof of Theorem 6,

we can �nd a positive y such that z > 0, and by continuity arguments there exist

in�nitely many such vectors y. If s

n

= 0 then a unique such y exists if and only

if there exists a unique nonnegative vector y such that

~

l

T

n

y

l

n;n

� 0. Clearly, if

~

l

n

has

a nonpositive component then every vector y whose corresponding component

is positive and all other components are zero solves the problem. On the other

hand, if

~

l

n

> 0, which is equivalent to saying that l

n

is a unisign vector with no

zero components, then the only nonnegative vector y that solves the problem is

y = 0. Similarly, we prove that, in case 2, a unique nonnegative solution exists

12



if and only if s

n

= 0 and r

n

is a unisign vector with no zero components. We

do not have uniqueness in Case 3 since then z can be chosen arbitrarily. Finally,

there is always uniqueness in Case 4.

Lemma 21 yields su�cient conditions and necessary conditions for uniqueness

of nonnegative solutions for RIEP(n). First, observe that if s

n

= 0 and l

n

is a

unisign vector with no zero components, or if s

n

= 0 and r

n

is a unisign vector

with no zero components, then the zero matrix is the only nonnegative solution

of the problem. A less trivial su�cient condition is the following.

Corollary 22 Let n � 2, and let A be a nonnegative solution for RIEP(n). If

Ahn-1i forms a unique nonnegative solution for RIEP(n-1) and if l

n;n

r

n;n

6= 0,

then A is the unique nonnegative solution for RIEP(n).

Necessary conditions are given by the following

Corollary 23 Let n � 2. If there exists a unique nonnegative solution for

RIEP(n) then either l

n;n

r

n;n

6= 0, or s

n

= 0 and l

n

is a unisign vector with no

zero components, or s

n

= 0 and r

n

is a unisign vector with no zero components.

The condition l

n;n

r

n;n

6= 0 is not su�cient for the uniqueness of a nonnegative

solution for RIEP(n), as is shown in the following example.

Example 24 Let

s

1

= s

2

= s

3

= 0;

and let

l

1

= r

1

=

h

1

i

; l

2

=

"

1

0

#

; r

2

=

"

1

�1

#

; l

3

= r

3

=

2

6

4

1

�1

1

3

7

5

:

Although we have l

n;n

r

n;n

6= 0, all matrices of the form

2

6

4

0 0 0

a a 0

a a 0

3

7

5

solve RIEP(3), and hence there is no unique nonnegative solution for RIEP(3).

5 The Z-matrix and M-matrix case

A real square matrix A is said to be a Z-matrix if it has nonpositive o�-diagonal

elements. Note that A can be written as A = �I � B where � is a real number

and B is a nonnegative matrix. If we further have that � � �(B) then we say

that A is an M-matrix.
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In this section we discuss Z-matrix and M -matrix solutions for RIEP(n) over the

�eld IR of real numbers. The proofs of the results are very similar to the proofs

of the corresponding results in Sections 3 and 4 and, thus, are omitted in most

cases.

Theorem 25 Let n � 2. There exists a Z-matrix solution for RIEP(n) if and

only if there exists a Z-matrix solution B for RIEP(n-1) satisfying

8

>

<

>

:

s

n

~r

n

r

n;n

�

B~r

n

r

n;n

; r

n;n

6= 0

s

n

~r

n

= B~r

n

; r

n;n

= 0

;

and

8

>

>

<

>

>

:

~

l

T

n

s

n

l

n;n

�

~

l

T

n

B

l

n;n

; l

n;n

6= 0

~

l

T

n

s

n

=

~

l

T

n

B; l

n;n

= 0

:

Furthermore, if l

n

or r

n

is positive then a Z-matrix solution for RIEP(n) is an

M-matrix if and only if s

n

� 0.

Proof. The proof of the �rst part of the theorem is similar to the proof of Theorem

6, observing that here the vectors x and y are required to be nonnegative and that

the sign of z is immaterial. The proof of the second part of the Theorem follows,

similarly to Proposition 9, from the known fact that a positive eigenvector of a

Z-matrix corresponds to the least real eigenvalue.

Theorem 26 Let n � 2. Let A 2 IR

n;n

be a Z-matrix, let s

i

; l

i

and r

i

be the

least real eigenvalues and the corresponding left and right eigenvectors of Ahii,

i = 1; : : : ; n, respectively, and assume that

s

1

> s

2

> : : : > s

n

:

Let S

n

; L

n

; R

n

be de�ned as in (11) and (12). Then

Ahii = L

�1

i

[S

i

� (L

i

R

i

)]R

�1

i

; i = 1; : : : ; n:

For the numbers M

r

i

, m

r

i

, M

l

i

and m

l

i

, de�ned in Corollary 17, we have

Theorem 27 Assume that the vectors l

i

; r

i

; i = 1; : : : ; n are all positive and

that the numbers s

1

; : : : ; s

n

are all positive. If we have

s

i

M

r

i

� s

i�1

m

r

i

; i = 2; : : : ; n

and

s

i

M

l

i

� s

i�1

m

l

i

; i = 2; : : : ; n;

then there exists a (unique) M-matrix solution A for RIEP(n).
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Theorem 28 Let n � 2, let A be a Z-matrix solution for RIEP(n) and assume

that Ahn-1i forms a unique Z-matrix solution for RIEP(n-1). Then A is the

unique Z-matrix solution for RIEP(n) if and only if l

n;n

r

n;n

6= 0.

Here too, unlike in Theorem 2, the existence of a unique Z-matrix solution for

RIEP(n) does not necessarily imply the existence of a unique Z-matrix solution

for RIEP(n-1), as is demonstrated by the following example.

Example 29 Let s

1

= s

2

= s

3

= 0, and let

l

1

= r

1

=

h

1

i

; l

2

=

"

1

0

#

; r

2

=

"

1

1

#

; l

3

= r

3

=

2

6

4

1

1

1

3

7

5

:

Observe that all matrices of the form

"

0 0

a �a

#

solve RIEP(2), and hence there is no unique Z-matrix solution for RIEP(2).

However, it is easy to verify that the zero matrix is the only Z-matrix solution

for RIEP(3).

6 The real symmetric case

The inverse eigenvalue problem for real symmetric matrices is well studied, see

e.g. [3]. In this section we consider symmetric solutions for RIEP(n) over the

�eld IR of real numbers. We obtain the following consequence of Theorem 2,

characterizing the real symmetric case.

Theorem 30 Let n � 2. There exists a symmetric solution for RIEP(n) if

and only if there exists a symmetric solution B for RIEP(n-1) such that the

implications (1) and (2) hold, and

l

n;n

r

n;n

6= 0 =) (s

n

I

n�1

� B) (

~

l

n

l

n;n

�

~r

n

r

n;n

) = 0: (26)

Furthermore, if there exists a unique symmetric solution for RIEP(n) then l

n;n

6=

0 or r

n;n

6= 0.

Proof. Let A 2 IR

n;n

. Partition A as in (3), and so A solves RIEP(n) if and only

if B solves RIEP(n-1) and (4){(7) hold. It was shown in the proof of Theorem 2

that (4){(7) are solvable if and only if (1) and (2) hold. Therefore, all we have

to show that if B is symmetric then we can �nd solutions x, y and z for (4){(7)

such that y = x if and only if (26) holds. We go along the four cases discussed in
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Theorem 2. In Case 1, the vector x is uniquely determined and the vector y can

be chosen arbitrarily. Therefore, in this case we set y = x, and z is then uniquely

determined. In Case 2, the vector y is uniquely determined and the vector x can

be chosen arbitrarily. Thus, in this case we set x = y, and z is then uniquely

determined. In Case 3, we can choose any x and y as long as x

T

~r

n

= 0 and

~

l

T

n

y = 0. In particular, we can choose x = y = 0. Furthermore, z can be chosen

arbitrarily. Finally, in Case 4, we have x = y if and only if (26) holds. Note that

this is the only case in which, under the requirement that y = x, the vectors x,

y and z are uniquely determined.

We remark that, unlike in Theorem 2, the existence of a unique symmetric solu-

tion for RIEP(n) does not necessarily imply the existence of a unique symmetric

solution for RIEP(n-1), as is demonstrated by the following example.

Example 31 Let

s

1

= 1; s

2

= 2; s

3

= 0;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

1

1

#

; l

3

= r

3

=

2

6

4

1

�1

0

3

7

5

;

l

4

=

2

6

6

6

4

1

0

0

�1

3

7

7

7

5

; r

4

=

2

6

6

6

4

1

1

�1

�1

3

7

7

7

5

:

It is easy to verify that all symmetric matrices of the form

2

6

4

1 1 a

1 1 a

a a b

3

7

5

; a; b 2 IR

solve RIEP(3), while the unique solution for RIEP(4) is

2

6

6

6

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3

7

7

7

5

:

This example also shows that there may exist a unique solution for RIEP(n) even

if l

i;i

= r

i;i

= 0 for some i 2 1; : : : ; n.

Naturally, although not necessarily, one may expect in the symmetric case to

have the condition

r

i

= l

i

; i = 1; : : : ; n: (27)

Indeed, in this case we have the following corollary of Theorems 2 and 30.
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Corollary 32 Let n � 2 and assume that (27) holds. The following are equiva-

lent:

(i) There exists a symmetric solution for RIEP(n).

(ii) There exists a solution for RIEP(n).

(iii) There exists a symmetric solution B for RIEP(n-1) such that (1) holds.

(iv) There exists a solution B for RIEP(n-1) such that (1) holds.

Proof. Note that since (27) holds, we always have (26). We now prove the

equivalence between the four statements of the theorem.

(i) =) (ii) is trivial.

(ii) =) (iv) by Theorem 2.

(iv)=) (iii). Since (27) holds, it follows that

B+B

T

2

also solves RIEP(n-1).

(iii) =) (i). Since B is symmetric and since we have (27), the implications (1)

and (2) are identical. Our claim now follows by Theorem 30.

For uniqueness we have

Theorem 33 Let n � 2 and assume that (27) holds. The following are equiva-

lent:

(i) There exists a unique symmetric solution for RIEP(n).

(ii) There exists a unique solution for RIEP(n).

(iii) We have l

i;i

6= 0; i = 1; : : : ; n.

Proof. In view of (27), the equivalence of (ii) and (iii) follows from Theorem 4.

To see that (i) and (iii) are equivalent note that, by the construction in Theorem

30, for every symmetric solution B for RIEP(n-1) there exists a solution A for

RIEP(n) such that Ahn-1i = B. Furthermore, A is uniquely determined if and

only if l

n;n

6= 0. Therefore, it follows that there exists a unique symmetric solution

for RIEP(n) if and only if there exists a unique symmetric solution for RIEP(n-1)

and l

n;n

6= 0. Our assertion now follows by induction on n.

We conclude this section remarking that a similar discussion can be carried over

for complex Hermitian matrices.

7 The positive semide�nite case

In view of the discussion of the previous section, it would be interesting to �nd

conditions for the existence of a positive (semi)de�nite real symmetric solution

for RIEP(n). Clearly, a necessary condition is nonnegativity of the numbers s

i

whenever r

i

6= 0 or l

i

6= 0, i = 1; : : : ; n. Nevertheless, this condition is not

su�cient even if a real symmetric solution exists, as is demonstrated by the

following example.
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Example 34 Let

s

1

= 1; s

2

= 3; s

3

= 5;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

1

1

#

; l

3

= r

3

=

2

6

4

1

1

1

3

7

5

:

The unique solution for RIEP(3) is the symmetric matrix

2

6

4

1 2 2

2 1 2

2 2 1

3

7

5

;

which is not positive semide�nite.

The following necessary and su�cient condition follows immediately from Theo-

rem 4.

Theorem 35 Let n � 2 and assume that (27) holds. Assume, further, that r

i;i

6=

0; i = 1; : : : ; n. Then the unique solution for RIEP(n) is positive semide�nite

[positive de�nite] if and only if S

n

� (R

T

n

R

n

) is positive semide�nite [positive

de�nite].

Remark 36 By Theorem 33, in the case that r

i;i

= 0 for some i we do not have

uniqueness of symmetric solutions for RIEP(n). Hence, if there exists a symmetric

solution for RIEP(n) then there exist at least two di�erent such solutions A and

B. Note that A + c(B � A) also forms a symmetric solution for RIEP(n) for

every real number c. It thus follows that in this a case it is impossible to have

all solutions for RIEP(n) positive semide�nite. Therefore, in this case we are

looking for conditions for the existence of some positive semide�nite solution for

RIEP(n).

The following necessary condition follows immediately from Proposition 3.

Theorem 37 Let n � 2 and assume that (27) holds. If there exists a positive

semide�nite real symmetric solution for RIEP(n) then S

n

� (R

T

n

R

n

) is positive

semide�nite.

In order to �nd su�cient conditions for the existence of a positive semide�nite

solution for RIEP(n), we denote by �(A) the least eigenvalue of a real symmetric

matrix A.

Lemma 38 Let n � 2 and assume that (27) holds. Assume that there exists a

symmetric solution A for RIEP(n) such that �(Ahn-1i) > s

n

. If r

n

6= 0 then

�(A) = s

n

.

18



Proof. Since r

n

6= 0 it follows that s

n

is an eigenvalue of A. Assume that

�(A) 6= s

n

. It follows that A has at least two eigenvalues smaller than or equal to

s

n

. By the Cauchy Interlacing Theorem for Hermitian matrices, e.g. [8, Theorem

4.3.8, p. 185], it follows that �(Ahn-1i) � s

n

, which is a contradiction. Therefore,

we have �(A) = s

n

.

Corollary 39 Let n � 2 and assume that (27) holds. If r

i

6= 0 for all i, i =

1; : : : ; n, and if s

1

> s

2

> : : : > s

n

� 0 then every real symmetric solution A for

RIEP(n) is positive semide�nite. If s

n

> 0 then every real symmetric solution

for RIEP(n) is positive de�nite.

Proof. Note that Ah1i) = [s

1

] and so �(Ah1i) = s

1

. Using Lemma 38 repeatedly

we �nally obtain �(A) = s

n

, implying our claim.

Remark 40 In view of Remark 36, it follows from Corollary 39 that if r

i

6= 0

for all i and if s

1

> s

2

> : : : > s

n

� 0 then r

i;i

6= 0; i = 1; : : : ; n, and so RIEP(n)

has a unique (positive semide�nite) solution.

The converse of Corollary 39 is, in general, not true. That is, even if every real

symmetric solution for RIEP(n) is positive semide�nite we do not necessarily

have s

1

> s

2

> : : : > s

n

� 0, as is demonstrated by the following example.

Example 41 Let

s

1

= 2; s

2

= 3;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

1

1

#

:

The unique solution for RIEP(3) is the positive de�nite matrix

A =

"

2 1

1 2

#

:

Nevertheless, we do not have s

1

� s

2

.

We conclude this section with a conjecture motivated by Theorems 35 and 37.

One direction of the conjecture is proven in Theorem 37.

Conjecture 42 Let n � 2 and assume that (27) holds. Then there exists a

positive semide�nite [positive de�nite] real symmetric solution for RIEP(n) if

and only if S

n

� (R

T

n

R

n

) is positive semide�nite [positive de�nite].
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8 The Stieltjes matrix case

In this section we combine the results of the previous two sections to obtain

analogous results for Stieltjes matrices, that is, symmetric M -matrices.

The following theorem follows immediately from Theorems 30 and 25.

Theorem 43 Let n � 2. There exists a symmetric Z-matrix solution for

RIEP(n) if and only if there exists a symmetric Z-matrix solution B for

RIEP(n-1) satisfying

8

>

<

>

:

s

n

~r

n

r

n;n

�

B~r

n

r

n;n

; r

n;n

6= 0

s

n

~r

n

= B~r

n

; r

n;n

= 0

;

8

>

>

<

>

>

:

~

l

T

n

s

n

l

n;n

�

~

l

T

n

B

l

n;n

; l

n;n

6= 0

~

l

T

n

s

n

=

~

l

T

n

B; l

n;n

= 0

;

and

l

n;n

r

n;n

6= 0 =) (s

n

I

n�1

� B) (

~

l

n

l

n;n

�

~r

n

r

n;n

) = 0:

Furthermore, if l

n

or r

n

is positive then a symmetric Z-matrix solution for

RIEP(n) is a Stieltjes matrix if and only if s

n

� 0.

Corollary 44 Let n � 2, and assume that the vectors l

i

, i = 1; : : : ; n are all

positive and that (27) holds. There exists a symmetric Z-matrix solution A

for RIEP(n) if and only if there exists a symmetric Z-matrix solution B for

RIEP(n-1) satisfying s

n

~r

n

� B~r

n

. The solution A is a Stieltjes matrix if and

only if s

n

� 0.

The following nonrecursive su�cient condition from Theorem 27.

Theorem 45 Let n � 2, and assume that the vectors l

i

, i = 1; : : : ; n are all

positive, that (27) holds, and that the numbers s

1

; : : : ; s

n

are all positive. If we

have

s

i

M

r

i

� s

i�1

m

r

i

; i = 2; : : : ; n

then there exists a (unique) Stieltjes matrix solution A for RIEP(n).

Proof. By Theorem 27 there exists a unique M -matrix solution A for RIEP(n).

Since A

T

also solves the problem, it follows that A = A

T

and the result follows.
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9 The inverse M-matrix case

It is well known that for a nonsingular M -matrix A we have A

�1

� 0. Accord-

ingly, a nonnegative matrix A is called inverse M-matrix if it is invertible and

A

�1

is an M -matrix. An overview of characterizations of nonnegative matrices

that are inverse M -matrices can be found in [9].In this section we discuss, as a

�nal special case, inverse M -matrix solutions for RIEP(n).

The following theorem follows immediately from two results of [9].

Theorem 46 Let A 2 IR

n;n

be partitioned as in (3). Then A is an inverse M-

matrix if and only if B is an inverse M-matrix and

v = B

�1

y � 0; (28)

u

T

= x

T

B

�1

� 0; (29)

s = z � u

T

Bv > 0; (30)

and

vu

T

� �sB

�1

; except for the diagonal entries: (31)

Proof. By Corollary 3 in [9], if A is an inverse M -matrix then B is an inverse

M -matrix. By Theorem 8 in [9], if B is an inverse M -matrix then A is an inverse

M -matrix if and only if (28){(31) hold. Our claim follows.

The next result gives necessary and su�cient recursive conditions for the existence

of an inverse M -matrix solution for RIEP(n).

Theorem 47 Let n � 2. There exists an inverseM-matrix solution for RIEP(n)

if and only if s

n

> 0 and there exists an inverse M-matrix solution B for

RIEP(n-1) satisfying

8

>

<

>

:

N~r

n

r

n;n

� 0; r

n;n

6= 0

N ~r

n

= 0; r

n;n

= 0

; (32)

8

>

>

<

>

>

:

~

l

T

n

N

l

n;n

� 0; l

n;n

6= 0

~

l

T

n

N = 0; l

n;n

= 0

; (33)

l

n;n

r

n;n

6= 0 =)

~

l

T

n

N ~r

n

l

n;n

r

n;n

< 1; (34)

and, except for the diagonal entries,

l

n;n

r

n;n

6= 0 =) s

n

 

~

l

T

n

N ~r

n

l

n;n

r

n;n

� 1

!

B

�1

�

N ~r

n

~

l

T

n

N

l

n;n

r

n;n

; (35)

where N = s

n

B

�1

� I

n�1

.
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Proof. As in the proof of Theorem 2, partition A as in (3). If A is an inverse M -

matrix solution for RIEP(n) then, as is well known, its eigenvalues lie in the open

right half plane, and so the real eigenvalue s

n

must be positive. Furthermore,

by Theorem 46, B is an inverse M -matrix and (28){(31) hold. Finally, we have

(4){(7). Distinguish between four cases:

1. r

n;n

= 0; l

n;n

6= 0. Here x is given by (8), and so it follows from (29) that

~

l

T

n

N

l

n;n

� 0. By Theorem 2 we have B~r

n

= s

n

~r

n

, implying that N ~r

n

= 0.

2. l

n;n

= 0; r

n;n

6= 0. Here y is given by (9), and so it follows from (28) that

N~r

n

r

n;n

� 0. By Theorem 2 we have

~

l

T

n

N = 0.

3. l

n;n

= r

n;n

= 0. Similarly to the previous cases prove that N ~r

n

= 0 and

~

l

T

n

N = 0.

4. l

n;n

6= 0; r

n;n

6= 0. Here x is given by (8), y is given by (9), and z is given

by (10). It follows from (28) that

N~r

n

r

n;n

� 0, and from (29) that

~

l

T

n

N

l

n;n

� 0. It

follows from (30) that

s = z � u

T

Bv

= s

n

�

~

l

T

n

(s

n

I

n�1

�B)~r

n

l

n;n

r

n;n

�

~

l

T

n

(s

n

I

n�1

� B)

l

n;n

B

�1

BB

�1

(s

n

I

n�1

� B)~r

n

r

n;n

= s

n

 

1�

~

l

T

n

N ~r

n

l

n;n

r

n;n

!

> 0:

Since s

n

> 0, it now follows that

~

l

T

n

N~r

n

l

n;n

r

n;n

< 1. Finally, it follows from (31)

that, except for the diagonal entries,

N ~r

n

~

l

T

n

N

l

n;n

r

n;n

= B

�1

(s

n

I

n�1

� B)~r

n

r

n;n

~

l

T

n

(s

n

I

n�1

� B)

l

n;n

B

�1

= vu

T

� �sB

�1

= s

n

 

~

l

T

n

N ~r

n

l

n;n

r

n;n

� 1

!

B

�1

:

We have thus proven that if A is an inverse M -matrix solution for RIEP(n)

then s

n

> 0 and B is an inverse M -matrix solution B for RIEP(n-1) satisfying

(32){(35).

Conversely, assume that s

n

> 0 and B is an inverse M -matrix solution B for

RIEP(n-1) satisfying (32){(35). We show that x, y and z can be chosen such

that (28){(31) hold, and so by Theorem 46, A is an inverse M -matrix. Here too

we distinguish between four cases:
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1. r

n;n

= 0; l

n;n

6= 0. Here x is given by (8), and by (33) we obtain (29). Note

that y can be chosen arbitrarily, and and z should be chosen such that (7)

holds. If we choose y = 0 then we obtain (28) and z = s

n

. It follows that

z � u

T

Bv = s

n

> 0, and so we also have (30). Finally, since v = 0, since

s > 0 and since B

�1

is an M -matrix, it follows that (31) holds (except for

the diagonal entries).

2. l

n;n

= 0; r

n;n

6= 0. Here y is given by (9), and by (32) we obtain (28). The

vector x can be chosen arbitrarily, so we choose x = 0. The proof follows

as in the previous case.

3. l

n;n

= r

n;n

= 0. Here x and y should be chosen such that x

T

~r

n

=

~

l

T

n

y = 0

and z can be chosen arbitrarily. We choose x = y = 0 and the proof follows.

4. l

n;n

6= 0; r

n;n

6= 0. Here x is given by (8), y is given by (9), and z is given

by (10). By (32) and (33) we obtain (28) and (29) respectively. Finally,

similarly to the corresponding case in the proof of the other direction, (34)

implies (30) and (35) implies (31).

Note that Conditions (32){(33) imply immediately Conditions (16){(17) by mul-

tiplying the inequality by the nonnegative matrix B. This is not surprising, since

an inverse M -matrix is a nonnegative matrix. The converse, however, does not

hold in general. The following example shows that although (16){(17) is satis�ed,

(32){(33) do not hold.

Example 48 Let

s

1

= 2; s

2

= 5:2361; s

3

= 21:2552;

and let

l

1

= r

1

=

h

1

i

; l

2

= r

2

=

"

0:5257

0:8507

#

; l

3

= r

3

=

2

6

4

0:1349

0:3859

0:9126

3

7

5

:

The unique solution for RIEP(3) is the nonnegative matrix

A =

2

6

4

2 2 2

2 4 7

2 7 18

3

7

5

which is not an inverse M -matrix since

A

�1

=

2

6

4

1:6429 �1:5714 0:4286

�1:5714 2:2857 �0:7143

0:4286 �0:7143 0:2857

3

7

5

:
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Indeed, the unique nonnegative solution B =

"

2 2

2 4

#

for RIEP(2) satis�es (16),

as

s

3

~r

3

=

"

2:8673

8:2024

#

�

"

1:0416

1:8134

#

= B~r

3

:

However, B does not satisfy (32), since the vector

N ~r

3

= (s

3

B

�1

� I

2

)~r

3

=

"

�1:3688

2:2816

#

is not nonnegative.
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