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Abstract

We consider the problem of cooling milled steel pro�les at a maximum

rate subject to given bounds on the di�erence of temperatures in prescribed

points of the steel pro�le. This leads to a nonlinear parabolic control

problem with state constraint in a 2D domain. A method of instantaneous

control is applied to set up a fast solution technique.
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1 Introduction

The selective cooling of steel pro�les is an important part of the production

process in steel mills. Intelligent future strategies aim to combine a reduction of

temperature in the rolled pro�le with an equalization of its interior temperature

distribution. An accelerated optimal cooling will reduce the amount of investment

in cooling sections. Moreover, it is able to stabilize the interior structure of

the steel during phase transitions. Reducing the temperature in the pro�le as

uniformly as possible leads to a higher quality of the steel.

We believe that the intuition of engineers alone is not able to control this

process. The mathematical tools of optimal control theory will be helpful to �nd

optimal cooling strategies.

We have reported on this issue in a number of mathematical papers, for

instance in Krengel et.al. [4] and Lezius and Tr�oltzsch [6], where a method
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of feasible direction was developed to solve the optimal control problem. The

numerical tests con�rmed the stability and reliability of the method. However,

the computing time was high.

A very similar problem was discussed by Landl and Engl [5] for a slightly

di�erent technical background. In contrast to our setting, where the intensity

of cooling of spray nozzles can be chosen continuously, in [5] the intensity is

controlled by switching on and o� the nozzles.

The rolled steel pro�les vary in form and size. Therefore, optimization is

needed for a great variety of cases. Corresponding software tools have to deliver

the solution in a short time to allow an interactive work of the engineer. A fast

solution is also needed for an online-control of the cooling process.

In this paper, we report on a fast numerical method to �nd good subopti-

mal cooling strategies. In accordance with [4] and [6], the aim of the process is

to reduce the temperature at a maximum rate subject to bounds on the tem-

perature di�erences occuring in the steel pro�le. The method presented here is

considerably faster than our technique discussed in [4], [6]. We follow an idea of

instantaneous control introduced by Hinze and Kunisch [3]. One might expect

that this suboptimal strategy is on the expense of accuracy. However, fortunately

enough, our suboptimal results exhibit a remarkable coincidence with those ob-

tained in [4].

2 The optimal control problem

A cooling line consists of a certain number of cooling segments, where water is

sprayed on the surface of the hot steel pro�le. Each cooling segment is followed

by a zone of air cooling equalizing the developed temperature di�erences. The

basic scheme is shown in Figure 1.
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Figure 1: Scheme of a cooling section
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In the cooling segments, a certain �xed number of spray nozzles is located

in groups around the pro�le. There can be a sequence of groups in each cooling

segment. To explain the mathematical model, let us regard one �xed cross section


 � IR

2

of the steel pro�le. We follow its run through the whole cooling line. This

causes an internal time scheme for the reference domain 
. The cross section 


enters the �rst nozzle group of the �rst cooling segment at time t

0

= 0. Now the

surface is sprayed on by the p nozzles of the �rst nozzle group. After leaving this

group, 
 reaches the second one at time t

1

. (Note that there is a small di�erence

to the notation in [4]. In [4], t

1

denotes the time for passing the �rst cooling

segment.) After r steps, 
 has passed the �rst cooling segment. Now an area of

air cooling follows. At time t

s

the next cooling segment is entered. Finally, the

cross section reaches the end of the last air cooling area at time t

K

= T , where

the pro�le has passed M zones of water or air cooling.

To shorten the presentation, we rely on the following simpli�cations: All

cooling segments contain the same number r of nozzle groups with the same

number p of nozzles. The time for passing any single nozzle group is equal along

the whole cooling line. Moreover, the lengths of all cooling segments and air

cooling areas are assumed to be equal. Therefore, the time to pass an arbitrary

segment is constant. These restrictions are not necessary for the computational

technique to work. We adopt them only here to simplify the notation. The

resulting discretization of the internal time is given by

0 = t

0

< t

1

< � � � < t

r

= rt

1

< � � � < t

s

= 2t

r

< � � � < t

K

=Mt

r

= T: (1)

The heat conduction in axial direction is dominated by the heat exchange in


. Moreover, the steel pro�les are very long, so that we can view them to be

endless. This justi�es to neglect the heat conduction in axial direction and to

regard a 2D heat equation in our reference domain 
. Related to this and to

the real technical situation, we can assume that the intensity of any single spray

nozzle is constant i.e. stationary with respect to the (outer) time.

We associate to each nozzle one part of the boundary � = @
 standing for

its zone of inuence. This leads to a partition of � into disjoint subdomains

�

i

, i = 1; : : : ; p. Denote by u

ki

the cooling intensity of nozzle i in the group k,

k = 1; : : : ; rM; i = 1; : : : ; p. Notice that this numbering covers some "phantom"

nozzles in the air cooling areas. The numbers u

ki

will be our control variables.

In the model we assume that the constraints 0 � u

ki

� 1 are imposed for all k

and i. The value 0 stands for an inactive nozzle, while 1 characterizes a nozzle

spraying with maximal intensity.

Adopting these notations, the mathematical model for the evolution of the

temperature admits the following form, which is equivalent to the model intro-

duced in [4]: The temperature # in the pro�le is obtained from the nonlinear heat
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conduction problem

c(#)�(#) #

t

= div (�(#) grad #) in Q;

�(#) @

n

# =

P

i;k

u

ki

�(�

ki

) �(�; #)(#

fl

� #) in �;

#(0; x) = #

0

(x) in 
;

(2)

where Q = (0; T )�
, � = (0; T )��, �

ki

= (t

k�1

; t

k

)��

i

, and �(�

ki

) is the char-

acteristic function of �

ki

. In this setting, #

t

and @

n

# denote the derivatives @#=@t

and @#=@n with respect to the time and the outer normal n at �, respectively.

Moreover, the following quantities are used:

� # = #(t; x) denotes the temperature at t 2 [0; T ] and x 2 
. T stands

for the �xed terminal time. 
 is a two{dimensional domain, and #

fl

is the

temperature of the cooling uid.

� u

ki

2 IR are the control variables mentioned above. Outside the cooling

segments the controls u

ki

are taken zero to model heat isolation in the

areas of air cooling. This is expressed by the characteristic function �(�

ki

)

in the boundary condition of (2).

� The coe�cients c, �, and � are functions of # denoting heat capacity, speci�c

gravity, and heat conductivity, respectively. The function � = �(x; #)

models the heat exchange coe�cient.

� Our cooling process starts with the entrance temperature #

0

= #

0

(x).

The coe�cients c; �; � do not have appropriate properties of smoothness and

monotonicity to show the unique solvability of the heat conduction problem.

Moreover, the modelling of material changes during the subsequent heating and

cooling of the steel is still partially open. The form (2) of the heat equation seems

to give only an approximate picture of the temperature changes. Therefore, we

do not discuss the question of existence and uniqueness of a solution to (2).

Moreover, our computational method will mainly work with linearized versions.

For these problems, the existence of a unique solution corresponding to a given

vector of controls u = (u

ki

) is clear.

The restrictions on the control variables u

ki

are given by

0 � u

ki

� u

k

; (3)

k = 1; : : : ; rM; i = 1; : : : ; p, where u

k

= 0 for k = (2j � 1)r; : : : ; 2jr with

j = 1; : : : ;M=2 (air cooling) and u

k

= 1 otherwise (cooling segment).

The main aim of the cooling process is to reduce the temperature in the

domain. Certainly, this can be expressed in various ways. In our model, the
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temperature should be reduced in a selection of points P

n

2 
, n = 1; :::; N ,

which characterize the hottest regions. In this way, the objective F is de�ned by

the linear functional

F (#) =

N

X

n=1

a

n

#(T; P

n

) (4)

with some positive weighting constants a

n

.

In the model developed so far, most likely full intensity of all spray nozzles is

optimal. However, this strategy is certainly wrong, since very large temperature

di�erences would develop in 
. This would amount to a low quality of steel and

possibly lead to large deformations of the pro�le. Therefore, we include a �nite

number of pointwise state constraints in the optimal control problem to bound

the temperature di�erences in 
. Following [4], these constraints are given by

j#(t; R

�

)� #(t; Q

�

)j � �

��

; � = 1; ::; N

R

; � = 1; ::; N

Q

: (5)

In this setting, R

�

and Q

�

denote points from the closure of 
. For instance,

the minimization points R

�

:= P

�

can be chosen together with some comparison

points Q

�

. The situation of our test example is indicated in Figure 2, where

the points P

�

and Q

�

are numbered as follows: Q

1

coincides with the origin.

Following the boundary of the domain in mathematical positive sense, the next

points are Q

2

,...,Q

9

, P

3

; P

2

; P

1

. In this way, Q

9

is located at the top, and P

1

is

the lowest among the P

i

.
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Figure 2: Points of Minimization and of Comparison

Now the de�nition of the control problem is complete. A more detailed mo-

tivation can be found, for instance, in [4], [6]. We refer also to these papers for
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details of the numerical solution of the nonlinear parabolic initial{boundary value

problem (2) by a �nite-element-multigrid method. Moreover, we shall compare

our fast optimization technique to obtain suboptimal controls with the more pre-

cise method used in these papers. Let us briey recall for convenience the main

ideas characterizing the optimization technique of [4], [6].

3 Iterative solution of the optimal control prob-

lem

The optimal control problem is di�cult in several respects. The state equation is

nonlinear, pointwise constraints on the state are given along with constraints on

the controls, and the domain 
 has a curved boundary. Besides the fact that the

theory of optimal control problems for nonlinear distributed parameter systems

with state-constraints is still far from being complete, the numerical solution

is complicated. Readers interested in optimality conditions of �rst and second

order for associated semilinear optimal control problems with state constraints

are referred to Casas [1], Raymond and Zidani [8], Goldberg and Tr�oltzsch [2],

and Raymond and Tr�oltzsch [7].

Solving the heat equation by a su�ciently precise �nite element multigrid

method, a huge number of state variables appears in the discretized optimal

control problem. Due to the use of multiple grids, we are not able to set up a

�xed discretized version of the control problem, which might be solved as a �nite-

dimensional nonlinear optimization problem by available solvers. Moreover, even

if we could do so, the size of the problem might exceed the storage capacity.

These remarks have outlined the main di�culties. However, compared with

more academic problems discussed in literature, the technical circumstances of

the cooling section show an essential advantage: The number of control variables

is very low in comparison with the huge number of state variables. Therefore,

we decided to use a direct method, where the controls appear as optimization

variables, while the state equation is solved only for a certain number of basis

controls. In [4], [6] we developed an iterative method of feasible direction. This

algorithm proceeds as follows (below, the control u stands for the vector (u

ki

) of

control variables):

1. Choose an admissible starting control vector u

0

and compute the associated

state #

0

, put n = 0. Determine the active state constraints.

2. Linearize the state equation at #

n

and u

n

, solve it for each standard basis

vector of controls. Then the state associated to an arbitrary admissible

control can be obtained by superposition.
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3. Express the state in the linearized optimal control problem as a linear image

of the standard basis vectors using the results of step 2. Solve the associated

linear optimization problem with respect to u by the Simplex method. Only

active restrictions are considered in the optimization. The result is a new

direction of descent ~u.

4. Put u

n+1

= u

n

+(~u�u

n

) and perform a line search with respect to  while

considering all state constraints. De�ne n = n+ 1 and go to 2.

This method of feasible direction is of gradient type. Computational tests

have shown a quite robust behaviour. We stopped the iteration when the change

of the controls was su�ciently small. The convergence rate is quite low. This

is the characteristic behaviour of gradient methods. Moreover, the computing

time to perform one step of the iteration was very high as well. Notice that in

step 2 linear partial di�erential equations are to be solved for each basis vector.

Moreover, we have to solve some nonlinear equations arising from the line search.

On the other hand, the model of heat conduction includes functions which

are known only approximately. Especially, the heat exchange function � has

to be estimated by a few number of experiments. Recall that we consider the

special form of the boundary condition in the heat equation only as a working

hypothesis. The whole model contains a number of uncertainties so that it is

meaningless to require an extreme accuracy of the optimization technique. It is

su�cient to determine a good suboptimal control. The main result of this paper

is a very fast and surprisingly exact suboptimal strategy.

4 Suboptimal strategy

In this section we develop the idea of instantaneous control according to Hinze

and Kunisch [3] to derive the fast suboptimal solution technique. We apply the

following simpli�cations to accelerate the optimization procedure:

The �rst simpli�cation is to linearize the state equation during certain intervals

of time. Nevertheless, the resulting optimal control problem is still nonlinear. The

point is the nonlinear coupling of state and control in the boundary condition.

Therefore, we introduce the heat ux v := � @

n

# on the boundary as a new

control vector. After having determined the optimal heat ux, we derive an

associated original control u by some heuristic formula. Notice that the heat ux

has to be nonpositive during a cooling process.

Remark: This approach makes the optimization independent from the working

hypothesis on the form of the boundary condition.

Another idea is to shorten the time horizon for minimizing the objective func-
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tional. This is the core of the instantaneous control technique. In the original

formulation of the control problem, we have to achieve the minimal temperature

at the �nal time T . Now we reduce the time horizon to certain small time inter-

vals. The controls associated to the short interval under consideration are chosen

to minimize the objective functional at the end of the time interval. In this way,

we compute the (sub)optimal solution with respect to a short time horizon re-

gardless of its inuence on future times. As a byproduct of linearization, we shall

have to solve the state equation only on the associated short time intervals.

Next we shall explain the idea of instantaneous control in more detail. Let

k 2 f1; :::; Kg be one �xed index standing for a nozzle group. The associated

time interval [t

k�1

; t

k

] is divided in r

c

computational intervals I

kl

of length � =

(t

k

� t

k�1

)=r

c

, I

kl

= [t

k�1

+ (l� 1) �; t

k�1

+ l � ], l = 1; :::; r

c

. We require constant

heat uxes on I

kl

and denote them by v

kli

, i = 1; :::; p. The situation is shown in

Figure 3.

�

~
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~

t

E

l

1 2

r

c

t

k�1

t

k�1

+ (l � 1)� t

k�1

+ l� t

k

Figure 3: Partition of [t

k�1

; t

k

]

Suppose that the optimization process has already been performed for the

nozzle groups 1; :::; k � 1, that is up to the time t

k�1

. Let #

k�1

:= #(t

k�1

; x)

denote the temperature distribution obtained at time t

k�1

. Freeze the coe�cients

of the heat equation at #

k�1

,

c = c(x) := c(#

k�1

(x)); � = �(x) := �(#

k�1

(x)); � = �(x) := �(#

k�1

(x));

on the whole time interval (t

k�1

; t

k

]. Here we solve a �nite sequence of linear

optimization problems (P

kl

) associated to the small subintervals I

kl

, l = 1; :::; r

c

:

Having k � 1 �xed, regard now the partition of [t

k�1

; t

k

] for l = 1; :::; r

c

.

Assume that the optimization has already delivered the solution up to the subin-

terval I

k(l�1)

and regard the next subinterval I

kl

. Denote by #

I

k(l�1)

the initial

temperature computed at the time

~

t

0

:= t

k�1

+(l� 1)� (we put #

k0

:= #

k�1

) and

solve the following optimal control problem up to the time

~

t

E

:= t

k�1

+ l� :
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(P

kl

) Minimize

F (#(

~

t

E

)) =

N

X

n=1

a

n

#(

~

t

E

; P

n

)

subject to the state equation

c(x)�(x) #

t

= div (�(x) grad #) in 


�(x) @

n

# =

p

P

i=1

v

i

�(�

i

) on �

#(

~

t

0

; x) = #

I

k(l�1)

(x) in 
;

(6)

t 2 (

~

t

0

;

~

t

E

], subject to the state constraints

j#(

~

t

E

; R

�

)� #(

~

t

E

; Q

�

)j � �

��

; (7)

� = 1; ::; N

R

; � = 1; ::; N

Q

, and to the restrictions on the control vector v = (v

i

)

q

kli

� v

i

� 0:

The choice of the bounds q

kli

will be explained later. Let us consider air cooling

areas as cooling segments to unify the notation. Here, the restriction u

ki

= 0

should imply q

kli

= 0. We assume this. Then the only admissible control vector

v = 0 is optimal in air-cooling areas. We denote the obtained optimal solution

by �v

i

; i = 1; :::; p and put v

kli

:= �v

i

; i = 1; :::; p, to keep the index kl underlying

the de�nition of (P

kl

).

The solution of the optimal control problems (P

kl

) is the core of our subop-

timal strategy. However, some further ideas are needed to make this strategy

work e�ectively. The following points are still open: We have to compute the

original control vector u = (u

ki

) from the knowledge of the heat uxes v

kli

, which

served as auxiliary variables. Further, the initial temperatures #

I

k(l�1)

(x) must

be computed in an appropriate way. In particular, we have to control the error

caused by the e�ects of linearization. The bounds q

kli

must be chosen.

Remark: The state constraints might be required at further instants of time.

We check them only at the times

~

t

E

. Owing to this, small violations of the state

constraints may occur inside the cooling areas.

(i) Computation of auxiliary controls u

kli

:

Given the optimal heat uxes v

kli

, we de�ne auxiliary controls u

kli

as follows:

Select some computational points x

i

2 �

i

. Take the mean value of

u

�

kli

= v

kli

=[�(#(

~

t

0

; x

i

))(#

fl

� #(

~

t

0

; x

i

))]

and

u

+

kli

= v

kli

=[�(#(

~

t

E

; x

i

))(#

fl

� #(

~

t

E

; x

i

))];
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that is

u

kli

=

u

+

kli

+ u

�

kli

2

: (8)

(ii) Computation of initial temperatures for I

k(l+1)

:

The initial temperature for the next optimization step can be determined on

two ways: Solve the heat equation up to time

~

t

E

using the linear or nonlinear

equation with boundary conditions of third kind inserting the computed controls

u

kli

. We preferred the nonlinear version. After having determined the auxiliary

controls u

kli

, we solve the nonlinear heat conduction problem

c(#)�(#) #

t

= div (�(#) grad #) in 


�(#) @

n

# =

p

P

i=1

u

kli

�(�

i

)�(�; #)(#

fl

� #) on �

#(

~

t

0

; x) = #

I

k(l�1)

(x) in 


(9)

on [

~

t

0

;

~

t

E

]. Then we put #

I

kl

(x) := #(

~

t

E

; x). In other words, updating of temper-

atures is performed nonlinearly, while the optimization is done linearly.

(iii) Choice of the bounds q

kli

:

The background to de�ne q

kli

is the relation

v

kli

� u

kli

�(x; #(t; x))(#

fl

� #(t; x)):

In view of this, inserting the upper bound 1 for u we de�ne

q

kli

= 1 � �(x

i

; #

I

k(l�1)

(x

i

))(#

fl

� #

I

k(l�1)

(x

i

)) (10)

as the lower bound for v

kli

.

(iv) De�nition of original controls:

The optimal control problems (P

kl

) are solved for k = 1; :::; K (outer loop)

and l = 1; :::; r

c

(inner loop). For each �xed index k, the problems (P

kl

) deliver

the solutions u

kli

, l = 1; :::; r

c

, i = 1; :::; p, on the time intervals I

kl

. Notice that,

according to the given technical construction, only one control vector u

k

= (u

ki

)

has to be de�ned on [t

k�1

; t

k

]. This is done by the following heuristic formula,

which turned out to be very useful:

u

ki

=

r

c

P

l=1

l u

kli

r

c

P

l=1

l

: (11)

This rule reects that a change in the �rst small intervals of time can be com-

pensated on the last intervals.
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(v) New initial temperature for [t

k

; t

k+1

]:

After having solved all subproblems (P

kl

), l = 1; :::; r

c

, we have determined

the suboptimal controls u

ki

according to (11). Moreover, the �nal temperature

#

I

kr

c

(x) was obtained. This is taken as the new initial temperature on [t

k

; t

k+1

],

that is #

k

(x) := #

I

kr

c

(x).

Alternatively, we might nonlinearly update # on [t

k�1

; t

k

] by solving the non-

linear heat conduction problem

c(#)�(#) #

t

= div (�(#) grad #) in 


�(#) @

n

# =

p

P

i=1

u

ki

�(�

i

)�(�; #)(#

fl

� #) on �

#(

~

t

0

; x) = #

k�1

(x) in 
;

(12)

t 2 [t

k�1

; t

k

]. Notice that here the control variables are constant on [t

k�1

; t

k

].

The the �nal temperature is taken as the initial temperature for the niext inter-

val of time. We did not follow this alternative approach, since it increases the

computational e�ort.

By (i){(v), the whole interval [t

k�1

; t

k

] is processed. Now we proceed with

the next interval [t

k

; t

k+1

]. In this way, we arrive after �nitely many steps at

the �nal time T . Obviously, this procedure requires the numerical solution of

many linear and nonlinear partial di�erential equations. On using the principle

of superposition, we are able to considerably reduce the associated numerical

e�ort. These details are explained in the next section.

5 Numerical implementation

In each nozzle group, the number of controls is very low in comparison with the

number of state variables arising from the �nite element discretization. In our test

example, we have p = 9 control variables per nozzle group (there are 16 nozzles

in each nozzle group (see Fig. 6), hence, by symmetry, the number of control

variables is 9 in each group). In contrast to this, the number of state variables

is some thousands. Therefore, in the optimization the state is eliminated by

computing the response to each standard basis vector for the control, obtained

from the linear equation: Regard, for k �xed, the interval [t

k�1

; t

k

]. For all

i = 1; :::; p, the response function #

ki

= #

ki

(t; x) is determined by

c(x)�(x) #

t

= div (�(x) grad #)

�(x) @

n

# = �(�

i

)

#(0; x) = 0

on the interval [0; � ]. These p systems have to be solved only once for the whole

interval [t

k�1

; t

k

]. On the small subintervals I

kl

= (t

k�1

+ (l� 1)�; t

k�1

+ l�), the

11



temperature # is given by superposition,

#(t; x) = #

I

(t; x) +

9

X

i=1

v

i

#

ki

(t� (l � 1)�; x):

Here, #

I

(t; x) is the �xed part, associated to the initial temperature and homo-

geneous boundary conditions. It is de�ned by

c(x)�(x) #

t

= div (�(x) grad #)

�(x) @

n

# = 0

#(0; x) = #

I

k(l�1)

(x):

The second part represents the contribution associated to the controls v

i

. Dur-

ing the optimization process, only the �xed part has to be updated from one

subinterval to the next one. Then the optimization problem on (t

k�1

; t

k

) reads

(P

kl

) Minimize

N

X

n=1

p

X

i=1

c

in

v

i

subject to

p

P

i=1

v

i

a

i��

� �

��

� b

��

�

p

P

i=1

v

i

a

i��

� �

��

+ b

��

q

i

� v

i

� 0;

i = 1; :::; p, where

c

in

= c

kin

= #

ki

(�; P

n

)

a

i��

= a

ki��

= #

ki

(�; R

�

)� #

ki

(�; Q

�

)

b

��

= b

kl��

= #

I

(

~

t

E

; R

�

)� #

I

(

~

t

E

; Q

�

):

The bounds q

i

= q

kli

are de�ned according to (10). This linear programming

problem is solved by the Simplex method. Its optimal solution �v = (�v

i

) is denoted

by v

kli

, i = 1; :::; p, to keep the index kl. Notice that the numbers c

in

; a

i��

have

to be computed only once on [t

k�1

; t

k

], while the b

��

and q

i

depend on l, hence

they must be updated on all subintervals.

During the computations we observed e�ects of ill-posedness for small values

of � close to the time step for solving the PDEs. This is quite natural: The

smaller the time intervals are, the more the associated control variables have

to change in order to achieve given changes in the objective. For instance, it

was observed that some controls were switching from 0:4 to 1:0 and reverse by

changing the discretization of time. To overcome this problem, instead of using

the original linear objective functional given above, we minimized the linearly

regularized objective

Min

N

X

n=1

p

X

i=1

c

in

v

i

+ "

p

X

i=1

v

i

12



subject to the constraints given above. This trick stabilized the computed optimal

controls.

6 Test example

One of our standard test examples is the cooling of rail pro�les. We consider the

domain shown in Figure 5 with a low level discretization as in [4], [6].

The concrete formulas for the coe�cients c; �; �; � are adopted from these pa-

pers. All other data were transmitted by the Mannesmann{Demag{Sack GmbH.

We restrict ourselves to the situation of [4]. That is, we consider 3 minimiza-

tion points P

n

on the axis of symmetry and take them as comparison points too,

that is R

�

:= P

�

. 9 points of comparison are chosen on the boundary. Their

location is shown in Figure 2. The temperature at these points is compared with

the temperature at the minimization points according to the table below.

Point compared with

P

1

Q

1

, Q

2

, Q

3

, Q

4

P

2

Q

4

, Q

5

, Q

6

,

P

3

Q

6

, Q

7

, Q

8

, Q

9

Table 1

In the test example, we regard a cooling line composed of one cooling segment

followed by one air cooling area both with length equivalent to 15 seconds. Hence

our cross section 
 passes the whole plant in 30 seconds. The cooling segment

contains two nozzle groups with 16 spray nozzles each, hence we have 9 control

variables (see Fig. 6). This leads to 18 = 2 � 9 controls acting for 7.5 seconds on

di�erent time intervals and on di�erent boundary parts. Following the notation

of Section 2 we have m = 2; r = 2; p = 9: This geometry is shown in Figure

4. According to the general setting, for t

1

we get the value 7:5 seconds.

t

0

t

1

t

2

t

3

t

4

Figure 4: Test geometry
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Altogether, this amounts to the following test problem (E):

min F (#) =

3

X

n=1

a

n

#(T; P

n

) (13)

subject to

c(#)�(#) #

t

= div (�(#) grad #)

�(#) @

n

# =

P

i;k

u

ki

�(�;�

i

) �(#)(#

fl

� #)

#(0; x) = #

0

(x);

(14)

to the control constraints

0 � u

ki

� 1; (15)

k = 1; 2; i = 1; :::; 9, (cooling segment), u

ki

= 0, k = 3; 4; i = 1; :::; 9 (air cooling

area), and subject to the state constraints

j#(t; P

�

)� #(t; Q

�

)j � �

��

; � = 1; ::; 3; � = 1; ::; 9; (16)

where T = 30 sec. For � we choose the values �

��

= 8000 K/m, if the point P

�

is

compared with the pointQ

�

according to Table 1, and �

��

=1 otherwise. In the

computations we omit the constraints with �

��

=1. The initial value is chosen

as in [4] assuming constant temperatures in 3 areas (see Figure 7). Furthermore,

we take the weights a

1

= a

3

= 3 and a

2

= 1.

Figure 5: The rail pro�le

All initial{boundary value problems are solved by a Finite{Element{Multigrid

method. In our test runs we worked with a time step of 0.75 seconds to solve

the PDE. Therefore, we splitted each nozzle group into 10 parts having just

this length � = 0:75 sec. Obviously, this is the smallest length we can use for

computational intervals in our case. In this way, we got the discretization of time

0 = t

0

< t

0

+ � < � � � < t

0

+ 10� = t

1

< � � � < t

1

+ 10� = t

2

< � � � < T; where

T = 30 sec and � = 0:75 sec.
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��

� �

�

� �



�

1

�

2

�

2

�

3

�

3

�

4

�

4

�

5

�

5

�

6

�

6

�

7

�

7

�

8

�

8

�

9

Figure 6: Partition of � in the test example

The partition of the boundary � into parts �

i

is roughly indicated in in Figure

6. For the exact geometry of the rail pro�le we refer to Figure 2.

r

c

1 5 10 Method of [4]

U

11

0.3514022539 0.3548936700 0.3573864999 0.3610145792

U

12

1.0000000000 0.7982166646 1.0000000000 0.9999999049

U

13

0.1180339489 0.5883117421 0.4627500743 0.5107195111

U

14

1.0000000000 1.0000000000 1.0000000000 0.9999999329

U

15

1.0000000000 1.0000000000 1.0000000000 0.9999999329

U

16

0.3364051190 0.3684791893 0.3767291736 0.3832198098

U

17

0.5629848913 0.6069457262 0.6123649023 0.6447118269

U

18

0.5729147026 0.6618403108 0.6862570122 0.7203573576

U

19

0.4343740406 0.4581822405 0.4542159879 0.4888807678

U

21

0.3987105180 0.4077419849 0.4134333565 0.4220563562

U

22

1.0000000000 0.8962207698 0.9275652482 0.9351645354

U

23

0.1143276949 0.0798967829 0.0361622628 0.0770257874

U

24

1.0000000000 0.9577281706 0.9777435953 0.9828339652

U

25

1.0000000000 1.0000000000 1.0000000000 0.9999999636

U

26

0.3780443899 0.3878292837 0.3865883499 0.3849542845

U

27

0.5813193676 0.5695296293 0.5656343761 0.5785801784

U

28

0.5164969503 0.4563890769 0.4494709676 0.4695547182

U

29

0.4373472766 0.4294842793 0.4282117893 0.4361204555

#(T; P

1

) 781.90893809 781.85488375 781.05464688 780.63044277

#(T; P

2

) 755.86971239 752.04789041 751.39936922 750.94385065

#(T; P

3

) 854.39305031 853.16742962 853.10581064 851.57897047

F (#) 5664.7756776 5657.1148305 5653.8807418 5647.5720904

CPU 208 sec 106 sec 100 sec 1200 sec / It.

Table 2
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By the fast suboptimal strategy, the solution is found in a very short time.

The precision of the solution is high, since its distance to the values obtained in

[4] is marginal. The only problem appeared through a slight violation of the state

constraints of (E) (see Table 3 below) The computational results for the values

1; 5; 10 for r

c

are presented in Table 2. The running time was about 2 minutes

on a workstation HP Apollo 9000.

Table 2 contains the computed controls and the corresponding values of the

cost functional together with the temperature in the minimization points. Our

suboptimal method was applied for di�erent numbers of computational intervals

to investigate the e�ect of their number. The results are compared with those

obtained by the algorithm of [4]. We should mention that the slow iterative

method of [4] was started at (suboptimal) controls computed by our method for

the largest number of computational intervals.

r

c

1 5 10 Method of [4]

P

1

- Q

1

-2.56118E+00 -1.63783E+00 -9.67414E-01 -1.13687E-13

- Q

2

-9.58682E+01 -3.75593E+01 -2.26110E+01 -1.29460E+01

- Q

3

-2.43844E+02 -1.31666E+02 -1.50822E+02 -1.38290E+02

- Q

4

-1.11360E+02 -3.15195E+01 -5.07416E+01 -4.24285E+01

P

2

- Q

4

-3.79290E+02 -3.01487E+02 -3.21196E+02 -3.13243E+02

- Q

5

-1.81762E+02 -1.83553E+02 -1.84000E+02 -1.84348E+02

- Q

6

-8.08778E+00 -2.50600E+00 -1.09858E+00 -1.11280E-06

P

3

- Q

6

-3.38536E+02 -3.30907E+02 -3.28975E+02 -3.27499E+02

- Q

7

-1.53978E+01 -6.99223E+00 -5.90062E+00 -4.31688E-05

- Q

8

-4.69785E+01 -1.87455E+01 -1.09860E+01 -1.24698E-05

- Q

9

-1.27621E+01 -7.16308E+00 -8.09808E+00 -5.97402E-05

P

1

- Q

1

-5.66073E+00 -3.55870E+00 -2.11783E+00 -2.07045E-08

- Q

2

-1.07907E+01 -1.66797E+01 -1.33992E+01 -8.75085E-07

- Q

3

-1.10811E+02 -1.02084E+02 -1.04131E+02 -9.02590E+01

- Q

4

-2.17857E+01 -1.23356E+01 -1.35620E+01 -2.37379E+00

P

2

- Q

4

-2.80656E+02 -2.74572E+02 -2.76319E+02 -2.65485E+02

- Q

5

-1.66177E+02 -1.69138E+02 -1.69717E+02 -1.70178E+02

- Q

6

-2.05602E+00 +3.01661E-01 +2.02876E-01 -3.41663E-07

P

3

- Q

6

-3.15813E+02 -3.10367E+02 -3.09730E+02 -3.09801E+02

- Q

7

-4.28177E+00 -3.52965E+00 -3.74898E+00 -3.18276E-06

- Q

8

-4.20196E+00 -1.18609E+01 -1.10468E+01 -3.55832E-06

- Q

9

-4.15795E+00 -4.06597E+00 -4.75800E+00 -3.43025E-05

Table 3

Table 2 illustrates a surprising precision of the suggested method. Moreover,

the last line shows an essential merit: One iteration by the method of [4] needs

a between �ve and ten times longer computational time than our whole method.

Further, after the �rst iterations the method of [4] still delivered a solution with

considerably larger value then that of our fast approximate solution. To get the
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"optimal" values in the last column of the table, the iterative method required

177 iteration steps. Hence we needed 2.5 days to get this slightly better result.

Altogether, accuracy and running time of the fast method of instantaneous control

are quite convincing. The values also show that computational intervals increase

the precision of our method while decreasing the computational time.

However, there appear small problems with the state constraints as shown

in Table 3. We list the di�erences #(t

s

; P

�

)� #(t

s

; Q

�

) � �

��

dist(P

�

; Q

�

). The

di�erences indicate satis�ed constraints by negative values. Violated constraint

have positive values. In other words, the di�erences measure the level of strict

satisfaction of the state constraints. Table 3 shows one violated state constraint

measuring the di�erence of the temperatures in P

2

and Q

6

. The level of violation

is low (0:3

o

C at most). In our opinion, this is su�ciently small to accept the

computed control. Nevertheless, one should carefully observe this problem in

more complicated situations.

Finally , we present the plots of the distribution of temperature for the initial

and the end time for controls computed with the largest number 10 of computa-

tional intervals.

 438.0 -  450.8
 450.8 -  463.6
 463.6 -  476.4
 476.4 -  489.2
 489.2 -  502.0
 502.0 -  514.8
 514.8 -  527.6
 527.6 -  540.4
 540.4 -  553.2
 553.2 -  566.0
 566.0 -  578.8
 578.8 -  591.6
 591.6 -  604.4
 604.4 -  617.2
 617.2 -  630.0
 630.0 -  642.8
 642.8 -  655.6
 655.6 -  668.4
 668.4 -  681.2
 681.2 -  694.0
 694.0 -  706.8
 706.8 -  719.6
 719.6 -  732.4
 732.4 -  745.2
 745.2 -  758.0
 758.0 -  770.8
 770.8 -  783.6
 783.6 -  796.4
 796.4 -  809.2
 809.2 -  822.0
 822.0 -  834.8
 834.8 -  847.6
 847.6 -  860.4
 860.4 -  873.2
 873.2 -  886.0
 886.0 -  898.8
 898.8 -  911.6
 911.6 -  924.4
 924.4 -  937.2
 937.2 -  950.0

Figure 7: Initial distribution of temperature
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 450.8 -  463.6
 463.6 -  476.4
 476.4 -  489.2
 489.2 -  502.0
 502.0 -  514.8
 514.8 -  527.6
 527.6 -  540.4
 540.4 -  553.2
 553.2 -  566.0
 566.0 -  578.8
 578.8 -  591.6
 591.6 -  604.4
 604.4 -  617.2
 617.2 -  630.0
 630.0 -  642.8
 642.8 -  655.6
 655.6 -  668.4
 668.4 -  681.2
 681.2 -  694.0
 694.0 -  706.8
 706.8 -  719.6
 719.6 -  732.4
 732.4 -  745.2
 745.2 -  758.0
 758.0 -  770.8
 770.8 -  783.6
 783.6 -  796.4
 796.4 -  809.2
 809.2 -  822.0
 822.0 -  834.8
 834.8 -  847.6
 847.6 -  860.4
 860.4 -  873.2
 873.2 -  886.0
 886.0 -  898.8
 898.8 -  911.6
 911.6 -  924.4
 924.4 -  937.2
 937.2 -  950.0

Figure 8: Final temperature distribution

The method presented in the paper should be a useful tool to obtain a �rst

impression on the possibilities of selective cooling. Our experience shows that the

computed suboptimal controls are good approximations for the optimal ones. If

their accuracy cannot be accepted in some cases, then they will provide at least

a very good initial value for the iteration scheme of [4] reducing the associated

computing time drastically.
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