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Abstrat. We study the thermoeletri transport properties in the three-dimensional Anderson model of

loalization near the metal-insulator transition (MIT). In partiular, we investigate the dependene of the

thermoeletri power S, the thermal ondutivityK, and the Lorenz number L

0

on temperature T . We �rst

alulate the T dependene of the hemial potential � from the number density n of eletrons at the MIT

using an averaged density of states obtained by diagonalization. Without any additional approximation,

we determine from �(T ) the behavior of S, K and L

0

at low T as the MIT is approahed. We �nd that �

and K derease to zero at the MIT as T ! 0 and show that S does not diverge. Both S and L

0

beome

temperature independent at the MIT and depend only on the ritial behavior of the ondutivity.

PACS. 61.43.-j Disordered solids { 71.30.+h Metal-insulator transitions & other eletroni transitions {

72.15.Cz Eletrial and thermal ondution in amorphous & liquid metals & alloys

1 Introdution

The Anderson-type metal-insulator transition (MIT) has

been the subjet of investigation for deades sine An-

derson formulated the problem in 1958 [1℄. He proposed

that inreasing the strength of a random potential in a

three-dimensional (3D) lattie may ause an \absene of

di�usion" for the eletrons. Today, it is widely aepted

that near this exlusively-disorder-indued MIT the d. .

ondutivity � behaves as jE�E



j

�

, where E



is the rit-

ial energy or the mobility edge at whih the MIT o-

urs, and � is a universal ritial exponent [2℄. Numeri-

al studies based on the Anderson Hamiltonian of loal-

ization have supported this senario with muh evidene

[2{6℄. In measurements of � near the MIT in semion-

dutors and amorphous alloys this behavior was also ob-

served with varying values of � ranging from 0:5{1:3 [7{9℄.

It is urrently believed that these di�erent exponents are

aused by interations in the system [10℄. Indeed, an MIT

may be indued not only by disorder but also by intera-

tions suh as eletron-eletron and eletron-phonon inter-

ations, among others [11℄. Nevertheless, the experimental

on�rmation of the ritial behavior of � allows the use of

the Anderson model as an approximate desription of the

transition between the insulating and the metalli states

in disordered systems.

Besides for the ondutivity �, experimental investiga-

tions an also be done for thermoeletri transport prop-

erties suh as the thermoeletri power S [8,12,13℄, the

thermal ondutivity K and the Lorenz number L

0

. The

a

e-mail: villagonzalo�physik.tu-hemnitz.de

behavior of these quantities at low temperature T in dis-

ordered systems lose to the MIT has so far not been sat-

isfatorily explained. In partiular, some authors have ar-

gued that S diverges [12,14℄ or that it remains onstant

[15,16℄ as the MIT is approahed from the metalli side.

In addition, jSj at the MIT has been predited [16℄ to

be of the order of � 200�V/K. On the other hand, mea-

surements of S lose to the MIT onduted on semion-

dutors for T � 1K [13℄ and on amorphous alloys in the

range 5K� T � 350K [8℄ yield values of the order of 0.1-

1�V/K. They also showed that S an either be negative

or positive depending on the donor onentration in semi-

ondutors or the hemial omposition of the alloy. The

large di�erene between the theoretial and experimental

values is still not resolved.

The objetive of this paper is to study the behavior of

the thermoeletri transport properties for the Anderson

model of loalization in disordered systems near the MIT

at low T . We larify the above mentioned di�erene in the

theoretial alulations for S, by showing that the radius

of onvergene for the Sommerfeld expansion used in Refs.

[14,15℄ is zero at the MIT. We show that S is a �nite

onstant at the MIT as argued in Refs. [15,16℄. Besides

for S, we also ompute the T dependene for �, K, and

L

0

. Our approah is neither restrited to a low- or high-T

expansion as in Refs. [14,15℄, nor on�ned to the ritial

regime as in Ref. [16℄.

We shall �rst introdue the model in Se. 2. Then in

Ses. 3 and 4 we review the thermoeletri transport prop-

erties in the framework of linear response and the present

formulations in alulating them. In Se. 5 we shall show

how to alulate the T dependene of these properties.
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Fig. 1. The density of states of a 3D Anderson model, averaged

over many disorder realizations withW = 12. The solid vertial

lines at �E



and E



denote the mobility edges.

Results of these alulations are then presented in Se. 6.

Lastly, in Se. 7 we disuss the relevane of our study to

the experiments.

2 The Anderson model of loalization

The Anderson model [1℄ is desribed by the Hamiltonian

H =

X

i

�

i

jiihij+

X

i 6=j

t

ij

jiihjj (1)

where �

i

is the potential energy at the site i of a regular

ubi lattie and is assumed to be randomly distributed

in the range [�W=2;W=2℄ throughout this work. The hop-

ping parameters t

ij

are restrited to nearest neighbors. For

this system, at strong enough disorder and in the absene

of a magneti �eld, the one-partile wavefuntions beome

exponentially loalized at T = 0 and � vanishes [2℄. Illus-

trating this, we refer to Fig. 1 where we show the density

of states �(E) obtained by diagonalizing the Hamiltonian

(1) with the Lanzos method as in Ref. [17,18℄. The states

in the band tails with energy jEj > E



are loalized within

�nite regions of spae in the system at T = 0 [2℄. When

the Fermi energy E

F

is within these tails at T = 0 the

system is insulating. Otherwise, if jE

F

j < E



the system

is metalli. The ritial behavior of � is given by

�(E) =

(

�

0

�

�

�

1�

E

E



�

�

�

�

; jEj � E



;

0; jEj > E



;

(2)

where �

0

is a onstant and � is the ondutivity exponent

[2℄. Thus, E



is alled the mobility edge sine it sepa-

rates loalized from extended states. At the ritial dis-

order W



= 16:5, the mobility edge ours at E



= 0,

all states with jEj > 0 are loalized [3,4℄ and states with

E = 0 are multifratal [3,17℄. The value of � has been

omputed from the non-linear sigma-model [19℄, transfer-

matrix methods [2,6℄, Green funtions methods [2℄, and

energy-level statistis [5,20℄. Here we have hosen � = 1:3,

whih is in agreement with experimental results in Si:P [9℄

and the numerial data of Ref. [5℄. More reent numeri-

al results [2,6℄, omputed with higher auray, suggest
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Fig. 2. In an open iruit, a temperature gradient rT indues

an eletri �eld E in the opposite diretion whih opposes the

thermal ow of eletrons.

that � = 1:5� 0:1. As we shall show later, this di�erene

only slightly modi�es our results. We emphasize that the

Hamiltonian (1) only inorporates the eletroni degrees

of freedom of a disordered system and further exitations

suh as lattie vibrations are not inluded.

For omparison with the experimental results, we mea-

sure � in Eq. (2) in units of 


�1

m

�1

. We �x the energy

sale by setting t

ij

= 1 eV. Hene the band width of Fig.

1 is omparable to the band width of amorphous alloys

[21℄. Furthermore, the experimental investigations of the

thermoeletri power S in amorphous alloys [8℄ have been

done at high eletron �lling [22℄ and thus we will mostly

onentrate on the MIT at E



.

3 Linear thermoeletri e�ets

3.1 De�nition of the transport properties

Thermoeletri e�ets in a system are due mainly to the

presene of a temperature gradient rT and an eletri

�eld E [23℄. We reall that in the absene of rT with

E 6= 0, the eletri urrent density hji owing at a point

in a ondutor is diretly proportional to E,

hji = �E : (3)

By applying a �nite gradient rT in an open iruit, ele-

trons, the thermal ondutors, would ow towards the

low-T end as shown in Fig. 2. This auses a build-up of

negative harges at the low-T end and a depletion of neg-

ative harges at the high-T end. Consequently, this sets

up an eletri �eld E whih opposes the thermal ow of

eletrons. For small rT , it is given as

E = SrT : (4)

This equation de�nes the thermopower S. In the Som-

merfeld free eletron model of metals, S is found to be

diretly proportional to �T [23℄. Note that the negative

sign is brought about by the harge of the thermal on-

dutors. For small rT , the ow of heat in a system is

proportional to rT . Fourier's law gives this as

hj

q

i = K(�rT ) (5)

where hj

q

i is the heat urrent density and K is the ther-

mal ondutivity [23℄. At low T , the phonon ontribution

to � and K beomes negligible ompared to the eletroni

part [23℄. As T ! 0, � approahes a onstant and K be-

omes linear in T . One an then verify the empirial law
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of Wiedemann and Franz whih says that the ratio of K

and � is diretly proportional to T [24,25℄. The propor-

tionality oeÆient is known as the Lorenz number L

0

,

L

0

=

e

2

k

2

B

K

�T

(6)

where e is the eletron harge and k

B

is the Boltzmann

onstant. For metals, it takes the universal value �

2

=3 [23,

25℄. Stritly speaking, the law of Wiedemann and Franz

is valid at very low T (. 10K) and at high (room) T .

This is beause in these regions the eletrons are sattered

elastially. At T � 10� 100K deviations from the law are

observed whih imply that K=�T depends on T .

In summary, Eqs. (3)-(6) express the phenomenologial

desription of the transport properties.

3.2 The equations of linear response

A more ompat and general way of looking at these ther-

moeletri \fores" and e�ets is as follows: the responses

of a system to E and rT up to linear order [26℄ are

hji = jej

�1

�

jejL

11

E� L

12

T

�1

rT

�

(7)

and

hj

q

i = jej

�2

�

jejL

21

E� L

22

T

�1

rT

�

: (8)

The kineti oeÆients L

ij

are the keys to alulating the

transport properties theoretially. Using Ohm's law (3) in

Eq. (7), we obtain

� = L

11

: (9)

Also from Eq. (7), S, measured under the ondition of zero

eletri urrent, is expressed as

S =

L

12

jejTL

11

: (10)

With the same ondition, Eq. (8) yields

K =

L

22

L

11

� L

21

L

12

jej

2

TL

11

: (11)

From Eq. (6) L

0

is given as

L

0

=

L

22

L

11

� L

21

L

12

(k

B

TL

11

)

2

: (12)

Therefore, we will be able to determine the transport prop-

erties one we know the oeÆients L

ij

. We note that in

the absene of a magneti �eld, as onsidered in this work,

the Onsager relation L

21

= L

12

holds [26℄.

Eliminating the kineti oeÆients in Eqs. (7) and (8)

in favor of the transport properties, we obtain

hji = �E� �SrT (13)

and

hj

q

i

T

= Shji �

KrT

T

: (14)

Here, hj

q

i=T is simply the entropy urrent density [26℄.

Hene, the thermopower is just the entropy transported

per Coulomb by the ow of thermal ondutors. Aord-

ing to the third law of thermodynamis, the entropy of a

system and, thus, also hj

q

i=T will go to zero as T ! 0.

We an hek with Eqs. (13) and (14) that this is satis�ed

by our alulations in the 3D Anderson model.

3.3 Appliation to the Anderson transition

In general, the linear response oeÆients L

ij

are obtained

through the Chester-Thellung-Kubo-Greenwood (CTKG)

formulation [25,27℄. The kineti oeÆients are expressed

as

L

11

=

Z

1

�1

A(E)

�

�

�f(E; �; T )

�E

�

dE ; (15)

L

12

= �

Z

1

�1

A(E) [E � �(T )℄

�

�

�f(E; �; T )

�E

�

dE ;

(16)

and

L

22

=

Z

1

�1

A(E) [E � �(T )℄

2

�

�

�f(E; �; T )

�E

�

dE ; (17)

where A(E) ontains all the system-dependent features,

�(T ) is the hemial potential and

f(E; �; T ) = 1= f1 + exp([E � �(T )℄=k

B

T )g (18)

is the Fermi funtion. The CTKG approah inherently

assumes that the eletrons are noninterating and that

they are sattered elastially by stati impurities or by lat-

tie vibrations. A nie feature of this formulation is that

all mirosopi details of the system suh as the depen-

dene on the strength of the disorder enter only in A(E).

This funtion A(E) an be alulated in the ontext of

the relaxation-time approximation [23℄. However, an ex-

at evaluation of L

ij

is diÆult, if not impossible, sine it

relies on the exat knowledge of the energy and T depen-

dene of the relaxation time. In most instanes, these are

not known.

In order to inorporate the Anderson model and the

MIT in the CTKG formulation, a di�erent approah is

taken: We have seen in Eq. (9) that the d.. ondutivity

is just L

11

. Thus, to take into aount the MIT in this

formulation, we identify A(E) with �(E) given in Eq. (2).

The L

ij

in Eqs. (15)-(17) an now be easily evaluated lose

to the MIT without any approximation, one the T depen-

dene of the hemial potential � is known. Unfortunately,

this is not known for the experimental systems under on-

sideration [7{9,12,13℄, nor for the 3D Anderson model.

Thus one has to resort to approximate estimations of �,

as we do next, or to numerial alulations, as we shall do

in the later setions.

4 Evaluation of the transport oeÆients

4.1 Sommerfeld expansion in the metalli regime

Cirumventing the omputation of �(T ), one an use that

��f=�E is appreiable only in an energy range of the
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order of k

B

T near � � E

F

. The lowest non-zero T or-

retions for the L

ij

are then aessible by the Sommer-

feld expansion [23℄, provided that A(E) is nonsingular and

slowly varying in this region. Hene, in the limit T ! 0,

the transport properties are [28℄

� = A(E

F

) +

�

2

6

(k

B

T )

2

d

2

A(E)

dE

2

�

�

�

�

E=E

F

; (19)

S = �

�

2

k

2

B

T

3jejA(E

F

)

dA(E)

dE

�

�

�

�

E=E

F

; (20)

K =

�

2

k

2

B

T

3e

2

(

A(E

F

)�

�

2

(k

B

T )

2

3A(E

F

)

�

dA(E)

dE

�

2

E=E

F

)

;

(21)

and onsequently

L

0

=

�

2

3

(

1�

�

2

(k

B

T )

2

3[A(E

F

)℄

2

�

dA(E)

dE

�

2

E=E

F

)

: (22)

In the derivations of S, K, and L

0

, the term of order T

2

in Eq. (19) has been ignored as is ustomary. We remark

that the terms of order T

2

in Eqs. (21) and (22) are usu-

ally dropped, too. In this ase in the metalli regime, L

0

redues to the universal value �

2

=3 [23℄.

The above approah was adopted in Refs. [14℄ and [15℄

to study thermoeletri transport properties in the metal-

li regime lose to the MIT. From Eq. (20), the authors

dedue

S = �

��

2

k

2

B

T

3jej(E

F

�E



)

: (23)

In the metalli regime, this linear T dependene of S

agrees with that of the Sommerfeld model of metals [23℄.

However, setting A(E) = �(E) at the MIT [14℄ in Eq. (2)

is in ontradition to the basi assumption of the Som-

merfeld expansion, sine it is not smoothly varying at

E

F

= E



. Thus identifying A(E) = �(E) in Eqs. 19 - 22 is

only valid in the metalli regime with k

B

T � jE



�E

F

j.

4.2 Exat alulation at �(T ) = E



A di�erent approah taken by Enderby and Barnes is to

�x � = �E



at �nite T and later take the limit T ! 0 [16℄.

Thus, again without knowing the expliit T dependene

of �, the oeÆients L

ij

an be evaluated at the MIT. For

the transport properties they obtain,

� =

�

o

�(k

B

T )

�

I

�

jE



j

�

; (24)

S = �

k

B

jej

� + 1

�

I

�+1

I

�

; (25)

K =

�

o

(k

B

T )

�+2

e

2

T jE



j

�

�

(� + 2)I

�+2

�

(� + 1)

2

I

2

�+1

�I

�

�

; (26)

and

L

0

=

�

(� + 2)I

�+2

�I

�

�

(� + 1)

2

I

2

�+1

(�I

�

)

2

�

: (27)

Here I

1

= ln2, I

�

= (1 � 2

1��

)� (�)�(�) for Re(�) >

0; � 6= 1, with � (�) and �(�) the usual gamma and Rie-

mann zeta funtions. We see that at the MIT, S does not

diverge nor go to zero but remains a universal onstant. Its

value depends only on the ondutivity exponent �. This

is in ontrast to the result (23) of the Sommerfeld expan-

sion. In addition, we �nd that � / T

�

and K / T

�+1

as T ! 0. Hene, � and K=T approah zero in the same

way. This signi�es that the Wiedemann and Franz law is

also valid at the MIT reovering an earlier result in Ref.

[29℄ obtained via diagrammati methods. However, at the

MIT, L

0

does not approah �

2

=3 but again depends on �.

We emphasize that Eqs. (24)-(27) are exat at T values

suh that �(T )� E



= 0 [16℄. Thus the T dependene of

�, S, K, and L

0

for a given eletron density an only be

determined if one knows the orresponding �(T ).

4.3 High-temperature expansion

In this setion, we will study the lowest-order orretions

to the results obtained before with �(T ) = E



. We do this

by expanding the Fermi funtion (18) for jE



� �(T )j �

k

B

T . In addition, we assume �(T ) � E

F

for the temper-

ature range onsidered. This proedure gives

� = L

11

=

�

o

�(k

B

T )

�

jE



j

�

�

I

�

� (� � 1)I

��1

E



�E

F

k

B

T

�

: (28)

For the thermopower, the leading-order orretion an be

obtained without expanding f(E; �; T ) in L

11

and L

12

.

This yields a onstant for S at the MIT as predited for

the �rst time in referene [15℄. We obtain

S = �

k

B

jej

�

� + 1

�

I

�+1

I

�

+

E



�E

F

k

B

T

�

: (29)

For K and L

0

, we again have to use the expansion of

f(E; �; T ) as in (28) in order to get non-trivial terms.

The resulting expressions are umbersome and we thus

refrain from showing them here. We remark that the basi

ingredients used in the high-T expansion are somewhat

ontraditory, namely, the expansion is valid for high T

suh that jE



� E

F

j � k

B

T , whereas �(T ) = E

F

is true

only for T = 0.

At present, we thus have various methods of irum-

venting the expliit omputation of �(T ). However, their

ranges of validity are not overlapping and it is a priori not

lear whether the assumptions for �(T ) are justi�ed for S

or any of the other transport properties lose to the MIT.

In order to larify the situation, we numerially ompute

�(T ) in the next setion and then use the CTKG for-

mulation to ompute the thermal properties without any

approximation.

5 The numerial method

In Eqs. (15)-(17), the expliit T dependene of the oeÆ-

ients L

ij

ours in f(E; �; T ) and �(T ). More preisely,
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knowing �(T ), it is straightforward to evaluate the L

ij

.

We reall that, for any set of noninterating partiles, the

number density of partiles n an be determined as

n(�; T ) =

Z

1

�1

dE�(E)f(E; �; T ) ; (30)

where �(E) is again the density of energy levels (in the

unit volume) as in Fig. 1. Vie versa, if we know n and

�(E) we an solve Eq. (30) for �(T ). The density of states

�(E) for the 3D Anderson model has been obtained for

di�erent disorder strengths W as outlined in Se. 2. We

determine �(E) with an energy resolution of at least 0:1

meV (� 1 K). Using �(E), we �rst numerially alulate

n at T = 0 for the metalli, ritial and insulating regimes

using the respetive Fermi energies jE

F

j < E



, E

F

= E



,

and jE

F

j > E



. With � = E

F

, we have

n(E

F

) =

Z

E

F

�1

dE�(E) : (31)

Next, keeping n �xed at n(E

F

), we numerially determine

�(T ) for small T > 0 suh that jn(E

F

)� n(�; T )j is zero.

Then we inrease T and reord the respetive hanges in

�(T ). Using this result in Eqs. (15){(17) in the CTKG for-

mulation, we ompute L

ij

by numerial integration and

subsequently determine the T -dependent transport prop-

erties (9){(12).

We onsider the disorders W = 8, 12, and 14 where

we do not have large utuations in the density of states.

These values are not too lose to the ritial disorder W



,

so that we ould learly observe the MIT of Eq. (2). The

respetive values of E



have been alulated previously [3℄

to be lose to 7:0, 7:5, and 8:0. Within our approah, we

hoose E



to be equal to these values.

6 Results and disussions

Here we show the results obtained for W = 12 with E



=

7:5. The results for �, K, and L

0

are the same at �E



and

E



sine they are funtions of L

11

, L

22

and L

2

12

, only. On

the other hand, this is not true for S.

6.1 The hemial potential

In Fig. 3, we show how �(T ) behaves for the 3D Anderson

model at E

F

�E



= 0, and �0:01. To ompare results from

di�erent energy regions we plot the di�erene of �(T ) from

E

F

. We �nd that �(T ) behaves similarly in the metalli

and insulating regions and at the MIT for both mobility

edges at low T . In all ases we observe �(T ) / T

2

. Fur-

thermore, we see that �(T ) at �E



equals ��(T ) at E



.

This symmetri behavior with respet to E

F

= � reets

the symmetry of the density of states at E = 0 as shown

in Fig. 1.

For omparison and as a hek to our numeris, we

also ompute with our method �(T ) of a free eletron gas.
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m
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−0.04
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−0.04

0.00
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0.08

0.12

E
F
 −

 µ
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m
eV

)

free electron gas

 −Ec              Ec

Fig. 3. The temperature dependene of the hemial potential

� measured with respet to the Fermi energy near both mobil-

ity edges. Also shown is �(T ) for a free eletron gas. The solid

line denotes �(T ) of Eq. (33).

The density of states is [23℄

�(E) =

3

2

n

E

F

�

E

E

F

�

1=2

(32)

and we again use E

F

= E



= 7:5. We remark that this

value of the mobility edge is in a region where �(E) in-

reases with E in an analogous way as �(E) for the An-

derson model at �E



. Thus, as shown in Fig. 3, �(T ) of a

free eletron gas is onave upwards as in the ase of the

Anderson model at �E



. We also plot the result for �(T )

obtained by the usual Sommerfeld expansion for Eq. (30),

E

F

� �(T ) =

E

F

3

�

�k

B

T

2E

F

�

2

: (33)

We see that our numerial approah is in perfet agree-

ment with the free eletron result.

6.2 The d.. ondutivity

In Fig. 4 we show the T dependene of �. The values of

E

F

we onsider and the orresponding �llings n are given

in Tab. 1. The ondutivity at T = 0 remains �nite in

the metalli regime with �=�

o

= j1�E

F

=E



j

�

, beause

(��f=�E) ! Æ(E � E

F

) in Eq. (15) as T ! 0. Cor-

respondingly, we �nd � = 0 in the insulating regime at

T = 0. In the ritial regime, �(T ! 0) � T

�

, as derived

in Ref. [16℄, see Eq. (24). We note that as one moves away

from the ritial regime towards the metalli regime one

�nds within the auray of our data that � � T

2

. We ob-

serve that in the metalli regime � inreases for inreasing

T . This is di�erent from the behavior in a real metal where

� dereases with inreasing T . However, as explained in

Se. 2, the behavior of � in Fig. 4 is due to the absene of

phonons in the present model.
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We also show in Fig. 4 results of the Sommerfeld ex-

pansion (19) and the high-T expansion (28) for �. Paradig-

mati for what is to follow we see that the radius of onver-

gene of the Sommerfeld expansion dereases for E

F

! E



and in fat is zero in the ritial regime. On the other

hand, the high-T expansion is very good in the ritial

regime down to T = 0 at E



= E

F

. The small systemati

di�erenes between our numerial results and the high-T

expansion for large T are due to the di�erenes in �(T )

and E

F

. The expansion beomes worse both in the metal-

li and insulating regimes for larger T . All of this is in

omplete agreement with the disussion of the expansions

in Se. 4.

6.3 The thermopower

In Fig. 5, we show the behavior of the thermopower at low

T near the MIT. In the metalli regime, we �nd S ! 0

as T ! 0. At very low T , S / T as predited by the

Sommerfeld expansion (23). We see that the Sommerfeld

expansion is valid for not too large values of T . But upon

approahing the ritial regime, the expansion beomes

unreliable similar to the ase of the d.. ondutivity of

Se. 6.2. This behavior persists even if we inlude higher

order terms in the derivation of S suh as the O(T

2

) term

of Eq. (19) as shown in Fig. 5. At onstant T , we �nd

that S inreases as E

F

approahes E



. This is onsistent

with the inreasing asymmetry in the funtional form of

�(E) as in Eq. (2). Namely, the ondutivity of eletrons

with energies E

e

> �(T ) is smaller than the ondutivity

of holes with energies E

h

< �(T ). It is this eletron-hole

asymmetry whih leads to a �nite L

12

and thus a non-zero

value of S at �nite T . We note that a onstant �(E) would

simply give S = 0.

Before disussing the ritial regime in detail, let us

turn our attention to the insulating regime. Here, S be-

omes very large as T ! 0. We have observed that it

even appears to approah in�nity. A seemingly divergent

behavior in the insulating regime has also been observed

for Si:P [30℄, where it has been attributed to the ther-

mal ativation of harge arriers from E

F

to the mobility

Table 1. Di�erenes of E

F

and n(E

F

) with respet to the

mobility edge at E



= 7:5. The density at E



orresponds to

n = 97:768%.

regime E

F

�E



n(E

F

)� n(E



) symbol

(eV) (%)

metalli -0.010 -0.031 Æ

-0.007 -0.022 5

-0.005 -0.015 2

-0.003 -0.009 4

-0.001 -0.003 3

ritial 0.000 0.000 �

insulating 0.001 0.003 +

0.003 0.009 �

0.010 0.031 �

0 2 4 6 8 10

T (meV)

0

1

2

3

σ 
/σ

0 
(1

0−
4 )

0 20 40 60 80 100
T (K)

0

1

2

3

Fig. 4. The low temperature behavior of the d.. ondutiv-

ity �. The symbols are as shown in Tab. 1. The dashed lines

represent the Sommerfeld expansion result for �(T ) as given

in Eq. (19). For all 8 hoies of E

F

� E



, the orresponding

high-T expansion (28) is indiated by solid lines.

edge E



. However, there is a simpler way of looking at this

phenomenon. We refer again to the open iruit in Fig. 2.

Suppose we adjust T at the ooler end suh that rT re-

mains onstant. As T ! 0 both � andK vanish in the ase

of insulators | for K we show this in the next setion.

This implies that as T dereases it beomes inreasingly

diÆult to move a harge from T to T + ÆT . We would

need to exert a larger amount of fore, and hene, a larger

E to do the job. From Eq. (4), this implies a larger S value.

In the ritial regime, i.e., setting E

F

= E



, we observe

in Fig. 5 that for T ! 0 the thermopower S approahes a

value of 228:4�V/K. This is exatly the magnitude pre-

dited [16℄ by Eq. (25) for � = 1:3. In the inset of Fig. 5, we

show that the T dependene of S is linear. The nondiver-

gent behavior of S learly separates the metalli from the

insulating regime. Furthermore, just as for �, the Som-

merfeld expansion for S breaks down at E

F

= E



, i.e.,

the radius of onvergene is zero. Thus, the divergene of

Eq. (23) at E

F

= E



reets this breakdown and is not

physially relevant. On the other hand, the high-T ex-

pansion [15℄ niely reets the behavior of S lose to the

ritial regime as also shown in Fig. 5. For E

F

= E



, the

high-T expansion (29) assumes a onstant value of S for

all T due to setting �(T ) = E

F

. This is approximately

valid, the di�erenes are fairly small as shown in the inset

of Fig. 5.

We stress that there is no ontradition that S > 0

in our alulations whereas S < 0 in Ref. [16℄. In Fig. 6,

we ompare S in energy regions lose to E



and to �E
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Fig. 5. The low temperature behavior of the thermopower S.

The symbols are as shown in Tab. 1. The dashed lines represent

the behavior of S(T ) in the metalli regime as given in Eq. (23).

The dot-dashed lines indiate S, alulated with the O(T

2

)

term of Eq. (19), for E

F

�E



= �0:01 eV (Æ) and �0:001 eV

(�). Solid lines are obtained from the high-T expansion (29).

The inset shows the behavior at E

F

= E



on an enlarged sale.

[31℄. Clearly, they have the same magnitude but S < 0

at �E



and S > 0 at E



. The two ases mainly di�er

in their number density n. At �E



the system is at low

�lling with n = 2:26% while at E



the system is at high

�lling with n = 97:74%. In agreement with the disussion

in the beginning of this setion, the sign of S implies that

at low �lling the thermoeletri ondution is due to ele-

trons and we obtain the usual piture as in Fig. 2 where

the indued �eld E is in the diretion opposite to that

of rT . At high �lling, S > 0 means that E is direted

parallel to rT . This an be interpreted as a hange in

harge transport from eletrons to holes. We remark that

this sign reversal also ours in the insulating as well as

in the ritial regime.

In Fig. 7, we take the data of Fig. 5 and plot them as a

funtion of ��E



. Our data oinides with the isothermal

lines whih were alulated aording to Ref. [16℄ by nu-

merially integrating L

12

and L

11

for a partiular T to get

S. We observe that all isotherms of the insulating (� > E



)

and the metalli (� < E



) regimes ross at � = E



and

S = 228:4�V/K. Comparing with Eq. (23), we again �nd

that the Sommerfeld expansion does not give the orret

behavior of S in the ritial regime.

The data presented in Fig. 7 suggest that one an sale

them onto a single saling urve. In Fig. 8, we show that

this is indeed true, when plotting S as a funtion of (��

E



)=k

B

T . We emphasize that the saling is very good and

0 20 40 60 80 100
T (K)

−200

−100

0

100

200

S
 (

µV
/K

)

Fig. 6. An example that the magnitude of S(T ) is the same in

metalli regions lose to �E



(�) and E



(Æ). The +-symbols

indiate jSj for �E



and jE

F

�E



j = 0:01 eV in all ases.
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1.16 K = 0.1 meV
4.34 K = 0.4 meV
8.12 K = 0.7 meV
11.6 K = 1.0 meV
22.3 K = 2.0 meV
S = 228.4 µV/K
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S
 (
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/K
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Fig. 7. The data of S in Fig. 5 shown as a funtion of � mea-

sured from E



= 7:5 eV. The horizontal line indiates the �xed

point MIT value as given in Eq. (25). The thin dashed lines

represent isotherms of S alulated using the same method as

in Ref. [16℄. The solid line is an isotherm of S obtained from

Eq. (23) for T = 22:3 K.

the small width of the saling urve is only due to the

size of the symbols. The result for the high-T expansion

is indiated in Fig. 8 by a solid line. It is good lose to

the MIT. In the metalli regime, the Sommerfeld expan-

sion orretly aptures the derease of S for large negative

values of (� � E



)=k

B

T . We remark that a saling with

(E

F

�E



)=k

B

T as predited for the �rst time in Ref. [15℄

is approximately valid. The di�erenes are very small as

shown in the inset of Fig. 8.

6.4 The thermal ondutivity and the Lorenz number

In Fig. 9, we show the T dependene of the thermal on-

dutivity K. We see that K ! 0 as T ! 0 whether it be

in the metalli or insulating regime. We note again that

this simple behavior is due to the fat that our model does
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Fig. 8. Saling plot of the thermopower S. The thik dashed

line indiates the �xed point value at the MIT, the solid line

represents the high-T expansion (29), and the thin dashed line

shows the Sommerfeld expansion. The inset shows the di�er-

ene in the saling when plotting S for E

F

�E



= �0:001 eV

as funtion of (��E



)=k

B

T (open symbols) or (E

F

�E



)=k

B

T

(�lled symbols).

not inorporate phonon ontributions. The T dependene

of K varies whether one is in the metalli regime or in

the insulating regime and how far one is from the MIT.

Diretly at the MIT, we �nd thatK ! 0 as T

�+1

on�rm-

ing the T dependene of K as given in Eq. (26). Near the

loalization MIT, the T dependene of K=T is thus the

same as for � in agreement with Ref. [29℄. Again, we see

that the Sommerfeld expansion (21) is reasonable only at

low T in the metalli regime. As for � and S, we see that

the high-T expansion is again fairly good in the viinity

of the ritial regime.

At this point we are able to determine the behavior

of the entropy in the system as T ! 0. In the metalli

regime, S and K vanish as T ! 0, while in the ritial

and insulating regime, � and K vanish as T ! 0. Ap-

plying these results to Eqs. (13) and (14) yields that for

all regimes the entropy urrent density hj

q

i=T vanishes as

T ! 0. Therefore, we �nd that the third law of thermo-

dynamis is satis�ed for our numerial results of the 3D

Anderson model.

Next, we present the Lorenz number (6) as a fun-

tion of T in Fig. 10. In the metalli regime, we obtain the

universal value �

2

=3 as T ! 0. Note that for a metal

this value should hold up to room T [23℄. However, our

results for the Anderson model show a nontrivial T de-

pendene. One might have hoped that the higher-order

terms in Eq. (22) ould adequately reet the T depen-

dene of our L

0

data. However, this is not the ase as

shown in Fig. 10. This indiates that even if we inorpo-

rate higher order T orretions the Sommerfeld expansion

will not give the right behavior of L

0

near the MIT. We

emphasize that the radius of onvergene of Eq. (22) is

even smaller than for �, S and K. Similarly, the high-T

expansion is also muh worse than previously for �, S and

0 20 40 60 80 100
T (K)

 0.0

 0.1

 0.2

 0.3

 0.4

Κ
/σ

0 
(n

W
Ω

/K
)

Fig. 9. The thermal ondutivity K as a funtion of temper-

ature. The symbols are as shown in Tab. 1. The dashed lines

were obtained in O(T ) from the Sommerfeld expansion (21)

for the metalli regime. The results of the high-T expansion

for the 8 hoies of E

F

�E



are indiated by solid lines.

K. Thus in addition to the results for the ritial regime,

we only show in Fig. 10 the results for nearby data sets

in the insulating and metalli regimes. The T dependene

of L

0

is linear as shown in the inset of Fig. 10. As before

for S, the high-T expansion does not reprodue this. At

the MIT, L

0

= 2:4142. This is again the predited [16℄

�-dependent value as given in Eq. (27).

In the insulating regime, one an show analytially by

taking the appropriate limits that L

0

approahes � +1 as

T ! 0. In agreement with this, we �nd that L

0

= 2:3 at

T = 0 in Fig. 10. At �rst glane, it may appear surprising

that a transport property in the insulating regime ould be

determined by a universal onstant of the ritial regime

suh as �. However, in the evaluation of the oeÆients

L

ij

, the derivative of the Fermi funtion for any �nite T

deays exponentially and thus one will always have a non-

zero overlap with the ritial regime. In the evaluation of

Eq. (12), this � dependene survives in the limit T ! 0. In

real materials, we expet the relevant high-energy transfer

proesses to be dominated by other sattering events and

thus L

0

should be di�erent. Nevertheless, for the present

model, this � dependene holds.

6.5 Possible senarios in the ritial regime

The results presented in Se. 6.3 for the thermopower at

the MIT show that S = 228:4�V/K for � = 1:3. This

value is 2 orders of magnitude larger than those measured

near the MIT [8,12,13℄. However, as mentioned in the in-

trodution, the ondutivity exponents found in many ex-

periments are either lose to � = 0:5 or to 1 [7℄ and one
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Fig. 10. The Lorenz number L

0

as funtion of temperature.

The symbols are as shown in Tab. 1. The dashed irles mark

the values of L

0

at T = 0 for metalli and insulating regimes.

The dashed lines were obtained from Eq. (22). The results of

the high-T expansion for E

F

�E



= 0 eV, �0:001 eV and 0:003

eV are indiated by solid lines. The inset shows the behavior

at E

F

= E



on an enlarged sale.

might hope that this di�erene may explain the small ex-

perimental value of S. Also, reent numerial studies of

the MIT by transfer-matrix methods together with non-

linear �nite-size saling �nd � = 1:57 � 0:03 [6℄. In Tab.

2 we summarize the values of S and L

0

at the MIT for

these ondutivity exponents. We see that all S values still

di�er by 2 orders of magnitude from the experimental re-

sults. Furthermore, we note that our results for S and L

0

are independent of the unit of energy. Even if, instead of

1 eV, we had used t

ij

= 1 meV, whih is appropriate in

the doped semiondutors [7,9,13,30℄, we would still ob-

tain the values as in Tab. 2. Thus our numerial results

for the thermopower of the Anderson model at the MIT

show a large disrepany from experimental results. This

Table 2. The thermopower and the Lorenz number at the MIT

for a 3D Anderson model evaluated for various � at E



= 7:5

eV. The values for � = 0:5 and 1 have already been shown in

Ref. [16℄.

� S L

0

(�V/K)

0.5 163.5 1.7761

1.0 204.5 2.1721

1.3 228.4 2.4142

1.57 249.7 2.6372

may be due to our assumption of the validity of Eq. (2) for

a large range of energies, or due to the absene of a true

Anderson-type MIT in real materials, or due to problems

in the experiments.

A di�erent senario for a disorder driven MIT has been

proposed by Mott, who argued that the MIT from the

metalli state to the insulating state is disontinuous [32℄.

Results supporting suh a behavior have been found ex-

perimentally [11,33℄. Aording to this senario, � drops

from a �nite value �

min

to zero [32℄ for T = 0 at the MIT.

This minimum metalli ondutivity �

min

was estimated

by Mott to be

�

min

'

1

a

e

2

~

(34)

where a is some mirosopi length of the system suh as

the inverse of the Fermi wave number, a � k

�1

F

. As sum-

marized in Ref. [11℄, experiments in non-rystalline mate-

rials seem to indiate that �

min

> 300 


�1

m

�1

. Let us

assume the behavior of �(E) lose to the MIT to be

�(E) =

�

�

min

; jEj � E



;

0; jEj > E



;

(35)

with �

min

= 300 


�1

m

�1

. Using the numerial approah

of Se. 5, we obtain S = 119:5 �V/K at the MIT. This

value is still rather large and thus the assumption of a

minimum metalli ondutivity as in Eq. (35) annot ex-

plain the disrepany from the experimental results. We

remark that the order of magnitude of S is not hanged

appreiably, even if we add to the metalli side of Eq. (35)

a term as given in Eq. (2) with �

0

a few hundred 


�1

m

�1

and � = 1.

Lastly, we note that the transport properties alu-

lated for W = 8 and 14 do not di�er from those obtained

for W = 12 in both the metalli and insulating regions

provided we are at temperatures T . 100 K. For S and

L

0

at the MIT we obtain the same values as for W = 12.

Again we observe that both S and L

0

approah these val-

ues linearly with T , but with di�erent slopes. Our results

show that the higher the disorder strength the smaller the

magnitude of the slope.

7 Conlusions

In this paper, we investigated the thermoeletri e�ets

in the 3D Anderson model near the MIT. The T depen-

dene of the transport properties is determined by �(T ).

We were able to ompute �(T ) by numerially invert-

ing the formula for the number density n(�; T ) of non-

interating partiles. Using the result for �(T ), we alu-

lated the thermoeletri transport properties within the

Chester-Thellung-Kubo-Greenwood formulation of linear

response. As T ! 0 in the metalli regime we veri�ed that

� remains �nite, S ! 0, K ! 0 and L

0

! �

2

=3. On the

other hand, in the insulating regime, S !1. This we at-

tribute to both � and K going to zero. Thus, it beomes

inreasingly diÆult to ahieve equilibrium and, hene,

the system requires E ! 1. For L

0

, we obtained a uni-

versal value of �+1 even in the insulating regime. Diretly
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at the MIT, the thermoeletri transport properties agree

with those obtained in Ref. [16℄. Namely, as T ! 0, we

found � � T

�

, K � T

�+1

, while L

0

! onst.

The thermopower S also remains nearly onstant in

the ritial regime and, in partiular, it does not diverge

at the MIT in ontrast to earlier alulations using the

Sommerfeld expansion at low T [14℄. Here we showed that

the di�erene is not so muh due to an order of limits prob-

lem, but rather reets the breakdown of onvergene of

the Sommerfeld expansion at the MIT [15℄. Our result is

supported by saling data for S at di�erent values of T and

E

F

onto a single urve whih is ontinuous aross the tran-

sition. Saling urves for �, K and L

0

an be onstruted

in a similar way; results will be published elsewhere [34℄.

We remark that some of the experiments for S [8,12℄ have

been inuened by the Sommerfeld expansion suh that

the authors plot their results as S=T . In suh a plot the

signature of the MIT is hard to identify, sine S=T at the

MIT diverges as T ! 0 solely due to the derease in T .

Our results suggest that plots as in Figs. 5 and 7 should

show the MIT more learly.

The value of S is at least two orders of magnitude

larger than observed in experiments [8,12,13℄. This large

disrepany may be due to the ingredients of our study,

namely, we assumed that a simple power-law behavior of

the ondutivity �(E) as in Eq. (2) was valid even for

E � E



and E � E



. Furthermore, we assumed that it

is enough to onsider an averaged density of states �(E).

While the �rst assumption is of ourse ruial, the se-

ond assumption is of less importane as we have heked:

Loal utuations in �(E) will lead to utuations in the

thermoeletri properties for �nite T , but do not lead to a

di�erent T ! 0 behavior: S remains �nite with values as

given in Tab. 2. Moreover, averaging over many samples

yields a suppression of these utuations and a reovery

of the previous behavior for �nite T . In this ontext, we

remark that | naively assuming all other parts of the

derivation are unhanged | impliations of many-partile

interations suh as a redued single-partile density of

states at E

F

[35℄, will only modify the T dependene of

�. Consequently, the T dependenies of S, �, K, and L

0

may be di�erent, but their values at the MIT remain the

same.

Our results also suggest that the ritial regime is very

small. Namely, as the �lling inreases slightly from n =

97:74% to 97:80%, the behavior of the system hanges

frommetalli to ritial and �nally to insulating. Up to the

best of our knowledge, suh small hanges in the eletron

onentration have not been used in the measurements of

S as in Refs. [8,12,13℄. We emphasize that suh a �ne

tuning of n is not essential for measurements of � as is

apparent from Fig. 4.

Of ourse, one may also speulate [16℄ that these re-

sults suggest that a true Anderson-type MIT has not yet

been observed in the experiments.
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