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Abstra
t. We study the thermoele
tri
 transport properties in the three-dimensional Anderson model of

lo
alization near the metal-insulator transition (MIT). In parti
ular, we investigate the dependen
e of the

thermoele
tri
 power S, the thermal 
ondu
tivityK, and the Lorenz number L

0

on temperature T . We �rst


al
ulate the T dependen
e of the 
hemi
al potential � from the number density n of ele
trons at the MIT

using an averaged density of states obtained by diagonalization. Without any additional approximation,

we determine from �(T ) the behavior of S, K and L

0

at low T as the MIT is approa
hed. We �nd that �

and K de
rease to zero at the MIT as T ! 0 and show that S does not diverge. Both S and L

0

be
ome

temperature independent at the MIT and depend only on the 
riti
al behavior of the 
ondu
tivity.

PACS. 61.43.-j Disordered solids { 71.30.+h Metal-insulator transitions & other ele
troni
 transitions {

72.15.Cz Ele
tri
al and thermal 
ondu
tion in amorphous & liquid metals & alloys

1 Introdu
tion

The Anderson-type metal-insulator transition (MIT) has

been the subje
t of investigation for de
ades sin
e An-

derson formulated the problem in 1958 [1℄. He proposed

that in
reasing the strength of a random potential in a

three-dimensional (3D) latti
e may 
ause an \absen
e of

di�usion" for the ele
trons. Today, it is widely a

epted

that near this ex
lusively-disorder-indu
ed MIT the d. 
.


ondu
tivity � behaves as jE�E




j

�

, where E




is the 
rit-

i
al energy or the mobility edge at whi
h the MIT o
-


urs, and � is a universal 
riti
al exponent [2℄. Numeri-


al studies based on the Anderson Hamiltonian of lo
al-

ization have supported this s
enario with mu
h eviden
e

[2{6℄. In measurements of � near the MIT in semi
on-

du
tors and amorphous alloys this behavior was also ob-

served with varying values of � ranging from 0:5{1:3 [7{9℄.

It is 
urrently believed that these di�erent exponents are


aused by intera
tions in the system [10℄. Indeed, an MIT

may be indu
ed not only by disorder but also by intera
-

tions su
h as ele
tron-ele
tron and ele
tron-phonon inter-

a
tions, among others [11℄. Nevertheless, the experimental


on�rmation of the 
riti
al behavior of � allows the use of

the Anderson model as an approximate des
ription of the

transition between the insulating and the metalli
 states

in disordered systems.

Besides for the 
ondu
tivity �, experimental investiga-

tions 
an also be done for thermoele
tri
 transport prop-

erties su
h as the thermoele
tri
 power S [8,12,13℄, the

thermal 
ondu
tivity K and the Lorenz number L

0

. The

a

e-mail: villagonzalo�physik.tu-
hemnitz.de

behavior of these quantities at low temperature T in dis-

ordered systems 
lose to the MIT has so far not been sat-

isfa
torily explained. In parti
ular, some authors have ar-

gued that S diverges [12,14℄ or that it remains 
onstant

[15,16℄ as the MIT is approa
hed from the metalli
 side.

In addition, jSj at the MIT has been predi
ted [16℄ to

be of the order of � 200�V/K. On the other hand, mea-

surements of S 
lose to the MIT 
ondu
ted on semi
on-

du
tors for T � 1K [13℄ and on amorphous alloys in the

range 5K� T � 350K [8℄ yield values of the order of 0.1-

1�V/K. They also showed that S 
an either be negative

or positive depending on the donor 
on
entration in semi-


ondu
tors or the 
hemi
al 
omposition of the alloy. The

large di�eren
e between the theoreti
al and experimental

values is still not resolved.

The obje
tive of this paper is to study the behavior of

the thermoele
tri
 transport properties for the Anderson

model of lo
alization in disordered systems near the MIT

at low T . We 
larify the above mentioned di�eren
e in the

theoreti
al 
al
ulations for S, by showing that the radius

of 
onvergen
e for the Sommerfeld expansion used in Refs.

[14,15℄ is zero at the MIT. We show that S is a �nite


onstant at the MIT as argued in Refs. [15,16℄. Besides

for S, we also 
ompute the T dependen
e for �, K, and

L

0

. Our approa
h is neither restri
ted to a low- or high-T

expansion as in Refs. [14,15℄, nor 
on�ned to the 
riti
al

regime as in Ref. [16℄.

We shall �rst introdu
e the model in Se
. 2. Then in

Se
s. 3 and 4 we review the thermoele
tri
 transport prop-

erties in the framework of linear response and the present

formulations in 
al
ulating them. In Se
. 5 we shall show

how to 
al
ulate the T dependen
e of these properties.



2 C. Villagonzalo et al.: Thermoele
tri
 Transport Properties in Disordered Systems Near the Anderson Transition

−10 −5 0 5 10
E (eV)

0.00

0.02

0.04

0.06

0.08

ρ(
E

)

−Ec Ec

Fig. 1. The density of states of a 3D Anderson model, averaged

over many disorder realizations withW = 12. The solid verti
al

lines at �E




and E




denote the mobility edges.

Results of these 
al
ulations are then presented in Se
. 6.

Lastly, in Se
. 7 we dis
uss the relevan
e of our study to

the experiments.

2 The Anderson model of lo
alization

The Anderson model [1℄ is des
ribed by the Hamiltonian

H =

X

i

�

i

jiihij+

X

i 6=j

t

ij

jiihjj (1)

where �

i

is the potential energy at the site i of a regular


ubi
 latti
e and is assumed to be randomly distributed

in the range [�W=2;W=2℄ throughout this work. The hop-

ping parameters t

ij

are restri
ted to nearest neighbors. For

this system, at strong enough disorder and in the absen
e

of a magneti
 �eld, the one-parti
le wavefun
tions be
ome

exponentially lo
alized at T = 0 and � vanishes [2℄. Illus-

trating this, we refer to Fig. 1 where we show the density

of states �(E) obtained by diagonalizing the Hamiltonian

(1) with the Lan
zos method as in Ref. [17,18℄. The states

in the band tails with energy jEj > E




are lo
alized within

�nite regions of spa
e in the system at T = 0 [2℄. When

the Fermi energy E

F

is within these tails at T = 0 the

system is insulating. Otherwise, if jE

F

j < E




the system

is metalli
. The 
riti
al behavior of � is given by

�(E) =

(

�

0

�

�

�

1�

E

E




�

�

�

�

; jEj � E




;

0; jEj > E




;

(2)

where �

0

is a 
onstant and � is the 
ondu
tivity exponent

[2℄. Thus, E




is 
alled the mobility edge sin
e it sepa-

rates lo
alized from extended states. At the 
riti
al dis-

order W




= 16:5, the mobility edge o

urs at E




= 0,

all states with jEj > 0 are lo
alized [3,4℄ and states with

E = 0 are multifra
tal [3,17℄. The value of � has been


omputed from the non-linear sigma-model [19℄, transfer-

matrix methods [2,6℄, Green fun
tions methods [2℄, and

energy-level statisti
s [5,20℄. Here we have 
hosen � = 1:3,

whi
h is in agreement with experimental results in Si:P [9℄

and the numeri
al data of Ref. [5℄. More re
ent numeri-


al results [2,6℄, 
omputed with higher a

ura
y, suggest

+ −
−+

+
−

−
Τ+δΤ                                                   ΤΤ

∆

Ε

jqj

Fig. 2. In an open 
ir
uit, a temperature gradient rT indu
es

an ele
tri
 �eld E in the opposite dire
tion whi
h opposes the

thermal 
ow of ele
trons.

that � = 1:5� 0:1. As we shall show later, this di�eren
e

only slightly modi�es our results. We emphasize that the

Hamiltonian (1) only in
orporates the ele
troni
 degrees

of freedom of a disordered system and further ex
itations

su
h as latti
e vibrations are not in
luded.

For 
omparison with the experimental results, we mea-

sure � in Eq. (2) in units of 


�1


m

�1

. We �x the energy

s
ale by setting t

ij

= 1 eV. Hen
e the band width of Fig.

1 is 
omparable to the band width of amorphous alloys

[21℄. Furthermore, the experimental investigations of the

thermoele
tri
 power S in amorphous alloys [8℄ have been

done at high ele
tron �lling [22℄ and thus we will mostly


on
entrate on the MIT at E




.

3 Linear thermoele
tri
 e�e
ts

3.1 De�nition of the transport properties

Thermoele
tri
 e�e
ts in a system are due mainly to the

presen
e of a temperature gradient rT and an ele
tri


�eld E [23℄. We re
all that in the absen
e of rT with

E 6= 0, the ele
tri
 
urrent density hji 
owing at a point

in a 
ondu
tor is dire
tly proportional to E,

hji = �E : (3)

By applying a �nite gradient rT in an open 
ir
uit, ele
-

trons, the thermal 
ondu
tors, would 
ow towards the

low-T end as shown in Fig. 2. This 
auses a build-up of

negative 
harges at the low-T end and a depletion of neg-

ative 
harges at the high-T end. Consequently, this sets

up an ele
tri
 �eld E whi
h opposes the thermal 
ow of

ele
trons. For small rT , it is given as

E = SrT : (4)

This equation de�nes the thermopower S. In the Som-

merfeld free ele
tron model of metals, S is found to be

dire
tly proportional to �T [23℄. Note that the negative

sign is brought about by the 
harge of the thermal 
on-

du
tors. For small rT , the 
ow of heat in a system is

proportional to rT . Fourier's law gives this as

hj

q

i = K(�rT ) (5)

where hj

q

i is the heat 
urrent density and K is the ther-

mal 
ondu
tivity [23℄. At low T , the phonon 
ontribution

to � and K be
omes negligible 
ompared to the ele
troni


part [23℄. As T ! 0, � approa
hes a 
onstant and K be-


omes linear in T . One 
an then verify the empiri
al law
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of Wiedemann and Franz whi
h says that the ratio of K

and � is dire
tly proportional to T [24,25℄. The propor-

tionality 
oeÆ
ient is known as the Lorenz number L

0

,

L

0

=

e

2

k

2

B

K

�T

(6)

where e is the ele
tron 
harge and k

B

is the Boltzmann


onstant. For metals, it takes the universal value �

2

=3 [23,

25℄. Stri
tly speaking, the law of Wiedemann and Franz

is valid at very low T (. 10K) and at high (room) T .

This is be
ause in these regions the ele
trons are s
attered

elasti
ally. At T � 10� 100K deviations from the law are

observed whi
h imply that K=�T depends on T .

In summary, Eqs. (3)-(6) express the phenomenologi
al

des
ription of the transport properties.

3.2 The equations of linear response

A more 
ompa
t and general way of looking at these ther-

moele
tri
 \for
es" and e�e
ts is as follows: the responses

of a system to E and rT up to linear order [26℄ are

hji = jej

�1

�

jejL

11

E� L

12

T

�1

rT

�

(7)

and

hj

q

i = jej

�2

�

jejL

21

E� L

22

T

�1

rT

�

: (8)

The kineti
 
oeÆ
ients L

ij

are the keys to 
al
ulating the

transport properties theoreti
ally. Using Ohm's law (3) in

Eq. (7), we obtain

� = L

11

: (9)

Also from Eq. (7), S, measured under the 
ondition of zero

ele
tri
 
urrent, is expressed as

S =

L

12

jejTL

11

: (10)

With the same 
ondition, Eq. (8) yields

K =

L

22

L

11

� L

21

L

12

jej

2

TL

11

: (11)

From Eq. (6) L

0

is given as

L

0

=

L

22

L

11

� L

21

L

12

(k

B

TL

11

)

2

: (12)

Therefore, we will be able to determine the transport prop-

erties on
e we know the 
oeÆ
ients L

ij

. We note that in

the absen
e of a magneti
 �eld, as 
onsidered in this work,

the Onsager relation L

21

= L

12

holds [26℄.

Eliminating the kineti
 
oeÆ
ients in Eqs. (7) and (8)

in favor of the transport properties, we obtain

hji = �E� �SrT (13)

and

hj

q

i

T

= Shji �

KrT

T

: (14)

Here, hj

q

i=T is simply the entropy 
urrent density [26℄.

Hen
e, the thermopower is just the entropy transported

per Coulomb by the 
ow of thermal 
ondu
tors. A

ord-

ing to the third law of thermodynami
s, the entropy of a

system and, thus, also hj

q

i=T will go to zero as T ! 0.

We 
an 
he
k with Eqs. (13) and (14) that this is satis�ed

by our 
al
ulations in the 3D Anderson model.

3.3 Appli
ation to the Anderson transition

In general, the linear response 
oeÆ
ients L

ij

are obtained

through the Chester-Thellung-Kubo-Greenwood (CTKG)

formulation [25,27℄. The kineti
 
oeÆ
ients are expressed

as

L

11

=

Z

1

�1

A(E)

�

�

�f(E; �; T )

�E

�

dE ; (15)

L

12

= �

Z

1

�1

A(E) [E � �(T )℄

�

�

�f(E; �; T )

�E

�

dE ;

(16)

and

L

22

=

Z

1

�1

A(E) [E � �(T )℄

2

�

�

�f(E; �; T )

�E

�

dE ; (17)

where A(E) 
ontains all the system-dependent features,

�(T ) is the 
hemi
al potential and

f(E; �; T ) = 1= f1 + exp([E � �(T )℄=k

B

T )g (18)

is the Fermi fun
tion. The CTKG approa
h inherently

assumes that the ele
trons are nonintera
ting and that

they are s
attered elasti
ally by stati
 impurities or by lat-

ti
e vibrations. A ni
e feature of this formulation is that

all mi
ros
opi
 details of the system su
h as the depen-

den
e on the strength of the disorder enter only in A(E).

This fun
tion A(E) 
an be 
al
ulated in the 
ontext of

the relaxation-time approximation [23℄. However, an ex-

a
t evaluation of L

ij

is diÆ
ult, if not impossible, sin
e it

relies on the exa
t knowledge of the energy and T depen-

den
e of the relaxation time. In most instan
es, these are

not known.

In order to in
orporate the Anderson model and the

MIT in the CTKG formulation, a di�erent approa
h is

taken: We have seen in Eq. (9) that the d.
. 
ondu
tivity

is just L

11

. Thus, to take into a

ount the MIT in this

formulation, we identify A(E) with �(E) given in Eq. (2).

The L

ij

in Eqs. (15)-(17) 
an now be easily evaluated 
lose

to the MIT without any approximation, on
e the T depen-

den
e of the 
hemi
al potential � is known. Unfortunately,

this is not known for the experimental systems under 
on-

sideration [7{9,12,13℄, nor for the 3D Anderson model.

Thus one has to resort to approximate estimations of �,

as we do next, or to numeri
al 
al
ulations, as we shall do

in the later se
tions.

4 Evaluation of the transport 
oeÆ
ients

4.1 Sommerfeld expansion in the metalli
 regime

Cir
umventing the 
omputation of �(T ), one 
an use that

��f=�E is appre
iable only in an energy range of the
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order of k

B

T near � � E

F

. The lowest non-zero T 
or-

re
tions for the L

ij

are then a

essible by the Sommer-

feld expansion [23℄, provided that A(E) is nonsingular and

slowly varying in this region. Hen
e, in the limit T ! 0,

the transport properties are [28℄

� = A(E

F

) +

�

2

6

(k

B

T )

2

d

2

A(E)

dE

2

�

�

�

�

E=E

F

; (19)

S = �

�

2

k

2

B

T

3jejA(E

F

)

dA(E)

dE

�

�

�

�

E=E

F

; (20)

K =

�

2

k

2

B

T

3e

2

(

A(E

F

)�

�

2

(k

B

T )

2

3A(E

F

)

�

dA(E)

dE

�

2

E=E

F

)

;

(21)

and 
onsequently

L

0

=

�

2

3

(

1�

�

2

(k

B

T )

2

3[A(E

F

)℄

2

�

dA(E)

dE

�

2

E=E

F

)

: (22)

In the derivations of S, K, and L

0

, the term of order T

2

in Eq. (19) has been ignored as is 
ustomary. We remark

that the terms of order T

2

in Eqs. (21) and (22) are usu-

ally dropped, too. In this 
ase in the metalli
 regime, L

0

redu
es to the universal value �

2

=3 [23℄.

The above approa
h was adopted in Refs. [14℄ and [15℄

to study thermoele
tri
 transport properties in the metal-

li
 regime 
lose to the MIT. From Eq. (20), the authors

dedu
e

S = �

��

2

k

2

B

T

3jej(E

F

�E




)

: (23)

In the metalli
 regime, this linear T dependen
e of S

agrees with that of the Sommerfeld model of metals [23℄.

However, setting A(E) = �(E) at the MIT [14℄ in Eq. (2)

is in 
ontradi
tion to the basi
 assumption of the Som-

merfeld expansion, sin
e it is not smoothly varying at

E

F

= E




. Thus identifying A(E) = �(E) in Eqs. 19 - 22 is

only valid in the metalli
 regime with k

B

T � jE




�E

F

j.

4.2 Exa
t 
al
ulation at �(T ) = E




A di�erent approa
h taken by Enderby and Barnes is to

�x � = �E




at �nite T and later take the limit T ! 0 [16℄.

Thus, again without knowing the expli
it T dependen
e

of �, the 
oeÆ
ients L

ij


an be evaluated at the MIT. For

the transport properties they obtain,

� =

�

o

�(k

B

T )

�

I

�

jE




j

�

; (24)

S = �

k

B

jej

� + 1

�

I

�+1

I

�

; (25)

K =

�

o

(k

B

T )

�+2

e

2

T jE




j

�

�

(� + 2)I

�+2

�

(� + 1)

2

I

2

�+1

�I

�

�

; (26)

and

L

0

=

�

(� + 2)I

�+2

�I

�

�

(� + 1)

2

I

2

�+1

(�I

�

)

2

�

: (27)

Here I

1

= ln2, I

�

= (1 � 2

1��

)� (�)�(�) for Re(�) >

0; � 6= 1, with � (�) and �(�) the usual gamma and Rie-

mann zeta fun
tions. We see that at the MIT, S does not

diverge nor go to zero but remains a universal 
onstant. Its

value depends only on the 
ondu
tivity exponent �. This

is in 
ontrast to the result (23) of the Sommerfeld expan-

sion. In addition, we �nd that � / T

�

and K / T

�+1

as T ! 0. Hen
e, � and K=T approa
h zero in the same

way. This signi�es that the Wiedemann and Franz law is

also valid at the MIT re
overing an earlier result in Ref.

[29℄ obtained via diagrammati
 methods. However, at the

MIT, L

0

does not approa
h �

2

=3 but again depends on �.

We emphasize that Eqs. (24)-(27) are exa
t at T values

su
h that �(T )� E




= 0 [16℄. Thus the T dependen
e of

�, S, K, and L

0

for a given ele
tron density 
an only be

determined if one knows the 
orresponding �(T ).

4.3 High-temperature expansion

In this se
tion, we will study the lowest-order 
orre
tions

to the results obtained before with �(T ) = E




. We do this

by expanding the Fermi fun
tion (18) for jE




� �(T )j �

k

B

T . In addition, we assume �(T ) � E

F

for the temper-

ature range 
onsidered. This pro
edure gives

� = L

11

=

�

o

�(k

B

T )

�

jE




j

�

�

I

�

� (� � 1)I

��1

E




�E

F

k

B

T

�

: (28)

For the thermopower, the leading-order 
orre
tion 
an be

obtained without expanding f(E; �; T ) in L

11

and L

12

.

This yields a 
onstant for S at the MIT as predi
ted for

the �rst time in referen
e [15℄. We obtain

S = �

k

B

jej

�

� + 1

�

I

�+1

I

�

+

E




�E

F

k

B

T

�

: (29)

For K and L

0

, we again have to use the expansion of

f(E; �; T ) as in (28) in order to get non-trivial terms.

The resulting expressions are 
umbersome and we thus

refrain from showing them here. We remark that the basi


ingredients used in the high-T expansion are somewhat


ontradi
tory, namely, the expansion is valid for high T

su
h that jE




� E

F

j � k

B

T , whereas �(T ) = E

F

is true

only for T = 0.

At present, we thus have various methods of 
ir
um-

venting the expli
it 
omputation of �(T ). However, their

ranges of validity are not overlapping and it is a priori not


lear whether the assumptions for �(T ) are justi�ed for S

or any of the other transport properties 
lose to the MIT.

In order to 
larify the situation, we numeri
ally 
ompute

�(T ) in the next se
tion and then use the CTKG for-

mulation to 
ompute the thermal properties without any

approximation.

5 The numeri
al method

In Eqs. (15)-(17), the expli
it T dependen
e of the 
oeÆ-


ients L

ij

o

urs in f(E; �; T ) and �(T ). More pre
isely,
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knowing �(T ), it is straightforward to evaluate the L

ij

.

We re
all that, for any set of nonintera
ting parti
les, the

number density of parti
les n 
an be determined as

n(�; T ) =

Z

1

�1

dE�(E)f(E; �; T ) ; (30)

where �(E) is again the density of energy levels (in the

unit volume) as in Fig. 1. Vi
e versa, if we know n and

�(E) we 
an solve Eq. (30) for �(T ). The density of states

�(E) for the 3D Anderson model has been obtained for

di�erent disorder strengths W as outlined in Se
. 2. We

determine �(E) with an energy resolution of at least 0:1

meV (� 1 K). Using �(E), we �rst numeri
ally 
al
ulate

n at T = 0 for the metalli
, 
riti
al and insulating regimes

using the respe
tive Fermi energies jE

F

j < E




, E

F

= E




,

and jE

F

j > E




. With � = E

F

, we have

n(E

F

) =

Z

E

F

�1

dE�(E) : (31)

Next, keeping n �xed at n(E

F

), we numeri
ally determine

�(T ) for small T > 0 su
h that jn(E

F

)� n(�; T )j is zero.

Then we in
rease T and re
ord the respe
tive 
hanges in

�(T ). Using this result in Eqs. (15){(17) in the CTKG for-

mulation, we 
ompute L

ij

by numeri
al integration and

subsequently determine the T -dependent transport prop-

erties (9){(12).

We 
onsider the disorders W = 8, 12, and 14 where

we do not have large 
u
tuations in the density of states.

These values are not too 
lose to the 
riti
al disorder W




,

so that we 
ould 
learly observe the MIT of Eq. (2). The

respe
tive values of E




have been 
al
ulated previously [3℄

to be 
lose to 7:0, 7:5, and 8:0. Within our approa
h, we


hoose E




to be equal to these values.

6 Results and dis
ussions

Here we show the results obtained for W = 12 with E




=

7:5. The results for �, K, and L

0

are the same at �E




and

E




sin
e they are fun
tions of L

11

, L

22

and L

2

12

, only. On

the other hand, this is not true for S.

6.1 The 
hemi
al potential

In Fig. 3, we show how �(T ) behaves for the 3D Anderson

model at E

F

�E




= 0, and �0:01. To 
ompare results from

di�erent energy regions we plot the di�eren
e of �(T ) from

E

F

. We �nd that �(T ) behaves similarly in the metalli


and insulating regions and at the MIT for both mobility

edges at low T . In all 
ases we observe �(T ) / T

2

. Fur-

thermore, we see that �(T ) at �E




equals ��(T ) at E




.

This symmetri
 behavior with respe
t to E

F

= � re
e
ts

the symmetry of the density of states at E = 0 as shown

in Fig. 1.

For 
omparison and as a 
he
k to our numeri
s, we

also 
ompute with our method �(T ) of a free ele
tron gas.

0 2 4 6 8 10

T (meV)

−0.12

−0.08

−0.04
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0.12

E
F
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 µ
 (

m
eV

)
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|EF|=Ec
metallic 

0 20 40 60 80 100
T (K)
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−0.04
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0.08

0.12

E
F
 −
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 (

m
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)

L
MIT
M

0 2 4 6 8 10

T (meV)

−0.12

−0.08

−0.04

0.00

0.04

0.08

0.12

E
F
 −

 µ
 (

m
eV

)

free electron gas

 −Ec              Ec

Fig. 3. The temperature dependen
e of the 
hemi
al potential

� measured with respe
t to the Fermi energy near both mobil-

ity edges. Also shown is �(T ) for a free ele
tron gas. The solid

line denotes �(T ) of Eq. (33).

The density of states is [23℄

�(E) =

3

2

n

E

F

�

E

E

F

�

1=2

(32)

and we again use E

F

= E




= 7:5. We remark that this

value of the mobility edge is in a region where �(E) in-


reases with E in an analogous way as �(E) for the An-

derson model at �E




. Thus, as shown in Fig. 3, �(T ) of a

free ele
tron gas is 
on
ave upwards as in the 
ase of the

Anderson model at �E




. We also plot the result for �(T )

obtained by the usual Sommerfeld expansion for Eq. (30),

E

F

� �(T ) =

E

F

3

�

�k

B

T

2E

F

�

2

: (33)

We see that our numeri
al approa
h is in perfe
t agree-

ment with the free ele
tron result.

6.2 The d.
. 
ondu
tivity

In Fig. 4 we show the T dependen
e of �. The values of

E

F

we 
onsider and the 
orresponding �llings n are given

in Tab. 1. The 
ondu
tivity at T = 0 remains �nite in

the metalli
 regime with �=�

o

= j1�E

F

=E




j

�

, be
ause

(��f=�E) ! Æ(E � E

F

) in Eq. (15) as T ! 0. Cor-

respondingly, we �nd � = 0 in the insulating regime at

T = 0. In the 
riti
al regime, �(T ! 0) � T

�

, as derived

in Ref. [16℄, see Eq. (24). We note that as one moves away

from the 
riti
al regime towards the metalli
 regime one

�nds within the a

ura
y of our data that � � T

2

. We ob-

serve that in the metalli
 regime � in
reases for in
reasing

T . This is di�erent from the behavior in a real metal where

� de
reases with in
reasing T . However, as explained in

Se
. 2, the behavior of � in Fig. 4 is due to the absen
e of

phonons in the present model.
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We also show in Fig. 4 results of the Sommerfeld ex-

pansion (19) and the high-T expansion (28) for �. Paradig-

mati
 for what is to follow we see that the radius of 
onver-

gen
e of the Sommerfeld expansion de
reases for E

F

! E




and in fa
t is zero in the 
riti
al regime. On the other

hand, the high-T expansion is very good in the 
riti
al

regime down to T = 0 at E




= E

F

. The small systemati


di�eren
es between our numeri
al results and the high-T

expansion for large T are due to the di�eren
es in �(T )

and E

F

. The expansion be
omes worse both in the metal-

li
 and insulating regimes for larger T . All of this is in


omplete agreement with the dis
ussion of the expansions

in Se
. 4.

6.3 The thermopower

In Fig. 5, we show the behavior of the thermopower at low

T near the MIT. In the metalli
 regime, we �nd S ! 0

as T ! 0. At very low T , S / T as predi
ted by the

Sommerfeld expansion (23). We see that the Sommerfeld

expansion is valid for not too large values of T . But upon

approa
hing the 
riti
al regime, the expansion be
omes

unreliable similar to the 
ase of the d.
. 
ondu
tivity of

Se
. 6.2. This behavior persists even if we in
lude higher

order terms in the derivation of S su
h as the O(T

2

) term

of Eq. (19) as shown in Fig. 5. At 
onstant T , we �nd

that S in
reases as E

F

approa
hes E




. This is 
onsistent

with the in
reasing asymmetry in the fun
tional form of

�(E) as in Eq. (2). Namely, the 
ondu
tivity of ele
trons

with energies E

e

> �(T ) is smaller than the 
ondu
tivity

of holes with energies E

h

< �(T ). It is this ele
tron-hole

asymmetry whi
h leads to a �nite L

12

and thus a non-zero

value of S at �nite T . We note that a 
onstant �(E) would

simply give S = 0.

Before dis
ussing the 
riti
al regime in detail, let us

turn our attention to the insulating regime. Here, S be-


omes very large as T ! 0. We have observed that it

even appears to approa
h in�nity. A seemingly divergent

behavior in the insulating regime has also been observed

for Si:P [30℄, where it has been attributed to the ther-

mal a
tivation of 
harge 
arriers from E

F

to the mobility

Table 1. Di�eren
es of E

F

and n(E

F

) with respe
t to the

mobility edge at E




= 7:5. The density at E





orresponds to

n = 97:768%.

regime E

F

�E




n(E

F

)� n(E




) symbol

(eV) (%)

metalli
 -0.010 -0.031 Æ

-0.007 -0.022 5

-0.005 -0.015 2

-0.003 -0.009 4

-0.001 -0.003 3


riti
al 0.000 0.000 �

insulating 0.001 0.003 +

0.003 0.009 �

0.010 0.031 �

0 2 4 6 8 10

T (meV)

0

1

2

3

σ 
/σ

0 
(1

0−
4 )

0 20 40 60 80 100
T (K)

0

1

2

3

Fig. 4. The low temperature behavior of the d.
. 
ondu
tiv-

ity �. The symbols are as shown in Tab. 1. The dashed lines

represent the Sommerfeld expansion result for �(T ) as given

in Eq. (19). For all 8 
hoi
es of E

F

� E




, the 
orresponding

high-T expansion (28) is indi
ated by solid lines.

edge E




. However, there is a simpler way of looking at this

phenomenon. We refer again to the open 
ir
uit in Fig. 2.

Suppose we adjust T at the 
ooler end su
h that rT re-

mains 
onstant. As T ! 0 both � andK vanish in the 
ase

of insulators | for K we show this in the next se
tion.

This implies that as T de
reases it be
omes in
reasingly

diÆ
ult to move a 
harge from T to T + ÆT . We would

need to exert a larger amount of for
e, and hen
e, a larger

E to do the job. From Eq. (4), this implies a larger S value.

In the 
riti
al regime, i.e., setting E

F

= E




, we observe

in Fig. 5 that for T ! 0 the thermopower S approa
hes a

value of 228:4�V/K. This is exa
tly the magnitude pre-

di
ted [16℄ by Eq. (25) for � = 1:3. In the inset of Fig. 5, we

show that the T dependen
e of S is linear. The nondiver-

gent behavior of S 
learly separates the metalli
 from the

insulating regime. Furthermore, just as for �, the Som-

merfeld expansion for S breaks down at E

F

= E




, i.e.,

the radius of 
onvergen
e is zero. Thus, the divergen
e of

Eq. (23) at E

F

= E




re
e
ts this breakdown and is not

physi
ally relevant. On the other hand, the high-T ex-

pansion [15℄ ni
ely re
e
ts the behavior of S 
lose to the


riti
al regime as also shown in Fig. 5. For E

F

= E




, the

high-T expansion (29) assumes a 
onstant value of S for

all T due to setting �(T ) = E

F

. This is approximately

valid, the di�eren
es are fairly small as shown in the inset

of Fig. 5.

We stress that there is no 
ontradi
tion that S > 0

in our 
al
ulations whereas S < 0 in Ref. [16℄. In Fig. 6,

we 
ompare S in energy regions 
lose to E




and to �E
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0 20 40 60 80 100

T (K)
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S
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µV
/K
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Fig. 5. The low temperature behavior of the thermopower S.

The symbols are as shown in Tab. 1. The dashed lines represent

the behavior of S(T ) in the metalli
 regime as given in Eq. (23).

The dot-dashed lines indi
ate S, 
al
ulated with the O(T

2

)

term of Eq. (19), for E

F

�E




= �0:01 eV (Æ) and �0:001 eV

(�). Solid lines are obtained from the high-T expansion (29).

The inset shows the behavior at E

F

= E




on an enlarged s
ale.

[31℄. Clearly, they have the same magnitude but S < 0

at �E




and S > 0 at E




. The two 
ases mainly di�er

in their number density n. At �E




the system is at low

�lling with n = 2:26% while at E




the system is at high

�lling with n = 97:74%. In agreement with the dis
ussion

in the beginning of this se
tion, the sign of S implies that

at low �lling the thermoele
tri
 
ondu
tion is due to ele
-

trons and we obtain the usual pi
ture as in Fig. 2 where

the indu
ed �eld E is in the dire
tion opposite to that

of rT . At high �lling, S > 0 means that E is dire
ted

parallel to rT . This 
an be interpreted as a 
hange in


harge transport from ele
trons to holes. We remark that

this sign reversal also o

urs in the insulating as well as

in the 
riti
al regime.

In Fig. 7, we take the data of Fig. 5 and plot them as a

fun
tion of ��E




. Our data 
oin
ides with the isothermal

lines whi
h were 
al
ulated a

ording to Ref. [16℄ by nu-

meri
ally integrating L

12

and L

11

for a parti
ular T to get

S. We observe that all isotherms of the insulating (� > E




)

and the metalli
 (� < E




) regimes 
ross at � = E




and

S = 228:4�V/K. Comparing with Eq. (23), we again �nd

that the Sommerfeld expansion does not give the 
orre
t

behavior of S in the 
riti
al regime.

The data presented in Fig. 7 suggest that one 
an s
ale

them onto a single s
aling 
urve. In Fig. 8, we show that

this is indeed true, when plotting S as a fun
tion of (��

E




)=k

B

T . We emphasize that the s
aling is very good and

0 20 40 60 80 100
T (K)

−200

−100

0

100

200

S
 (

µV
/K

)

Fig. 6. An example that the magnitude of S(T ) is the same in

metalli
 regions 
lose to �E




(�) and E




(Æ). The +-symbols

indi
ate jSj for �E




and jE

F

�E




j = 0:01 eV in all 
ases.

−8 −4 0 4
µ − Ec (meV)

0
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300

400

500

1.16 K = 0.1 meV
4.34 K = 0.4 meV
8.12 K = 0.7 meV
11.6 K = 1.0 meV
22.3 K = 2.0 meV
S = 228.4 µV/K
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300
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500

S
 (
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/K

)

Fig. 7. The data of S in Fig. 5 shown as a fun
tion of � mea-

sured from E




= 7:5 eV. The horizontal line indi
ates the �xed

point MIT value as given in Eq. (25). The thin dashed lines

represent isotherms of S 
al
ulated using the same method as

in Ref. [16℄. The solid line is an isotherm of S obtained from

Eq. (23) for T = 22:3 K.

the small width of the s
aling 
urve is only due to the

size of the symbols. The result for the high-T expansion

is indi
ated in Fig. 8 by a solid line. It is good 
lose to

the MIT. In the metalli
 regime, the Sommerfeld expan-

sion 
orre
tly 
aptures the de
rease of S for large negative

values of (� � E




)=k

B

T . We remark that a s
aling with

(E

F

�E




)=k

B

T as predi
ted for the �rst time in Ref. [15℄

is approximately valid. The di�eren
es are very small as

shown in the inset of Fig. 8.

6.4 The thermal 
ondu
tivity and the Lorenz number

In Fig. 9, we show the T dependen
e of the thermal 
on-

du
tivity K. We see that K ! 0 as T ! 0 whether it be

in the metalli
 or insulating regime. We note again that

this simple behavior is due to the fa
t that our model does
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Fig. 8. S
aling plot of the thermopower S. The thi
k dashed

line indi
ates the �xed point value at the MIT, the solid line

represents the high-T expansion (29), and the thin dashed line

shows the Sommerfeld expansion. The inset shows the di�er-

en
e in the s
aling when plotting S for E

F

�E




= �0:001 eV

as fun
tion of (��E




)=k

B

T (open symbols) or (E

F

�E




)=k

B

T

(�lled symbols).

not in
orporate phonon 
ontributions. The T dependen
e

of K varies whether one is in the metalli
 regime or in

the insulating regime and how far one is from the MIT.

Dire
tly at the MIT, we �nd thatK ! 0 as T

�+1


on�rm-

ing the T dependen
e of K as given in Eq. (26). Near the

lo
alization MIT, the T dependen
e of K=T is thus the

same as for � in agreement with Ref. [29℄. Again, we see

that the Sommerfeld expansion (21) is reasonable only at

low T in the metalli
 regime. As for � and S, we see that

the high-T expansion is again fairly good in the vi
inity

of the 
riti
al regime.

At this point we are able to determine the behavior

of the entropy in the system as T ! 0. In the metalli


regime, S and K vanish as T ! 0, while in the 
riti
al

and insulating regime, � and K vanish as T ! 0. Ap-

plying these results to Eqs. (13) and (14) yields that for

all regimes the entropy 
urrent density hj

q

i=T vanishes as

T ! 0. Therefore, we �nd that the third law of thermo-

dynami
s is satis�ed for our numeri
al results of the 3D

Anderson model.

Next, we present the Lorenz number (6) as a fun
-

tion of T in Fig. 10. In the metalli
 regime, we obtain the

universal value �

2

=3 as T ! 0. Note that for a metal

this value should hold up to room T [23℄. However, our

results for the Anderson model show a nontrivial T de-

penden
e. One might have hoped that the higher-order

terms in Eq. (22) 
ould adequately re
e
t the T depen-

den
e of our L

0

data. However, this is not the 
ase as

shown in Fig. 10. This indi
ates that even if we in
orpo-

rate higher order T 
orre
tions the Sommerfeld expansion

will not give the right behavior of L

0

near the MIT. We

emphasize that the radius of 
onvergen
e of Eq. (22) is

even smaller than for �, S and K. Similarly, the high-T

expansion is also mu
h worse than previously for �, S and

0 20 40 60 80 100
T (K)

 0.0

 0.1

 0.2

 0.3

 0.4

Κ
/σ

0 
(n

W
Ω

/K
)

Fig. 9. The thermal 
ondu
tivity K as a fun
tion of temper-

ature. The symbols are as shown in Tab. 1. The dashed lines

were obtained in O(T ) from the Sommerfeld expansion (21)

for the metalli
 regime. The results of the high-T expansion

for the 8 
hoi
es of E

F

�E




are indi
ated by solid lines.

K. Thus in addition to the results for the 
riti
al regime,

we only show in Fig. 10 the results for nearby data sets

in the insulating and metalli
 regimes. The T dependen
e

of L

0

is linear as shown in the inset of Fig. 10. As before

for S, the high-T expansion does not reprodu
e this. At

the MIT, L

0

= 2:4142. This is again the predi
ted [16℄

�-dependent value as given in Eq. (27).

In the insulating regime, one 
an show analyti
ally by

taking the appropriate limits that L

0

approa
hes � +1 as

T ! 0. In agreement with this, we �nd that L

0

= 2:3 at

T = 0 in Fig. 10. At �rst glan
e, it may appear surprising

that a transport property in the insulating regime 
ould be

determined by a universal 
onstant of the 
riti
al regime

su
h as �. However, in the evaluation of the 
oeÆ
ients

L

ij

, the derivative of the Fermi fun
tion for any �nite T

de
ays exponentially and thus one will always have a non-

zero overlap with the 
riti
al regime. In the evaluation of

Eq. (12), this � dependen
e survives in the limit T ! 0. In

real materials, we expe
t the relevant high-energy transfer

pro
esses to be dominated by other s
attering events and

thus L

0

should be di�erent. Nevertheless, for the present

model, this � dependen
e holds.

6.5 Possible s
enarios in the 
riti
al regime

The results presented in Se
. 6.3 for the thermopower at

the MIT show that S = 228:4�V/K for � = 1:3. This

value is 2 orders of magnitude larger than those measured

near the MIT [8,12,13℄. However, as mentioned in the in-

trodu
tion, the 
ondu
tivity exponents found in many ex-

periments are either 
lose to � = 0:5 or to 1 [7℄ and one
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Fig. 10. The Lorenz number L

0

as fun
tion of temperature.

The symbols are as shown in Tab. 1. The dashed 
ir
les mark

the values of L

0

at T = 0 for metalli
 and insulating regimes.

The dashed lines were obtained from Eq. (22). The results of

the high-T expansion for E

F

�E




= 0 eV, �0:001 eV and 0:003

eV are indi
ated by solid lines. The inset shows the behavior

at E

F

= E




on an enlarged s
ale.

might hope that this di�eren
e may explain the small ex-

perimental value of S. Also, re
ent numeri
al studies of

the MIT by transfer-matrix methods together with non-

linear �nite-size s
aling �nd � = 1:57 � 0:03 [6℄. In Tab.

2 we summarize the values of S and L

0

at the MIT for

these 
ondu
tivity exponents. We see that all S values still

di�er by 2 orders of magnitude from the experimental re-

sults. Furthermore, we note that our results for S and L

0

are independent of the unit of energy. Even if, instead of

1 eV, we had used t

ij

= 1 meV, whi
h is appropriate in

the doped semi
ondu
tors [7,9,13,30℄, we would still ob-

tain the values as in Tab. 2. Thus our numeri
al results

for the thermopower of the Anderson model at the MIT

show a large dis
repan
y from experimental results. This

Table 2. The thermopower and the Lorenz number at the MIT

for a 3D Anderson model evaluated for various � at E




= 7:5

eV. The values for � = 0:5 and 1 have already been shown in

Ref. [16℄.

� S L

0

(�V/K)

0.5 163.5 1.7761

1.0 204.5 2.1721

1.3 228.4 2.4142

1.57 249.7 2.6372

may be due to our assumption of the validity of Eq. (2) for

a large range of energies, or due to the absen
e of a true

Anderson-type MIT in real materials, or due to problems

in the experiments.

A di�erent s
enario for a disorder driven MIT has been

proposed by Mott, who argued that the MIT from the

metalli
 state to the insulating state is dis
ontinuous [32℄.

Results supporting su
h a behavior have been found ex-

perimentally [11,33℄. A

ording to this s
enario, � drops

from a �nite value �

min

to zero [32℄ for T = 0 at the MIT.

This minimum metalli
 
ondu
tivity �

min

was estimated

by Mott to be

�

min

'

1

a

e

2

~

(34)

where a is some mi
ros
opi
 length of the system su
h as

the inverse of the Fermi wave number, a � k

�1

F

. As sum-

marized in Ref. [11℄, experiments in non-
rystalline mate-

rials seem to indi
ate that �

min

> 300 


�1


m

�1

. Let us

assume the behavior of �(E) 
lose to the MIT to be

�(E) =

�

�

min

; jEj � E




;

0; jEj > E




;

(35)

with �

min

= 300 


�1


m

�1

. Using the numeri
al approa
h

of Se
. 5, we obtain S = 119:5 �V/K at the MIT. This

value is still rather large and thus the assumption of a

minimum metalli
 
ondu
tivity as in Eq. (35) 
annot ex-

plain the dis
repan
y from the experimental results. We

remark that the order of magnitude of S is not 
hanged

appre
iably, even if we add to the metalli
 side of Eq. (35)

a term as given in Eq. (2) with �

0

a few hundred 


�1


m

�1

and � = 1.

Lastly, we note that the transport properties 
al
u-

lated for W = 8 and 14 do not di�er from those obtained

for W = 12 in both the metalli
 and insulating regions

provided we are at temperatures T . 100 K. For S and

L

0

at the MIT we obtain the same values as for W = 12.

Again we observe that both S and L

0

approa
h these val-

ues linearly with T , but with di�erent slopes. Our results

show that the higher the disorder strength the smaller the

magnitude of the slope.

7 Con
lusions

In this paper, we investigated the thermoele
tri
 e�e
ts

in the 3D Anderson model near the MIT. The T depen-

den
e of the transport properties is determined by �(T ).

We were able to 
ompute �(T ) by numeri
ally invert-

ing the formula for the number density n(�; T ) of non-

intera
ting parti
les. Using the result for �(T ), we 
al
u-

lated the thermoele
tri
 transport properties within the

Chester-Thellung-Kubo-Greenwood formulation of linear

response. As T ! 0 in the metalli
 regime we veri�ed that

� remains �nite, S ! 0, K ! 0 and L

0

! �

2

=3. On the

other hand, in the insulating regime, S !1. This we at-

tribute to both � and K going to zero. Thus, it be
omes

in
reasingly diÆ
ult to a
hieve equilibrium and, hen
e,

the system requires E ! 1. For L

0

, we obtained a uni-

versal value of �+1 even in the insulating regime. Dire
tly
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at the MIT, the thermoele
tri
 transport properties agree

with those obtained in Ref. [16℄. Namely, as T ! 0, we

found � � T

�

, K � T

�+1

, while L

0

! 
onst.

The thermopower S also remains nearly 
onstant in

the 
riti
al regime and, in parti
ular, it does not diverge

at the MIT in 
ontrast to earlier 
al
ulations using the

Sommerfeld expansion at low T [14℄. Here we showed that

the di�eren
e is not so mu
h due to an order of limits prob-

lem, but rather re
e
ts the breakdown of 
onvergen
e of

the Sommerfeld expansion at the MIT [15℄. Our result is

supported by s
aling data for S at di�erent values of T and

E

F

onto a single 
urve whi
h is 
ontinuous a
ross the tran-

sition. S
aling 
urves for �, K and L

0


an be 
onstru
ted

in a similar way; results will be published elsewhere [34℄.

We remark that some of the experiments for S [8,12℄ have

been in
uen
ed by the Sommerfeld expansion su
h that

the authors plot their results as S=T . In su
h a plot the

signature of the MIT is hard to identify, sin
e S=T at the

MIT diverges as T ! 0 solely due to the de
rease in T .

Our results suggest that plots as in Figs. 5 and 7 should

show the MIT more 
learly.

The value of S is at least two orders of magnitude

larger than observed in experiments [8,12,13℄. This large

dis
repan
y may be due to the ingredients of our study,

namely, we assumed that a simple power-law behavior of

the 
ondu
tivity �(E) as in Eq. (2) was valid even for

E � E




and E � E




. Furthermore, we assumed that it

is enough to 
onsider an averaged density of states �(E).

While the �rst assumption is of 
ourse 
ru
ial, the se
-

ond assumption is of less importan
e as we have 
he
ked:

Lo
al 
u
tuations in �(E) will lead to 
u
tuations in the

thermoele
tri
 properties for �nite T , but do not lead to a

di�erent T ! 0 behavior: S remains �nite with values as

given in Tab. 2. Moreover, averaging over many samples

yields a suppression of these 
u
tuations and a re
overy

of the previous behavior for �nite T . In this 
ontext, we

remark that | naively assuming all other parts of the

derivation are un
hanged | impli
ations of many-parti
le

intera
tions su
h as a redu
ed single-parti
le density of

states at E

F

[35℄, will only modify the T dependen
e of

�. Consequently, the T dependen
ies of S, �, K, and L

0

may be di�erent, but their values at the MIT remain the

same.

Our results also suggest that the 
riti
al regime is very

small. Namely, as the �lling in
reases slightly from n =

97:74% to 97:80%, the behavior of the system 
hanges

frommetalli
 to 
riti
al and �nally to insulating. Up to the

best of our knowledge, su
h small 
hanges in the ele
tron


on
entration have not been used in the measurements of

S as in Refs. [8,12,13℄. We emphasize that su
h a �ne

tuning of n is not essential for measurements of � as is

apparent from Fig. 4.

Of 
ourse, one may also spe
ulate [16℄ that these re-

sults suggest that a true Anderson-type MIT has not yet

been observed in the experiments.
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