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Preface

The solution of elliptic boundary value problems may have anisotropic behaviour in parts of the

domain. That means that the solution varies signi�cantly only in certain directions. Examples

include di�usion problems in domains with edges and singularly perturbed convection-di�usion-

reaction problems where boundary or interior layers appear. In such cases it is an obvious idea

to re�ect this anisotropy in the discretization by using anisotropic meshes with a small mesh size

in the direction of the rapid variation of the solution and a larger mesh size in the perpendicular

direction. Anisotropic meshes can also be advantageous if surfaces with strongly anisotropic

curvature (the front side of a wing of an airplane) or thin layers of di�erent material are to be

discretized.

In order to describe anisotropic elements mathematically we introduce the term aspect ratio.

The aspect ratio is the ratio of the diameter of the element e and the supremum of the diameters

of all balls contained in e. A �nite element is called anisotropic if the aspect ratio tends to

in�nity when the mesh size or some (small perturbation) parameter tends to zero. Contrary,

elements are called isotropic if the aspect ratio is bounded by a moderate constant. Triangular

elements are isotropic if they satisfy Zlámal's minimal angle condition.

Already in the �fties and seventies it was shown that certain local interpolation error esti-

mates can be proved for some classes of anisotropic �nite elements. The minimal angle condition

is replaced by the weaker maximal angle condition. Nevertheless, the majority of papers and

books on the �nite element method excludes anisotropic �nite elements.

Since the end of the eighties anisotropic elements are considered in the international lit-

erature more intensively. Examples of using anisotropic elements include interpolation tasks,

singular perturbation and �ow problems, the treatment of edge singularities, and adaptive pro-

cedures. The corresponding papers lead to two conclusions. First, anisotropic mesh re�nement

o�ers a great potential for the construction of e�cient numerical procedures (interpolation,

�nite element method, boundary element method, �nite volume method), more e�cient than it

is possible with the restriction to a bounded aspect ratio. So one can expect a broad utilization

of such meshes. Second, there are still challenges to set all the ingredients of such methods on

a solid mathematical basis. These ingredients include a-priori and a-posteriori error estimates

and the solution of the arising system of algebraic equations.

The aim of this monograph is to establish interpolation and approximation properties of

�nite element spaces on anisotropic meshes. In particular, such topics are chosen where the

author himself contributed to the development: anisotropic local interpolation error estimates

for several types of two- and three-dimensional �nite elements and a-priori estimates of the

discretization error for model problems with edge singularities or boundary layers. Several

results have not been presented before.

We are restricted here to model problems since detailed knowledge of properties of the solu-

tion is necessary. However, much e�ort is spent to treat arbitrary polygonal/polyhedral domains

and �nite elements of any approximation order. It is a future task to apply these results to more
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ii Preface

complex problems and to complement them with mathematically founded adaptive strategies

and optimal preconditioning techniques for solving the arising systems of linear equations.

The monograph is organized into 30 sections which form six chapters:

1. Preliminaries,

2. Lagrange interpolation,

3. Scott-Zhang interpolation,

4. Anisotropic �nite element approximations near edges,

5. Anisotropic �nite element approximations in boundary layers,

6. Open problems.

A detailed outline is given in Section 2.

This work was possible only with the help, stimulation, and encouragement of many peo-

ple. Bernd Heinrich (Chemnitz) directed my attention to anisotropic �nite elements about ten

years ago, and since then he has given many valuable comments. Together with Manfred Do-

browolski (Würzburg) we set the basis for deriving anisotropic interpolation error estimates.

Anna-Margarete Sändig (Stuttgart) and Serge Nicaise (Valenciennes, France) answered with pa-

tience many questions about singularities. Gert Lube (Göttingen) introduced me to the world

of singularly perturbed problems. From all them and also from the other co-authors John

R. Whiteman (Uxbridge, United Kingdom), Roland Mücke (Baden, Switzerland), and Frank

Milde (Chemnitz) I pro�ted in joint work into mesh re�nement techniques. The author had also

valuable discussions with many colleagues at the Fakultät für Mathematik of the Technische Uni-

verstät Chemnitz, among them in particular Michael Jung, Gerd Kunert, Michael Lorenz, Arnd

Meyer, and Reinhold Schneider. The computations were carried out with the help of Michael

Jung, Frank Milde, and Uwe Reichel. The work was supported by Deutsche Forschungsge-

meinschaft and Deutscher Akademischer Austauschdienst. Finally, I want to thank my wife

for her encouragement and patience over the years. All this help and support is gratefully

acknowledged.
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Chapter I

Preliminaries

1 Introduction to anisotropic �nite elements

Many physical phenomena and engineering problems can be formulated mathematically by

boundary value problems for linear, elliptic partial di�erential equations. Examples include

di�usion and heat conduction problems (sometimes involving convection), the calculation of

electrostatic potential distributions, and the calculation of displacement �elds in linear elastic-

ity. The task of solving linear elliptic boundary value problems can also be encountered as a

repeated ingredient in the solution of nonlinear (after linearization), time-dependent (after semi-

discretization), or inverse problems. The investigation of particular aspects of the numerical

solution of such problems has motivated the research which is documented in this report.

To develop the main ideas we introduce some basic notation. Assume that the boundary

value problem is given in weak form:

Find u 2 V

0

: a(u; v) = hf; vi 8v 2 V

0

: (1.1)

Here we denote by V

0

a subspace of V := W

1;2

(
) where 
 � R

d

(d = 2; 3) is a bounded

polygonal/polyhedral domain. The duality pair h:; :i : V

0

� V ! R characterizes a linear

functional hf; :i on V

0

. Without going into too much detail here, we demand that the bilinear

form a(:; :) : V � V ! R has properties such that (1.1) has a unique solution u 2 V

0

. This

framework is general enough to cover symmetric and non-symmetric bilinear forms, as well as

scalar and vector-valued functions u. In the latter case the de�nition of V has to be modi�ed

to V := [W

1;2

(
)]

n

.

The basic principle of the numerical solution of problem (1.1) via the Galerkin �nite element

method is to replace V

0

by a family of �nite-dimensional spaces V

0h

. The �nite element solution

is then de�ned by:

Find u

h

2 V

0h

: a(u

h

; v

h

) = hf; v

h

i 8v

h

2 V

0h

: (1.2)

We remark that also the bilinear and linear forms could be modi�ed to depend upon the

parameter h, but we will keep the explanation as simple as possible here. In the h-version of

the �nite element method, the spaces V

h

� V and V

0h

� V

0

are de�ned relative to a family

F = fT

h

g of meshes T

h

:= feg,

V

h

:= fv

h

2 V : v

h

j

e

2 P

k;e

8e 2 T

h

g; V

0h

:= V

0

\ V

h

: (1.3)

The element type determines the space P

k;e

of shape functions. The meshes are assumed to

satisfy the usual admissibility conditions [63, pages 38, 51]:

1



2 Chapter I. Preliminaries

h

1=�

Figure 1.1: Examples of anisotropic meshes. Left: in a boundary layer. Right: near an edge.

1. The domain is covered by the closure of the �nite elements e, 
 =

S

e2T

h

e.

2. The �nite elements are disjoint, e \ e

0

= ; 8e; e

0

2 T

h

, e 6= e

0

.

3. Any edge (d = 2) or face (d = 3) of any element e 2 T

h

is either a subset of the boundary

@
 or edge/face of another element e

0

2 T

h

.

Denote by diam(e) the diameter of the �nite element e, and by %

e

the supremum of the

diameters of all balls contained in e. Then it is assumed in the classical �nite element theory

that

diam(e) . %

e

: (1.4)

(The notation . means smaller than up to a constant.) The ratio of diam(e) and %

e

is called

aspect ratio of the element e. In this sense, (1.4) is equivalent to the assumption of a bounded

aspect ratio. Elements which satisfy (1.4) are called isotropic elements, see, for example, [175].

Triangular elements are isotropic if they satisfy Zlámal's minimal angle condition [208].

Consider now boundary value problems with a solution which has anisotropic behaviour near

certain manifoldsM � 
. That means that the solution varies signi�cantly only perpendicularly

to M . Examples include di�usion problems in domains with edges M , see Chapter IV, and

singularly perturbed convection-di�usion-reaction problems where M is part of the boundary or

an interior manifold, see Chapter V. In such cases it is an obvious idea to re�ect this anisotropy

in the discretization by using meshes with anisotropic elements [9, 175] (sometimes also called

elongated elements [205]). These elements have a small mesh size in the direction of the rapid

variation of the solution and a larger mesh size in the perpendicular direction. Examples are

given in Figure 1.1. Anisotropic meshes can also be advantageous if surfaces with strongly

anisotropic curvature (the front side of a wing of an airplane, for example [175, Figure 6]) or

thin layers of di�erent material are to be discretized.

Anisotropic elements do not satisfy condition (1.4). Conversely, they are characterized by

diam(e)

%

e

!1 (1.5)

where the limit can be considered as h ! 0 (near edges) or " ! 0 (in layers) where " is some

(small perturbation) parameter of the problem. We note that the investigation of anisotropic

elements also forms a basis for using highly distorted elements in the meshing of thin slots or
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layers of di�erent materials, for example in an electronic motor. Here, the elements are not

anisotropic in the sense of (1.5) but the constant in (1.4) is very large.

First mathematical considerations of anisotropic elements go back to the �fties [187] and

seventies [27, 84, 108] Nevertheless, the majority of papers and books on the �nite element

method excludes such elements. Some commercial �nite element codes even prohibit elements

with large aspect ratio, for example an aspect ratio greater than 5.

Since the end of the eighties anisotropic elements are considered more intensively, for example

for interpolation tasks [9, 12, 21, 35, 69, 119, 120, 160, 202], in singular perturbation and �ow

problems [2, 13, 41, 73, 114, 152, 173, 186, 204, 205], for the treatment of edge singularities

[9, 19, 21, 153], and in adaptive procedures [58, 62, 117, 152, 155, 174, 205]. This list is

certainly incomplete, but from the papers we can draw two conclusions. First, anisotropic

mesh re�nement o�ers a great potential for the construction of e�cient numerical procedures

(interpolation; h-, r-, and hp-version of the �nite element method; boundary element method,

�nite volume method), more e�cient than it is possible with the restriction to a bounded aspect

ratio. So one can expect a broad utilization of such meshes. Second, there are still challenges

to set all the ingredients of such methods (including a-priori and a-posteriori error estimates

and the solution of the arising system of algebraic equations) on a solid mathematical basis.

2 Outline

This monograph is an attempt to present a survey of interpolation results and applications in

connection with anisotropic �nite element meshes. The aim is to understand the approximation

properties of �nite element spaces on anisotropic meshes. In particular, such topics are chosen

where the author himself contributed to the development:

� anisotropic local interpolation error estimates for several types of two- and three-dimen-

sional �nite elements and

� a-priori estimates of the discretization error for model problems with edge singularities or

boundary layers.

So the reader will �nd several new results as well.

Thirty sections form six chapters: Preliminaries, Lagrangian interpolation, Scott-Zhang in-

terpolation, Anisotropic discretizations near edges, Anisotropic discretizations in boundary lay-

ers, and Open problems. We will now motivate and describe the contents.

A primary task is to investigate the interpolation error since local interpolation error esti-

mates are basic ingredients for deriving a-priori estimates of the �nite element error, for proving

the equivalence of error estimators and the exact error, and for investigating multi-level algo-

rithms. For Lagrangian �nite elements, the Lagrangian interpolant, also called nodal interpolant,

is the simplest one. It is de�ned by

I

h

u :=

X

i2I

u(X

(i)

)'

i

(x); (2.1)

where X

(i)

are the nodes and '

i

(x) are the nodal basis functions:

'

i

(X

(j)

) = �

i;j

; i; j 2 I: (2.2)

Since I

h

is de�ned locally on every element the interpolation error u � I

h

u can be estimated

elementwise.



4 Chapter I. Preliminaries

Let us start with a result of the classical interpolation theory, see, for example, [63]. For

functions u 2W

`;p

(e) the interpolation error can be estimated in the form

ju� I

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

(diame)

`

%

�m

e

ju;W

`;p

(e)j; (2.3)

where meas

d

e is the area/volume of the element e and j : ;W

`;p

(e)j means a seminorm in the

Sobolev space W

`;p

(e). The admissible ranges of the parameters `, m, p, and q depend on the

space dimension d and the polynomial degree k of the shape functions.

For isotropic elements we can rewrite estimate (2.3) and get

ju� I

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

(diame)

`�m

ju;W

`;p

(e)j: (2.4)

For several special cases it was proved that this estimates holds true for certain classes of

anisotropic elements as well. Triangular and tetrahedral elements were investigated in [27, 108,

119, 120] and, as the oldest reference, [187, pages 209�213]. In all of these papers it is shown that

anisotropic elements can be applied when a maximal angle condition is satis�ed. Quadrilateral

elements were investigated similarly in [108, 202]. We summarize these contributions in more

detail in Section 10.

These results were rarely exploited for �nite element error estimates because the possible

advantage of using elements with independent length scales in di�erent directions was not

extracted; only the diameter appeared in the local interpolation error estimates. If we use

anisotropic elements in order to compensate a large directional derivative of the solution by a

small element size in this direction, then we need a sharper interpolation error estimate. We

investigate in this monograph estimates of the type

ju� I

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

�

1

+���+�

d

=`�m

�

1

;:::;�

d

�0

h

�

1

1;e

� � �h

�

d

d;e

�

�

�

�

@

`�m

u

@x

�

1

1

� � �@x

�

d

d

;W

m;p

(e)

�

�

�

�

; (2.5)

where h

1;e

; : : : ; h

d;e

are suitably de�ned element sizes. We will call estimates of this type

anisotropic, in contrary to the isotropic estimate in (2.4) where the di�erent element scales

h

1;e

; : : : ; h

d;e

are not exploited.

Special cases of estimate (2.5) were proved for triangular and rectangular elements in [37,

84, 153, 155] and [150, pages 82�84 and page 90], see Section 10 for the individual contributions.

An intensive study for all types of elements including tetrahedra and bricks and also for higher

order shape functions started with the paper [9] and continued in various directions in [5, 12,

14, 19, 20, 21]. Based on [9], some of the results were obtained independently also in [35].

In Chapter II (Sections 4�10) of this report we present the whole interpolation theory for

anisotropic elements in a systematic way. The main strategy is fairly standard, namely, to derive

�rst the estimate on a reference element ê and to apply a coordinate transformation x = F

e

(x̂)

with e = F

e

(ê). Nevertheless, there are mainly two obstructions which prevent an obvious

solution. We have �rst to recognize that sharper estimates on the reference element have to be

shown for proving estimates of type (2.4) or (2.5) for anisotropic elements, sharper than it is

necessary for isotropic elements, see Section 4.2. We will see in Chapter II that these estimates

can be derived for all element types on the basis of an abstract result given in Subsection 4.3.

A second peculiarity of the proof of anisotropic interpolation error estimates is that the

transformation F

e

has to be investigated very carefully. We obtain essential assumptions on the

geometry of the elements (like the maximal angle condition) and on the location of the elements

in the coordinate system (a coordinate system condition). These conditions are formulated in

Sections 5�9 for each element type separately.

Triangular elements are considered in Section 5. We prove the estimate on the reference ele-

ment (Lemma5.1), formulate the maximal angle condition and the coordinate system condition,
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prove estimate (2.5) under the assumptions

1 � ` � k + 1; p 2 [1;1]; 0 � m � ` � 1;

q 2 [1;1] such that W

`�m;p

,! L

q

(e);

p > 2 if ` = 1

(Theorem 5.5, k is the polynomial degree), and derive the corresponding estimate of type (2.4)

(Corollary 5.6). In the discussion, we give examples that the assumptions m � ` � 1 (up to

exceptional cases like m = ` = 0, p = 1), and p > 2 if ` = 1, as well as the maximal angle

condition are necessary.

Tetrahedral elements can be considered in the same way but they need special care, as

investigated in Section 6. First, we need at least two reference elements, one for elements

with three long edges, the other for elements with four long edges. Second, Lemma 6.1 (the

counterpart of Lemma 5.1, the estimate on the reference element) does not hold for p � 2 if

m = ` � 1 (Example 6.2). This includes in particular the case m = k, p = 2, which is often

used when k = 1. Third, the proof of the properties of the transformation x = F

e

(x̂) is more

challenging due to the greater variability (Lemma 6.3). Additionally to the estimates which are

analogous to Section 5, we prove two more types of anisotropic interpolation error estimates. At

the end of Subsection 6.1, we consider functions with additional smoothness, u 2W

k+2;p

(e), as

a remedy to treat the case m = k, p � 2 (Theorem 6.5). Furthermore, we derive in Subsection

6.2 local interpolation error estimates for functions from weighted Sobolev spaces (Theorems

6.9 and 6.11). Special cases of these theorems were proved in [19, 21] to be able to treat edge

singularities.

The estimates for triangles extend to a�ne quadrilateral elements, that are parallelograms.

There is only one small di�erence in the proof of Lemma 7.1 (estimate on the reference element)

where attention is needed. But there are two more reasons why a whole section is devoted to

quadrilateral elements. First, for rectangular elements we can prove for k � 2 a slightly sharper

estimate, with less terms on the right hand side (Theorem 7.11 and Remark 7.12). Second, for

more general elements than parallelograms, for example trapezes, the transformation x = F

e

(x̂)

is non-linear. This leads not only to a technically more complex transformation of the estimate,

but also to a non-optimal result with lower order terms on the right hand side (Lemma 7.16) [5].

Nevertheless, we were �nally able to reproduce the estimates of the a�ne elements (Theorem

7.17, Corollary 7.18). The section ends with an example showing the necessity of an assumption

on the geometry of the non-a�ne elements.

In Section 8 we formulate all statements for (�rst a�ne, then non-a�ne) hexahedral elements.

It turns out that all ideas for the proofs are already contained in Sections 5�7. For the same

reason we shortened also the discussion of pentahedral elements (triangular prisms) in Section 9.

The last section of Chapter II is devoted to historical remarks and alternative approaches.

We discuss related interpolation results of other authors and ideas of their proof. These are

sometimes really fascinating though they were not su�cient for our purposes.

For several investigations, the Lagrangian interpolant turns out to be not appropriate. One

drawback is that nodal values of u have to be well de�ned for the de�nition of I

h

u. Even more,

it is not su�cient for the proof of local interpolation error estimates to consider functions u 2

W

`;p

(e)\C(e). We need assumptions on ` and p which imply the Sobolev embeddingW

`;p

(e) ,!

C(e) (though this embedding is explicitly used only in the case m = 0). Consequently, the

Lagrange interpolation is not suited for functions u 2 W

`;p

(
) when p` � d (besides the

exceptional case p = 1, ` = d), for example for u 2W

1;2

(
).



6 Chapter I. Preliminaries

A second drawback is that the anisotropic elements imply further restrictions on the range

of the parameters. In particular, the estimate

ju� I

h

u;W

1;p

(e)j .

3

X

i=1

h

i;e

�

�

�

�

@u

@x

i

;W

1;p

(e)

�

�

�

�

and even the simpli�ed version

ju� I

h

u;W

1;p

(e)j . diame ju;W

2;p

(e)j

hold only for p > 2 in three dimensions. This restriction leads to a non-optimal approximation

result in our investigation of the anisotropically re�ned meshes near edges [19, 20], see Remark

19.3 on page 102.

A remedy (at least for the �rst drawback) is to mollify u in some neighbourhood �

i

of X

(i)

and to use values of the molli�ed function for the de�nition of the interpolant. Such approaches

have been investigated for isotropic meshes by several authors, see, for example, [64, 171], [150,

pages 92�102], [151, pages 15�19]. In Chapter III we investigate �rst the Scott-Zhang operator

[171]. It turns out that estimates of type (2.5) can be proved in the L

q

(e)-norm (m = 0,

Theorem 12.1). But Example 12.2 shows that this approach cannot be applied for m > 0.

Therefore we suggest in Sections 13�15 three alternative operators. They can be viewed

as modi�cations/adaptions of the Scott-Zhang operator. These operators allow to prove local

stability and approximation estimates with di�erent generality, see Theorems 13.3, 14.2, and

15.1 for functions from classical Sobolev spaces, and Lemmata 13.5 and 15.3 for functions from

weighted Sobolev spaces. But for all three operators the ranges of the parameters `, m, p, and q

contain those of the Lagrange interpolation. We compare the operators in detail in Section 17.

The stability and approximation properties are investigated for �ve types of two- and three-

dimensional �nite elements with shape functions of arbitrary order. However, we restrict our-

selves to elements of tensor product type. Such elements contain certain orthogonal edges/faces,

see Section 3 for the exact de�nition.

As it was the case with the Lagrange interpolation, the proof of the properties of the Scott-

Zhang operator for isotropic elements cannot be applied directly for anisotropic elements. Some

new ideas were necessary. Unfortunately, these ideas depend on the geometrical conditions on

the mesh mentioned above. That means that the generalization to a broader class of elements

will contain not only a more general coordinate transformation. It is a task for the future to

develop some new ideas.

Chapters IV and V (Sections 18�26) contain anisotropic discretization strategies and global

error estimates for model problems, for example the Poisson problem and the convection-

di�usion-reaction problem. The di�erential operators in these problems are simple, the solution

is always only a scalar function. Our main interest is to treat typical peculiarities (typical also

for more complex problems) like boundary layers or edge and corner singularities. We focus

on the applicability of the techniques to general polygonal/polyhedral domains and to piecewise

polynomial trial functions of arbitrary (but �xed) degree k.

For about ten years the author has been interested in elliptic problems, posed over domains

with corners and edges. The latest results are contained in Chapter IV.

The solution of such problems has both singular and anisotropic behaviour. The singularity

leads to a reduced convergence order of the �nite element method on quasi-uniform meshes. A

remedy is local mesh re�nement, and it turns out that the adequate re�nement is anisotropic

[9, 19, 21]. Note that isotropic re�nement can be applied as well [11, 23], but only for a moderate

singularity exponent � > 1=3, and computations show that the additional re�nement along the

edge is not necessary. Section 19 may serve as a more detailed introduction.
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In Section 20, we consider the Poisson problem,

��u = f in 
; u = 0 on �

1

;

@u

@n

= 0 on �

2

:= @
 n �

1

;

for simplicity over a three-dimensional tensor product domain 
 = G � (0; z

0

). We prove for

model cases and piecewise linear trial functions the approximation estimate

ku� u

h

;W

m;2

(
)k . h

2�m

kf ;L

2

(
)k; m = 0; 1;

by using the Scott-Zhang interpolation results (Theorem 20.2 and Corollary 20.3). Using the

Lagrange interpolant we needed in former papers more smoothness of the data (f 2 W

4;2

(
)

in [9]) or a stronger re�nement condition [19].

By using trial functions of higher degree k and a corresponding stronger anisotropic mesh

grading one can prove for model cases (Examples 20.9 and 20.10) that edge singularities can be

approximated according to

ku� u

h

;W

1;2

(
)k . h

k

:

The basis for this estimate is set by the global interpolation error estimates in Theorems 20.7

and 20.8. Of course, the right hand side f has to be su�ciently smooth.

Note that we present asymptotic estimates always in terms of h := max

e2T

h

diame. Since

we advocate only strategies where the number of elements is N

el

� h

�d

, the error can easily be

expressed in terms of N

el

or the number N of unknowns (degrees of freedom).

For general polyhedral domains or more general di�erential operators one has to combine

the anisotropic re�nement near singular edges with an isotropic re�nement for treating the

additional corner singularities. One of the challenges has been to describe a family of meshes

which is both suited for proving approximation error estimates and for a simple realization in a

computer program. With our proposal [21], see also the summary in Section 21, the construction

of such meshes is principally known. The analysis is done, however only in the case of piecewise

linear trial functions, k = 1 (Theorem 21.4 and Corollary 21.5). The di�culty for k � 2 consists

in a su�ciently �ne description of the properties of the solution u. The section is completed

with a computation of the Poisson equation in the Fichera domain.

One of the surprising results is that the anisotropic mesh grading does not disturb the

asymptotics of the condition number � of the sti�ness matrix. We show in Subsection 20.3 that

� . h

�2

as in the case of a family of quasi-uniform meshes and a smooth solution.

In Chapter V we consider singularly perturbed problems. The solution of the model problem

�"

2

�u+ cu = f in 
 � R

d

(d = 2; 3); u = 0 auf @
;

is characterized for 0 < "� 1 by a boundary layer of width O("j ln "j). The derivatives normal

to the boundary layer include negative powers of " and are therefore large in comparison with

derivatives in tangential direction. Therefore, as in the case of edge singularities, the natural

way to resolve the boundary layer is to use anisotropic �nite elements. As shown in Section 24,

isotropic local mesh re�nement leads only to an approximation result which is not uniformly

valid with respect to the perturbation parameter ".

Error estimates for the anisotropic discretizations were derived in the energy norm

jjj : jjj




� "j : ;W

1;2

(
)j+ k : ;L

2

(
)k

in [6, 14] for a class of simplicial meshes (d = 2; 3) and in [5] for meshes with quadrilateral

elements. In all these papers the width a of the re�nement zone is O("j ln "j) and corner/edge

singularities were excluded by demanding certain compatibility conditions on the data.
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In Section 25 we summarize and extend this analysis (Lemmata 25.4�25.6, Theorems 25.8

and 25.9). On the one hand we incorporate an additional mesh re�nement to treat also corner

singularities. This is restricted to two dimensions but the techniques should work also in three

dimensions. The critical point is to obtain a detailed description of the properties of the solution.

On the other hand, results in related literature led to the assumption that for h � " (which is

the interesting case in practice) a numerical layer of width a = O("j lnhj) is more appropriate.

Therefore we investigate also this case in Section 25. The �nal result is

jjju� u

h

jjj




. h

k

"

1=2

minfj lnhj

k+1=2

; j ln "j

k+1

g+ h

k+1

;

if a = a

�

"minfj lnhj; j ln "jg with a suitable constant a

�

is chosen (Corollary 25.11). The section

ends with a discussion of insu�cient re�nement near the corners (Lemmata 25.14 and 25.16).

A more di�cult singularly perturbed problem is obtained by including a convection term,

�"�u+ b � ru+ cu = f in 
 � R

d

(d = 2; 3); u = 0 auf @
:

In Section 26 we present in a uniform notation some approximation results for a pure (Theorem

26.5) and a stabilized Galerkin �nite element method on anisotropic meshes (Theorem 26.6).

These results were mainly derived in [13, 73, 186]. An approximation error estimate with optimal

convergence order which is also uniformly valid with respect to the perturbation parameter "

is derived for the stabilized method only in the case of rather small stabilization parameters

(Remark 26.7). It needs further investigation whether the method is stable enough or whether

the proof can be extended to a stronger stabilization.

Chapter VI (Sections 27�29) is devoted to some topics which are treated unsatisfactorily up

to now. Section 27 serves as an introduction. We comment on some problems which were left

open in Chapters III�V, and also on a more complex application.

A-priori estimates of the �nite element error form only one of the two legs of the �nite

element analysis. The other leg consists in a-posteriori error estimates. They are the basis for

assessing the quality of a particular �nite element solution and for the creation of automatic

mesh adapting �nite element strategies. However, the majority of papers on this topic assume

a family of isotropic meshes. In Section 28 we review results for anisotropic meshes.

The calculation of a �nite element solution u

h

includes the solution of an algebraic system

of equations for the coe�cients of the representation of u

h

in a certain basis. Most often

the nodal basis, see (2.2), is used but then the system matrix is ill-conditioned. Therefore

a preconditioned system of equations is solved. Modern preconditioners are optimal in the

sense that the condition number of the preconditioned matrix is independent of the number of

unknowns. But, as with the case of error estimators, most of the theory is restricted to families

of isotropic meshes. In Section 29, we summarize some preliminary results of our ongoing

research into preconditioning techniques for anisotropic �nite element discretizations.

Finally, with Section 30, a short description of software is appended. The three software

packages were used for the numerical examples throughout the whole monograph.
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3 Notation and analytical background

The main intention of this section is to introduce and to collect notation which is used uniformly

throughout the report. Other notation may have di�erent meaning in di�erent sections.

General notation

Let us de�ne the following:

d the space dimension, d = 2; 3,

j:j the Euclidean norm in R

d

,

(x

1

; : : : ; x

d

) a global Cartesian coordinate system,

dist (G

1

; G

2

) the distance of two points or domains G

1

; G

2

� R

d

,

dist (G

1

; G

2

) := inf

x2G

1

;y2G

2

jx� yj.

We identify a point x 2 R

d

with its vector of coordinates (x

1

; : : : ; x

d

)

T

.

We denote by N the set of non-negative integers and use a multi-index notation with � :=

(�

1

; : : : ; �

d

), �

i

2 N,

j�j :=

d

X

i=1

�

i

; �! := �

1

! � � ��

d

!; x

�

:= x

�

1

1

� � �x

�

d

d

; and D

�

:=

@

�

1

@x

�

1

1

� � �

@

�

d

@x

�

d

d

:

The notation a . b and a � b means the existence of positive constants C

1

and C

2

(which

are independent of T

h

and of the function under consideration) such that a � C

2

b and C

1

b �

a � C

2

b, respectively. When problems with a perturbation parameter " are considered then C

1

and C

2

are also independent of ".

Reference elements

Finite elements e � R

d

are de�ned via a (�nite number of) reference element(s) ê � R

d

,

ê := f(x̂

1

; x̂

2

)

T

2 R

2

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

g for triangles,

ê := f(x̂

1

; x̂

2

)

T

2 R

2

: 0 < x̂

1

; x̂

2

< 1g for rectangles,

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

; x̂

3

< 1; 0 < x̂

2

< 1� x̂

1

g for pentahedra,

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

; x̂

2

; x̂

3

< 1g for hexahedra.

For tetrahedra we consider two reference elements. The �rst is

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; 0 < x̂

3

< 1� x̂

1

� x̂

2

g (3.1)

for tetrahedra that have three edges E with meas

1

E � diam(e). The second is

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; 0 < x̂

3

< x̂

1

g (3.2)

or ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; x̂

1

< x̂

3

< 1� x̂

2

g (3.3)

for tetrahedra with four edges E with meas

1

E � diam(e). The reason for having two choices

for the second reference element is that the �rst one is considered if h

3

= o(h

1

) and the second

one if h

1

= o(h

3

). Depending on the application it may be more natural to use h

1

& h

2

& h

3

or h

1

. h

2

. h

3

. The use of these two variants for a second reference element prevents us from

using a permutation of the axes of the coordinate system. (In the case of �ve edges E with

meas

1

E � diam(e) we can use either of the reference elements.)
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Polynomial spaces

With respect to the type of the reference element ê we de�ne polynomial spaces P

k;ê

,

P

k;ê

� P

d

k

:=

8

<

:

X

j�j�k

a

�

x

�

; a

�

2 R; � = (�

1

; : : : ; �

d

)

9

=

;

; (3.4)

namely

P

k;ê

:= P

d

k

for triangular/tetrahedral elements,

P

k;ê

:= Q

d

k

:=

8

<

:

X

0��

1

;�

2

;�

3

�k

a

�

x

�

; a

�

2 R

9

=

;

for quadrilateral/hexahedral elements,

P

k;ê

:=

8

>

<

>

:

X

0��

1

+�

2

�k

0��

3

�k

a

�

x

�

; a

�

2 R

9

>

=

>

;

for pentahedral elements.

For simplicity of notation later on, we de�ne

P

d

�1

:= f0g:

The mapping to the element e

Let n

e

be the number of vertices of ê. The nodal shape functions f

^

 

i

g

n

e

i=1

in the case k = 1 are

also used for the mapping x = F

e

(x̂) of ê onto e. Let the vertices of e be locally enumerated as

i = 1; : : : ; n

e

and denoted by X

(i)

e

:= (X

(i)

1;e

; X

(i)

2;e

)

T

. Then the subparametric mapping

x = F

e

(x̂) :=

n

e

X

i=1

X

(i)

e

^

 

i

(x̂) 2 (P

1;ê

)

d

(3.5)

de�nes e via e = F

e

(ê). If this transformation is a�ne then the element is called a�ne.

According to [182, Section 3.3] the element is isoparametric when the shape functions are used

for the polynomial transformation F from the reference element ê to the element e. The term

subparametric indicates that only a subset of the shape functions is used.

Note that only the vertices of e enter into the transformation (3.5), hence the shape of e

is de�ned by its vertices. In particular, all edges of e are straight. More general elements are

not considered here. Therefore all triangular and tetrahedral elements are a�ne. Other a�ne

elements are parallelograms, parallelepipeds, and prismatic pentahedra.

As an alternative to (3.5), an a�ne mapping can be written as

x = B

e

x̂+ b

e

; B

e

:= (b

i;j;e

)

d

i;j=1

2 R

d�d

; b

e

:= (b

i;e

)

d

i=1

2 R

d

: (3.6)

In particular, we say that e is a tensor product element if B

e

is a diagonal matrix,

b

i;j;e

= 0 for i 6= j: (3.7)

In three dimensions, we also de�ne elements of tensor product type by demanding

b

1;3;e

= b

2;3;e

= b

3;1;e

= b

3;2;e

= 0;

�

�

�

�

b

1;1;e

b

1;2;e

b

2;1;e

b

2;2;e

�

�

�

�

� b

2

1;1;e

� b

2

2;2;e

: (3.8)

In three dimensions, tensor product elements are of tensor product type if b

1;1;e

� b

2;2;e

. Since

we do not need this distinction in the two-dimensional case we will say that tensor product

elements are also of tensor product type there. We introduce these special types of elements

here in order to simplify the mapping for the use in Chapter III.



3. Notation and analytical background 11

The elements e

Let us consider Lagrangian �nite elements and de�ne the following:

N

e

the number of nodes of e,

f

^

X

(i)

g

N

e

i=1

the set of nodes of ê, f

^

X

(i)

g

N

e

i=1

:= f0;

1

k

;

2

k

; : : : ; 1g

d

\ ê,

f'̂

i

(x̂)g

N

e

i=1

the shape functions on the reference element,

span f'̂

i

(x̂)g

N

e

i=1

= P

k;ê

, '̂

i

(

^

X

(j)

) = �

i;j

(i; j = 1; : : : ; N

e

),

f'

i;e

(x)g

N

e

i=1

the shape functions on the element e in local enumeration,

'

i;e

(x) := '̂

i

(F

�1

e

(x)) (i = 1; : : : ; N

e

),

P

k;e

the linear space of shape functions on the element e,

P

k;e

:= span f'

i;e

(x)g

N

e

i=1

,

diam(e) the diameter of e, diam(e) := sup

x;y2e

jx� yj,

%

e

the supremum of the diameters of all balls contained in e,

h

1;e

; : : : ; h

d;e

element sizes, see Sections 5�9 and 11,

S

e

the patch of elements around e, S

e

:= int

S

fe

0

: e

0

2 T

h

; e

0

\e 6= ;g,

I

e

the index set for the nodes X

(i)

2 e, i 2 I

e

, in global enumeration.

Note that the functions '

i;e

(x) are polynomial only in the case of a�ne elements e. Since the

considerations in Chapters II and III are local we will often omit the subscript e in the notation.

We point out that the term �nite element means, according to [63, page 78], the triple

(e;P

k;e

;�

k;e

). Here, e is a non-empty subdomain of 
 with a Lipschitz boundary, P

k;e

is the

space of shape functions, and �

k;e

is a basis in P

0

k;e

. However, sometimes we simply call e a

�nite element. In Lagrangian �nite elements the functionals of �

k;e

result in the values at the

nodes.

The family of meshes

For a mesh T

h

, we assume the usual admissibility conditions, see Section 1, and de�ne the

following:

h the maximal element diameter, h := max

e2T

h

diam(e),

I the index set for the nodes,

fX

(i)

g

i2I

the set of nodes of the mesh,

f'

i

g

i2I

the set of trial functions in global enumeration,

V

h

, V

0h

the spaces of trial functions, see (1.3), V

h

:= span f'

i

g

i2I

,

N

el

the number of elements.

A mesh T

h

is called isotropic i� all elements are isotropic, see (1.4). A family F = fT

h

g of

isotropic meshes is called quasi-uniform i� h � diam(e) for all e 2 T

h

, that means that the

length scales of the elements are translation-invariant.
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Approximation operators

We employ the following approximation operators:

�

�

i

the projection operator L

2

(�

i

)! P

k;�

i

, see Sections 12, 16,

I

h

the nodal interpolation operator, see Sections 2, 4, and 17,

I the nodal interpolation operator when applied on the reference element,

C

h

the Clement operator, see Sections 16 and 17,

O

h

the quasi-interpolation operator introduced by Oswald, see Sections 16, 17,

Z

h

the original Scott-Zhang operator, see Sections 12 and 16,

S

h

the modi�ed Scott-Zhang operator using small edges(2D)/faces(3D),

see Section 13 and 16,

L

h

the modi�ed Scott-Zhang operator using large edges(2D)/faces(3D),

see Section 14 and 16,

E

h

the modi�ed Scott-Zhang operator using long edges (3D), see Section 15 and

16.

Function spaces

For a bounded domain G � R

d

with Lipschitz boundary (the results may hold true for more

general classes of domains such as domains satisfying a strong cone condition but we will not

discuss this here) we denote by C(G) the space of functions which are continuous on G. C

1

(G)

means the space of functions that have continuous derivatives of any order and D

0

(G) the space

of distributions. Moreover, we introduce C

1

0

(G) := fv 2 C

1

(G) : supp v � G}.

Let W

`;p

(G), ` 2 N, p 2 [1;1], be the Sobolev spaces with the norm

kv;W

`;p

(G)k

p

:=

X

j�j�`

Z

G

jD

�

vj

p

and the seminorms

jv;W

`;p

(G)j

p

:=

X

j�j=`

Z

G

jD

�

vj

p

; [v;W

`;p

(G)]

p

:=

X

j�j=1

Z

G

jD

`�

vj

p

for p <1 and the usual modi�cation for p =1. Note that the seminorm jv;W

`;p

(G)j contains

all derivatives of order ` but [v;W

`;p

(G)] only the pure (�non-mixed�) ones. The special case

W

0;p

(G) is denoted by L

p

(G).

By introducing polar/cylindrical coordinates x

1

= r cos �, x

2

= r sin�, we de�ne for ` 2 N,

p 2 [1;1], � 2 R, the weighted Sobolev spaces

V

`;p

�

(G) := fv 2 D

0

(G) : kv;V

`;p

�

(G)k <1g; (3.9)

W

`;p

�

(G) := fv 2 D

0

(G) : kv;W

`;p

�

(G)k <1g; (3.10)

where

kv;V

`;p

�

(G)k

p

:=

X

j�j�`

Z

G

jr

��`+j�j

D

�

vj

p

;

jv;V

`;p

�

(G)j

p

:=

X

j�j=`

Z

G

jr

�

D

�

vj

p

; (3.11)

kv;W

`;p

�

(G)k

p

:=

X

j�j�`

Z

G

jr

�

D

�

vj

p

;

jv;W

`;p

�

(G)j

p

:=

X

j�j=`

Z

G

jr

�

D

�

vj

p

: (3.12)
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Moreover, let R = R(x) := (x

2

1

+ x

2

2

+ x

2

3

)

1=2

and � := r=R be the distance to the origin and

the �angular distance� to the x

3

-axis, respectively. We de�ne for ` 2 N, p 2 [1;1], �; � 2 R,

weighted Sobolev spaces with two weights by

V

`;p

�;�

(G) := fv 2 D

0

(G) : kv;V

`;p

�;�

(G)k <1g

where

kv;V

`;p

�;�

(G)k

p

:=

X

j�j�`

Z

G

jR

��`+j�j

�

��`+j�j

D

�

vj

p

; (3.13)

jv;V

`;p

�;�

(G)j

p

:=

X

j�j=`

Z

G

jR

�

�

�

D

�

vj

p

: (3.14)

Note that by this de�nition

V

`;p

�

(G) = V

`;p

�;�

(G): (3.15)

Embedding and trace theorems

For two Banach spaces X and Y we denote by X ,! Y the continuous embedding of X into Y ;

this means X � Y and

9C = C(G) : ku;Y k � Cku;Xk 8u 2 X:

If the spaces are de�ned on a �nite element e one has to separate out the dependence of C on

h by making a transformation to a reference element.

Well known embedding theorems are

W

`;p

(G) ,!

C(G)

if

�

`p > d; p > 1;

` � d; p = 1;

(3.16)

W

`;p

(G) ,! W

m;p

(G) if ` � m; (3.17)

W

`;p

(G) ,!

W

`;q

(G)

if p � q; (3.18)

W

`;p

(G) ,! L

q

(G) if

�

`p < d;

1

q

=

1

p

�

`

d

;

`p = d; 1 � q <1:

(3.19)

Let M � G be a manifold of dimension dim(M ). If there exists a unique, continuous, linear

trace operator X(G)! Y (M ) then we will also write X ,! Y . By analogy with the above, this

means that

9C = C(G;M ) : ku;Y (M )k � Cku;X(G)k 8u 2 X(G):

Here we have identi�ed u 2 X(G) with its trace on M to keep the notation succinct. An

important trace theorem is

W

`;p

(G) ,! L

p

(M ) if

�

`p > d� dim(M ); p > 1;

` � d� dim(M ); p = 1:

(3.20)

For an introduction and overview about the theory of function spaces see, for example, [1, 87,

115, 116, 128, 146] or the summaries in �nite element monographes as [57, 63].
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Chapter II

Lagrange interpolation on

anisotropic elements

This chapter is devoted to anisotropic local interpolation error estimates for anisotropic La-

grangian �nite elements. In Section 4, two basic tasks are elaborated for proving such estimates.

Moreover, an abstract error estimate is established which is used in Sections 5�9 to derive the

estimates for all element types. Section 10 contains results and approaches of other authors

which are related to the topic of this chapter.

Triangles, tetrahedra and quadrilateral elements are considered in separate sections in order

to focus on special di�culties of these element classes.

4 General considerations

4.1 The aim of this chapter

The aim of this chapter is to prove anisotropic interpolation error estimates for anisotropic

Lagrangian �nite elements. The Lagrangian interpolant, also called nodal interpolant, is de�ned

by

I

h

u :=

X

i2I

u(X

(i)

)'

i

(x); (4.1)

where X

(i)

are the nodes and '

i

(x) are the nodal basis functions. Since I

h

is de�ned locally on

every element the interpolation error u � I

h

u can be estimated elementwise. In Section 1, we

motivated already that we are interested in error estimates of the form

ju� I

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j: (4.2)

The main result of this chapter is that this estimate holds for u 2 W

`;p

(e), 1 � ` � k + 1,

p 2 [1;1], if m 2 f0; : : : ; ` � 1g, q 2 [1;1] are such that W

`�m;p

(e) ,! L

q

(e) and if the

conditions

p > d=` if m = 0 and ` = 1; : : : ; d� 1; (4.3)

p > 2 if d = 3 and m = `� 1 > 0; (4.4)

are ful�lled. Additionally the element e has to satisfy assumptions on the geometry (like the

maximal angle condition) and on the location in the coordinate system (coordinate system

condition). We show also that all these conditions are necessary.

15
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In this chapter we discuss also restrictions of the Lagrange interpolation. These include the

following.

1. The operator I

h

cannot be applied to discontinuous functions. Even more, it is not

su�cient for the proof of local interpolation error estimates to consider functions u 2

W

`;p

(e) \ C(e). We need assumptions on ` and p which imply the embedding

W

`;p

(e) ,! C(e)

(We remark that this Sobolev embedding theorem is explicitly used only in the case m = 0,

therefore (4.3) is formulated only for m = 0. But for ` � d the embedding theorem is

valid for all p 2 [1;1] and in the remaining case d = 3, m = 1, ` = 2 condition (4.4)

implies this embedding.) Consequently, the Lagrange interpolation is not suited for some

classes of functions, for example for u 2W

1;2

(
).

2. The condition (4.4) implies that the estimate

ju� I

h

u;W

1;p

(e)j .

X

j�j=1

h

�

�

�

D

�

u;W

1;p

(e)

�

�

is valid only for p > 2 in three dimensions. This restriction leads to a non-optimal

approximation result in our investigation of the anisotropically re�ned meshes near edges

[19, 20], see Remark 19.3 on page 102.

3. The case m = ` is not allowed. This means for example that the estimate

ju� I

h

u;W

1;p

(e)j . ju;W

1;p

(e)j

is not valid even when the Sobolev embedding theorem is ful�lled (p > d). Such estimates

are of interest when �nite element functions are to be interpolated on a coarser mesh.

We note however that the points 1 and 3 are general properties of the Lagrangian inter-

polation operator and not introduced by the anisotropic meshes. One remedy is to consider

alternative interpolation operators. We will treat this in Chapter III.

For the investigation of the approximation error near edges we have used in [19, 21] another

approach to cope with functions which are not contained inW

2;p

(e), p > 2. It turns out that the

solution of the Poisson problem in domains with edges and corners can be described favourably

in weighted Sobolev spaces V

`;p

�

(
) or V

`;p

�;�

(
), see Section 3 for the de�nition of these spaces.

Therefore we derive in Subsection 6.2 estimates of ju� I

h

u;W

m;p

(e)j for functions u from such

spaces.

The outline of the chapter is as follows. In the next subsection we elaborate two basic

tasks to be solved in order to prove anisotropic interpolation error estimates. Then we prove

in Subsection 4.3 an abstract error estimate for an approximation operator (Lemma 4.5). By

verifying the assumptions of this lemma we derive in the following sections the estimates on the

reference elements for all the element types. Moreover, we investigate in these sections which

elements are admissible for the validity of anisotropic interpolation error estimates. For such

elements we prove properties of the transformation x = F (x̂) and conclude the error estimates.

We separate triangles, tetrahedra and quadrilateral elements in order to focus on special

di�culties. We motivate this also in Subsection 4.2 and at the beginning of each section. The

�nal section of this chapter, Section 10, contains results and approaches of other authors which

are related to anisotropic elements.
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4.2 Basic tasks for proving anisotropic interpolation error estimates

The main strategy to prove anisotropic interpolation error estimates is old, namely, to derive

�rst the estimate on a reference element ê and to apply a coordinate transformation x = F

e

(x̂)

with e = F

e

(ê). This procedure ensures that the constant in the transformed estimate depends

only on ê, and not on (the size of) e.

For proving estimates of type (4.2) for anisotropic elements we have to recognize �rst that

sharper estimates on the reference element have to be shown, sharper than it is necessary for

isotropic elements. We give an example to elucidate this.

Example 4.1 Consider a triangular element e with linear interpolation. An estimate on the

reference element ê := f(x̂

1

; x̂

2

)

T

2 R

2

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

g is in this case

jv̂ � Iv̂;W

1;p

(ê)j . jv̂;W

2;p

(ê)j; p 2 [1;1]: (4.5)

This means in particular

k

^

D

(0;1)

(v̂ � Iv̂);L

p

(ê)k . jv̂;W

2;p

(ê)j; p 2 [1;1]: (4.6)

Note that we omit the index h when the operator is applied on the reference element.

For the special element e := fx = (x

1

; x

2

)

T

2 R

2

: 0 < x

1

< h

1

; 0 < x

2

< h

2

(1� x

1

=h

1

)g we

can directly calculate

^

D

�

v̂ = h

�

D

�

v and

jv̂;W

`;p

(ê)j

p

= h

1

h

2

X

j�j=`

h

�p

kD

�

v;L

p

(e)k

p

:

In this way we conclude the estimate

kD

(0;1)

(v � I

h

v);L

p

(e)k

p

. h

2p

1

h

�p

2

kD

(2;0)

v;L

p

(e)k

p

+

X

j�j=1

h

�p

kD

�+(0;1)

v;L

p

(e)k

p

:

If h

2

= o(h

1

) we have a term with the bad asymptotics h

2

1

h

�1

2

� [diam(e)]

2

%

�1

e

.

By tracing back the origin of this term we see that we have to prove

k

^

D

(0;1)

(v̂ � Iv̂);L

p

(ê)k . j

^

D

(0;1)

v̂;W

1;p

(ê)j (4.7)

when we want to show an estimate of the quality (4.2). 2

In conclusion of this example we can formulate a �rst basic task.

Basic task 1: Consider elements ê with the polynomial space P

k;ê

(see Section 3 for the de�-

nition). Let û 2 W

`;p

(ê) with some ` � k + 1. Derive an estimate analogous to (4.7) for

the interpolation error û� Iû in the norm of W

m;q

:

k

^

D



(v̂ � Iv̂);L

q

(ê)k . j

^

D



v̂;W

`�m;p

(ê)j 8 : jj = m: (4.8)

In particular, derive the ranges of k, `, p, m, and q for which (4.8) is true.

We will see in this chapter that such estimates can be derived for all element types on the basis

of the general Lemma 4.5 in Subsection 4.3. But the conditions for (4.8) must be elaborated

with care. For example, (4.7) holds for p 2 [1;1] in the two-dimensional case, but only for

p 2 (2;1] in three dimensions, see Sections 5 and 6. (Note that estimate (4.5) holds for

p 2 (3=2;1] for d = 3.) This is one reason why we treat two- and three-dimensional elements

in separate sections.
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x

1

x

2

#



Figure 4.1: Illustration of the maximal angle condition and the coordinate system condition

(triangle).

A second peculiarity of the proof of anisotropic interpolation error estimates is that the

transformation F

e

has to be investigated very carefully. For example, for the proof of estimate

(4.2) in the case of triangular elements it is necessary to formulate conditions on the maximal

interior angle  (maximal angle condition:  � 

�

< �) and the angle # between the longest side

and the x

1

-axis (coordinate system condition: j sin#j . h

2

=h

1

), see Figure 4.1 for an illustration.

These conditions become more complicated in three dimensions. So one can formulate a second

basic task.

Basic task 2: Describe classes of �nite elements e for which (4.8) can be transformed (and

summed up) to the desired estimate (4.2). In particular, de�ne the element sizes h

1

; : : : ; h

d

for such elements.

At this point we mention that this task involves more than the discussion of the transfor-

mation x = F

e

(ê) when the element e is non-a�ne (for instance isoparametric). Consider the

following example.

Example 4.2 Let us study the simplest isoparametric element, namely a quadrilateral element

e with what are usually called bilinear basis functions. The reference element is de�ned by

ê := fx̂ = (x̂

1

; x̂

2

)

T

2 R

2

: 0 < x̂

1

; x̂

2

< 1g: Furthermore, denote by

^

 

i

(x̂

1

; x̂

2

), i = 1; : : : ; 4, the

bilinear nodal shape functions. The transformation F : ê! e is given by

x =

4

X

i=1

X

(i)

e

^

 

i

(x̂) (4.9)

which is a�ne only in the case where e is a parallelogram. (Recall from Section 3 that X

(i)

e

=

(X

(i)

1;e

; X

(i)

2;e

)

T

, i = 1; : : : ; 4, are the coordinates of the vertices of e.) The consequence is that

^

D

(1;1)

x

j

6= 0; j = 1; 2;

in the non-a�ne case, which yields

^

D

(1;1)

û =

X

j�j=1

X

j�j=1

D

�+�

u

^

D

(1;0)

x

�

^

D

(0;1)

x

�

+

X

j�j=1

D

�

u

^

D

(1;1)

x

�

:

Even in the case of isotropic elements, this is de�cient because the second sum is only of order

h due to j

^

D

(1;1)

x

�

j . h (usually), while the �rst term is of the desired order, h

2

, due to

j

^

D

(1;0)

x

�

j . h and j

^

D

(0;1)

x

�

j . h.
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This peculiarity can be circumvented in the case of isotropic elements by showing an estimate

without mixed derivatives,

jv̂ � Iv̂;W

m;p

(ê)j . k

^

D

(2;0)

v̂;L

p

(ê)k+ k

^

D

(0;2)

v̂;L

p

(ê)k; m = 0; 1; p 2 [1;1):

But, for estimating k

^

D

(0;1)

(v̂� Iv̂);L

p

(ê)k in the anisotropic case, we have seen in Example 4.1

that the term k

^

D

(2;0)

v̂;L

p

(ê)k must also be avoided on the right hand side. The consequence of

the dilemma, that there cannot be avoided both k

^

D

(1;1)

v̂;L

p

(ê)k and k

^

D

(2;0)

v̂;L

p

(ê)k, is that

the transformation from ê to e leads to a non-optimal estimate for non-a�ne elements. For

example for the trapeze e = f(x

1

; x

2

) 2 R

2

: 0 < x

1

< h

1

; 0 < x

2

< h

2

(2 � x

1

=h

1

)g we obtain

by transforming (4.8) with p = q = 2, ` = 2, m = 1,  = (0; 1) the estimate

kD

(0;1)

(v � I

h

v);L

2

(e)k .

X

j�j=1

h

�

kD

�+(0;1)

v;L

2

(e)k+ kD

(0;1)

v;L

2

(e)k (4.10)

which has no convergence order. If this estimate were sharp then anisotropic triangles would

be preferable to anisotropic quadrilateral elements.

Fortunately, it turns out that this estimate is not sharp. In Theorem 7.17 we show that an

estimate of type (4.1) can be proved for certain classes of non-a�ne elements. This is also a

reason why we treat simplicial and non-simplicial elements in separate sections. 2

4.3 Basic lemmata

One of the key ideas for deriving convergence orders in local interpolation error estimates is the

observation that the seminorm j : ;W

`;p

(ê)j is a norm in the quotient space W

`;p

(ê)=P

d

`�1

,

inf

ŵ2P

d

`�1

kû� ŵ;W

`;p

(ê)k � jû;W

`;p

(ê)j:

This is already elaborated in the classical theory, see, for example, [63, Section 3.1]. For

anisotropic error estimates we need a generalization of this relation. Since we use the lemma in

the next chapter as well we must formulate it with quite general assumption on the domain.

Lemma 4.3 Let G =

S

J

j=1

G

j

� R

d

be a connected open set that is the union of a �nite

collection of domains G

j

� R

d

that are star-shaped with respect to balls B

j

. Let  be a multi-

index with m := jj and u 2 L

1

(G) be a function with D



u 2 W

`�m;p

(G), where `;m 2 N,

0 � m � `, p 2 [1;1]. Then there exists a polynomial w 2 P

d

`�1

such that

kD



(u� w);W

`�m;p

(G)k . jD



u;W

`�m;p

(G)j: (4.11)

The constant depends only on d, `, diamG

j

and diamB

j

(j = 1; : : : ; J). The polynomial w

depends only on `, u, B

j

(j = 1; : : : ; J), but not on .

Proof The lemma was proved in more general form by Dupont and Scott [76]. By setting

A = f� : j�j = `g in [76, Theorem 4.2] we obtain the assertion for domains that are star-shaped

with respect to a balls. The generalization of the class of domains is discussed in Remark 7.3

of that paper.

Since this short citation of the proof may not be satisfactory let us explain the main ideas

for the proof. Let G � R

d

be a bounded domain that is star-shaped with respect to a ball B.
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Let a function � 2 C

1

0

(B) be given with

R

B

� = 1, and a function (in the distribution sense)

u 2 D

0

(G). Then the Sobolev representation of u is de�ned by [76]

u = Q

(`)

u+ R

(`)

u; ` � 1;

(Q

(`)

u)(x) :=

X

j�j�`�1

Z

B

�(y) (D

�

u)(y)

(x� y)

�

�!

dy 2 P

d

`�1

;

(R

(`)

u)(x) := `

X

j�j=`

Z

G

k(x; y) (D

�

u)(y)

(x� y)

�

�!

dy;

k(x; y) :=

Z

1

0

s

�d�1

�(x+ s

�1

(y � x)) ds:

Q

(`)

u is an approximation of u with some nice properties including [76, Theorem 3.1, Remark

3.2, Theorem 3.2]

D

�

Q

(`)

u = Q

(`�j�j)

D

�

u; j�j � `; (4.12)

kQ

(`)

u;W

`�1;1

(G)k � C ku;L

1

(B)k; (4.13)

ku�Q

(`)

u;W

`�1;p

(G)k � C ju;W

`;p

(G)j; (4.14)

where the constant C depends only on d, `, diamG and �. Further results include more general

classes of polynomials, estimates in fractional order Sobolev spaces, and the relaxation of domain

constraints.

With (4.12) and (4.14) we can prove Lemma 4.3: If D



u 2W

`�m;p

(G) then

kD



(u�Q

(`)

u);W

`�m;p

(G)k = kD



u� Q

(`�m)

D



u;W

`�m;p

(G)k . jD



u;W

`�m;p

(G)j:

Remark 4.4 We remark that an assertion similar to (4.11) was proved in [9, Lemmata 1 and

2] by a generalization of the Bramble-Hilbert theory [53]. In this paper we considered more

general Sobolev spaces H(P)

p

which are de�ned via a set of multi-indices P � N

d

, a parameter

p 2 [1;1], and the seminorm

kv;H(P)

p

k

p

:=

X

�2P

kD

�

v;L

p

(
)k

p

:

(Note that H(P

d

`

)

p

= W

`;p

(
), d = dim
.) However, the class domains is in that paper not as

general as in Lemma 4.3 and the polynomial w depends on .

Second, the reader who is interested in the dependence of the constant in estimates like

(4.11) on the diameters of G

j

and B

j

is referred to [104].

We give now a general error estimate for any �nite element (ê;P

k;ê

;�

k;ê

) considered in

Sections 5�9. The following lemma and its proof can be found in a more general setting (non-

standard Sobolev spaces, see Remark 4.4), but restricted to q = p, in [9, Lemma 3].

Lemma 4.5 Let I : C(ê)! P

k;ê

be a linear operator. Fix m; ` 2 N and p; q 2 [1;1] such that

0 � m � ` � k + 1 and

W

`�m;p

(ê) ,! L

q

(ê): (4.15)

Consider a multi-index  with jj = m and de�ne j := dim

^

D



P

k;ê

. Assume that there are

linear functionals F

i

, i = 1; : : : ; j, such that

F

i

2

�

W

`�m;p

(ê)

�

0

8i = 1; : : : ; j; (4.16)

F

i

(

^

D



(û� Iû)) = 0 8i = 1; : : : ; j; 8û 2 C(ê) :

^

D



û 2W

`�m;p

(ê); (4.17)

ŵ 2 P

k;ê

and F

i

(

^

D



ŵ) = 0 8i = 1; : : : ; j; =)

^

D



ŵ = 0: (4.18)
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Then the error can be estimated for all û 2 C(ê) with

^

D



û 2W

`�m;p

(ê) by

k

^

D



(û� Iû);L

q

(ê)k . j

^

D



û;W

`�m;p

(ê)j: (4.19)

Proof For all v̂ 2 P

d

`�1

we have by the triangle inequality

k

^

D



(û� Iû);L

q

(ê)k � k

^

D



(û� v̂);L

q

(ê)k+ k

^

D



(v̂ � Iû);L

q

(ê)k: (4.20)

We note that v̂� Iû 2 P

k;ê

because ` � k+1 and P

k;ê

� P

d

k

. That means D



(v̂� Iû) 2 D



P

k;ê

.

Since the polynomial spaces are �nite-dimensional all norms are equivalent. Together with

(4.18), (4.17), and (4.16) we derive for any v̂ 2 P

d

`�1

k

^

D



(v̂ � Iû);L

q

(ê)k �

j

X

i=1

jF

i

(

^

D



(v̂ � Iû))j =

j

X

i=1

jF

i

(

^

D



(v̂ � û))j . k

^

D



(v̂ � û);W

`�m;p

(ê)k:

Using (4.20) and (4.15) we obtain for any v̂ 2 P

d

`�1

k

^

D



(û� Iû);L

q

(ê)k . k

^

D



(û� v̂);W

`�m;p

(ê)k:

By Lemma 4.3 we get the desired result.

It remains to �nd for any  and for any element (ê;P

k;ê

;�

k;ê

) the functionals F

i

, i = 1; : : : ; j,

that satisfy (4.16)�(4.18). This is done in Sections 5�9 separately for each element type. It

turns out that for the Lagrangian �nite elements considered in this monograph, functionals can

be de�ned for all  with jj � k, such that (4.17) and (4.18) are satis�ed. The critical point is

that they are not necessarily continuous for all combinations of k, `, p, m, q, and d.

For other �nite elements it is not clear whether such functionals exist. The following lemma

provides a criterion for the existence of linear functionals satisfying the conditions (4.17) and

(4.18). It was proved in [9], see [108] for similar considerations.

Lemma 4.6 Let P be an arbitrary polynomial space, and  be a multi-index. De�ne j :=

dimD



P. Assume that I : C

�

(ê) ! P is a linear operator with Iŵ = ŵ 8ŵ 2 P. Then there

exist linear functionals F

i

: C

1

(ê)! R, i = 1; : : : ; j, such that

F

i

(

^

D



(û� Iû)) = 0 8i = 1; : : : ; j; 8û 2 C

1

(ê); (4.21)

ŵ 2 P and F

i

(

^

D



ŵ) = 0 8i = 1; : : : ; j; =)

^

D



ŵ = 0 (4.22)

if and only if the condition

û 2 C

1

(ê) and

^

D



û = 0 =)

^

D



Iû = 0 (4.23)

holds.

The application of this lemma is twofold. First, if condition (4.23) is violated, then an

anisotropic interpolation error estimate of type (4.19) does not hold. This is the case, for

example, for elements containing bubble functions [9, Table 2] or certain triangular serendip-

ity elements [108, page 59f.]. (Nevertheless, such elements may be useful for other types of

anisotropic approximation.) Second, if condition (4.23) is satis�ed, one can �nd functionals

F

i

: C

1

(ê)! R satisfying (4.21), (4.22). For the application of Lemma 4.5 it remains to show

that the F

i

are also continuous with respect to W

`�m;p

(ê).

Remark 4.7 It has been shown in [19, 20, 21] that Lemma 4.3 remains true when W

`�m;p

(G)

is replaced by weighted Sobolev spaces V

`�m;p

�

(ê) or V

`�m;p

�;�

(ê), for the de�nition of these spaces

see Section 3. The domain is restricted to ê there; the generality as for G in Lemma 4.3 is not

elaborated. Also, the polynomial w depends on  there. But on this basis one can prove a

version of Lemma 4.5 with W

`�m;p

(ê) replaced by V

`�m;p

�

(ê) or V

`�m;p

�;�

(ê). We will use this in

Subsection 6.2.
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5 Triangular elements

In Subsection 4.2 we formulated two basic tasks in order to derive anisotropic interpolation

error estimates. The �rst task, namely to derive a sharpened interpolation error estimate on

the reference element was partially solved by Lemma 4.5. It remains to �nd functionals with

certain properties. We will discuss this comprehensively in the �rst part of this section. In

Lemma 5.1 we formulate the assertion. Prior the proof we show that the assumptions are sharp

(Examples 5.2 and 5.3) and we give examples of the functionals in several cases of . Then the

proof for the general  should be understandable. We will see in the next sections that other

element types can be treated with similar ideas.

In the second part of the section we discuss the a�ne transformation x = F (x̂) and prove the

anisotropic interpolation error estimate for the general element e (Theorem 5.5) and conclude

the corresponding isotropic estimate (Corollary 5.6). In the remaining part of the section, we

discuss the maximal angle condition and the coordinate system condition.

Let us consider the simplest Lagrangian �nite elements, namely triangles. They are formally

described by (ê;P

k;ê

;�

k;ê

) with

ê := f(x̂

1

; x̂

2

) 2 R

2

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

g;

P

k;ê

:= P

2

k

;

�

k;ê

:= ff

i

: C(ê)! R such that f

i

(û) := û(

^

X

(i)

)g

N

e

i=1

;

where N

e

=

�

k+2

2

�

is the number of nodes and

X := f

^

X

(i)

g

N

e

i=1

:= f(

i

k

;

j

k

)

T

2 R

2

g

0�i+j�k

= f

1

k

� 2 R

2

g

j�j�k

is the set of nodes. Here, we identi�ed a multi-index with a vector.

Lemma 5.1 Let  be a multi-index with m := jj and û 2 C(ê) be a function with

^

D



û 2

W

`�m;p

(ê), where `;m 2 N, p 2 [1;1] shall be such that 0 � m � ` � k + 1 and

p =1 if m = 0 and ` = 0;

p > 2 if m = 0 and ` = 1;

m < ` if 

1

= 0 or 

2

= 0; and m > 0:

(5.1)

Fix q 2 [1;1] such that W

`�m;p

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û� Iû);L

q

(ê)k . j

^

D



û;W

`�m;p

(ê)j (5.2)

holds.

Prior to the proof of the lemma we want to discuss the assumptions in (5.1).

� Example 5.2 shows for p <1 that the case m = ` must be excluded for pure derivatives

(

1

= 0 or 

2

= 0). (Note, however, that k

^

D



(û � Iû);L

q

(ê)k . jû;W

`;p

(ê)j can be

shown for m = ` > 2=p.) Observe that this example works both for m > 0 and m = 0.

The instance p = 1 is not covered by this example. For m = ` = 0 one can even show

that estimate (5.2) holds for all q 2 [1;1] because kIû;L

1

(ê)k � kû;L

1

(ê)k. The case

m = ` > 0, p =1, is not elaborated.

� Example 5.3 shows that p > 2 is necessary in the case m = 0, ` = 1.
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� If ` > k + 1 then (5.2) has to be modi�ed to become

k

^

D



(û � Iû);L

q

(ê)k .

`

X

i=k+1

j

^

D



û;W

i�m;p

(ê)j:

This is useful only, when u 2W

k+1;p

(e) is not su�cient. For tetrahedral elements we use

such arguments, see Theorem 6.5 on page 35. One can �nd estimates of this type also in

[108], see Comments 10.4 and 10.10.

Example 5.2 Let  = (0;m), m � 0, k � 1 arbitrary,

û

"

:= x̂

m

2

ŵ

"

; ŵ

"

(x̂) := minf1; "j ln x̂

1

jg:

Then one can calculate that

û

0

:= lim

"!0

û

"

=

�

x̂

m

2

if x̂

1

= 0;

0 if x̂

1

> 0;

lim

"!0

^

D



û

"

=

�

m! if x̂

1

= 0;

0 if x̂

1

> 0;

and [1, page 17]

lim

"!0

k

^

D



û

"

;L

p

(ê)k = k lim

"!0

^

D



û

"

;L

p

(ê)k = 0 for p <1; (5.3)

but

lim

"!0

k

^

D



û

"

�

^

D



Iû

"

;L

q

(ê)k = k

^

D



Iû

0

;L

q

(ê)k = C(k;m) 6= 0: (5.4)

(The function u

0

is not continuous but it is de�ned pointwise. So the interpolation operator

can be applied formally. In particular there holds Iû

0

= lim

"!0

Iû

"

.) The last conclusion can

be proved indirectly. Assume k

^

D



Iû

0

;L

q

(ê)k = 0 then

^

D



Iû

0

� 0. Consequently, we have

Iû

0

=

m�1

X

j=0

x̂

j

2

v̂

k�j

(x̂

1

) with v̂

k�j

2 P

1

k�j

;

(û

0

� Iû

0

)(0; x

2

) = x

m

2

�

m�1

X

j=0

x̂

j

2

v̂

k�j

(0) =:

^

V

m

(x̂

2

) 6� 0;

^

V

m

2 P

1

m

:

However,

^

V

m

(i=k) = 0 for i = 0; : : : ; k (interpolation property) leads to

^

V

m

� 0 which is a

contradiction. In view of (5.3) and (5.4), the estimate (5.2) does not hold for  = (0;m),

m = `, p <1. 2

Example 5.3 Let be k � 1 arbitrary, ` = 1, p � 2,

û

"

:= minf1; " ln j ln(r̂=e)jg; r̂ := (x̂

2

1

+ x̂

2

2

)

1=2

:

We can calculate that

û

0

:= lim

"!0

û

"

=

�

1 if r̂ = 0;

0 if r̂ > 0;

and

lim

"!0

jû

"

;W

1;p

(ê)j . lim

"!0

jû

"

;W

1;2

(ê)j = 0

(in detail in [3, page 61]) but

lim

"!0

kû

"

� Iû

"

;L

q

(ê)k = kIû

0

;L

q

(ê)k 6= 0:

The last conclusion can be proved with similar arguments as in Example 5.2. Consequently,

the estimate (5.2) does not hold for  = (0; 0), ` = 1, p � 2. Note that the example does not

work for p > 2 because lim

"!0

jû

"

;W

1;p

(ê)j =1 then. 2
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Let us now turn to the proof of Lemma 5.1. In view of Lemma 4.5 we have to show that

linear functionals with the desired properties exist. Before we do that in the general case we

will illustrate the ideas by discussing some particular cases.

� For k = 1,  = (0; 0), we have j = dimP

1;ê

= 3. We can use F

i

(ŵ) = ŵ(

^

X

(i)

). Property

(4.16) is shown via the Sobolev embedding theorem W

`;p

(ê) ,! C(ê) (see Section 3)

jF

i

(ŵ)j � kŵ; C(ê)k . kŵ;W

`;p

(ê)k

which is valid if ` � 2 or p > 2, ` = 1. The proof of the properties (4.17) and (4.18) is

trivial.

� For k = 1,  = (1; 0), we have

^

D



P

1;ê

= P

2

0

and thus j = 1. As the functional we consider

F

1

(ŵ) =

Z

1

0

ŵ(x̂

1

; 0) dx̂

1

:

Denote by E := fx̂ 2 ê : x̂

2

= 0g the edge of ê which is integrated over. Then the

continuity can be proved by a trace theorem (see Section 3):

jF

1

(ŵ)j � kŵ;L

1

(E)k . kŵ;W

`�1;p

(ê)k; (5.5)

where we need the condition 1 = m < `. Property (4.17) is valid due to

F

1

(

^

D

(1;0)

(û� Iû)) = (û� Iû)

�

�

(1;0)

(0;0)

= 0:

For showing (4.18) let ŵ = a

0

+ a

1

x̂

1

+ a

2

x̂

2

, then F

1

(

^

D



ŵ) =

^

D



ŵ = a

1

.

The case  = (0; 1) is treated by analogy.

� For k = 2,  = (0; 0), we have j = 6. Since also N

e

= 6 we can proceed as in the case

k = 1,  = (0; 0).

� In the case k = 2,  = (1; 0), we need three functionals. For

F

1

(ŵ) =

Z

1=2

0

ŵ(x̂

1

; 0) dx̂

1

; F

2

(ŵ) =

Z

1

1=2

ŵ(x̂

1

; 0) dx̂

1

; F

3

(ŵ) =

Z

1=2

0

ŵ(x̂

1

;

1

2

) dx̂

1

;

we can show (4.16) and (4.17) as above. To illustrate the general proof below let us prove

(4.18) in this special case in the same way: Let ŵ 2 P

2

2

be such that

F

i

(

^

D



ŵ) = 0; i = 1; 2; 3: (5.6)

Consider now the polynomial

^

W := ŵ�ŵ(1; 0)�2(x̂

2

�

1

2

)(x̂

2

�1)�ŵ(

1

2

;

1

2

)�[�4x̂

2

(x̂

2

�1)]�ŵ(0; 1)�2x̂

2

(x̂

2

�

1

2

) 2 P

2

2

(5.7)

which has the properties

^

D



ŵ =

^

D



^

W and

^

W (1; 0) =

^

W (

1

2

;

1

2

) =

^

W (0; 1) = 0: (5.8)

Consequently, we obtain from (5.6) and (5.8)

0 = F

3

(D



ŵ) = F

3

(D



^

W ) = W (

1

2

;

1

2

) �W (0;

1

2

) =) W (0;

1

2

) = 0;

0 = F

2

(D



ŵ) = F

2

(D



^

W ) = W (1; 0)�W (

1

2

; 0) =) W (

1

2

; 0) = 0;

0 = F

1

(D



ŵ) = F

1

(D



^

W ) = W (

1

2

; 0)�W (0; 0) =) W (0; 0) = 0:

Therefore

^

W � 0 and with (5.7) we get ŵ = ŵ(x̂

2

),

^

D



ŵ = 0.
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� For k = 2,  = (1; 1), we have

^

D



P

k;ê

= P

2

0

and thus j = 1. Let

F

1

(ŵ) =

Z

1=2

0

Z

1=2

0

ŵ(x̂

1

; x̂

2

) dx̂

1

dx̂

2

;

which satis�es conditions (4.16)�(4.18). In particular, F

1

is continuous for all ` = 2; 3 and

p 2 [1;1].

� For k = 2,  = (2; 0), we let

F

1

(ŵ) =

Z

1=2

0

Z

1=2+�

�

ŵ(x̂

1

; 0) dx̂

1

d�;

which also satis�es all conditions. Note that we need the condition m < ` to prove the

continuity of F

1

.

Proof (Lemma 5.1) De�ne X



:= f

^

X

(i)

2 X :

^

X

(i)

+

1

k

 2 Xg. By consideration of the

Pascal triangle one realizes that the number of elements in X



is jX



j =

�

k�m+2

2

�

= j with j

from Lemma 4.5. Let  =:

P

m

i=1



(i)

, j

(i)

j = 1, and de�ne the operator �

�

for j�j = 1 by

(�

�

ŵ)(x̂) :=

Z

x̂+

1

k

�

x̂

ŵ(�) d�;

where the integral is to be understood as a line integral on the straight line connecting the

points x̂; x̂+

1

k

� 2 R

2

. We can now set functionals F

i

by

F

i

(ŵ) := (�



(1)
� : : : ��



(m)
ŵ)(

^

X

(i)

); for

^

X

(i)

2 X



:

We see that F

i

(

^

D



ŵ) is a linear combination of the values of ŵ at the nodes

^

X 2 X \ G

i

,

where G

i

� ê is the domain of integration in the de�nition of F

i

. Since û � Iû = 0 in these

nodes, (4.17) is shown.

Assume there is a polynomial ŵ 2 P

k;ê

with F

i

(

^

D



ŵ) = 0 for all i = 1; : : : ; j. Then

there exists a polynomial

^

W 2 P

k;ê

with the properties

^

D



^

W =

^

D



ŵ and

^

W (

^

X) = 0 for all

^

X 2 X n X



. We show now recursively that

^

W (

^

X) = 0 for all

^

X 2 X . Indeed, start with an

^

X

(n)

2 X



for which G

n

\ X



=

^

X

(n)

, then 0 = F

n

(

^

D



^

W ) = (�1)

m

^

W (

^

X

(n)

),

^

W (

^

X

(n)

) = 0.

Set X



:= X



n

^

X

(n)

and continue with the next node. Finally we get

^

W (

^

X) = 0 for all

^

X 2 X ,

^

W � 0. Thus D



ŵ = 0 and (4.18) is proved.

The boundedness of the functionals is shown for ` > m viaW

`�m;p

(ê) ,!W

1;p

(ê) ,! L

1

(G

i

),

jF

i

(ŵ)j � kŵ;L

1

(G

i

)k . kŵ;W

1;p

(ê)k:This embedding holds both for one- and two-dimensional

G

i

. For ` = m we need for W

`�m;p

(ê) = L

p

(ê) ,! L

1

(G

i

) that G

i

is two-dimensional, that

means 

1

6= 0 and 

2

6= 0.

We note that partial cases of this lemma were proved in a slightly di�erent way in [35], see

Comment 10.8 on page 59.

The transformation of estimate (5.2) from the reference element ê to the element e = F (ê)

can be carried out by

x = F (x̂) = Bx̂ + b; B = (b

i;j

)

2

i;j=1

2 R

2�2

; b = (b

i

)

2

i=1

2 R

2

; (5.9)

see also (3.6). Since all considerations are local in one element e we omit the index e here and

further on. We will now investigate the sizes of the entries b

i;j

and b

(�1)

i;j

, i; j = 1; 2, of B and

B

�1

, respectively.
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x

1

x

2

#

h

2

h

1

E

Figure 5.1: Illustration of the de�nition of the mesh sizes h

1

; h

2

(triangle).

x

1;e

x

2;e

X

(2)

e

PX

(1)

e

X

(3)

e

e

�

�



x

1;e

x

2;e

X

(2)

e

P X

(1)

e

X

(3)

e

e

�

�



Figure 5.2: Notation and illustration of e in the coordinate system x

e

.

Let E be the longest edge of e. Then we denote by h

1

= h

1;e

:= meas

1

E its length and by

h

2

= h

2;e

:= 2meas

2

e=h

1;e

the thickness of e perpendicularly to E, see Figure 5.1. We assume

that the element satis�es a maximal angle condition and a coordinate system condition.

Maximal angle condition: There is a constant 

�

< � (independent of h and e 2 T

h

) such

that the maximal interior angle  of any element e is bounded by 

�

,  � 

�

:

Coordinate system condition: The angle # between the longest side E and the x

1

-axis is

bounded by j sin#j . h

2

=h

1

:

Other formulations of the maximal angle condition are discussed in Comment 10.1 on page 56.

Lemma 5.4 Assume that a triangular element e satis�es the maximal angle condition and the

coordinate system condition. Then the entries of the matrix B of (5.9) and of its inverse B

�1

satisfy the following conditions:

jb

i;j

j .
minfh

i

;h

j

g,
i; j = 1; 2; (5.10)

jb

(�1)

i;j

j .
minfh

�1

i

;h

�1

j

g,
i; j = 1; 2: (5.11)

Proof Enumerate the vertices of e counterclockwise such that X

(1)

e

and X

(3)

e

are the vertices

of the shortest edge of e. Introduce an element related Cartesian coordinate system x

e

=

(x

1;e

; x

2;e

) such thatX

(1)

e

lies at the origin andX

(2)

e

is also located at the x

1;e

-axis. Furthermore,

denote by P the foot of the perpendicular from X

(3)

e

to the x

1;e

-axis. Note that P may lay

outside of e, see Figure 5.2 for an illustration. Split the transformation (5.9) into two parts,

x = B

(1)

x

e

+ b; x

e

= B

(2)

x̂;
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such that the columns of B

(2)

are the x

e

-coordinates of X

(2)

e

and X

(3)

e

, respectively. B

(1)

describes a rotation, and b contains the x-coordinates of X

(1)

e

. Note that B = B

(1)

B

(2)

.

One of the edges X

(1)

e

X

(2)

e

and X

(2)

e

X

(3)

e

has length h

1

per de�nition. The other edge has

a length of order h

1

by using the triangle inequality. Consequently, jb

(2)

1;1

j � h

1

, b

(2)

2;1

= 0.

Moreover, we can conclude that jX

(3)

e

� P j � h

2

because meas

2

e =

1

2

h

1

h

2

. The interior angle

� at X

(1)

e

is not the smallest interior angle of e. Therefore, j sin�j � 1 by the maximal angle

condition, and jX

(3)

e

�X

(1)

e

j = jX

(3)

e

� P j=j sin�j � h

2

. That means jb

(2)

1;2

j . h

2

, jb

(2)

2;2

j . h

2

.

Since jX

(1)

e

�X

(2)

e

j � jX

(3)

e

�X

(2)

e

j � h

1

we have

B

(1)

=

�

cos

~

# sin

~

#

� sin

~

# cos

~

#

�

with

~

# 2 f�#; �# � �; � � #; � � # � �g, where � is the interior angle at X

(2)

e

. From

sin � � h

2

=h

1

we conclude j sin

~

#j . h

2

=h

1

by using the coordinate system condition, that means

(for h

2

= o(h

1

), otherwise there is nothing to prove) jb

(1)

1;1

j � jb

(1)

2;2

j � 1 and jb

(1)

1;2

j � jb

(1)

2;1

j . h

2

=h

1

.

The matrix multiplication results in jb

1;1

j � h

1

, jb

2;1

j . h

2

2

=h

1

� h

2

, jb

1;2

j . h

2

, jb

2;2

j . h

2

.

The entries of the inverse matrix can be estimated by using the explicit formula of B

�1

and

j detBj = 2meas

2

e = h

1

h

2

.

We note that Lemma 5.4 is implicitly contained in the proofs of Theorem 2 in [9] and

Theorem 6 and Corollary 7 in [35]. We chose this kind of proof for a better understanding of

the proof of the related Lemma 6.3.

Theorem 5.5 Assume that the element e satis�es the maximal angle condition and the coor-

dinate system condition. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1, p 2 [1;1].

Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W

`�m;p

(e) ,! L

q

(e). Then the anisotropic

interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

2

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j

holds provided that p > 2 if ` = 1. The result is also valid for m = ` = 0, p =1, q 2 [1;1].

Note that W

`;p

(e) ,! C(e) for all admissible parameter sets except for ` = 0, p =1.

Proof From Lemma 5.4 we obtain the relations

�

�

�

�

@v̂

@x̂

i

�

�

�

�

.

2

X

j=1

minfh

i

; h

j

g

�

�

�

�

@v

@x

j

�

�

�

�

;

�

�

�

�

@v

@x

i

�

�

�

�

.

2

X

j=1

minfh

�1

i

; h

�1

j

g

�

�

�

�

@v̂

@x̂

j

�

�

�

�

;

and conclude (in multi-index notation)

j

^

D

�

v̂j .

X

jsj=j�j

h

s

jD

s

vj; j

^

D

�

v̂j . h

�

X

jtj=j�j

jD

t

vj; jD



vj .

X

j�j=jj

h

��

j

^

D

�

v̂j: (5.12)

These estimates and Lemma 5.1 imply for any  with jj = m

kD



(u� I

h

u);L

q

(e)k . (meas

2

e)

1=q

X

j�j=m

h

��

k

^

D

�

(û � Iû);L

q

(ê)k

. (meas

2

e)

1=q

X

j�j=`�m

X

j�j=m

h

��

k

^

D

�+�

û;L

p

(ê)k
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. (meas

2

e)

1=q�1=p

X

j�j=`�m

X

j�j=m

h

��

X

jtj=m

X

jsj=`�m

h

�

h

s

kD

s+t

u;L

p

(e)k

� (meas

2

e)

1=q�1=p

X

jsj=`�m

h

s

jD

s

u;W

m;p

(e)j;

and the theorem can be concluded by a summation over all  with jj = m.

This form of the proof was used �rst in [12] where the case ` = k+1, q = p, was treated. Spe-

cial cases were proved with other geometrical arguments in [9, 35, 84, 150], see also Comments

10.6�10.8 on pages 58�59.

Corollary 5.6 Assume that the element e satis�es the maximal angle condition. Let be u 2

W

`;p

(e)\C(e) where ` 2 N, 1 � ` � k+1, p 2 [1;1]. Fix m 2 f0; : : : ; `�1g and q 2 [1;1] such

that W

`�m;p

(e) ,! L

q

(e). Then the isotropic interpolation error estimate (sometimes called

estimate of Jamet type or of Synge type)

ju� I

h

u;W

m;q

(e)j . (meas

2

e)

1=q�1=p

(diame)

`�m

ju;W

`;p

(e)j

holds provided that p > 2 if ` = 1. The result is also valid for m = ` = 0, p =1, q 2 [1;1].

Proof If we assume the coordinate system condition the assertion follows immediately from

Theorem 5.5. Since the seminorms remain equivalent during a rotation of the coordinate system,

the coordinate system condition can be omitted.

We remark that partial cases of this corollary were derived in [27, 108, 119, 187] without

knowing anisotropic estimates, see Comments 10.2�10.5 on pages 56�57. We point out in

particular that the assumptions made here are weaker than those in [108].

Let us now discuss the maximal angle condition and the coordinate system condition. We

start with an example that shows the necessity of the maximal angle condition for the validity

of the anisotropic error estimate of Theorem 5.5. We note, however, that the maximal angle

condition is not necessary in the case m = 0.

Example 5.7 Consider m = 1, ` = 2, the triangle e with the vertices (0; 0), (h

1

; 0), (

1

2

h

1

; h

2

),

and the function u = x

2

1

. One can directly calculate that I

h

u = h

1

x

1

�

1

4

h

2

1

h

�1

2

x

2

and





D

(0;1)

(u� I

h

u);L

q

(e)





(meas

2

e)

1=q�1=p

P

j�j=1

h

�

jD

�

u;W

1;p

(e)j

�

h

2

1

h

�1

2

(meas

2

e)

1=q

(meas

2

e)

1=q�1=p

h

1

(meas

2

e)

1=p

=

h

1

h

2

which is divergent for h

2

= o(h

1

). Thus the maximal angle condition is necessary. 2

Remark 5.8 An uncontrollable growth of the interpolation error for elements with large angles

gives no information about the approximation error of the corresponding �nite element method.

In the literature we can �nd two examples where triangles with large angles are considered and

the interpolation error in the W

1;2

-norm grows to in�nity. But while in the paper of Babu²ka

and Aziz [27] (see Figure 5.3, left-hand side) the �nite element error grows to in�nity as well,

there is an example given by Dobrowolski in [9] where a modi�ed interpolant and thus the �nite

element solution converges.
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(a) Babu²ka's and Aziz' example. (b) Dobrowolski's example.

Figure 5.3: Example meshes containing elements with large angles.

Remark 5.9 Anisotropic triangular elements were also extensively investigated in [68, 69, 160].

In these papers, even a maximal angle condition was not demanded. This is possible only due

to assumptions on the function to be interpolated, for example

kD

(2;0)

u;L

2

(e)k � C

0

kD

(1;1)

u;L

2

(e)k � C

2

0

kD

(0;2)

u;L

2

(e)k; C

0

< 1;

The results are applied in an a-posteriori context for pure interpolation tasks [68, 69, 160] and

in the �nite element method/�nite volume method [58, 62].

Example 5.7 shows a dilemma with the maximal angle condition: The element is strongly

re�ned in a direction where no large derivatives appear. One might �nd the example not

convincing. But, �rst, for proving a-priori �nite element error estimates for a class of problems,

this situation should be covered by the theory. Second, the components of vector functions can

have di�erent behaviour, for example a layer in one component while another component has

uniformly bounded derivatives. So it must be possible to approximate a function on a mesh

which was adapted for another function. Therefore we consider the maximal angle condition as

necessary.

Remark 5.10 The coordinate system condition means a suitable alignment of the mesh with

respect to a coordinate system (x

1

; x

2

) where the function u can be described favourably.

Though we have seen in Remark 5.8 that a condition which is necessary for a successful inter-

polation may not be necessary for a good �nite element approximation, we �nd in computations

that the Galerkin/Least-squares method looses stability if the mesh is not aligned su�ciently

well. For an illustration consider a convection-di�usion problem in the unit square,

�"�u+

�

1

0:5

�

� ru = 0 in 
;

u = 1 on fx 2 @
 : x

1

= 0; 0:25 � x

2

� 1g;

u = 0 elsewhere on @
:

An interior layer emanates from the discontinuity at (0; 0:25) along the manifold M

1

= fx 2


 : x

2

= 0:5x

1

+ 0:25g and intersects at (1; 0:75) with a boundary layer along M

2

=

�

(0; 1)�

f1g

�

[

�

f1g � (0:75; 1)

�

. An anisotropic mesh is constructed in the neighbourhood of M

1

and

M

2

similarly to the one in Section 24. The maximal aspect ratio is about h

1

=h

2

= 240. The

layers are well resolved for " = 10

�4

if the coordinate system condition is satis�ed with respect

to an orthogonal coordinate system with the x

1

-axis at M

1

, see Figure 5.4(a). On the other

hand, wiggles occur at M

1

if the angle between M

1

and the x

1

-axis is 2

�

, see Figure 5.4(b).

Thus the coordinate system condition should be treated carefully.

Remark 5.11 We note that the maximal angle condition and the coordinate system condition

give us some freedom in the de�nition of the element parameters h

1

and h

2

, and in the de�nition
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(a) (b)

Figure 5.4: Dependence of the resolution of an internal layer on the satisfaction of the coordinate

system condition.

of the �stretching direction of the element�. If h

2

= o(h

1

) then there are two edges of e which

have a length of order h

1

. For example, for triangles with a right angle it can be considered as

more natural to use the lengths of the two perpendicular sides as h

1

and h

2

, rather than the

third (longest) one and the length of the height, see Figure 11.2 on page 67.

The maximal angle condition ensures that the diameter of the circle which contains all

vertices of e, is also of order h

1

. Moreover, we can consider the directions of both long sides as

a stretching direction. The angle # between any of those sides and the x

1

-axis is bounded by

j sin#j . h

2

=h

1

.

6 Tetrahedral elements

6.1 Error estimates in classical Sobolev spaces

In this section we investigate tetrahedral elements. We use the same approach as for triangular

elements but we have to be carefully at several places.

� The embedding theorems depend on the space dimension which leads to a restriction on

the range of the parameter p, see Lemma 6.1 and Example 6.2.

� If the transformation x = Bx̂ + b from the reference element ê to the element e shall

satisfy conditions as in Lemma 5.4 then two reference elements have to be considered, one

for elements with three long edges, the other for elements with four long edges, see (6.1)

and (6.2).

Additionally to the estimates which are analogous to Section 5, we prove two more types of

anisotropic interpolation error estimates. In Theorem 6.5, we consider functions with additional

smoothness, u 2 W

k+2;p

(e), as a remedy to treat the case m = k, p � 2, which had to be

excluded in Theorem 6.4. Furthermore, we derive in Subsection 6.2 local interpolation error

estimates for functions from weighted Sobolev spaces (Theorems 6.9 and 6.11).
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0 01 1

1 1

1 1

x̂

1

x̂

1

x̂

2

x̂

2

x̂

3

x̂

3

ê ê

Figure 6.1: Reference elements for tetrahedral elements and h

1

& h

2

& h

3

.

Consider two reference elements ê, compare Figure 6.1. We use

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; 0 < x̂

3

< 1� x̂

1

� x̂

2

g (6.1)

when the tetrahedron has three edges E with meas

1

E � diam(e), and

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; 0 < x̂

3

< x̂

1

g (6.2)

when the tetrahedron has four edges E with meas

1

E � diam(e). In the case of �ve edges E

with meas

1

E � diam(e) we can use either of the reference elements. Both reference elements

satisfy the following Property (P) which is su�cient in the proof of Lemma 6.1. Later on, we

will occasionally utilize further reference elements which all satisfy Property (P).

Property (P) For each axis of the coordinate system (x̂

1

; x̂

2

; x̂

3

) there is one edge of ê which

has length one and is parallel to this axis.

The �nite elements (ê;P

k;ê

;�

k;ê

) are completed by setting

P

k;ê

:= P

3

k

�

k;ê

:= ff

i

: C(ê)! R such that f

i

(û) := û(

^

X

(i)

)g

N

e

i=1

where N

e

=

�

k+3

3

�

is the number of nodes and

X := f

^

X

(i)

g

N

e

i=1

:= ê \ f(

i

k

;

j

k

;

n

k

)

T

2 R

3

g

0�i;j;n�k

is the set of nodes.

Lemma 6.1 Let ê be a reference element satisfying Property (P). Consider a multi-index 

with m := jj and a function û 2 C(ê) with D



u 2 W

`�m;p

(ê), where ` 2 N, p 2 [1;1], shall

be such that 0 � m � ` � k + 1 and

p =1 if m = 0 and ` = 0;

p > 3=` if m = 0 and ` = 1; 2;

` > m if 

1

= 0 or 

2

= 0 or 

3

= 0;

p > 2 if  2 f(`� 1; 0; 0); (0; `� 1; 0); (0; 0; `� 1)g:

(6.3)

Fix q 2 [1;1] such that W

`�m;p

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û � Iû);L

q

(ê)k . j

^

D



û;W

`�m;p

(ê)j (6.4)

holds.
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Proof The proof follows the lines of the proof of Lemma 5.1. Due to Property (P) the

functionals can be chosen in the analogous way. The di�erence is that for a pure derivative the

domains G

j

are one-dimensional, that means, two dimensions less than the dimension of ê. In

that case the embedding W

`�m;p

(ê) ,! L

1

(G

i

) holds only if `�m � 2 or `�m = 1, p > 2.

Note that the case m = ` is only admitted if 

1

6= 0, 

2

6= 0, and 

3

6= 0. Example 5.2, page

23, can easily be modi�ed to show the necessity of the condition m < `, at least for p < 1:

consider û

"

:= x̂



2

2

x̂



3

3

ŵ

"

(x̂

1

) and proceed as on page 23. Example 5.3, page 23, can be used by

de�ning r̂ := (x̂

2

1

+ x̂

2

2

+ x̂

2

3

)

1=2

to show that p > 3 is necessary for m = 0, ` = 1. Let us �nally

present an example to show that p > 2 is necessary when  2 f(`� 1; 0; 0); (0; `� 1; 0); (0;0; `�

1)g. Such an example was given in [9, page 283] for m = k = 1, ` = 2, and is now modi�ed for

general m = ` � 1 � k.

Example 6.2 Without loss of generality consider  = (0; 0; `� 1) and denote by E that edge

of ê which is parallel to the x̂

3

-axis. Let p � 2 and

û

"

= x̂

`�1

3

ŵ

"

; ŵ

"

(x̂) := minf1; " ln j ln(r̂=e)jg; r̂ = r̂(x̂

1

; x̂

2

) := dist (x̂; E):

We can calculate that

û

0

:= lim

"!0

û

"

=

�

x̂

`�1

3

if r̂ = 0;

0 if r̂ > 0;

lim

"!0

^

D



û

"

=

�

1 if r̂ = 0;

0 if r̂ > 0;

and

lim

"!0

j

^

D



û

"

;W

1;p

(ê)j . lim

"!0

j

^

D



û

"

;W

1;2

(ê)j = 0;

(in detail in [3, page 61]) but

lim

"!0

k

^

D



û

"

�

^

D



Iû

"

;L

q

(ê)k = k

^

D



Iû

0

;L

q

(ê)k = C(k; `) 6= 0:

The last conclusion can be proved indirectly as in Example 5.2, page 23. Consequently, the

estimate (6.4) does not hold for  = (0; 0; `� 1), p � 2. The example does not work for p > 2

because lim

"!0

j

^

D



û

"

;W

1;p

(ê)j =1 then. 2

Our next aim is to investigate the transformation

x = F (x̂) = Bx̂+ b; B = (b

i;j

)

3

i;j=1

2 R

3�3

; b = (b

i

)

3

i=1

2 R

3

; (6.5)

compare (3.6). Again, we omit the index e here because the considerations apply to one (arbi-

trary) element e only.

Let E be the longest edge of e, and let �

E

be the larger of the two faces of e with E � �

E

.

Then we denote the element sizes h

1

, h

2

, h

3

, according to

h

1

:= meas

1

E; h

2

:= 2meas

2

�

E

=h

1

; h

3

:= 6meas

3

ê=(h

1

h

2

);

compare Figure 6.2. Note that we have h

1

� h

2

� h

3

and meas

3

e =

1

6

h

1

h

2

h

3

by this de�nition.

Enumerate the vertices of e such that X

(1)

e

, X

(2)

e

, and X

(3)

e

are the vertices of �

E

, and X

(1)

e

and X

(3)

e

are the vertices of the shortest edge of �

E

. To be unique we demand that the shortest

of the three edges X

(1)

e

X

(4)

e

, X

(2)

e

X

(4)

e

, and X

(3)

e

X

(4)

e

is either X

(1)

e

X

(4)

e

(Case 1, Figure 6.3) or

X

(2)

e

X

(4)

e

(Case 2, Figure 6.4).
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h

3

h

1

E

h

2

Figure 6.2: Illustration of the de�nition of the mesh sizes h

1

, h

2

, h

3

(tetrahedron).

Introduce an element related Cartesian coordinate system x

e

= (x

1;e

; x

2;e

; x

3;e

) such that

X

(1)

e

lies at the origin, X

(2)

e

is located at the x

1;e

-axis, and X

(3)

e

is contained in the x

1;e

; x

2;e

-

plane. Note that the remaining vertex X

(4)

e

needs not to lay in the half space with x

3;e

> 0 as

in the �gures, but it may also lay in the half space with x

3;e

< 0.

The three-dimensional counterparts of the maximal angle condition and the coordinate sys-

tem condition formulated in Section 5 read as follows:

Maximal angle condition: There is a constant 

�

< � (independent of h and e 2 T

h

) such

that the maximal interior angle 

F

of the four faces as well as the maximal angle 

E

between two faces of any element e are bounded by 

�

, 

F

� 

�

, 

E

� 

�

:

Coordinate system condition: The transformation of the element related coordinate system

(x

1;e

; x

2;e

; x

3;e

) to the discretization independent system (x

1

; x

2

; x

3

) can be determined

as a translation and three rotations around the x

j;e

-axes by angles #

j

(j = 1; 2; 3), where

j sin#

1

j . h

3

=h

2

; j sin#

2

j . h

3

=h

1

; j sin#

3

j . h

2

=h

1

: (6.6)

We remark �rst that alternative formulations of the maximal angle condition can be found in

the literature, see Comment 10.9 on page 59. Moreover, if mesh re�nement near edges (parallel

to the x

3

-axis) is considered it may be reasonable to demand h

1

� h

2

. h

3

and that one edge

of e shall be parallel to the x

3

-axis. In that case the coordinate system condition is satis�ed,

that means that it needs not to be postulated [21].

The two conditions yield properties of the transformation matrix B from (6.5) which are

su�cient for our anisotropic interpolation error estimates.

Lemma 6.3 Assume that the tetrahedron e satis�es the maximal angle condition and the

coordinate system condition. Then the entries of the matrix B of (6.5) and of its inverse B

�1

satisfy the following conditions:

jb

i;j

j . minfh

i

; h

j

g; i; j = 1; 2; 3; (6.7)

jb

(�1)

i;j

j . minfh

�1

i

; h

�1

j

g; i; j = 1; 2; 3: (6.8)

Proof As in the proof of Lemma 5.4 we split the transformation (6.5) into two parts

x = B

(1)

x

e

+ b; x

e

= B

(2)

x̂;

with B = B

(1)

B

(2)

. The intermediate coordinate system was introduced above.



34 Chapter II. Lagrange interpolation

x

1;e

x

2;e

x

3;e

h

3

X

(1)

e

X

(2)

e

X

(3)

e

X

(4)

e

P

(1)

P

(2)

Figure 6.3: Notation and illustration of Case 1: tetrahedron with 3 long edges.

x

1;e

x

2;e

x

3;e

h

3

X

(1)

e

X

(2)

e

X

(3)

e

X

(4)

e

P

(1)

P

(2)

Figure 6.4: Notation and illustration of Case 2: tetrahedron with 4 long edges.

The matrix B

(1)

can be written as a product of three matrices B

(1;1)

, B

(1;2)

, and B

(1;3)

,

describing rotations:

B

(1;1)

=

0

@

1 0 0

0 cos#

1

sin#

1

0 � sin#

1

cos #

1

1

A

; B

(1;2)

=

0

@

cos#

2

0 sin#

2

0 1 0

� sin#

2

0 cos#

2

1

A

;

B

(1;3)

=

0

@

cos #

3

sin#

3

0

� sin#

3

cos#

3

0

0 0 1

1

A

:

Using (6.6) and j cos#

i

j � 1, i = 1; 2; 3, one can compute

jb

(1)

i;j

j .

minfh

i

; h

j

g

maxfh

i

; h

j

g

; i; j = 1; 2; 3: (6.9)

The �rst two columns of B

(2)

are the x

e

-coordinates of X

(2)

e

and X

(3)

e

, respectively. In the

same way as in the proof of Lemma 5.4 we obtain

jb

(2)

1;1

j � h

1

; b

(2)

2;1

= b

(2)

3;1

= 0; (6.10)

jb

(2)

1;2

j . h

2

; jb

(2)

2;2

j . h

2

; b

(2)

3;2

= 0: (6.11)

The third column of B

(2)

is either X

(4)

e

�X

(1)

e

(Case 1, see Figure 6.3) or X

(4)

e

�X

(2)

e

(Case 2,

see Figure 6.4) if the reference elements (6.1) or (6.2) are used, respectively. We show now for

Case 1 (Case 2 can be treated by analogy) that jX

(4)

e

�X

(1)

e

j � h

3

, which is the desired result,



6. Tetrahedral elements 35

namely

jb

(2)

1;3

j . h

3

; jb

(2)

2;3

j . h

3

; jb

(2)

3;3

j . h

3

: (6.12)

Consider the angles 

1;2

, 

1;3

, and 

1;4

between the faces intersecting at the edges X

(1)

e

X

(2)

e

,

X

(1)

e

X

(3)

e

, X

(1)

e

X

(4)

e

, respectively. From spherical (Riemannian) geometry we know that 

1;2

+



1;3

+ 

1;4

> �. Using the maximal angle condition we conclude that for at least one of the two

angles 

1;n

, n = 2 or n = 3, the relation j sin

1;n

j � 1 holds. (This idea was obtained from [120,

Lemma 6].) Denote by P

(1)

the foot of the perpendicular from X

(4)

e

to the x

1;e

; x

2;e

-plane, by

P

(2)

the foot of the perpendicular from P

(1)

to the edge X

(1)

e

X

(n)

e

, and by � the angle between

X

(1)

e

X

(4)

e

and X

(1)

e

X

(n)

e

. We obtain (6.12) via

jX

(4)

e

�X

(1)

e

j =

jX

(4)

e

� P

(2)

j

j sin�j

=

jX

(4)

e

� P

(1)

j

j sin� sin 

1;n

j

=

h

3

j sin� sin 

1;n

j

� h

3

(6.13)

by using the maximal angle condition. (In Case 1, � is not the smallest angle of the triangle

X

(1)

e

X

(n)

e

X

(4)

e

since jX

(1)

e

�X

(4)

e

j � jX

(n)

e

�X

(4)

e

j by de�nition.)

From (6.9)�(6.12) we conclude (6.7). Using j detBj = 6meas

3

e = h

1

h

2

h

3

and the explicit

formula of B

�1

we obtain (6.8).

Theorem 6.4 Assume that the element e satis�es the maximal angle condition and the coor-

dinate system condition. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1, p 2 [1;1].

Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W

`�m;p

(e) ,! L

q

(e). Then the anisotropic

interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j

holds provided that

p > 3=` if m = 0 and ` = 1; 2;

p > 2 if m = `� 1 > 0:

The result is also valid for m = ` = 0, p =1, q 2 [1;1].

The proof is the same as for Theorem 5.5. Special cases were proved also in [35], see

Comment 10.12 on page 60.

Theorem 6.5 Assume that the element e satis�es the maximal angle condition and the coordi-

nate system condition. Let be u 2W

k+2;p

(e)\ C(e), p 2 [1;1],m 2 f0; : : : ; kg, and q 2 [1;1].

Then the anisotropic interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

k+1�m�j�j�k+2�m

h

�

jD

�

u;W

m;p

(e)j

holds provided that W

k+2�m;p

(e) ,! L

q

(e).

Proof The theorem can be proved as Theorem 6.4 by using Lemma6.3 and analoga to Lemmata

4.5 and 6.1. Let us discuss the di�erences.

� Since u 2 W

k+2;p

(e) the assumption W

k+2�m;p

(e) ,! L

q

(e) replaces now W

`�m;p

(e) ,!

L

q

(e) from Theorem 6.4.
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� The assumption p > 2=` if ` = 1; 2 is now reduced to p > 2=(k+2) which can be neglected

since k + 2 � 3.

� The assumption p > 2 if m = `� 1 was necessary to ensure the embedding W

`�m;p

(ê) ,!

L

1

(G

i

) in the proof of Lemma 6.1. Because of the additional smoothness u 2 W

k+2;p

(e)

this embedding is now W

k+2�m;p

(ê) ,! L

1

(G

i

) which is satis�ed for all p 2 [1;1] and all

m 2 f0; : : : ; kg.

� The sum at the right hand side extends over all multi-indices with length k + 1�m and

k + 2� m because the arguments in the proof of Lemma 4.5 are not valid for v̂ 2 P

3

k+1

but only for v̂ 2 P

3

k

. Therefore the application of Lemma 4.3 gives for jj = m only

inf

v̂2P

3

k

k

^

D



(û� v̂);W

k+2�m;p

(ê)k . j

^

D



û;W

k+1�m;p

(ê)j+ j

^

D



û;W

k+2�m;p

(ê)j:

The idea of using additional smoothness of u (u 2W

`;p

(e) with ` > k+1) was already used

by Jamet [108].

Corollary 6.6 Assume that the element e satis�es the maximal angle condition. Let be u 2

W

`;p

(e)\C(e) where ` 2 N, 1 � ` � k+1, p 2 [1;1]. Fix m 2 f0; : : : ; `�1g and q 2 [1;1] such

that W

`�m;p

(e) ,! L

q

(e). Then the isotropic interpolation error estimate (sometimes called

estimate of Jamet type or of Synge type)

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

(diame)

`�m

ju;W

`;p

(e)j

holds provided that

p > 3=` if m = 0 and ` = 1; 2

p > 2 if m = `� 1 > 0:

If u 2 W

k+2;p

(e) \ C(e), p 2 [1;1], m 2 f0; : : : ; kg, and q 2 [1;1], then the isotropic interpo-

lation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

k+2

X

`=k+1

(diame)

`�m

ju;W

`;p

(e)j

holds provided that W

k+2�m;p

(e) ,! L

q

(e).

Proof If we assumed the coordinate system condition the assertion follows immediately from

Theorems 6.4 and 6.5. Since the seminorms remain equivalent during a rotation of the coordi-

nate system, the coordinate system condition can be omitted.

We remark that partial cases of this corollary were derived in [108, 120] without knowing

anisotropic estimates, see Comments 10.10 and 10.11. We point out in particular that the

assumptions made here are weaker than those in [108].

The discussion of the maximal angle condition and the coordinate system condition in

Section 5 applies in an analogous way. In particular, Example 5.7 proves that the maximal

angle condition for the faces, 

F

� 

�

, is necessary. We show now by Example 6.7 that also

the condition on the angles between the faces, 

E

� 

�

, is necessary. Moreover, Example 6.7

proves that there are elements with 

F

� 

�

but 

E

! �. Also the converse is valid, see [120,

Example 8]. That means, both conditions are independent.
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Example 6.7 Consider the tetrahedron with the vertices (0; 0; 0), (h

1

; 0; 0), (0; h

1

; 0), and

(h

1

=3; h

1

=3; h

3

), and the function u = x

2

1

. One can directly calculate that I

h

u = h

1

x

1

�

(2=9)h

2

1

h

�1

3

x

3

and

kD

(0;0;1)

(u� I

h

u);L

p

(e)k

(meas

3

e)

1=q�1=p

P

j�j=1

h

�

jD

�

u;W

1;p

(e)j

�

h

2

1

h

�1

3

(meas

3

e)

1=q

(meas

3

e)

1=q�1=p

h

1

(meas

3

e)

1=p

=

h

1

h

3

;

which is divergent for h

3

= o(h

1

). We remark that the case p = q =1 was already considered

in [120, Examples 8, 9]. 2

6.2 Error estimates in weighted Sobolev spaces

For the treatment of edge and corner singularities it is convenient to describe the solution in

weighted Sobolev spaces. So we want to derive in this subsection anisotropic interpolation error

estimates for functions of such weighted spaces. Let us start with the spaces V

`;p

�

(e), the norm

was introduced by (3.11) on page 12. The special case ` = 2, k = 1, was already treated in

[19, 20].

Lemma 6.8 Let ê be a reference element satisfying Property (P). Consider a multi-index 

with m := jj 2 f0; 1g and a function û 2 C(ê) with

^

D



û 2 V

`�m;p

�

(ê), where ` 2 N, p 2 (1;1),

� 2 R shall be such that 0 � m < ` � k + 1 and

` � 3=p > 0 if m = 0;

� < ` � 3=p if 

3

= 0;

� < ` � 1� 2=p if m = 1; 

3

= 1;

p > 2 if m = 1; ` = 2:

(6.14)

Fix q 2 [1;1] such that V

`�m;p

�

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û� Iû);L

q

(ê)k . j

^

D



û;V

`�m;p

�

(ê)j (6.15)

holds.

Note that we concentrate here on main cases. We did not try to cover all possible cases as

in Lemma 6.1. (The cases p = 1, p =1, m � 2 were excluded.)

Proof We want to apply Lemma 4.5, see also Remark 4.7. The functionals F

i

(i = 1; : : : ; j) are

chosen as in the proof of Lemma 6.1 (Lemma 5.1). It remains to show that the functionals F

i

are

continuous on V

`�m;p

�

(ê). For proving this we will need intermediately non-integer (weighted)

Sobolev spaces W

s;p

(ê) and V

s;p

�

(ê), s � 0, p 2 (1;1) which are for s 2 N identical with the

spaces introduced in Section 3. Without going into detail we state that such spaces exist (see

for example [115, Section 8.3] and [164, 165]) and that the following embeddings hold:

W

s;p

(ê) ,! L

p

(ê)
if s � 0

(from de�nition); (6.16)

W

s;p

(ê) ,!

W

s�2=p;p

(E)

if s � 2=p 62 N [115, Section 8.3]; (6.17)

where E is an edge of ê,

V

s;p

0

(ê) ,! W

s;p

(ê)
if s � 0

(from de�nition); (6.18)

V

s;p

�

(ê) ,!

V

s��;p

0

(ê)

if s � � � 0 [165]; (6.19)

V

s;p

�

(ê) ,! V

s;p

�

(ê) if � � � (from de�nition); (6.20)

v̂ 2 V

s;p

�

(ê) )

r̂

�

v̂ 2 V

s;p

���

(ê)

[164, Section 1.1]: (6.21)
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Embedding (6.19) was proved in [165] only for in�nite domains (dihedral angles) but the proof

holds true also for bounded convex domains.

Let us start with the case m = 0. De�ne � := maxf�; 0g. By (6.14) we have (` � �)p > 3

and by (6.18), (6.19), and (6.20), the boundedness of F

i

(i = 1; : : : ; j) can be proved:

jF

i

(v̂)j � kv̂; C(ê)k . kv̂;W

`��;p

(ê)k

. kv̂;V

`��;p

0

(ê)k . kv̂;V

`;p

�

(ê)k . kv̂;V

`;p

�

(ê)k:

For m = 1 consider �rst the case � < `�1�2=p. De�ne again � := maxf�; 0g, that means

with (6.14) that `� 1� �� 2=p > 0. (If � � 0 then � = � < ` � 1� 2=p. If � < 0, then � = 0

and we have to show ` � 1 � 2=p > 0. This follows for ` = 2 from p > 2 and for ` � 3 from

p > 1.) Using the de�nition of the F

i

(i = 1; : : : ; j) as in the proof of Lemma 6.1 (Lemma 5.1)

and the embeddings above we conclude

jF

i

(v̂)j � kv̂;L

1

(G

i

)k . kv̂;L

p

(G

i

)k . kv̂;W

`�1���2=p;p

(G

i

)k . kv̂;W

`�1��;p

(ê)k

. kv̂;V

`�1��;p

0

(ê)k . kv̂;V

`�1;p

�

(ê)k . kv̂;V

`�1;p

�

(ê)k;

with G

i

being the domain of integration, see the proof of Lemma 5.1.

For 

3

= 0 the weight � can be larger. Then we have to estimate sharper. Take any �

1

,

�

1

2 (1� 1=p� "; 1� 1=p); " := `� 3=p� � > 0; (6.22)

and set

�

2

:= maxf�; �

1

g: (6.23)

We obtain from (6.22) that p

0

(de�ned by 1=p + 1=p

0

= 1) satis�es 1=p

0

> �

1

. Consequently,

we get

kr̂

��

1

;L

p

0

(G

i

)k � 1

because G

i

is orthogonal to the x̂

3

-axis. Similarly to above, and by using the Hölder inequality

and the embeddings (6.16)�(6.21), we conclude that

jF

i

(v̂)j :=

�

�

�

R

G

i

v̂

�

�

�

� kr̂

��

1

;L

p

0

(G

i

)k kr̂

�

1

v̂;L

p

(G

i

)k � kr̂

�

1

v̂;L

p

(G

i

)k

. kr̂

�

1

v̂;W

`�1�(�

2

��

1

)�2=p;p

(G

i

)k . kr̂

�

1

v̂;W

`�1�(�

2

��

1

);p

(ê)k

. kr̂

�

1

v̂;V

`�1�(�

2

��

1

);p

0

(ê)k . kr̂

�

1

v̂;V

`�1;p

�

2

��

1

(ê)k

. kv̂;V

`�1;p

�

2

(ê)k . kv̂;V

`�1;p

�

(ê)k:

Note that `� 1� (�

2

��

1

)� 2=p > 0: Indeed, if �

2

= �

1

this follows directly from (6.14), and

if �

2

= � this follows from (6.22) and (6.14), �

1

> 1� 1=p� " = �(` � 1� 2=p) + �.

We will transform now estimate (6.15) from ê to e. The only novelty in comparison to

Subsection 6.1 is the term r̂

�

in the norm. Consider the following points.

� Usually weighted spaces are used if the function under consideration is not contained in

the corresponding space without weight. Therefore we will assume � � 0.

� The weight r

�

makes no sense if the domain has a positive distance to the x

3

-axis. So we

will investigate only elements e with at least one vertex at the x

3

-axis.

� Since we want to transform r̂ := (x̂

2

1

+ x̂

2

2

)

1=2

to r := (x

2

1

+ x

2

2

)

1=2

we will assume that h

1

and h

2

are of the same order, in particular

h

1

� h

2

. h

3

(6.24)
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1 1
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ê ê

Figure 6.5: Reference elements for tetrahedral elements and h

1

. h

2

. h

3

.

0 01 1

1 1

1 1

x̂

1

x̂

1

x̂

2

x̂

2

x̂

3

x̂

3

ê ê

Figure 6.6: Additional reference elements for error estimates in weighted Sobolev spaces.

because h

1

� h

2

& h

3

is not useful. Therefore we will choose

ê := f(x̂

1

; x̂

2

; x̂

3

)

T

2 R

3

: 0 < x̂

1

< 1; 0 < x̂

2

< 1� x̂

1

; x̂

1

< x̂

3

< 1� x̂

2

g (6.25)

as the second reference element instead of the one in (6.2), see Figure 6.5.

Note that h

3

is now the largest element size, in contrast to Subsection 6.1. But the

relations (6.7), (6.8), were formulated general enough to remain true.

� For the transformation we need a relation between r̂ and r, namely

r̂ . h

�1

1

r (6.26)

which can be concluded if we assume

b

1;3

= b

2;3

= 0 and b

1

= b

2

= 0: (6.27)

So we will require (6.27) from now on. That means that a point x is located at the x

3

-

axis if and only if x̂ is located at the x̂

3

-axis. In other words, elements e with only one

vertex at the x

3

-axis cannot be mapped to one of the reference elements of Figure 6.5.

So we introduce two more reference elements, see Figure 6.6, which are obtained from the

previous ones by a re�ection at the plane x

1

= 1=2. Note that Property (P), page 31, is

satis�ed by all four elements ê.

� By Property (P) any reference element ê must have one edge parallel to the x̂

3

-axis.

Together with (6.27) this yields that e must have one edge parallel to the x

3

-axis.
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We can summarize as follows: Choose the appropriate reference element by the number of

edges with length of order h

3

(three or four) and the number of vertices of e laying on in the

x

3

-axis (one or two). De�ne the mapping ê ! e such that points x̂ 2 ê at the x̂

3

-axis are

mapped to points x 2 e at the x

3

-axis, and that the edge of ê which is parallel to the x̂

3

-axis

is mapped to the edge of e which is parallel to the x

3

-axis. Then (6.7), (6.8) and (6.26) hold

provided that the element e satis�es the maximal angle condition.

Theorem 6.9 Assume that the element e satis�es the maximal angle condition, one edge is

parallel to the x

3

-axis, and at least one vertex is contained in the x

3

-axis. Let h

1

� h

2

. h

3

,

and introduce parameters m 2 f0; 1g, ` 2 N with 1 � ` � k + 1, p 2 (1;1), q 2 [1;1], and

weights �

�

� 0 for all multi-indices � with j�j = `. De�ne for each multi-index  with jj = m

the number

� = �(

3

) :=

�

max

j�j=`�m

�

�+

if 

3

= 1;

max

j�j=`

�

�

if 

3

= 0:

Assume that the numbers satisfy assumption (6.14) and V

`�m;p

�(

3

)

(e) ,! L

q

(e) for all  with

jj = m. Consider a function u 2 C(e) with D

�

u 2 V

0;p

�

�

(e) for all � with j�j = `, and

D



u 2 V

`�m;p

�(

3

)

(e) for all  with jj = m. Then the anisotropic interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

X

jj=m

h

��

�+

1

jD

�+

u;V

0;p

�

�+

(e)j

holds.

The de�nition of �(

3

) and the assumptions on/with �(

3

) are necessary to be able to apply

Lemma 6.8. The distinction between �

�

and �(

3

) is made because the error estimate gives

a better asymptotics when the weight can be chosen smaller for certain derivatives. We will

exploit this in Sections 20 and 21. Of course, the theorem can be written more compact if all

weights are equal.

Proof We can prove this theorem similarly to Theorems 5.5, 6.4, and 6.5. But we have to be

careful with the assumptions on the weights.

From (6.8) we get

ju� I

h

u;W

m;q

(e)j �

X

jsj=m

kD

s

(u� I

h

u);L

q

(e)k

. (meas

3

e)

1=q

X

jj=m

h

�

k

^

D



(û� Iû);L

q

(ê)k;

see also (5.12).

For any  with jj = m we apply Lemma 6.8 and obtain

k

^

D



(û� Iû);L

q

(ê)k . j

^

D



û;V

`�m;p

�(

3

)

(ê)j �

X

jsj=`�m

k

^

D

s+

û;V

0;p

�(

3

)

(ê)k:

For  = (0; 0; 1) we notice that (6.27) yields

^

D



û = b

3;3

D



u � h

3

D



u. Therefore

k

^

D



(û � Iû);L

q

(ê)k . (meas

3

e)

�1=p

X

jsj=`�m

X

j�j=`�m

h

�+

h

��(1)

1

kD

�+

u;V

0;p

�(1)

(e)k

. (meas

3

e)

�1=p

X

j�j=`�m

h

�+

h

��

�+

1

kD

�+

u;V

0;p

�

�+

(e)k
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where we have used h

��(1)

1

kv;V

0;p

�(1)

(e)k . h

��

�+

1

kv;V

0;p

�

�+

(e)k which holds since �

�+

� �(1).

For 

3

= 0 we obtain in a similar way

k

^

D



(û� Iû);L

q

(ê)k . (meas

3

e)

�1=p

X

jsj=`�m

X

j�j=`�m

X

jtj=m

h

�+

h

��(0)

1

kD

�+t

u;V

0;p

�(0)

(e)k

. (meas

3

e)

�1=p

X

j�j=`�m

X

jtj=m

h

�+

h

��

�+t

1

kD

�+t

u;V

0;p

�

�+t

(e)k:

All estimates together yield

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

jj=m

h

�

X

j�j=`�m

X

jtj=m

h

�+

h

��

�+t

1

kD

�+t

u;V

0;p

�

�+t

(e)k

� (meas

3

e)

1=q�1=p

X

j�j=`�m

X

jtj=m

h

�

h

��

�+t

1

kD

�+t

u;V

0;p

�

�+t

(e)k

which is the desired result.

When problems with edge and corner singularities are investigated it is convenient to de-

scribe the solution in Sobolev spaces with two weights, V

`;p

�;�

(e), see page 13 in Section 3. The

application of such spaces is reasonable only if the element e has one vertex at the origin and

one edge at the x

3

-axis. So we need only one reference element, namely the one described by

(6.1). De�ne by R = R(x) := (x

2

1

+ x

2

2

+ x

2

3

)

1=2

, r = r(x) := (x

2

1

+ x

2

2

)

1=2

, and � := r=R the

distance to the origin, the distance to the x

3

-axis, and the �angular distance� to the x

3

-axis,

respectively.

^

R, r̂, and

^

� are de�ned analogously. The following lemma was proved in [21] for

the special case ` = 2, k = m = 1, and with � = 0 if  = (0; 0; 1).

Lemma 6.10 Let ê be the reference element described by (6.1). Consider a multi-index  with

m := jj 2 f0; 1g and a function û 2 C(ê) with

^

D



û 2 V

`�m;p

�;�

(ê), where ` 2 N, p 2 (1;1),

�; � 2 R shall be such that 0 � m < ` � k + 1 and

� < `� 3=p;

` � 3=p > 0 if m = 0

� < `� 3=p if 

3

= 0

� < `� 1� 2=p if m = 1; 

3

= 1

p > 2 if m = 1; ` = 2:

(6.28)

Fix q 2 [1;1] such that V

`�m;p

�;�

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û� Iû);L

q

(ê)k . jD



û;V

`�m;p

�;�

(ê)j (6.29)

holds.

Proof The lemma can be proved similarly to Lemma 6.8. Let m = 0 and de�ne � :=

maxf�; �; 0g. By (6.28) we have (`� �)p > 3. Consequently,

jF

i

(v̂)j � kv̂; C(ê)k . kv̂;W

`��;p

(ê)k

. kv̂;V

`��;p

0;0

(ê)k . kv̂;V

`;p

�;�

(ê)k . kv̂;V

`;p

�;�

(ê)k:

For m = 1 consider �rst the case that G

i

is not contained in the x

3

-axis (� 6� 0 on G

i

).

As in the last case of the proof of Lemma 6.8, we take any �

1

2 (1 � 1=p � "; 1 � 1=p) with
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" := ` � 3=p � maxf�; �g > 0, set �

2

:= maxf�; �; �

1

g and obtain that p

0

(de�ned by

1=p+ 1=p

0

= 1) satis�es 1=p

0

> �

1

. Consequently, we get

kr̂

��

1

;L

p

0

(G

i

)k = k

^

R

��

1

^

�

��

1

;L

p

0

(G

i

)k � 1 (6.30)

because G

i

is orthogonal to the x̂

3

-axis (

3

= 0) or away from the x̂

3

-axis (

3

= 1, k � 2). (For



3

= 0, k = 1 we have � � 1 on G

i

and can admit even any power of � in (6.30).) We conclude

jF

i

(v̂)j :=

�

�

�

R

G

i

v̂

�

�

�

� kr̂

��

1

;L

p

0

(G

i

)k kr̂

�

1

v̂;L

p

(G

i

)k � kr̂

�

1

v̂;L

p

(G

i

)k

. kr̂

�

1

v̂;W

`�1�(�

2

��

1

)�2=p;p

(G

i

)k . kr̂

�

1

v̂;W

`�1�(�

2

��

1

);p

(ê)k

. kr̂

�

1

v̂;V

`�1�(�

2

��

1

);p

0;0

(ê)k . kr̂

�

1

v̂;V

`�1;p

�

2

��

1

;�

2

��

1

(ê)k

. kv̂;V

`�1;p

�

2

;�

2

(ê)k . kv̂;V

`�1;p

�;�

(ê)k:

Note that ` � 1 � (�

2

� �

1

) � 2=p > 0: Indeed, if �

2

= �

1

this follows from (6.28), and if

�

2

= maxf�; �g this follows from �

1

> 1 � 1=p � " = �(` � 1 � 2=p) + maxf�; �g, see the

de�nition of ".

If G

i

is contained in the x

3

-axis (

3

= 1) then (6.30) does not hold. In this case we proceed

as follows: Take any �

1

2 (1�1=p�"; 1�1=p), " := `�3=p�� > 0, set �

2

:= maxf�; �+�

1

; �

1

g

and observe that p

0

satis�es 1=p

0

> �

1

. Consequently, we get k

^

R

��

1

;L

p

0

(G

i

)k � 1 and

jF

i

(v̂)j :=

�

�

�

R

G

i

v̂

�

�

�

� k

^

R

��

1

;L

p

0

(G

i

)k k

^

R

�

1

v̂;L

p

(G

i

)k � k

^

R

�

1

v̂;L

p

(G

i

)k

. k

^

R

�

1

v̂;W

`�1�(�

2

��

1

)�2=p;p

(G

i

)k . k

^

R

�

1

v̂;W

`�1�(�

2

��

1

);p

(ê)k

. k

^

R

�

1

v̂;V

`�1�(�

2

��

1

);p

0;0

(ê)k . k

^

R

�

1

v̂;V

`�1;p

�

2

��

1

;�

2

��

1

(ê)k

. kv̂;V

`�1;p

�

2

;�

2

��

1

(ê)k . kv̂;V

`�1;p

�;�

(ê)k:

Note that ` � 1 � (�

2

� �

1

) � 2=p > 0 can be concluded from (6.28) by distinguishing the

three cases for �

2

: The possibilities �

2

= � and �

2

= �

1

can be proved as above, the instance

�

2

= � + �

1

is direct.

The transformation of (6.29) from ê to e can be done in a similar way as above by using

(6.24) and (6.27). We obtain h

�1

3

R .

^

R . h

�1

1

R and r̂ . h

�1

1

r, and consequently

^

� . h

3

h

�1

1

�:

This leads to the following theorem.

Theorem 6.11 Assume that the element e satis�es the maximal angle condition, one vertex

is located at the origin of the coordinate system x = (x

1

; x

2

; x

3

), and one edge is contained in

the x

3

-axis. Let h

1

� h

2

. h

3

, and introduce parameters m 2 f0; 1g, ` 2 N with 1 � ` � k+1,

p 2 (1;1), q 2 [1;1], and weights �

�

� 0, �

�

� 0 for all multi-indices � with j�j = `. De�ne

the numbers � = max

j�j=`

�

�

and

� = �(

3

) :=

�

max

j�j=`�m

�

�+

if 

3

= 1;

max

j�j=`

�

�

if 

3

= 0

for each multi-index  with jj = m. Assume that the numbers satisfy assumption (6.28) and

V

`�m;p

�;�(

3

)

(e) ,! L

q

(e) for all  with jj = m. Consider a function u 2 C(e) with D

�

u 2 V

0;p

�

�

;�

�

(e)

for all � with j�j = `, and D



u 2 V

`�m;p

�;�(

3

)

(e) for all  with jj = m. Then the anisotropic

interpolation error estimate

ju� I

h

u;W

m;q

(e)j

. (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

X

jj=m

h

��

�+

��

�+

1

h

��

�+

3

kD

�+

u;V

0;p

�

�+

;�

�+

(e)k

holds.
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x̂

1

1

x̂

2

1

0

ê

h

2

e

h

1

x

1

x

2

#

Figure 7.1: Illustration of an a�ne quadrilateral element.

7 Quadrilateral elements

7.1 A�ne elements

In this subsection we show �rst that the theory of Section 5 carries over to a�ne quadrilateral

elements, that are parallelograms, see Figure 7.1. There is only one small di�erence in the

proof of Lemma 7.1 (estimate on the reference element) where attention is needed. But there

are two more reasons why a whole section is devoted to quadrilateral elements. First, for

rectangular elements we can prove for k � 2 a slightly sharper estimate, with less terms on

the right hand side (Theorem 7.11 and Remark 7.12). Second, for more general elements

than parallelograms, for example trapezes, the transformation x = F

e

(x̂) is non-linear and we

encounter the di�culties discussed in Example 4.2, page 18. Nevertheless, we were �nally able

to reproduce the estimates of the a�ne elements (Theorem 7.17, Corollary 7.18). The section

ends with an example showing the necessity of an assumption on the geometry of the non-a�ne

elements.

Consider the Lagrangian �nite element (ê;P

k;ê

;�

k;ê

) with

ê := f(x̂

1

; x̂

2

) 2 R

2

: 0 < x̂

1

; x̂

2

< 1g; (7.1)

P

k;ê

:= Q

2

k

; (7.2)

�

k;ê

:= ff

i

: C(ê)! R such that f

i

(û) := û(

^

X

(i)

)g

N

e

i=1

; (7.3)

where N

e

= (k + 1)

2

is the number of nodes and

X := f

^

X

(i)

g

N

e

i=1

:= f(

i

k

;

j

k

)

T

2 R

2

g

0�i;j�k

(7.4)

is the set of nodes. Lemma 7.1 contains the estimates of the interpolation error on the reference

element. It is identical with Lemma 5.1.

Lemma 7.1 Let  be a multi-index with m := jj and û 2 C(ê) be a function with

^

D



û 2

W

`�m;p

(ê), where `;m 2 N, p 2 [1;1] shall be such that 0 � m � ` � k + 1 and

p =1 if m = 0 and ` = 0;

p > 2 if m = 0 and ` = 1;

m < ` if 

1

= 0 or 

2

= 0; and m > 0:

(7.5)

Fix q 2 [1;1] such that W

`�m;p

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û � Iû);L

q

(ê)k . j

^

D



û;W

`�m;p

(ê)j (7.6)

holds.
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The assumptions can be discussed as in Section 5 for Lemma 5.1. The proof is also the

same. Note that jX



j = j still holds but j = (k � 

1

+ 1)(k � 

2

+ 1). The lemma was proved

for m = 1, ` = k + 1, q = p, in [9].

The transformation from ê to e = F (ê) can be written as

x = F (x̂) = Bx̂+ b; B = (b

i;j

)

2

i;j=1

2 R

2�2

; b = (b

i

)

2

i=1

2 R

2

; (7.7)

compare (3.6). As in the case of triangles we can formulate a maximal angle condition and a

coordinate system condition, and we can prove anisotropic interpolation error estimates on e.

Maximal angle condition: There is a constant 

�

< � (independent of h and e 2 T

h

) such

that the maximal interior angle  of any element e is bounded by 

�

,  � 

�

:

Coordinate system condition: The angle # between the longer sides and the x

1

-axis is

bounded by j sin#j . h

2

=h

1

:

Here, h

1

denotes the length of the longer edges of e and h

2

:= meas

2

(e)=h

1

is the corresponding

height. Consequently,

j detBj = meas

2

(e) = h

1

h

2

: (7.8)

Lemma 7.2 Assume that an a�ne quadrilateral element e satis�es the maximal angle condi-

tion and the coordinate system condition. Then the entries of the matrix B of (7.7) and of its

inverse B

�1

satisfy the following conditions:

jb

i;j

j .
minfh

i

; h

j

g,
i; j = 1; 2; (7.9)

jb

(�1)

i;j

j .
minfh

�1

i

; h

�1

j

g,
i; j = 1; 2: (7.10)

Proof Enumerate the vertices of e counterclockwise such that X

(1)

e

and X

(4)

e

are the vertices

of one of the shortest edges of e. Introduce an element related Cartesian coordinate system

x

e

= (x

1;e

; x

2;e

) such that X

(1)

e

= (0; 0)

T

and X

(2)

e

is also located at the x

1;e

-axis. Proceed as

in the proof of Lemma 5.4.

Theorem 7.3 Assume that e is a parallelogram which satis�es the maximal angle condition

and the coordinate system condition. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1,

p 2 [1;1]. Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W

`�m;p

(e) ,! L

q

(e). Then the

anisotropic interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

2

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j (7.11)

holds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0, p =1, q 2 [1;1].

Proof See the proof of Theorem 5.5.

Corollary 7.4 Assume that the parallelogram e satis�es the maximal angle condition. Let be

u 2W

`;p

(e)\C(e) where ` 2 N, 1 � ` � k+1, p 2 [1;1]. Fix m 2 f0; : : : ; `�1g and q 2 [1;1]

such that W

`�m;p

(e) ,! L

q

(e). Then the isotropic interpolation error estimate (sometimes

called estimate of Jamet type or of Synge type)

ju� I

h

u;W

m;q

(e)j . (meas

2

e)

1=q�1=p

(diame)

`�m

ju;W

`;p

(e)j

holds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0, p =1, q 2 [1;1].

Particular cases of this corollary were derived in [108], see Comment 10.13 on page 61.
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7.2 Rectangular elements

For rectangular elements one can prove slightly sharper estimates than for general a�ne ele-

ments. For the proof we have to replace in all statements the usual seminorm j : ;W

`;p

j by the

the seminorm [ : ;W

`;p

] where only pure derivatives are included. Since we use this improve-

ment in the next subsection as well, it makes sense to present the whole theory in detail. We

follow the line of Subsections 4.3 and 7.1 and formulate with Lemmata 7.6, 7.8, and 7.9 the

counterparts of Lemmata 4.3, 4.5, and 7.1. Theorem 7.11 is then straightforward. But we start

with citing Theorem 1 from from [53], compare also [192].

Lemma 7.5 Consider a bounded domain G � R

d

which satis�es the strong cone condition.

Let u 2W

`;p

(G), ` � 1, p 2 [1;1). Fix a set K of multi-indices such that

f(`; 0; : : : ; 0); : : : ; (0; : : : ; 0; `)g � K � f� : j�j = `g:

Finally, let P

K

be the set of polynomials w such that D

�

w = 0 8� 2 K. Then the equivalence

inf

w2P

K

ku�w;W

`;p

(G)k �

X

j�j2K

kD

�

u;L

p

(G)k (7.12)

holds.

Lemma 7.6 Consider a bounded domain G � R

d

which satis�es a strong cone condition. Let

 be a multi-index with m := jj and u 2 L

1

(G) be a function with D



u 2W

`�m;p

(G), where

`;m 2 N, 0 � m � `, p 2 [1;1). Then there exists a polynomial w 2 Q

d

`�1

such that

kD



(u� w);W

`�m;p

(G)k . [D



u;W

`�m;p

(G)]: (7.13)

The constant depends on G and ` �m. The polynomial w depends on G, `, , and u.

Proof For  = (0; : : : ; 0) we obtain the assertion by setting K = f� = `� : j�j = 1g in Lemma

7.5. Let now  be arbitrary. By using the lemma with  = (0; : : : ; 0) we �nd a polynomial

w

1

2 Q

d

`�m�1

such that

kD



u� w

1

;W

`�m;p

(G)k . [D



u;W

`�m;p

(G)]:

Since there exists a w 2 Q

d

`�1

with D



w = w

1

the lemma is proved.

Remark 7.7 Let us compare Lemmata 4.3 and 7.6. First we mention that the strong cone

condition is more restrictive than the assumption on the domain in Lemma 4.3. Indeed, if a

domain G satis�es the strong cone condition then G =

S

J

j=1

G

j

where each of the G

j

is star-

shaped with respect to a ball B

j

[76, Remark 7.1]. The example of a slit domain shows that

the converse is not valid.

Second, the constant in (4.11) depends only on diamG

j

and diamB

j

(not on G generally)

and the function w is independent of G and . These advantages of Lemma 4.3 are used in

Theorem 7.17 and in Lemma 11.1.

We were not able to derive (7.13) from the very general theory in [76] to keep these advan-

tages, but we obtained only

kD



(u�w);W

`�m�1;p

(G)k . [D



u;W

`�m;p

(G)]

by setting A = f� : � = `�; j�j = 1g in [76, Theorem 4.2]. However, this result is not su�cient

to derive the following Lemma 7.8.
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Lemma 7.8 Assume that ê is a quadrilateral or a hexahedron. Let I : C(ê)! P

k;ê

be a linear

operator. Fix m; ` 2 N, p 2 [1;1), and q 2 [1;1] such that 0 � m � ` � k + 1 and (4.15)

hold. Consider a multi-index  with jj = m and de�ne j := dim

^

D



P

k;ê

. Assume that there

are linear functionals F

i

, i = 1; : : : ; j, with properties (4.16)�(4.18). Then the error can be

estimated for all û 2 C(ê) with

^

D



û 2W

`�m;p

(ê) by

k

^

D



(û� Iû);L

q

(ê)k . [

^

D



û;W

`�m;p

(ê)]:

Proof The proof is the same as that for Lemma 4.5 by using v̂ 2 Q

d

`�1

instead of v̂ 2 P

d

`�1

and Lemma 7.6 instead of Lemma 4.3.

By using Lemma 7.8 instead of Lemma 4.5 we can prove the following lemma in the same

way as Lemma 7.1.

Lemma 7.9 Under the assumptions of Lemma 7.1 the estimate

k

^

D



(û� Iû);L

q

(ê)k . [

^

D



û;W

`�m;p

(ê)] (7.14)

holds.

Remark 7.10 It is not clear whether Lemma 7.6 holds for p =1 as well. In the original source

[53, Theorem 1] this case is excluded. The critical point is whether the Aronszajn-Smith-Il'in

result

ku;W

`;p

(ê)k . ku;L

p

(ê)k+

X

j�j=1

kD

`�

u;L

p

(ê)k

holds for p = 1. This estimate can be found in various sources without a statement about

p =1, see [82, Lemma A.8], [106], [115, Theorem 8.8.4], [178], for example. Consequently, we

excluded this case in Lemma 7.8.

In Lemma 7.9, however, we included p = 1 for the following reasons. If m � ` � 1, then

Lemma 7.9 is identical with Lemma 7.1, and there is nothing to prove. If m � `�2, that means

in particular ` � 2, we can choose some p

0

< 1 such that the assumptions of Lemma 7.9 are

satis�ed with p

0

instead of p and for arbitrary q 2 [1;1]. (Take for example p

0

= 2.) Since the

lemma holds for �nite p

0

and with

[

^

D



û;W

`�m;p

0

(ê)] . [

^

D



û;W

`�m;1

(ê)]

we get the desired result.

Theorem 7.11 Assume that e is a rectangle with sides parallel to the coordinate axes. Let

 be a multi-index with m := jj and u 2 C(e) be a function with D



u 2 W

`�m;p

(e), where

`;m 2 N, p 2 [1;1] shall be such that 0 � m � ` � k + 1 and (7.5) hold. Fix q 2 [1;1] such

that W

`�m;p

(e) ,! L

q

(e). Then the anisotropic interpolation error estimate

kD



(u� I

h

u);L

q

(e)k . (meas

2

e)

1=q�1=p

X

j�j=1

h

(`�m)�

kD

+(`�m)�

u;L

p

(e)k (7.15)

holds.

Proof From (7.14) by the transformation x

i

= h

i

x̂

i

+ b

i

, i = 1; 2.

The theorem was proved for k = 1, ` = 2, p = 2, in [150, page 90] and for general k,

` = k + 1, m = 1, p = 2, in [155], see Comments 10.14 and 10.15.

Remark 7.12 One can also prove certain estimates for the case of additional smoothness of

u, see Comment 10.15 on page 61.
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7.3 Subparametric elements

In this subsection we will consider a special class of non-a�ne quadrilaterals. Often isoparamet-

ric elements are treated, which means according to [182, Section 3.3] that the shape functions

are used for the polynomial transformation F from the reference element ê to the element e.

The term subparametric indicates that only a subset of the shape functions is used. We will

use the shape functions of the bilinear case which leads to a considerable simpli�cation. But

all quadrilaterals with straight sides fall into this class.

Denote the shape functions of the bilinear case by

^

 

1

:= (1� x̂

1

)(1� x̂

2

);

^

 

2

:= x̂

1

(1� x̂

2

);

^

 

3

:= x̂

1

x̂

2

;

^

 

4

:= (1� x̂

1

)x̂

2

. Then we can de�ne the subparametric mapping F by

F (x̂) :=

4

X

i=1

X

(i)

e

^

 

i

(x̂) 2 Q

2

1

� Q

2

1

:

We assume that the X

(i)

e

form a convex quadrilateral e, then this mapping is invertible [82, page

105]. In the case of e being a parallelogram the mapping F is a�ne (X

(1)

e

�X

(2)

e

+X

(3)

e

�X

(4)

e

=

0) and the shape functions '

i

(x) := '̂

i

(F

�1

(x)), i = 1; : : : ; N

e

, are polynomial. In the general

case the '

i

are rational functions.

In view of the explanations in Example 4.2 at the end of Subsection 4.2 we consider the

subparametric mapping as a perturbation of an a�ne mapping. Let ~e be a rectangular element

with edges being parallel to the axes of the coordinate system. The coordinates of the vertices

of ~e are denoted by

~

X

(i)

e

; i = 1; : : : ; 4. The subparametric element e is a perturbation of ~e, the

coordinates of its vertices are X

(i)

e

=

~

X

(i)

e

+ a

(i)

; i = 1; : : : ; 4. Introduce by

~

F (x̂) :=

~

X

(1)

e

+ Bx̂; B := diag (h

1

; h

2

);

F (x̂) :=

~

F (x̂) +

4

X

i=1

a

(i)

^

 

i

(x̂);

the transformation of ê to ~e and e, respectively, that means ~e =

~

F (ê); e = F (ê).

The Jacobi matrix of the transformation F is

D = D(x̂) :=

�

d

1;1

d

1;2

d

2;1

d

2;2

�

= B +

4

X

i=1

0

B

@

a

(i)

1

@

^

 

i

@x̂

1

a

(i)

1

@

^

 

i

@x̂

2

a

(i)

2

@

^

 

i

@x̂

1

a

(i)

2

@

^

 

i

@x̂

2

1

C

A

:

In order to keep properties like (7.8)�(7.10) we demand the existence of constants a

0

and

a = (a

1

; a

2

) with

ja

(j)

i

j � a

i

h

2

; 0 � a

i

. 1; i = 1; 2; j = 1; : : : ; 4; (7.16)

1

2

�

h

2

h

1

a

1

� a

2

� a

0

> 0: (7.17)

Remark 7.13 Condition (7.17) is necessary to keep the mapping F invertible, in particular,

to prove relation (7.18) below. To see this, consider ~e = (0; h

1

) � (0; h

2

), a

(1)

= a

(3)

=

(a

1

h

2

;�a

2

h

2

)

T

, and a

(2)

= a

(4)

= (�a

1

h

2

; a

2

h

2

)

T

. One can directly calculate that detD

�

�

(1;0)

=

2h

1

h

2

(1=2� a

1

h

2

=h

1

� a

2

).

By taking a

1

= a

2

= 1=2� ", h

2

� h

1

, we can learn from this example that the shape of e

can be quite di�erent from a rectangle, see Figure 7.2.

Condition (7.17) restricts also the �attening of e which is obtained by taking a

(1)

= a

(2)

=

(0; a

2

h

2

)

T

, and a

(3)

= a

(4)

= (0;�a

2

h

2

)

T

. Note further that there is virtually no restriction on

a

1

if h

2

� h

1

. The restriction on a

2

is also discussed in Remark 7.14 below.
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x

1

x

2

Figure 7.2: Extreme example for the element e. (~e is bounded by dashed lines, e by solid lines.)

Remark 7.14 The condition on a

2

can be weakened if the numbers a

(i)

2

; i = 1; : : : ; 4; satisfy

sign a

(1)

2

= sign a

(4)

2

and signa

(2)

2

= sign a

(3)

2

. This is the reason why the a�ne elements from

Subsection 7.1 do satisfy (7.16) but with constants not necessarily satisfying (7.17). As another

alternative we could consider perturbations of parallelograms ~e satisfying the conditions of Sub-

section 7.1. The following results would remain true but the angle # from the coordinate system

condition would have to be involved in (7.17). We chose a rectangle to keep our explanations

as clear as possible.

Lemma 7.15 The conditions (7.16), (7.17), imply for all x̂ 2 ê the estimates

j detD(x̂)j � h

1

h

2

(7.18)

jd

i;j

(x̂)j . minfh

i

; h

j

g; i; j = 1; 2; (7.19)

jd

(�1)

i;j

(x̂)j . minfh

�1

i

; h

�1

j

g; i; j = 1; 2; (7.20)

where d

(�1)

i;j

are the entries of the inverse of the Jacobi matrix D.

Proof By the calculation of

@

^

 

i

@x̂

j

we obtain with (7.16) and (7.17)

jd

1;1

� h

1

j =

�

�

�

(1� x̂

2

)(a

(2)

1

� a

(1)

1

) + x̂

2

(a

(3)

1

� a

(4)

1

)

�

�

�

� 2a

1

h

2

and similarly jd

1;2

j � 2a

1

h

2

, jd

2;1

j � 2a

2

h

2

, and (1�2a

2

)h

2

� d

2;2

� (1+2a

2

)h

2

. Consequently,

detD = d

1;1

d

2;2

� d

1;2

d

2;1

� (h

1

� 2a

1

h

2

)(1� 2a

2

)h

2

� 4a

1

a

2

h

2

2

= h

1

h

2

(1� 2a

1

h

2

=h

1

� 2a

2

) � 2a

0

h

1

h

2

;

detD � (1 + 2a

1

h

2

=h

1

)h

1

(1 + 2a

2

)h

2

+ 4a

1

a

2

h

2

2

. h

1

h

2

;

and (7.18) and (7.19) are proved. The estimate (7.20) is a direct consequence using the explicit

representation of the inverse.

For the second order derivatives of the transformation F the relations

@

2

x

i

@x̂

2

j

= 0; i; j = 1; 2; (7.21)

@

2

x

i

@x̂

1

@x̂

2

= a

(1)

i

� a

(2)

i

+ a

(3)

i

� a

(4)

i

;

�

�

�

�

@

2

x

i

@x̂

1

@x̂

2

�

�

�

�

� 4a

i

h

2

; i = 1; 2; (7.22)

hold. This implies that the transformation of a mixed derivative

^

D

�

leads also to derivatives

D

�

of lower order. In order to avoid mixed derivatives on the left hand side we restrict the

error estimates to m = 0; 1.
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Lemma 7.16 Consider a rectangular element ~e with sides of length h

1

and h

2

, h

1

� h

2

, which

are parallel to the axes of the x

1

; x

2

-coordinate system. The coordinates of the four vertices

are perturbed by vectors a

(i)

= (a

(i)

1

; a

(i)

2

)

T

satisfying (7.16), (7.17). The resulting element is

denoted by e. Let be u 2W

`;p

(e) \ C(e) where ` 2 N, 2 � ` � k + 1, p 2 [1;1]. Fix q 2 [1;1]

such that W

`�1;p

(e) ,! L

q

(e). Then the anisotropic interpolation error estimate

ju� I

h

u;W

1;q

(e)j . (meas

2

e)

1=q�1=p

X

j�j�`�1

h

�

jD

�

u;W

1;p

(e)j (7.23)

holds.

Proof We have to transform estimate (7.14) for m = 1. Due to (7.21) we have for pure

derivatives

^

D

�

û with � = n� (n 2 N; j�j = 1)

^

D

n�

û =

X

jsj=n

c

(n)

s

D

s

u(

^

D

�

x

1

)

s

1

(

^

D

�

x

2

)

s

2

(7.24)

with some constants c

(n)

s

. With (7.19) we obtain

j

^

D

n�

ûj .

X

jsj=n

h

s

jD

s

uj: (7.25)

Furthermore, we get from (7.24)

^

D

(1;`�1)

û =

X

jsj=`�1

X

jtj=1

c

(`�1)

s

D

s+t

u

�

@x

1

@x̂

2

�

s

1

�

@x

2

@x̂

2

�

s

2

�

@x

1

@x̂

1

�

t

1

�

@x

2

@x̂

1

�

t

2

+

+

X

jsj=`�1

c

(`�1)

s

D

s

u

 

s

1

�

@x

1

@x̂

2

�

s

1

�1

@

2

x

1

@x̂

1

@x̂

2

�

@x

2

@x̂

2

�

s

2

+ s

2

�

@x

1

@x̂

2

�

s

1

�

@x

2

@x̂

2

�

s

2

�1

@

2

x

2

@x̂

1

@x̂

2

!

;

j

^

D

(1;`�1)

ûj � h

1

X

jsj=`�1

X

jtj=1

h

s

jD

s+t

uj+ h

2

X

jsj=`�2

X

jtj=1

h

s

jD

s+t

uj . h

1

X

jsj�`�1

X

jtj=1

h

s

jD

s+t

uj:

Similarly we can prove the corresponding estimate for

^

D

(`�1;1)

û. Finally we get

kD



(u� I

h

u);L

q

(e)k . (meas

2

e)

1=q

X

j�j=1

h

��

k

^

D

�

(û � Iû);L

q

(ê)k

. (meas

2

e)

1=q

X

j�j=1

h

��

[

^

D

�

û;W

`�1;p

(ê)]

. (meas

2

e)

1=q�1=p

X

j�j=1

h

��

0

@

h

�

X

jsj�`�1

h

s

jD

s

u;W

1;p

(e)j

1

A

:

We conjecture that we obtain the same result (7.23) when estimate (7.6) is transformed.

However, the transformation of derivatives becomes more involved, see [78] for a general formula

for high derivatives of composite functions. We note also that the estimate (7.23) is insu�cient:

consider m = k = 1, ` = 2, then we get no convergence unless a

1

; a

2

! 0 for h

1

; h

2

! 0. This

was investigated in [5] since the following theorem was not seen at that time.
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Theorem 7.17 Consider a rectangular element ~e with sides of length h

1

and h

2

, h

1

� h

2

,

which are parallel to the axes of the x

1

; x

2

-coordinate system. The coordinates of the four

vertices are perturbed by vectors a

(i)

= (a

(i)

1

; a

(i)

2

)

T

satisfying (7.16), (7.17). The resulting

element is denoted by e. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1, p 2 [1;1].

Fix m 2 f0; 1g and q 2 [1;1] such that m < ` and W

`�m;p

(e) ,! L

q

(e). Then the anisotropic

interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

2

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j (7.26)

holds provided that p > 2 if ` = 1. The result is valid also for m = ` = 0, p =1, q 2 [1;1].

Proof In the case m = 0 we transform (7.14). Since no mixed derivatives appear at the right

hand side of (7.14) we can use (7.25) and obtain the desired result.

For m = 1 we use Lemma 7.16. The main point is to observe that for ` � k + 1

I

h

w = w 8w 2 P

d

`�1

:

Indeed, since we investigate only a subparametric mappingF with F

i

2 Q

d

1

we have ŵ 2 Q

d

`�1

�

P

k;ê

, this means ŵ = Iŵ. Applying Lemma 7.16 to v = u � w for arbitrary w 2 P

d

`�1

we get

u� I

h

u = v � I

h

v and

ju� I

h

u;W

1;q

(e)j . (meas

2

e)

1=q�1=p

X

j�j�`�1

h

�

jD

�

v;W

1;p

(e)j

= (meas

2

e)

1=q�1=p

X

j�j�`�1

h

�

jD

�

(u�w);W

1;p

(e)j: (7.27)

Via the change of variables x

i

= �x

i

h

i

we map e to an quadrilateral �e. According to (7.16), (7.17),

we realize that �e satis�es the assumptions of Lemma 4.3 with J = 1, diamG

1

� diamB

1

� 1.

So we obtain the existence of �w 2 P

d

`�1

such that for all  with jj = 1 the estimate

k

�

D



(�u� �w);W

`�1;p

(�e)k . j

�

D



�u;W

`�1;p

(�e)j

holds. By transforming this estimate to e and summing up over all  with jj = 1 we get

9w 2 P

d

`�1

:

X

j�j�`�1

h

�

jD

�

(u�w);W

1;p

(e)j .

X

j�j=`�1

h

�

jD

�

u;W

1;p

(e)j:

With (7.27) we have proved the assertion.

Corollary 7.18 Of course one can set h

2

� h

1

=: h and derive

ku� I

h

u;W

m;q

(e)k . (meas

2

e)

1=q�1=p

h

`�m

ju;W

`;p

(e)j;

which holds under the assumptions of Theorem 7.17.

We note that ju� I

h

u;W

1;2

(e)j . h ju;W

2;2

(e)j was derived for k = 1 in [202] with a fully

di�erent proof, see Comment 10.16 on page 62.

We end this section by giving an example showing that the assumption ja

(i)

1

j . a

1

h

2

in

(7.16) cannot be weakened.
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Example 7.19 Let e be the quadrilateral with the vertices (0; 0), (h

1

; 0), (h

1

� "; h

2

), (0; h

2

)

where " 2 [0; h

1

=2]. One can directly calculate that x

1

= x̂

1

(h

1

� "x̂

2

), x

2

= h

2

x̂

2

, x̂

2

= h

�1

2

x

2

,

x̂

1

= x

1

(h

1

� "h

�1

2

x

2

)

�1

. For the function u = x

2

1

we get û = x̂

2

1

(h

2

� "x̂

2

)

2

, Iû = x̂

1

(h

2

1

�

2h

1

"x̂

2

+ "

2

x̂

2

),

I

h

u = x

1

(h

1

� "h

�1

2

x

2

)

�1

(h

2

1

� 2h

1

"h

�1

2

x

2

+ "

2

h

�1

2

x

2

);

D

(0;1)

I

h

u = �x

1

"h

�1

2

(h

1

� "h

�1

2

x

2

)

�2

(h

2

1

� "h

1

) � �x

1

"h

�1

2

:

Consequently, it is





D

(0;1)

(u � I

h

u);L

q

(e)





(meas

2

e)

1=q�1=p

P

j�j=1

h

�

jD

�

u;W

1;p

(e)j

�

(meas

2

e)

1=q

"h

1

h

�1

2

(meas

2

e)

1=q�1=p

� (meas

2

e)

1=p

h

1

=

"

h

2

:

Thus " . h

2

is a necessary condition. 2

8 Hexahedral elements

8.1 A�ne elements

In this section we extend the results of Section 7 to the three-dimensional case, namely to

hexahedral elements. There is mainly one point di�erent which, however, is already known

from Section 6: the range of the parameter p in the estimates is smaller. But in order to help

the reader who does not want to read the whole monograph, the de�nitions and theorems are

formulated completely.

Consider the Lagrangian �nite element (ê;P

k;ê

;�

k;ê

) with

ê := f(x̂

1

; x̂

2

; x̂

3

) 2 R

3

: 0 < x̂

1

; x̂

2

; x̂

3

< 1g; (8.1)

P

k;ê

:= Q

3

k

; (8.2)

�

k;ê

:= ff

i

: C(ê)! R such that f

i

(û) := û(

^

X

(i)

)g

N

e

i=1

; (8.3)

where N

e

= (k + 1)

3

is the number of nodes and

X := f

^

X

(i)

g

N

e

i=1

:= f(

i

k

;

j

k

;

n

k

)

T

2 R

3

g

0�i;j;n�k

(8.4)

is the set of nodes.

Let I : C(ê)! P

k;ê

be the Lagrangian interpolation operator on ê, de�ned by

(Iv̂)(

^

X

(i)

) = v̂(

^

X

(i)

); i = 1; : : : ; N

e

: (8.5)

The counterpart of Lemma 7.1 is identical with Lemma 6.1 and reads as follows.

Lemma 8.1 Let  be a multi-index with m := jj and û 2 C(ê) be a function with

^

D



û 2

W

`�m;p

(ê), where `;m 2 N, p 2 [1;1] shall be such that 0 � m � ` � k + 1 and

p =1 if m = 0 and ` = 0;

p > 3=` if m = 0 and ` = 1; 2;

m < ` if 

1

= 0 or 

2

= 0 or 

3

= 0; and m > 0;

p > 2 if  2 f(`� 1; 0; 0); (0; `� 1; 0); (0; 0; `� 1)g:

(8.6)

Fix q 2 [1;1] such that W

`�m;p

(ê) ,! L

q

(ê). Then the estimate

k

^

D



(û � Iû);L

q

(ê)k . j

^

D



û;W

`�m;p

(ê)j (8.7)

holds.
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The assumptions can be discussed as in Section 6 for Lemma 6.1. Note that the fourth

assumption in (8.6) is necessary only in the three-dimensional case.

Consider now a parallelepiped e. The transformation from ê to e can be written as

x = F (x̂) = Bx̂+ b; B = (b

i;j

)

3

i;j=1

2 R

3�3

; b = (b

i

)

3

i=1

2 R

3

; (8.8)

compare (3.6). For clarity, we formulate the de�nition of the mesh sizes and the conditions:

Let E be one of the longest edges of e, and let �

E

be the larger of the two faces of e with

E � �

E

. Then we de�ne the element sizes by h

1

:= meas

1

(E), h

2

:= meas

2

(�

E

)=h

1

, and

h

3

:= meas

3

(e)=(h

1

h

2

). For intermediate use we introduce another Cartesian coordinate system

(x

1;e

; x

2;e

; x

3;e

) such that (0; 0; 0) is a vertex of ê, E is part of the x

1;e

-axis, and �

E

is part of

the x

1;e

; x

2;e

-plane. Consequently, we have j detBj = meas

3

(e) = h

1

h

2

h

3

:

Maximal angle condition: There is a constant 

�

< � (independent of h and e 2 T

h

) such

that the maximal interior angle 

F

of the six faces as well as the maximal angle 

E

between

two faces of any element e are bounded by 

�

: 0 < 

�

� 

F

� ��

�

; 0 < 

�

� 

E

� ��

�

.

Coordinate system condition: The transformation of the element related coordinate system

(x

1;e

; x

2;e

; x

3;e

) to the discretization independent system (x

1

; x

2

; x

3

) can be determined

as a translation and three rotations around the x

j;e

-axes by angles #

j

(j = 1; 2; 3), where

j sin#

1

j � Ch

3

=h

2

; j sin#

2

j � Ch

3

=h

1

; j sin#

3

j � Ch

2

=h

1

:

We formulate now the three-dimensional versions of Lemma 7.2, Theorem 7.3, Corollary 7.4

and Remark 7.12 without proof.

Lemma 8.2 Assume that a parallelepiped e satis�es the maximal angle condition and the

coordinate system condition. Then the entries of the matrix B of (8.8) and of its inverse B

�1

satisfy the following conditions:

jb

i;j

j .
minfh

i

; h

j

g,
i; j = 1; 2; 3; (8.9)

jb

(�1)

i;j

j .
minfh

�1

i

; h

�1

j

g,
i; j = 1; 2; 3: (8.10)

Theorem 8.3 Assume that e is a parallelepiped which satis�es the maximal angle condition

and the coordinate system condition. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1,

p 2 [1;1]. Fix m 2 f0; : : : ; ` � 1g and q 2 [1;1] such that W

`�m;p

(e) ,! L

q

(e). Then the

anisotropic interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j (8.11)

holds provided that

p > 3=` if m = 0 and ` = 1; 2;

p > 2 if m = ` � 1:

(8.12)

The result is also valid for m = ` = 0, p =1, q 2 [1;1].

Corollary 8.4 Assume that the parallelepiped e satis�es the maximal angle condition. Let be

u 2W

`;p

(e)\C(e) where ` 2 N, 1 � ` � k+1, p 2 [1;1]. Fix m 2 f0; : : : ; `�1g and q 2 [1;1]

such that W

`�m;p

(e) ,! L

q

(e). Then the isotropic interpolation error estimate (sometimes

called estimate of Jamet type or of Synge type)

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

(diame)

`�m

ju;W

`;p

(e)j

holds provided that (8.12) holds. The result is also valid for m = ` = 0, p =1, q 2 [1;1].
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As in Subsection 7.2 we can state that Lemma 8.1 holds even when (8.7) is replaced by

k

^

D



(û� Iû);L

q

(ê)k . [

^

D



û;W

`�m;p

(ê)]: (8.13)

For brick elements with edges being parallel to the coordinate axes this leads to the following

improved estimate.

Theorem 8.5 Assume that e is a brick element with edges parallel to the coordinate axes. Let

 be a multi-index with m := jj and u 2 C(e) be a function with D



u 2 W

`�m;p

(e), where

`;m 2 N, p 2 [1;1] shall be such that 0 � m � ` � k + 1 and (8.6) hold. Fix q 2 [1;1] such

that W

`�m;p

(e) ,! L

q

(e). Then the anisotropic interpolation error estimate

kD



(u� I

h

u);L

q

(e)k . (meas

3

e)

1=q�1=p

X

j�j=1

h

(`�m)�

kD

+(`�m)�

u;L

p

(e)k (8.14)

holds.

Additional smoothness, û 2 W

k+2;p

(ê), is advantageous since the restriction (8.12) can be

omitted. For example, it was proved in [9] that for jj = 1 the estimate

kD



(u� I

h

u);L

p

(e)k . h

k

kD

(k+1)

u;L

p

(e)k+

X

j�j=k+1

h

�

kD

�+

u;L

p

(e)k:

holds for all p 2 [1;1], provided that e is a brick element. For general parallelepipeds we can

prove the following theorem in analogy to Theorem 6.5.

Theorem 8.6 Assume that e is a parallelepiped which satis�es the maximal angle condition

and the coordinate system condition. Let be u 2 W

k+2;p

(e) \ C(e), p 2 [1;1]. Fix m 2

f0; : : : ; kg and q 2 [1;1]. Then the anisotropic interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

k+1�m�j�j�k+2�m

h

�

jD

�

u;W

m;p

(e)j

holds provided that W

k+2�m;p

(e) ,! L

q

(e).

8.2 Subparametric elements

As in Subsection 7.3 we consider the multilinear mapping F as a perturbation of an a�ne

mapping. Let ~e be a brick element with edges parallel to the axes of the coordinate system.

The coordinates of the vertices of ~e are

~

X

(i)

e

; i = 1; : : : ; 8. The subparametric element e is a

perturbation of ~e, the coordinates of its vertices are

~

X

(i)

e

+ a

(i)

; i = 1; : : : ; 8. Denote by

~

F (x̂) =

~

X

(1)

e

+Bx̂; B = diag (h

1

; h

2

; h

3

);

F (x̂) =

~

F (x̂) +

8

X

i=1

a

(i)

^

 

i

(x̂);

the transformation of ê to ~e and e, respectively, that means ~e =

~

F (ê); e = F (ê). Recall that

^

 

i

, i = 1; : : : ; 8, are the trilinear shape functions. The conditions (7.16), (7.17), read now

ja

(j)

i

j � a

i

h

2

; 0 � a

i

. 1; i = 1; 2; 3; j = 1; : : : ; 8; (8.15)
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1

2

�

h

3

h

1

a

1

�

h

3

h

2

a

2

� a

3

� a

0

> 0: (8.16)

and Lemma 7.15 is valid for i; j = 1; 2; 3.

While �rst and second order derivatives of F behave as in the two dimensional case third

order derivatives do not vanish here:

�

�

�

�

@

2

x

i

@x̂

j

@x̂

k

�

�

�

�

� 4a

i

h

3

(1� �

j;k

); i; j; k = 1; 2; 3;

�

�

�

�

@

3

x

i

@x̂

1

@x̂

2

@x̂

3

�

�

�

�

� 8a

i

h

3

;

@

3

x

i

@x̂

2

j

@x̂

k

= 0; i; j; k = 1; 2; 3;

where �

i;j

is the Kronecker delta. However, this does not a�ect our analysis since in (8.13) only

derivatives

^

D

�

u appear where �

i

= 0 for at least one i 2 f1; 2; 3g.

Theorem 8.7 Consider a brick element ~e with sides of length h

1

; h

2

; and h

3

; h

1

� h

2

� h

3

,

which are parallel to the axes of the x

1

; x

2

; x

3

-coordinate system. The coordinates of the eight

vertices are perturbed by vectors a

(i)

= (a

(i)

1

; a

(i)

2

; a

(i)

3

)

T

, i = 1; : : : ; 8, satisfying (8.15), (8.16).

The resulting element is denoted by e. Let be u 2 W

`;p

(e) \ C(e) where ` 2 N, 1 � ` � k + 1,

p 2 [1;1]. Fix m 2 f0; 1g and q 2 [1;1] such that W

`�m;p

(e) ,! L

q

(e). Then the anisotropic

interpolation error estimate

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j

holds provided that

p > 3=` if m = 0 and ` = 1; 2;

p > 2 if m = ` � 1:

The result is also valid for m = ` = 0, p =1, q 2 [1;1].

The theorem can be proved with the same ideas as in the two-dimensional case.

Corollary 8.8 Of course one can set h

3

� h

2

� h

1

=: h and derive

ku� I

h

u;W

m;q

(e)k . (meas

3

e)

1=q�1=p

h

`�m

ju;W

`;p

(e)j;

which holds under the assumptions of Theorem 8.7.

9 Pentahedral elements

Due to the limited interest in pentahedral elements we will discuss this element type only very

brie�y. Some results have been derived in [20].

By the term pentahedral element we denote the Lagrangian �nite element (ê;P

k;ê

;�

k;ê

) with

ê := f(x̂

1

; x̂

2

; x̂

3

) 2 R

3

: 0 < x̂

1

; x̂

3

< 1; 0 < x̂

2

< 1� x̂

1

g; (9.1)

P

k;ê

:=

8

>

<

>

:

X

0��

1

+�

2

�k

0��

3

�k

a

�

x

�

; a

�

2 R

9

>

=

>

;

; (9.2)

�

k;ê

:= ff

i

: C(ê)! R such that f

i

(û) := û(

^

X

(i)

)g

N

e

i=1

; (9.3)
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where N

e

=

�

k+2

2

�

(k + 1) is the number of nodes and

X := f

^

X

(i)

g

N

e

i=1

:= f(

i

k

;

j

k

;

n

k

)

T

2 R

3

g
0�i+j�k

0�n�k

(9.4)

is the set of nodes. Let I : C(ê)! P

k;ê

be the Lagrangian interpolation operator on ê, de�ned

by

(Iv̂)(

^

X

(i)

) = v̂(

^

X

(i)

); i = 1; : : : ; N

e

: (9.5)

In Section 6 we derived estimates on tetrahedral reference elements for functions from clas-

sical and weighted Sobolev spaces. These lemmata, namely 6.1, 6.8, and 6.10, can be proven for

pentahedral elements with the same arguments. Note, however, that the proof is not identical

since the dimension of D



P

k;ê

is here

�

k�

1

�

2

+2

2

�

(k� 

3

+ 1). Observe also that it is su�cient

to consider one reference element only.

For the transformation F from ê to e we have to distinguish di�erent cases. The reason is

that, in contrast to tetrahedral and hexahedral elements, the x̂

3

-direction is distinguished from

the other two.

Assume �rst that (i) the element is a�ne, (ii) the triangular face is described by mesh sizes

h

1

and h

2

. h

1

, and (iii) the distance between the triangular faces is h

3

. h

2

. This situation

corresponds completely to Subsection 6.1. A maximal angle condition and a coordinate system

condition can be formulated accordingly, and Theorems 6.4 and 6.5 can be proven.

In a second case assume that (i) the element is a�ne, (ii) three edges are parallel to the

x

3

-axis and have length h

3

, (iii) the quadrilateral faces satisfy a maximal angle condition, and

(iv) the triangular faces are isotropic with size h

1

� h

2

. h

3

. Then Lemma 6.3 is also valid

and, consequently, Theorems 6.4 and 6.5 as well. If one edge is contained in the x

3

-axis, then

Theorems 6.9 and 6.11 hold, too.

We can also consider the subparametric case as a perturbation of the a�ne case. The

notation can be adapted from Subsection 8.2. Lemma 7.6 can be modi�ed by taking w 2

P

`�1;e

� P

k;ê

such that (7.13) becomes

kD



(u�w);W

`�m;p

(G)k .

X

j�j=`�m

�

3

=0_�

3

=`�m

kD

�+

u;L

p

(G)k =: dD



u;W

`�m;p

(G)e:

In analogy to Lemma 7.8 we get

k

^

D



(û� Iû);L

q

(ê)k . d

^

D



û;W

`�m;p

(ê)e

under the assumptions of Lemma 8.1. One can show that

dv̂;W

n;p

(ê)e .

X

j�j=n

h

�

kD

�

v;L

p

(e)k

(note that this is not true when the left hand side is replaced by jv̂;W

n;p

(ê)j) and obtains

ju� I

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(e)j (9.6)

for m = 0. For m = 1 one can �rst show an intermediate result as in Lemma 7.16 and conclude

(9.6) with the same idea as in the proof of Theorem 7.17.

10 Comments on related work

This �nal section of Chapter II is devoted to historical remarks and alternative approaches.

We discuss related interpolation results of other authors and ideas of their proof. These are

sometimes really fascinating though they were not su�cient for our purposes.
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Triangular elements

10.1 Other formulations of the maximal angle condition for triangles. The follow-

ing conditions have been used in the literature instead of the maximal angle condition:

1. Let R

e

be the radius of the circumscribed ball B

e

of e (that means, all vertices of e belong

to @B

e

). Then we demand diam(e) & R

e

[119].

2. Let V

3

be the set of the three unit vectors which are parallel to the sides of e and de�ne

<

)

(�; �) 2 [0;

�

2

] to be the angle between the vectors � and ��. Then we demand [108]

� := min

v

1

;v

2

2V

3

max

�2R

2

min

i=1;2

<

)

(�; v

i

) � �

�

<

�

2

: (10.1)

The �rst condition is interesting due to its similarity to Zlámal's minimal angle condition

[208] which is equivalent to diam(e) . %

e

, for %

e

see Section 1. In [119, Theorem 2.1 and

Remark 2.2], it was shown that this condition is equivalent to the maximal angle condition

formulated on page 26.

Jamet showed that � =

1

2

maxf�;� � �g where � is the maximal interior angle in e. Thus

this condition is also equivalent to the maximal angle condition [108, page 55].

10.2 Synge's results. Synge [187, pages 209�213] derives for k = 1 and for triangular

elements e satisfying the maximal angle condition the estimate

ju� I

h

u;W

m;1

(e)j . (diam(e))

2�m

ju;W

2;1

(e)j; m = 0; 1: (10.2)

The following points of the proof are remarkable:

� He proves �rst the case m = 1 and derives the case m = 0 via

ku� I

h

u;L

1

(e)k . diam(e)ju� I

h

u;W

1;1

(e)j:

Therefore he needs the maximal angle condition form = 0 as well. (This is not necessary.)

� His proof is constructive. He already used (what we do as well) that

Z

E

@(u� I

h

u)

@b

= 0 (10.3)

where E is any edge of e and b is a unit vector parallel to E. In this way he derives for

all edge directions b









@(u � I

h

u)

@b

;L

1

(e)









. diam(e)ju� I

h

u;W

2;1

(e)j = diam(e)ju;W

2;1

(e)j; (10.4)

where he also used that jI

h

u;W

2;1

(e)j = 0. (That means that the proof is �xed to

` = k + 1 and simplicial elements.)

� Estimate (10.2) is concluded from (10.4) via elegant geometrical considerations which

show that the constant in (10.2) depends on (cos

1

2

�)

�1

where � is the largest interior

angle of e.

His method of proof is suited to produce (after slight modi�cation) the anisotropic estimate

ju� I

h

u;W

m;1

(e)j .

X

j�j=2�m

h

�

jD

�

u;W

m;1

(e)j; m = 0; 1:

However, it is not clear how to generalize this approach to functions u 2 W

2;p

(e), p < 1. A

generalization to three dimensions is possible Comment 10.11 on page 60.
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10.3 The results of Babu²ka and Aziz. Babu²ka and Aziz [27] essentially proved Corol-

lary 5.6 for m = 1, p = q = 2, ` = k + 1, and arbitrary k. Essentially means, it was shown for

k = 1 that

inf

u2W

2;2

(e)

ku;W

2;2

(e)k

ku� I

h

u;W

1;2

(e)k

� (diame)

�1

�(�)

(note the full norms) where �(�) (�=3 � � < �) is an increasing function and � is the maximal

interior angle of e. The proof uses also that

R

E

^

D



(û� Iû) vanishes when E is an edge parallel

to , jj = 1 ( identi�ed with a vector in R

2

). Furthermore, Babu²ka and Aziz showed how this

proof can be adapted for Lagrangian elements of higher order and for Hermite elements. They

gave also an example showing the necessity of the maximal angle condition, compare Remark

5.2 on page 22.

10.4 Jamet's results for triangles. Jamet [108] considered several classes of �nite el-

ements, see Comment 10.10 on page 60 and Comment 10.13 on page 61 for the results for

tetrahedra and quadrilaterals, respectively. He proved [108, Theorem 3.1] for triangles the

estimate

ju� I

h

u;W

m;p

(e)j . (cos �)

�m

(diame)

k+1�m

ju;W

k+1;p

(e)j; (10.5)

where � is de�ned in (10.1). The parameters m and p must satisfy

k + 1�m > 2=p for p <1;

k + 1�m � 0 for p =1:

(10.6)

The proof utilizes an operator Q with

^

D

�

Iû = Q

^

D

�

û for j�j = m. Roughly speaking, the

operator Q is de�ned by Qv̂ =

^

D

�

Iû with some û that satis�es

^

D

�

û = v̂. To ensure that

û 2 C(ê) (such that I is well-de�ned) it is demanded that v̂ 2 C(ê). In this way the quite

restrictive condition (10.6) is understandable. (For example, for linear elements and m = 1, we

obtain the condition p > 2 which is not necessary, see Corollary 5.6 on page 28 for a larger set

of admissible parameters m and p.)

Estimate (10.5) was proved via

k

^

D



(û� Iû);L

p

(ê)k . j

^

D



û;W

k+1�m;p

(ê)j:

This means that anisotropic estimates could have been derived by a more detailed look at the

mapping F : ê! e.

Jamet derived that � =

1

2

maxf�; � � �g � maxf

1

2

�;

1

3

�g where � is the maximal interior

angle of e. That means that (cos �)

�m

. 1 if and only if the maximal angle condition is satis�ed.

He also formulated a condition like (4.23) as essential for interpolation on anisotropic elements.

To circumvent the restrictions imposed by (10.6) the following estimate was derived for

u 2 W

`;p

(e), ` � k + 1, namely

ju� I

h

u;W

m;p

(e)j . (cos �)

�m

`

X

r=k+1

(diame)

r�m

ju;W

r;p

(e)j

which holds when `�m > 2=p.

Jamet type estimates are discussed for elements of Hermite type in [201].

10.5 K°íºek's results for triangles. K°íºek [119] proved Lemma 5.1 for m = 0; 1, ` = 2,

k = 1, q = p 2 (1;1). The technique is similar to ours by using that

R

E

^

D



(û � Iû) = 0,

jj = 1, where E is an edge of ê parallel to . Then he used only an �isotropic mapping� and
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Figure 10.1: Notation and illustration of the triangle ~e from Barnhill and Gregory.

derives Corollary 5.6 with the parameters above. The progress in comparison to previous work

[27, 108, 187] was that he covers the case 1 < p < 2.

It is interesting to note that he related the maximum angle condition to the radius R

e

of

the ball circumscribed to e Comment 10.1 on page 56. The paper contains also a numerical

example where 
 = (0; 1) is covered by equivalent elements e with h

2

� h

2

1

. (Two triangles are

equivalent if their edges have pairwise the same length.)

10.6 The results of Barnhill and Gregory. In a series of papers including [36, 37] Barn-

hill and Gregory investigated Sard kernel theorems and apply them to Lagrangian interpolation

on triangles and rectangles. The proofs are constructive and have some similarities to the proof

of interpolation results by Oganesyan and Rukhovets Comment 10.7 on page 59. This approach

allowed them to give bounds for the constants in the Sobolev norm estimates which we will

review next.

Let e be a triangle with the vertices (0; 0)

T

, (h

1

; 0)

T

, and (0; h

2

)

T

, then for k = 1, u 2

W

2;p

(e), and q � p � 1 the estimate [37, estimate (2.22)]

kD

(1;0)

(u� I

h

u);L

q

(e)k � (meas

2

e)

1=q�1=p

X

j�j=1

C

�

h

�

kD

�+(1;0)

u;L

p

(e)k

holds where the expressions for C

1

(p; q), C

2

(p; q), are quite complex (including the Beta func-

tion). For p = q = 2 the constants are [37, equations (2.23)]

C

1

=

1

2

�

1

p

2

+

1

p

3

�

� 0:642 and C

2

= 1 +

1

2

p

2

+

1

2

p

6

� 1:56:

In a further paper [84] Gregory obtained even C

2

= 1:03 and

ku� I

h

u;L

2

(ê)k � 0:17 kD

(2;0)

u;L

2

(ê)k+ 0:38 kD

(1;1)

u;L

2

(ê)k+ 0:17 kD

(0;2)

u;L

2

(ê)k:

In the same paper he also considered the triangle ~e with the vertices (0; 0)

T

, (1; 0)

T

, and (a; b)

T

with a and b being such that the angle  at (a; b)

T

is maximal and the angle � at (1; 0)

T

is

minimal, see Figure 10.1 for an illustration. The dependence of the constants in the interpolation

error estimate on a and b is given in detail. Some further calculation leads to

ju� I

h

u;W

1;2

(~e)j � (C

1

+ C

2

cot�) ju;W

2;2

(~e)j:

In this way the maximal angle condition is derived as well. (The maximal angle condition is

equivalent to a lower bound for the angle � when � � � � .)



10. Comments on related work 59

10.7 The results of Oganesyan and Rukhovets for triangles. Oganesyan and Rukho-

vets [150, pages 82�84] considered the triangle e with the vertices (0; 0)

T

, (h

1

; 0)

T

, and (0; h

2

)

T

,

and proved for k = 1 and m = 0; 1

ju� I

h

u;W

m;2

(e)j .

X

j�j=2�m

h

�

jD

�

u;W

m;2

(e

0

)j:

Note that the seminorm on the right hand side is measured with respect to the rectangle

e

0

= (0; h

1

) � (0; h

2

). Remarkable is:

� The proof is constructive. Observation (10.3) was also used.

� No attempt is made to exploit the di�erent h

1

, h

2

, further, and no maximal angle condition

is derived.

� The appearance of e

0

instead of e on the right hand side is due to some crude estimations.

This can be avoided, see [3, pages 57�59].

It is not obvious whether this approach can be generalized to higher dimensions.

10.8 Bänsch's results for triangles. Lemma 5.1 and Theorem 5.5 were also proved by

Bänsch [35] for the case ` = k+ 1, 1 � m � k, q = p (therefore without investigating condition

(5.1)). His paper appeared about two years after [9] but nearly at the same time as [12]. Bänsch

used in his proof of Lemma 5.1 the following interesting result.

Lemma 10.1 Let  be a multi-index, m := jj > 0, and û 2 C(ê) be a function with

^

D



û 2

W

`�m;p

(ê), where ` 2 N, p 2 [1;1] shall be such that ` �m > 2=p. Then the estimate

k

^

D



Iû;L

1

(ê)k . k

^

D



û;W

`�m;p

(ê)k

holds.

Proof See the proof of Lemma 4 in [35]. The slightly stronger assumption u 2W

`;p

(ê) in this

paper was used only in the sense

^

D



û 2W

`�m;p

(ê).

From this lemma one can immediately conclude

k

^

D



(v̂ � Iû);L

q

(ê)k . k

^

D



(v̂ � û);W

`�m;p

(ê)k

which was derived in the proof of Lemma 4.5 via the functionals f

i

. However, Bänsch's proof

of Lemma 10.1 is based on three further lemmata which essentially contain the same ideas as

needed in our proof of Lemmata 4.5 and 5.1.

Tetrahedral elements

10.9 Alternative formulations of the maximal angle condition for tetrahedra. The

following conditions have been used in the literature instead of the maximal angle condition on

page 33.

1. All angles of all triangular faces of e are bounded away from �. Moreover, for any face F

of e there is at least one edge of e such that the angle between this edge and the plane

spanned by F is bounded away from 0 [35].



60 Chapter II. Lagrange interpolation

2. Let V

6

be the set of the 6 unit vectors which are parallel to the sides of e and let <

)

(�; �) 2

[0; �=2] be the angle between the vectors � and ��. Then we demand that [108]

� := min

v

1

;v

2

;v

3

2V

6

max

�2R

3

min

i=1;2;3

<

)

(�; v

i

) � �

�

<

�

2

: (10.7)

3. Let e

i

(i = 1; : : : ; 3) denote the i-th unit vector of the coordinate system and v

j

(j =

1; : : : ; 6) are the directions of edges of the tetrahedron e. Then we assume [9]

min

i=1;:::;3

max

j=1;:::;6

j(v

j

; e

i

)j � C

0

> 0:

Formulation 1 is quite similar to our maximal angle condition. We see that Lemma 6.3 can

be proved in the same way, relation (6.13) is even direct.

Formulations 2 and 3 are similar to each other. It is not clear whether they are equivalent

to the maximal angle condition. At least they are su�cient for the proof of anisotropic interpo-

lation error estimates. They say that one can choose a basis of R

3

by v

1

; v

2

; v

3

2 V

6

such that

the transformation from this system to the element related coordinate system (x

1;e

; x

2;e

; x

3;e

)

is uniformly bounded. On the other hand, the transformation from the reference coordinate

system (x̂

1;e

; x̂

2;e

; x̂

3;e

) to the system (v

1

; v

2

; v

3

) is a�ne with a diagonal transformation matrix

when the following rule is applied: If the three edges which are parallel to v

1

, v

2

, v

3

, form

a polygonal line with the longest edge in the middle then use ê from (6.2) as the reference

element. In all other cases use ê from (6.1). We do not want to go into more detail here, since

this formulations seem to be more di�cult to understand and to check than our maximal angle

condition or formulation 1 from above.

10.10 Jamet's results for tetrahedra. Jamet [108] derived the results extracted in Com-

ment 10.4 for d = 2; 3. That means, we have for u 2W

`;p

(e), ` � k + 1,

ju� I

h

u;W

m;p

(e)j . (cos �)

�m

`

X

r=k+1

(diame)

r�m

ju;W

r;p

(e)j

when `�m > 3=p. The angle � is de�ned in (10.7). All the discussion in Comment 10.4 applies

as well, except that the condition � � �

�

< �=2 is not reformulated in geometrical terms, for

example as maximal angle condition, see also Comment 10.9.

10.11 K°íºek's results for tetrahedra. K°íºek [120] proved Corollary 6.6 for k = 1,

` = 2, m = 0; 1, q = p = 1. The technique is similar to Synge's proof of the same result in

two dimensions Comment 10.2 on page 56. The maximal angle condition was introduced as

on page 33. This is remarkable because K°íºek [119] had chosen a di�erent formulation in two

dimensions Comment 10.1 on page 56.

10.12 Bänsch's results for tetrahedra. Lemma 6.1 and Theorem 6.4 were also proved

by Bänsch [35] for the case ` = k+1, 1 � m � k, q = p > 2=(k+1�m) (and therefore without

investigating condition (6.3)), see also Comment 10.8 on page 59. The transformation from ê

to e was sketched in an elegant way (similarly to [9]) without mentioning that two reference

elements are necessary.
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Quadrilateral elements

10.13 Jamet's results for quadrilaterals. In [108, Example 2] Jamet stated that his

general result, see Comment 10.4 on page 57 Comment 10.10 on page 60 for simplicial elements,

is true also for parallelepipeds. For a discussion of quadratic serendipity elements see [108,

Example 4].

10.14 The results of Oganesyan and Rukhovets for quadrilaterals. Oganesyan and

Rukhovets [150, page 90] considered the rectangle e with sides parallel to the coordinate axes

and of length h

1

and h

2

. They proved for k = 1 and m = 0; 1

ju� I

h

u;W

m;2

(e)j .

X

j�j=2�m

h

�

jD

�

u;W

m;2

(e)j:

For further remarks see Comment 10.7 on page 59. The constants can be traced back, for

example it is shown, that

kD

(1;0)

(u� I

h

u);L

2

(e)k

2

� 2h

2

1

kD

(2;0)

u;L

2

(e)k

2

+ 8h

2

2

kD

(1;1)

u;L

2

(e)k

2

:

10.15 The results of von Petersdor� and Rachowicz. Von Petersdor� investigated

bilinear interpolation (k = 1) and derived for rectangular elements e and for u 2 W

3;2

(e) the

estimates [153, pages 71�.]

kD

(1;0)

(u� I

h

u);L

2

(e)k . h

1

kD

(2;0)

u;L

2

(e)k + h

2

2

kD

(1;2)

u;L

2

(e)k; (10.8)

kD

(0;1)

(u� I

h

u);L

2

(e)k . h

2

1

kD

(2;1)

u;L

2

(e)k + h

2

kD

(0;2)

u;L

2

(e)k: (10.9)

The proof exploits the tensor product character of the bilinear interpolation. We elucidate this

by the following sketch.

Proof Let be

(I

1

û)(x̂

1

; x̂

2

) := (1� x̂

1

)û(0; x̂

2

) + x̂

1

û(1; x̂

2

);

(I

2

û)(x̂

1

; x̂

2

) := (1� x̂

2

)û(x̂

1

; 0) + x̂

2

û(x̂

1

; 1);

then we observe that

Iû = I

1

I

2

û = I

2

I

1

û;

I

1

^

D

(0;1)

û = D

(0;1)

I

1

û; I

2

^

D

(1;0)

û = D

(1;0)

I

2

û: (10.10)

By using interpolation results from one space dimension we get

k

^

D

(1;0)

(û� I

1

û);L

2

(ê)k

2

=

Z

1

0

k
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1
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2

));L

2

(0; 1)k

2

dx̂

2

.
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1

0

k

^

D
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2

);L

2

(0; 1)k

2

dx̂

2

= k

^

D

(2;0)

û;L

2

(ê)k

2

; (10.11)
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^

D
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I

1

û);L

2

(ê)k . k

^

D

(0;2)

(
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û);L
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(ê)k
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^
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û;L

2

(ê)k . k

^

D
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û;L

2

(ê)k: (10.12)

The last equality follows from (10.10). The last estimate is a consequence of

^

D

(1;0)

I

1

v̂(x̂

1

; x̂

2

) = v̂(1; x̂

2

)� v̂(0; x̂

2

) =

Z

1

0

^

D

(1;0)

v̂(x̂

1

; x̂
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)dx̂

1

:
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Figure 10.2: Illustration of the quadrilaterals treated by �ení²ek and Vanmaele.

From (10.11) and (10.12) we obtain (10.8) by using the triangle inequality and again (10.10).

Rachowicz [155] extended this approach to arbitrary k. He obtains for u 2 W

`+1;2

, ` =

k; k + 1

kD

(1;0)

(u� I

h

u);L

2
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kD
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2
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2
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2
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2
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`

1

kD

(`;1)

u;L

2

(e)k + h

k

2

kD

(0;k+1)

u;L

2

(e)k:

An extension to parallelograms is also made but in a non-orthogonal coordinate system deter-

mined by the directions of the sides of e.

10.16 The results of �ení²ek and Vanmaele. �ení²ek and Vanmaele [202] considered

anisotropic, convex, quadrilateral, isoparametric �nite elements e with �bilinear� shape functions

(k = 1). They derived isotropic interpolation error estimates (in the sense of Corollaries 7.4

and 7.18) and treated the constants in the estimates carefully. Therefore we present here the

main results.

Lemma 10.2 [202, Theorem 7.1] Consider �rst trapezoids as illustrated in Figure 10.2 (left

hand side) with

diame = jX

(1)

e

�X

(2)

e

j; jX

(2)

e

�X

(3)

e

j � jX

(1)

e

�X

(4)

e

j �

1

12

jX
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e

�X

(2)

e

j: (10.13)

Then we have for u 2 W

2;2

(e)

ku� I

h

u;L

2
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j
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!
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2
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sin�

�
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with C

1

� 55:0, C

2

� 21:7, C

3

� 12:8, and C

4

� 19:5.

For the case that the factor 1=12 in (10.13) is substituted by 1=(2n), n � 6, expressions for

the constants are given in dependence of n [202, Remark 7.4]

The proof of Lemma 10.2 uses the following ideas.
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� The bilinear interpolation is considered as a perturbation of the linear interpolation I

(L)

h

with respect to the vertices X

(1)

e

, X

(2)

e

, and X

(3)

e

. (Therefore the enumeration plays an

important role, see (10.13).) By the triangle inequality we have [202, Estimate (8)]

ku� I

h

u; : k � ku� I
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u; : k+ kI

(L)

h

u� I

h

u; : k (10.14)

and one can show that
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u� u)(X
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e

) � '

(4)

e

(x) (10.15)

where '

(4)

e

(x) is the shape function with respect to X

(4)

e

.

� The �rst term in (10.14) is estimated using the results in [119] for linear (triangular)

elements Comment 10.5 on page 57. The modi�cation is that e is mapped by a linear

transformation to a family of reference elements ~e depending on a parameter.

� The second term in (10.14) is treated via (10.15) where both factors are estimated sepa-

rately. In particular it is shown that [202, Section 6]
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:

Now let e be an arbitrary convex quadrilateral. Then there exists a parallelogram e

0

� e

which has three vertices in common with e, see Figure 10.2 (right hand side). Denote these

three vertices by X

(1)

e

, X

(2)

e

, and X

(3)

e

such that X
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and X
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j. Denote by G the straight line through X
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e
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(2)

e

.

Lemma 10.3 [202, Theorem 8.1] Assume that e is a quadrilateral with the notation as de-

scribed above. Let the inequalities
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where the coe�cients C

i

= C

i

(n), i = 1; : : : ; 4, are decreasing when n is increasing.
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10.17 Anisotropic local error estimates for the hp-version of the �nite element

method. The existence of derivatives of any desired order is one of the basic assumptions for

the hp-version. The point is merely to describe the size of the derivatives in terms of their order

and to ensure integrability, if necessary, by introducing appropriate weight functions. This leads

to countably normed spaces. The corresponding local interpolation error estimates are studied,

for example, in [126] and, from a slightly di�erent point of view, in [135]. The proofs exploit

the tensor product character of the (reference) element as already mentioned in Comment 10.15

on page 61. However, there are also di�erences to the techniques developed in this monograph,

starting with the point that the hp-version is not based on Lagrangian �nite elements in the

sense of (7.1)�(7.4). Therefore we will not discuss these estimates further.



Chapter III

Scott-Zhang interpolation on

anisotropic elements

In this chapter, the Scott-Zhang interpolation operator and several modi�cations of it are dis-

cussed. All these operators are de�ned under weaker regularity assumptions than the Lagrange

interpolation operator. Anisotropic local stability and error estimates are proved. In the �nal

section, Section 17, we compare the operators.

11 General considerations

11.1 The aim of this chapter

The Lagrangian (nodal) interpolation operator I

h

investigated in the previous chapter is the

simplest approximation operator for Lagrangian �nite elements. However, it is not appropriate

for several investigations. Drawbacks are that it can be applied only to continuous functions

and that there are restrictions in the range of the parameters m, q, `, and p of the anisotropic

interpolation error estimate (4.2), see for example (4.3) and (4.4). We discussed this already in

Section 2 and Subsection 4.1.

In this chapter we investigate the operator Z

h

which was introduced by Scott and Zhang.

We also introduce and study certain modi�cations of Z

h

. All these operators are de�ned not

only for continuous functions but also for certain classes of discontinuous ones.

Scott and Zhang investigated stability and approximation properties of Z

h

for isotropic

meshes. In the next section we study whether these properties extend to anisotropic meshes.

It turns out that anisotropic estimates of the error in the L

q

(e)-norm can be proved (Theorem

12.1) but there is a counterexample for derivatives of the interpolation error (Example 12.2).

From the example we can learn, however, how to modify the operator Z

h

in order to have

a chance to get the desired estimates for derivatives. We de�ne three operators S

h

, L

h

, and E

h

with di�erences in the applicability concerning the types of elements and the ability to satisfy

Dirichlet boundary conditions.

� The operator S

h

is applicable for two-dimensional elements and for three-dimensional

elements with h

1

� h

2

. h

3

(�needle elements�). Dirichlet boundary conditions are

preserved on parts of the boundary which are parallel to the x

1

-axis/x

1

; x

2

-plane.

� The operator L

h

is applicable for two-dimensional elements and for three-dimensional

elements with h

1

� h

2

& h

3

(��at elements�). Dirichlet boundary conditions are preserved

65
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x

1

x

2

x

1

x

2

Figure 11.1: Meshes of tensor product type in two dimensions. Left: rectangular elements.

Right: triangular elements.

also on parts of the boundary which are parallel to the x

1

-axis/x

1

; x

2

-plane.

� The operator E

h

is de�ned only for three-dimensional elements with the general assump-

tion h

1

. h

2

. h

3

. But we discuss also the case h

1

� h

2

. h

3

, where we can relax

the condition on the mesh. Dirichlet boundary conditions are preserved on parts of the

boundary which are orthogonal to the x

1

; x

2

-plane.

These operators allow stability and approximation estimates for di�erent ranges of m and

` and for anisotropic meshes, see Theorems 13.3, 14.2, and 15.1 for functions from classical

Sobolev spaces, and Lemmata 13.5 and 15.3 for functions from weighted Sobolev spaces. We

will summarize and compare the results in more detail in Section 17.

In this chapter, we restrict ourselves to a certain class of domains, namely domains of

tensor product type. In two dimensions this means that the domain is the union of rectangles

with sides parallel to the coordinate axes. In three dimensions we treat domains which are

a union of prismatic domains with a basis face parallel to the x

1

; x

2

-plane. In such domains

it is possible to treat meshes of tensor product type, see Subsection 11.2 for the de�nition.

Examples are given in Figure 11.1. Note that also the mesh in Figure 19.3 (right hand side)

on page 101 is of tensor product type. The advantage of this class of meshes is not only that

the coordinate transformation is simpli�ed but also that certain edges/faces of the elements are

orthogonal/parallel to coordinate axes. We will exploit this in the proofs in Sections 13�15.

Later, in Section 20, we shall apply the operators S

h

and E

h

and derive �nite element

error estimates for the Poisson problem in certain domains with edges. The result can not be

obtained by using the nodal interpolation operator I

h

or the original Scott-Zhang operator Z

h

.

This underlines the importance of this study.

Nevertheless, some questions need further research. First, the investigation in this paper is

limited to domains of tensor product type. It is not straightforward how to drop this assumption.

Second, estimates with m = ` = 1 are derived only for L

h

. This means, such an estimate is

not available for three-dimensional �needle elements� (h

1

� h

2

� h

2

). Note that the case

` = 1 is of particular interest in the investigation of a-posteriori error estimators and multi-level

techniques.

Finally, we remark that Clément [64] and Oswald [151], for example, de�ned similar interpo-

lation operators and investigated them for isotropic meshes. We comment on this in Section 16.

11.2 De�nition of the element sizes and two auxiliary results.

We consider meshes which consist of a�ne elements of tensor product type. That means the

transformation of a reference element ê to the element e shall have (block) diagonal form,

�

x

1

x

2

�

=

�

�h

1;e

0

0 �h

2;e

��

x̂

1

x̂

2

�

+ b

e

for d = 2; (11.1)
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x

2

h

1

h

2

Figure 11.2: De�nitions of the mesh sizes for triangles in Chapters II (left) and III (right).

0

@

x

1

x

2

x

3

1

A

=

0

B

@

B

e

.

.

. 0

. . . . . . . . . .

0

.

.

. �h

d;e

1

C

A

0

@

x̂

1

x̂

2

x̂

3

1

A

+ b

e

for d = 3; (11.2)

where b

e

2 R

d

and B

e

2 R

2�2

with

j detB

e

j � h

2

1;e

; kB

e

k � h

1;e

; kB

�1

e

k � h

�1

1;e

: (11.3)

In this way the element sizes h

1;e

; : : : ; h

d;e

are implicitly de�ned. This de�nition is not identical

with the de�nitions in Chapter II but the orders of the resulting mesh sizes h

i

(i = 1; : : : ; d) are

the same in both chapters, see Figure 11.2 for an illustration. Note that (11.3) yields h

1;e

� h

2;e

for three-dimensional elements.

In this de�nition we did not assume a relation between h

1;e

and h

d;e

. In Sections 13 and

15 we will consider the case h

1;e

. h

d;e

(interesting is h

1;e

= o(h

d;e

)) and in Section 14 we will

examine h

d;e

. h

1;e

. Note further that under these assumptions the triangles/tetrahedra can

be grouped into pairs/triples which form a rectangle/pentahedron of tensor product type. We

will use this property in Section 13.

We demand further that there is no abrupt change in the element sizes, that means, the

relation

h

i;e

� h

i;e

0

for all e

0

with e \ e

0

6= ; (11.4)

holds for i = 1; : : : ; d. In view this relation and since all considerations in this chapter are local,

we will omit the second subscript henceforth.

We will see that the values of the Scott-Zhang interpolant in one single element e, Z

h

uj

e

, is

de�ned in general not only by the values of u in e. Values at certain domains �

i

, i 2 I

e

, are

used. So it is convenient to introduce the patch S

e

of elements around e,

S

e

:= int

[

fe

0

: e

0

2 T

h

; e

0

\ e 6= ;g; (11.5)

see also the illustration in Figure 11.3, since we obtain then �

i

2 S

e

for all i 2 I

e

:

We end this section with a lemma and a corollary which will be widely used in this chapter.

The isotropic version of Lemma 11.1 was proved in [171] using results from [76] (see Lemma

4.3) and can easily be generalized to our case.

Lemma 11.1 For any u 2W

`;p

(S

e

) there exists a polynomial w 2 P

d

`�1

such that

X

j�j�`�m

h

�

jD

�

(u �w);W

m;p

(S

e

)j .

X

j�j=`�m

h

�

jD

�

u;W

m;p

(S

e

)j; (11.6)

for all m = 0; : : : ; `.
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e

Figure 11.3: Illustration of S

e

in a two-dimensional example.

Proof By the change of variables x

i

= ~x

i

h

i

we transform S

e

to

~

S

e

. According to (11.4) and

the tensor product character of our mesh we realize that

~

S

e

satis�es the assumptions of Lemma

4.3 with diamG

j

� diamB

j

� 1. So we obtain the existence of ~w 2 P

d

`�1

such that for all 

with jj = m, 0 � m � `,

k

~

D



(~u� ~w);W

`�m;p

(

~

S

e

)k . j

~

D



~u;W

`�m;p

(

~

S

e

)j:

By transforming this estimate to S

e

and summing up over all  we conclude (11.6).

Corollary 11.2 Let m

1

+ m

2

= m � `. For any u 2 W

`;p

(S

e

) there exists a polynomial

w 2 P

d

m�1

such that

X

j�j�m

2

X

j�j�`�m

h

�+�

jD

�+�

(u �w);W

m

1

;p

(S

e

)j .

X

j�j=m

2

X

j�j�`�m

h

�+�

jD

�+�

u;W

m

1

;p

(S

e

)j:

Proof We reformulate the left hand side and split it in two terms.

X

j�j�m

2

X

j�j�`�m

h

�+�

jD

�+�

(u� w);W

m

1

;p

(S

e

)j �

X

j�j�`�m

1

h

�

jD

�

(u�w);W

m

1

;p

(S

e

)j

=

X

j�j�m

2

h

�

jD

�

(u� w);W

m

1

;p

(S

e

)j+

X

m

2

<j�j�`�m

1

h

�

jD

�

(u� w);W

m

1

;p

(S

e

)j

In view of m

2

= m �m

1

, the �rst term can be estimated via Lemma 11.1. The second term

contains only derivatives of order higher thanm, that means that w plays no role. Consequently,

w can be chosen such that

X

j�j�m

2

X

j�j�`�m

h

�+�

jD

�+�

(u�w);W

m

1

;p

(S

e

)j

.

X

j�j=m

2

h

�

jD

�

u;W

m

1

;p

(S

e

)j+

X

m

2

<j�j�`�m

1

h

�

jD

�

u;W

m

1

;p

(S

e

)j

.

X

j�j=m

2

h

�

jD

�

u;W

m

1

;p

(S

e

)j+

X

j�j=m

2

X

1�j�j�`�m

h

�+�

jD

�+�

u;W

m

1

;p

(S

e

)j;

and the corollary is proved.
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(a) X

(i)

is an interior point of an element. (b) X

(i)

is an interior point of an edge.

(c) X

(i)

is a vertex within the domain

(here: 6 possibilities for �

i

).

(d) X

(i)

is a vertex at the boundary

(2 possibilities for �

i

).

Figure 12.1: Choice of �

i

in dependence on X

(i)

for the de�nition of Z

h

.

12 The original Scott-Zhang operator Z

h

In this section we will recall the operator Z

h

de�ned by Scott and Zhang [171] and examine

to what extent anisotropic error estimates can be derived by simply carrying out the trans-

formations more carefully. We will see that anisotropic interpolation error estimates are valid

for m = 0, but modi�cations of the operator are necessary for estimates of derivatives of the

approximation error.

Denote by '

i

2 V

h

, i 2 I, the nodal basis functions in the �nite element space V

h

and de�ne

(Z

h

u)(x) :=

X

i2I

a

i

'

i

(x) (12.1)

with real numbers a

i

still to be speci�ed. Note that the Lagrange interpolant was de�ned by

choosing a

i

= u(X

(i)

) for all i 2 I.

In order to treat non-smooth functions the idea is to consider subdomains �

i

� 
 and to

choose

a

i

:= (�

�

i

u)(X

(i)

) (12.2)

where �

�

i

: L

2

(�

i

) ! P

k;�

i

is the L

2

-projection operator. The subdomains �

i

are chosen by

the following rules (see also Figure 12.1 for the case of triangles).

� If the node X

(i)

is an interior point of an element e � T

h

then �

i

:= e:

� Otherwise X

(i)

is a boundary point of one or more elements e � T

h

, and �

i

is chosen as

some (d� 1)-dimensional edge/face & of one of these elements:

� If there is an edge/face & so that X

(i)

is an interior point of &, then �

i

is uniquely

determined by �

i

:= &:

� If not, then �

i

is taken as one of the edges/faces with X

(i)

2 &. However, we restrict

this choice in the case X

(i)

2 @
 by demanding �

i

� @
 then.

Let us derive now an equivalent de�nition. The L

2

(�

i

)-projection �

�

i

u 2 P

k;�

i

= V

h

j

�

i

is

de�ned by

ku��

�

i

u;L

2

(�

i

)k = min

v2P

k;�

i

ku� v;L

2

(�

i

)k: (12.3)
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An explicit representation of (�

�

i

u)(X

(i)

) can be given by introducing the (unique) function

 

i

2 V

h

j

�

i

with

Z

�

i

 

i

'

j

= �

ij

for all j 2 I: (12.4)

Then one �nds easily that

(�

�

i

u)(X

(i)

) =

Z

�

i

u 

i

: (12.5)

To see this recall that a projection operator P : X ! Y � X can be de�ned via Pu =

P

j

(u;  

j

)

X

'

j

where f'

j

g is a basis in Y and f 

j

g is the corresponding biorthogonal basis

with respect to the scalar product (:; :)

X

in X. By inserting (12.5) into (12.1) and (12.2), we

obtain the equivalent de�nition

Z

h

u =

X

i2I

(�

�

i

u)(X

(i)

) � '

i

=

X

i2I

�

Z

�

i

u 

i

�

� '

i

: (12.6)

Though �

�

i

is de�ned by (12.3) for u 2 L

2

(�

i

), this approach can be extended to functions

u 2 L

1

(�

i

) because the polynomial function  

i

is from L

1

(�

i

) such that the integral in (12.5)

is �nite. This means that the approximation operator Z

h

:W

`;p

(
)! V

h

can is de�ned for

` � 1 for p = 1; ` >

1

p

otherwise. (12.7)

The restrictions to ` and p in (12.7) follow from a trace theorem and guarantee that uj

�

i

2 L

1

(�

i

)

also for (d� 1)-dimensional �

i

. We consider only integer `, therefore (12.7) is equivalent to

` � 1; p 2 [1;1]:

Note further that the approximationoperator Z

h

does not only preserve homogeneous Dirich-

let boundary conditions but also inhomogeneous conditions u = g on @
 (at least in the sense

of L

1

(@
)) if g 2 V

h

j

@


.

Recall the de�nition of S

e

in (11.5) and note that �

i

� S

e

for all i with X

(i)

2 e. For

isotropic simplicial elements e (h

1

� : : : � h

d

) Scott and Zhang proved the following stability

and approximation result [171]: If 1 � ` � k + 1 and p 2 [1;1] then the estimates

jZ

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

`

X

j=0

h

j�m

1

ju;W

j;p

(S

e

)j (12.8)

ju� Z

h

u;W

m;p

(e)j . h

`�m

1

ju;W

`;p

(S

e

)j (12.9)

hold for 0 � m � `. Recall that k corresponds to the degree of the polynomials, see (3.4) on

page 10. The anisotropic estimate corresponding to (12.9) would be

ju� Z

h

u;W

m;p

(e)j .

X

j�j=`�m

h

�

jD

�

u;W

m;p

(S

e

)j: (12.10)

We prove now that this estimate is valid for m = 0. This result is restricted here to meshes of

tensor product type but it is not restricted to simplicial elements.
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Theorem 12.1 On anisotropic meshes of tensor product type the Scott-Zhang approximation

operator Z

h

satis�es the stability and approximation error estimates

kZ

h

u;L

q

(e)k . (meas

d

e)

1=q�1=p

X

j�j�`

h

�

kD

�

u;L

p

(S

e

)k; (12.11)

ku� Z

h

u;L

q

(e)k . (meas

d

e)

1=q�1=p

X

j�j=`

h

�

kD

�

u;L

p

(S

e

)k; (12.12)

` = 1; : : : ; k + 1, provided that u 2 W

`;p

(S

e

). For (12.12) the numbers p; q 2 [1;1] and ` 2 N

must be such that W

`;p

(e) ,! L

q

(e).

Proof We start with an estimate for the maximum norm of  

i

, i 2 I

e

. Let

^

 

�

i

be the

corresponding dual basis function on the reference element �̂ of the (d � 1)-dimensional �nite

element �

i

. So we have 1 =

R

�̂

'̂

i

^

 

�

i

=

R

�

i

'

i

 

�

i

(meas

dim �

i

�

i

)

�1

=

R

�

i

'

i

 

i

, and, consequently,

 

i

=  

�

i

(meas

dim �

i

�

i

)

�1

. With k

^

 

�

i

;L

1

(�̂)k = k 

�

i

;L

1

(�

i

)k � 1 we obtain

k 

i

;L

1

(�

i

)k � (meas

dim �

i

�

i

)

�1

: (12.13)

Using the de�nition of Z

h

u we �nd with (12.13) that

kZ

h

u;L

q

(e)k �

X

i2I

e









'

i

Z

�

i

u 

i

;L

q

(e)









� (meas

d

e)

1=q

X

i2I

e

�

�

�

�

Z

�

i

u 

i

�

�

�

�

. (meas

d

e)

1=q

X

i2I

e

(meas

dim �

i

�

i

)

�1

ku;L

1

(�

i

)k;

where I

e

is the index set of the nodes contained in e. If �

i

has the same dimension as e (that

means X

(i)

is an inner node of e and �

i

= e) then we use the Hölder inequality and �nd

ku;L

1

(�

i

)k � (meas

d

e)

1�1=p

ku;L

p

(�

i

)k

. meas

d

�

i

(meas

d

e)

�1=p

ku;L

p

(S

e

)k: (12.14)

If �

i

has lower dimension we use the trace theorem W

`;p

(S

e

) ,!W

`;p

(e

0

) ,! L

1

(�

i

) (e

0

� S

e

is

an element with �

i

� e

0

) in the form

ku;L

1

(�

i

)k . meas

d�1

�

i

(meas

d

e)

�1=p

X

j�j�`

h

�

kD

�

u;L

p

(S

e

)k (12.15)

which holds for ` � 1. Combining the last three estimates we obtain the stability estimate

(12.11). From this we derive for any w 2 P

d

`�1

� P

d

k

ku� Z

h

u;L

q

(e)k � ku� w;L

q

(e)k+ kZ

h

(u�w);L

q

(e)k

. (meas

d

e)

1=q�1=p

X

j�j�`

h

�

kD

�

(u�w);L

p

(S

e

)k

where we used the embedding W

`;p

(e) ,! L

q

(e). With Lemma 11.1 we conclude (12.12).

By the following example we show that Estimate (12.10) does not hold for m � 1 in the

general setting of �

i

as introduced above.
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h

1

h

2

�

j

�

i

X

(i)

X

(j)

e

Figure 12.2: Illustration of Example 12.2.

Example 12.2 In this example we will show that (12.10) is in general not satis�ed in the case

m = k = 1 and the whole range of `, namely ` = 1; 2. Consider the situation as illustrated in

Figure 12.2, and let u = u(x

1

) be any function which is independent of the variable x

2

. This

leads in general to a

i

6= a

j

, where a

i

and a

j

are independent of h

2

, that means

@Z

h

u

@x

2

�

�

�

�

e

= h

�1

2

f(u; x

1

; h

1

)

with a certain function f . In view of @u=@x

2

= 0 we obtain

ju� Z

h

u;W

1;p

(e)j �









@Z

h

u

@x

2

;L

p

(e)









= h

�1+1=p

2

F (u; h

1

);

X

j�j=`�1

h

�

jD

�

u;W

1;p

(S

e

)j = h

`�1

1









@

`

u

@x

`

1

;L

p

(S

e

)









= h

1=p

2

G(u; h

1

):

Consequently, for f(u; x

1

; h

1

) 6= 0 (which is the case in general) and h

2

= h

s

1

with su�ciently

large s (depending on u) estimate (12.10) can not be satis�ed. 2

For this example the following points were essential:

1. Long edges are chosen for �

i

.

2. X

i

and X

j

have the same x

1

-coordinate but the projections of �

i

and �

j

on the x

1

-axis

are di�erent.

Since we have some freedom in the choice of �

i

we will investigate in the next two sections the

operator in the cases where one of these points is avoided. In Section 13 we will use short edges

(2D) or small faces (3D) as �

i

. Large sides with identical projection are chosen in Section 14.

The resulting operators will be denoted by S

h

(small sides) and L

h

(large sides).

Having now an idea which choice of �

i

could work, we want to point out that the desired

error estimate cannot be obtained with the original proof of [171]. We encounter problems

similar to those discussed in Subsection 4.2, in particular Example 4.1. By similar arguments

we �nd for example for the operator S

h

that we must prove

kD



S

h

u;L

q

(e)k . (mease)

1=q�1=p

X

j�j�`�jj

h

�

jD

�

u;W

jj;p

(S

e

)j

if we want to derive the error estimate by using the stability estimate as in the proof of Theo-

rem 12.1, We will develop such re�ned proofs for general k, `, m, in the next sections. However,

we need in all cases that all �

i

, i 2 I, are parallel. Therefore we are restricted to meshes of

tensor product type. The proof for more general meshes is still open.
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x

1

x

2

(a) Points where �

i

is uniquely determined.

x

1

x

2

(b) Points where �

i

can be chosen

(here one choice).

Figure 13.1: Choice of �

i

in dependence of X

(i)

in the case of operator S

h

, k = 3.

13 The operator S

h

: choosing small sides

13.1 Stability and approximation in classical Sobolev spaces

In this section we will investigate the operator S

h

which was motivated at the end of the previous

section. Since the de�nition of the �

i

is di�erent from that in Section 12 we will clarify this

here: �

i

is (not necessarily uniquely) determined according to the following three properties,

compare Figure 13.1.

(P1) �

i

is parallel to the x

1

-axis/x

1

; x

2

-plane.

(P2) X

(i)

2 �

i

.

(P3) There exists an edge/face & of some element e such that the projection of & on the x

1

-

axis/x

1

; x

2

-plane is identical with the projection of �

i

.

In connection with (P3) we have to note that �

i

is not necessary an edge/face of one element,

see also Figure 13.1. Nevertheless, �

i

together with P

d�1

k

or Q

d�1

k

is a Lagrangian �nite element

of dimension d � 1, which follows from the tensor-product character of the elements e. For

simplicity, we will use the terminology ��

i

is an edge/face�. We remark in particular that in

the case of simplicial elements and k � 2 there is no d-dimensional �nite element e

0

� S

e

such that �

i

� e

0

. This implies that P

k;�

i

6= V

h

j

�

i

and in general �

�

i

v

h

6= v

h

j

�

i

for v

h

2 V

h

.

That means that S

h

does not reproduce piecewise polynomials, but only global polynomials.

However, we need in the proofs only �

�

i

w = w for w 2 P

k;�

i

which is of course satis�ed.

Since �

i

is said to be a small edge/face this implies

h

j

� h

d

in S

e

(j = 1; : : : ; d): (13.1)

Note that in three dimensions and according to (11.2), (11.3), only elements with h

1

� h

2

. h

3

can be treated. But this is su�cient to handle edge singularities, see Section 20.

We will see that for the operator S

h

anisotropic interpolation error estimates can be derived

when m < ` � k+ 1. The main di�culty is to prove the stability estimate. The approximation

property follows then easily using Lemma 11.1 from page 67. To elucidate the di�erent tech-

niques for derivatives in x

1

- and x

d

-direction we �rst formulate and prove two lemmata. Then

we establish the main theorem of this section. Finally, we give an example which shows that

the estimate is not valid for m = `, 1 � m � k + 1.
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Lemma 13.1 Consider an element e of a mesh of tensor product type and assume that (13.1)

is valid. Then the derivative of S

h

u in x

d

-direction satis�es the relation
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(S

e

)j

for u 2W

1;p

(S

e

) and all p; q 2 [1;1].

Proof Using the de�nition of the operator S

h

(in analogy to (12.6) on page 70), the Hölder

inequality, estimate (12.13), and the trace theorem (12.15) for ` = 1, we obtain for all w 2 P

d

0
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�
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�

�

�

�

Z

�

i
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i

�

�

�

�

. h

�1

d

(meas

d

e)

1=q

X

i2I

e

ku� w;L

1

(�

i

)k k 

i

;L

1

(�

i

)k

. h

�1

d

(meas

d

e)

1=q

X

i2I

e

(meas

d�1

�

i

)(meas

d

e)

�1=p

X

j�j�1

h

�

kD

�

(u �w);L

p

(S

e

)k(meas

d�1

�

i

)

�1

. h

�1

d

(meas

d

e)

1=q�1=p

X

j�j�1

h

�

kD

�

(u �w);L

p

(S

e

)k:

Using Lemma 11.1 with m = 0, ` = 1, and relying on (13.1) we obtain the assertion.

Lemma 13.2 Consider an element e of a mesh of tensor product type and assume that (13.1)

is valid. Then the derivative of S

h

u in x

1

-direction satis�es the relation









@

@x

1

S

h

u;L

q

(e)
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X
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h

�

jD

�

u;W

1;p

(S

e

)j

for u 2W

2;p

(S

e

) and all p; q 2 [1;1].

Proof Let w = w(x

d

) 2 P

1

k

. Then we get in analogy to the proof of Lemma 13.1
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1
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1=q

X
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e

(meas

d�1

�

i

)

�1

ku�w;L

1

(�

i

)k:

Denote by � the smallest of the domains �

i

, i 2 I

e

. Introduce now k + 1 (simply connected,

plane) (d� 1)-dimensional domains �

j

� S

e

such that for all �

i

(i 2 I

e

) there exists a �

j

� �

i

.

Note that, due to (11.4), �

j

(j = 0; : : : ; k) is isotropic with a diameter of order h

1

, and therefore

meas

d�1

�

i

� meas�

j

� meas

d�1

� for all i and j. Consequently, we obtain
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(�

j

)k:

Observe now that w = w

j

= const. on �

j

. On the other hand, since the �

j

have di�erent

x

d

-coordinate, we can de�ne w from given w

j

(j = 0; : : : ; k). So we can use Lemma 11.1 for

dimension d� 1 to choose w

j

2 P

d�1

0

such that

X

j�j�1

�

d

=0

h

�

kD

�

(u� w

j

);L

1

(�

j

)k .

X

j�j=1

�

d

=0

h

�

kD

�

u;L

1

(�

j

)k � h

1

X

j�j=1

�

d

=0

kD

�
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1

(�

j
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and to conclude with the trace theorem (12.15) (applied with ` = 1 for each �

j

)









@

@x

1

S

h

u;L

q

(e)









. (meas

d

e)

1=q

(meas

d�1

�)

�1

k

X

j=0

X

j�j=1

�
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�
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)k (13.2)
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d
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X
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�

d
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X

j�j�1

h

�

kD

�+�

u;L

p

(S

e

)k: (13.3)

Thus the proposition is proved.

By analogy we can treat the derivative with respect to x

2

in the three-dimensional case.

Theorem 13.3 Assume that (13.1) is valid. Then the modi�ed Scott-Zhang operator S

h

sat-

is�es on anisotropic meshes of tensor-product type the following estimates:

jS

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

j�j�`�m

h

�

jD

�

u;W

m;p

(S

e

)j; (13.4)

ju� S

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(S

e

)j; (13.5)

0 � m � ` � 1 � k, provided that u 2 W

`;p

(S

e

). For (13.5) the numbers p; q 2 [1;1] must be

such that W

`;p

(e) ,!W

m;q

(e). For m � 2 we exclude triangular and tetrahedral elements.

Proof Consider �rst the stability estimate (13.4). For m = 0, (13.4) can be proved as (12.11).

For m = 1, (13.4) is proved in Lemmata 13.1 and 13.2. Let m � 2. Consider a multi-index 

with jj = m and de�ne m

2

:= 

d

,m

1

= m�m

2

. For arbitrary !

1

= !

1;1

(x

1

; : : : ; x

d�1

)!

1;2

(x

d

),

!

1;1

2 P

d�1

m

1

�1

, !

1;2

2 P

1

k

, (that is why we exclude simplicial elements) and !

2

2 P

d

m�1

we obtain

in analogy to the proof of Lemma 13.2
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h
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�
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Then we determine w

j

2 P

d�1

m

1

�1

(j = 0; : : : ; k) such that

X

j�j�m

1

�

d
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(�

j

)k:

Note that the w

j

depend on (u � !

2

) and !

2

is still to be chosen. The polynomial !

1

is now

determined by the w

j

(j = 0; : : : ; k) such that the estimate can be continued by
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Thus the factor h

�m

1

1

is eliminated. We proceed now as in the proof of Lemma 13.1. Using the

trace theorem (12.15) for all j; � and with `�m

1

� ` �m � 1 instead of ` we conclude
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Using Corollary 11.2 (page 68) we obtain
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Here we used h

�

� h

m

2

d

for j�j = m

2

which follows from (13.1). Thus (13.4) is proved.

For proving estimate (13.5) we need (13.4) and the assumptions on p and q. Since these

parameters were chosen such that W

`;p

(e) ,!W

m;q

(e), we have also W

`�m;p

(e) ,! L

q

(e), this

means

kv;L

q

(e)k . (meas

d

e)

1=q�1=p

X
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�
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�
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p
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for all v 2 W

`�m;p

(e). Applying this estimate for all derivatives D

�

with j�j = m and summing

up the resulting inequalities, we obtain for v 2W

`;p

(e)
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m;q
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d
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Together with (13.4) we conclude that for all w 2 P

d

`�1

the following estimate holds,
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(e)j � ju�w;W
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With Lemma 11.1 the proposition is proved.

Finally, we want to give an example which shows that

jS

h

u;W

1;2

(e)j . ku;W

1;2

(S

e

)k (13.7)

does not hold for any u 2W

1;2

(S

e

).

Example 13.4 Consider k = 1 and a triangle with the vertices X

(1)

= (0; 0)

T

, X

(2)

= (h; 0)

T

,

and X

(3)

= (0; 1)

T

, and let �

1

= (�h; 0) � f0g, �

2

= (0; h) � f0g, compare Figure 13.2. For

u = r

"

sin

�

2

(r; � are here polar coordinates) we obtain
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= jx

1

j

"

) (�

�

1
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(1)

) =

Z

h

0

x

"

�

�

6x

h

2

+

4

h

�

� h

"

;

uj

�

2

= 0 ) (�

�

2

u)(X

(2)

) = 0:
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x

1

x

2

�h h

0

1

e

Figure 13.2: Illustration of Example 13.4.

Consequently,
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[("r
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1

2

r

"�1
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�

2

)

2

] rd�dr �

Z

1

0

r

2("�1)+1

dr <1

for " > 0. Thus (13.7) does not hold. 2

13.2 Stability in weighted Sobolev spaces

We have seen in Example 13.4 that S

h

u does not satisfy an estimate with m = ` = 1. However,

S

h

can be applied in some situations where u 62 W

2;p

(S

e

) for some p we are interested in. For

this we consider weighted Sobolev spaces V

`;p

�

(e), ` 2 N, p 2 [1;1], � 2 R, which were de�ned

by (3.9), (3.11), on page 12. For our application in Section 20 we need the stability of the

modi�ed Scott-Zhang operator in these weighted spaces.

Lemma 13.5 Consider an element e of a mesh of tensor product type and assume that (13.1) is

valid. Let m be an integer and �; p; q be real numbers with 0 � m � k, � < 2�

2

p

, � � 1, p; q 2

[1;1], and assume that S

e

has zero distance to the x
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-axis. Then for u 2W
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�
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)

the stability estimate
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holds. For m � 2 we exclude tetrahedral elements.

Proof We start with estimate (13.6) which was obtained in the proof of Theorem 13.3. Let 

be a multi-index with jj = m and !
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Let 

3

> 0, then we can continue, similar to the proof of Theorem 13.3, with the trace

theorem because we assumed u 2W

m;p
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e

).
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Using Corollary 11.2 we obtain
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)k (13.10)

We estimate the right hand side via the trivial embeddings V

1;p

�

(S

e

) ,! V

0;p

��1

(S

e

) ,! L

p

(S

e

),

� � 1, which leads with (13.1) to
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which is the desired result.

For 

3

= 0 we use (13.9) with !

2

= 0 and estimate the L

1

(�

j

)-norms against weighted norms

via the Hölder inequality:
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��
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p
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j
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�
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)k (13.12)

with p

0

from 1=p+ 1=p

0

= 1. The L

p

0

(�

j

)-norm of r

��

is �nite if and only if p

0

� < 2 which is

equivalent to � < 2� 2=p. Using meas

d�1

� � meas�

j

� h

2

1

for all j, and r . h

1

we get
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: (13.13)

The application of W

1;p

(S

e

) ,! L

p

(�

j

) to r

�

v implies the trace theorem V
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�
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) ,! V
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)

which leads to
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Combining these estimates we obtain
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and thus with (13.9)
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is uniquely determined.
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(b) Two choices for �
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for points on vertical mesh lines.

Figure 14.1: Choice of �

i

in dependence of X

(i)

in the case of operator L

h

.

The last step to derive (13.8) is done by a rearrangement of the terms at the right hand side,

namely

X
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X
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D
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=
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�

X
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(S

e

)k:

Together with (13.14) we conclude (13.8) in the case 

3

= 0.

14 The operator L

h

: choosing large sides with a projection

property

In contrast to Section 13 we will now employ large edges/faces and denote the resulting operator

by L

h

. The notation is used as follows: We keep Properties (P1), (P2), and (P3) from page 73

and simply turn the relation (13.1):

h

j

� h

d

in S

e

(j = 1; : : : ; d): (14.1)

But in correspondence with Item 2 at the end of Section 12, we do not have so much freedom

for the choice of the �

i

as in the case of S

h

. We must assume the following projection property

(P4), compare also Figure 14.1.

(P4) If the projections of any two points X

(i)

and X

(j)

on the x

1

-axis/x

1

; x

2

-plane coincide

then so do the projections of �

i

and �

j

.
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We can prove the results of Theorem 13.3 for this case as well. Moreover, these results extend

to the case m = `. But in contrast to the needle elements of Section 13 the three-dimensional

elements are now �at, h

1

� h

2

& h

3

. The idea for this choice of �

i

was found in [41, Chapter 5]

where the special case of rectangular and brick elements was considered for k = 1, p = q = 2.

We extend this theory to further types of element and to general k 2 N, p; q 2 [1;1]. Our proof

di�ers from that in [41].

We start as in Section 13 with the separate consideration of the stability of �rst derivatives

of L

h

u. This time the derivative in x

1

-direction is the simpler one.

Lemma 14.1 Consider an element e of a mesh of tensor product type and assume that (14.1)

is valid. Then the estimate
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. (meas

d

e)

1=q�1=p

ju;W

1;p

(S

e

)j; n = 1; : : : ; d; (14.2)

holds for u 2W

1;p

(S

e

) and all p; q 2 [1;1].

Proof For n = 1; : : : ; d� 1 the proof can be carried out with the same arguments as the proof

of Lemma 13.1. The only di�erence is that the role of x

d

and h

d

is now played by x

n

and h

n

.

For the case n = d we will reformulate L

h

u. For this consider �rst a one-dimensional

situation, that means a single �nite element formed by an interval (�; �). Let �

i

, i = 0; : : : ; k,

be the nodal basis functions in (�; �). We change now to a new basis

�

i

=

i

X

j=0

�

j

; i = 0; : : : ; k:

Consequently,

k

X

i=0

a

i

�

i

=

k�1

X

i=0

(a

i

� a

i+1

)�

i

+ a

k

;

where we also used that

P

k

i=0

�

i

= 1. Note further that

k�

i

;L

1

(�; �)k . 1; k�

0

i

;L

1

(�; �)k . j� � �j

�1

: (14.3)

We use this kind of a new basis in the case of a rectangular element e = (�

1

; �

1

)� (�

2

; �

2

).

The nodal basis functions are (for simplicity with a double index)

'

i;j

(x

1

; x

2

) = �

i

(x

1

)�

j

(x

2

); i; j = 0; : : : ; k; (14.4)

where �

i

and �

j

are the nodal basis functions with respect to (�

1

; �

1

) and (�

2

; �

2

), respectively.

Thus

L

h

u =

k

X
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k

X
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a
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�

i
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1
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)

=
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�
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j

(x

2

) + a
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A
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@
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2

L
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u =

k

X
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�
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(x
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)
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X

j=0

(a
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� a

i;j+1

)�

0

j

(x

2

): (14.5)
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Because of Property (P4) the subdomains �

i;j

belonging to the node (i; j) depend only on i.

We can write

a

i;j

=

Z

�

i;j

 

i

(x

1

)u(x

1

; y

j

) dx

1

;

a

i;j

� a

i;j+1

= �

Z

�

i;j

 

i

(x

1

)

Z

y

j+1

y

j

@u

@x

2

(x

1

; y) dydx

1

; (14.6)

k�1

X

j=0
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i;j

� a
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j �

Z

S

e

�

�

�

�

 

i

@u

@x

2

�

�

�

�

;

where y

j

is the value of the x

2

-coordinate of points X

(i;j)

e

. The proof of (14.2) is now standard:
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:

For pentahedral and hexahedral elements the proof is similar. We only replace (14.4) by

'

i;j

(x

1

; x

2

; x

3

) = �

i

(x

1

; x

2

)�

j

(x

3

); i = 0; : : : ;K; j = 0; : : : ; k;

with appropriate basis functions �

i

(x

1

; x

2

) and

K = (k + 1)

2

� 1 for hexahedra, K =

�

k + 2

2

�

� 1 for pentahedra. (14.7)

In the case of simplicial elements we have to modify these considerations slightly. We will

explain it in the two-dimensional case. Consider an element e with nodes X

(i;j)

e

,

e =

�

(x

1

; x

2

) : �

1
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� �
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� �
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2

� �

2

)

�

;

and nodal basis functions '

i;j

, i = 0; : : : ; k, j = 0; : : : ; k � i, as illustrated in Figure 14.2. The

new basis functions are

�

i;j

=

j

X

s=0

'

i;s

; i = 0; : : : ; k; j = 0; : : : ; k� i:

We get

L
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a
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=

k

X

i=0

0

@

k�i�1

X

j=0

(a

i;j

� a

i;j+1

)�

i;j

+ a

i;k�i

�

i;k�i

1

A

;









@L

h

u

@x

2

;L

q

(e)









.

k

X

i=0

0

@

k�i�1

X

j=0

ja

i;j

� a

i;j+1

j









@�

i;j

@x

2

;L

q

(e)









+ ja

i;k�i

j









@�

i;k�i

@x

2

;L

q

(e)









1

A

:



82 Chapter III. Scott-Zhang interpolation
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Figure 14.2: Illustration of the case of a triangle with k = 3.

To conclude (14.2) with the same arguments as above it remains to show that

@�

i;k�i

@x

2

= 0 for all i = 0; : : : ; k: (14.8)

For this we observe that �

i;k�i

is uniquely determined by

�

i;k�i

(X

(s;j)

) =

�

1 for s = i; j = 0; : : : ; k� i;

0 else.

Thus �

i;k�i

= �

i

(x

1

) with �

i

in the sense of (14.4), and (14.8) is proved.

The proof for tetrahedral elements is analogous.

Theorem 14.2 Assume that (14.1) is valid. On anisotropic meshes of tensor-product type the

modi�ed Scott-Zhang operator L

h

satis�es the following estimates:

jL

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p
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m;p

(S

e

)j; (14.9)
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(S

e

)j; (14.10)

0 � m � `, 1 � ` � k + 1, provided that u 2 W

`;p

(S

e

). For (14.10) the numbers p; q 2 [1;1]

must be such that W

`;p

(e) ,!W

m;q

(e).

Proof Estimate (14.10) follows from (14.9) via Lemma 11.1 as it was done for S

h

in the proof

of Theorem 13.3. So the main point is to prove (14.9). For m = 0, this can be done as in the

proof of (12.11). The case m = 1 is treated in Lemma 14.1.

Let m � 2. Consider a multi-index  with jj = m and de�ne m

2

:= 

d

, m

1

:= m �m

2

. In

the proof of Lemma 14.1, we made for the case m

2

= 1 a transformation of the nodal basis '

i;j

to a basis �

i;j

in order to obtain di�erences of �rst order:
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:

This process is repeated until di�erences of order m

2

are created: For simplicity consider

again the one-dimensional situation. We de�ne recursively coe�cients a

(n)

i

and functions �

(n)

i

,
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i = 0; : : : ; k � n, n = 0; : : : ;m

2
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i
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and obtain
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: (14.13)

We get this by induction in analogy to the proof of Lemma 14.1. The only point is to prove

that

@

n+1

@x
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�

(n+1)
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= 0 for n = 0; : : : ;m
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� 1: (14.14)

This can be shown for any �xed n via �
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(proof by induction) which
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Consider now rectangular elements (d = 2) and transfer this basis transformation to the

x

2

-direction. We derive (again by induction) from (14.13)
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The so created di�erences a

(n+1)

i;j

= a

(n)

i;j

� a

(n)

i;j+1

are used now to establish an integral represen-

tation; compare (14.6):
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Using (12.13) and � � h
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we get
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Replace now meas

d�1

�

i;j

by meas

d�1

� := min

i;j
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�
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and u by u � w, w 2 P

2
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arbitrary. Together with (14.15) we conclude that
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(14.16)
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:

In order to derive (14.16) we have used that h

d

meas

d�1

� � meas

d

e. Via Corollary 11.2, (14.1),

and m = m

1

+m

2

we obtain
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and (14.9) is proved for rectangular elements. The proof for all other types of elements is similar

using the ideas explained in the proof of Lemma 14.1.

15 The operator E

h

: choosing long edges in the three-

dimensional case

15.1 Stability and approximation in classical Sobolev spaces

In Sections 13 and 14 we assumed h

1

� h

2

in the three-dimensional case. We will now investigate

the general three-dimensional situation of independent element sizes h

1

, h

2

, and h

3

. In order

to obtain in Subsection 15.2 a notation which is compatible with that in Subsection 13.2 we let

h

1

� h

2

� h

3

: (15.1)

Assume, for simplicity, tensor product meshes in the sense that transformation (11.2) is reduced

to

x

i

= �h

i

x̂

i

+ b

i

; i = 1; 2; 3: (15.2)

The investigation of the operators S

h

and L

h

was based on taking �

i

as isotropic faces,

that means that h

2

is of the same order as h

1

or h

3

. In [41] it was suggested to overcome this

restriction by taking one-dimensional �

i

but this was not elaborated thoroughly. We will now

investigate which estimates can be obtained in this case. We assume the following properties

which are analogous to those in Section 14.
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(P1

0

) �

i

is parallel to the x

3

-axis.

(P2) X

(i)

2 �

i

.

(P3

0

) There exists an edge & of some element e such that the projection of & on the x

3

-axis is

identical with the projection of �

i

.

(P4

0

) If the projections of any two points X

(i)

and X

(j)

on the x

3

-axis coincide then so do the

projections of �

i

and �

j

.

The corresponding operator is denoted by E

h

: W

`;p

(
)! V

h

. Note that it is de�ned only

for u 2W

`;p

(
) with

` � 2 for p = 1; ` >

2

p

otherwise, (15.3)

to guarantee that uj

�

i

2 L

1

(�

i

). Condition (15.3) can be reformulated to

` � 2; p 2 [1;1] or ` = 1; p 2 (2;1]: (15.4)

We will prove now stability an approximation properties in classical Sobolev spaces. Then,

we discuss in Remark 15.2 that the result is also valid for meshes of tensor product type. Of

course, we can apply in that case also the operator S

h

which is de�ned for a larger class of

functions. But the operators S

h

and E

h

di�er in the part of the boundary where Dirichlet

boundary conditions are preserved, see also the comparison in Section 17. As we already did

for S

h

in Subsection 13.2 we prove a stability estimate for functions from weighted Sobolev

spaces V

`;p

�

(S

e

) in Subsection 15.2.

Theorem 15.1 Consider an element e of a tensor product mesh and assume that (15.1) and

(15.2) are ful�lled. Then the operator E

h

satis�es for all q 2 [1;1] the following estimates:

jE

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j�1

h

�

jD

�

u;W

m;p

(S

e

)j (15.5)

if m � 1 or p > 2, and

kE

h

u;L

q

(e)k . (meas

3

e)

1=q�1=p

X

j�j�`

h

�

kD

�

u;L

p

(S

e

)k (15.6)

with ` and p satisfying (15.4). The approximation error estimate

ju� E

h

u;W

m;q

(e)j . (meas

3

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(S

e

)j (15.7)

holds if 0 � m � ` � 1 � k, p satis�es (15.4), q is such that W

`;p

(e) ,! W

m;q

(e), and

u 2 W

`;p

(S

e

).

We will see in the proof that for certain derivatives D



E

h

u the stability estimate (15.5) can

still be improved.

Proof We prove the theorem for brick elements. Other element types are treated similarly,

see the discussion in the proof of Lemma 14.1. We have to consider di�erent cases separately.
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First, let  be a multi-index with jj = m and 

1

6= 0, 

2

6= 0. We use the di�erence

technique developed in the proof of Theorem 14.2 for both directions x

1

and x

2

. In analogy to

(14.16) we obtain for all w 2 P

3

m�1

kD



E

h

u;L

q

(e)k = kD



E

h

(u�w);L

q

(e)k

. h
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e

)j:

Using Corollary 11.2 and (15.1) we conclude
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q
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(S

e

)j:

In a second case we assume 

n

6= 0, n = 1 or n = 2, but 

3�n

= 0, 

3

6= 0. Then we can

use the di�erence technique only within some faces f

i

(i = 0; : : : ; k) which are parallel to the

x

n

; x

3

-plane. De�ning f :=

S

k

i=0

f

i

we �nd as above that for all w 2 P

3

m�1

kD



E

h

u;L

q

(e)k = kD



E

h

(u� w);L

q
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: (15.8)

Using the trace theorem W



3

;p

(S

e

) ,! L

p

(f) and again Corollary 11.2 as well as (15.1) we

obtain
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Consider now the remaining pure derivatives. Let �rst be 

n

= m 6= 0, n = 1 or n = 2,



3

= 0. Estimate (15.8) holds in this case as well. By using p = 1 and w = 0 it reads now
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q

(e)k . (meas

3

e)

1=q
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2
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�1
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u;L

1

(f)k: (15.9)

With the trace theorem W

1;p

(S

e

) ,! L

1

(f) for all p 2 [1;1] we conclude the assertion (15.5).

Finally, for 

3

= m 6= 0, 

1

= 

2

= 0, the proof of the stability is completely analogous to

the proof of Lemma 13.1. We have for all w 2 P

3

m�1
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h
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q

(e)k . h
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)k:

The trace theorem W

m+1;p

(S

e

) ,! L

1

(�

i

) (which is the reason for the assumption m � 1 or

p > 2) and Corollary 11.2 yield
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. h

�m

3
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Note that in this last case (

3

= m) for m � 2 and for m = 1, p > 2, it can even be proved that
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q

(e)k . (meas
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e)
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ju;W

m;p
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)j

because then W

m;p

(S

e

) ,! L

1

(�

i

) holds.

Estimate (15.6) is trivial since
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q

(e)k . (meas
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e)

1=q

X

i2I

e
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�
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)
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1

(�

i

)k;

and the embedding W

`;p

(S

e

) ,! L

1

(�

i

) holds just for `; p satisfying (15.4).

Estimate (15.7) is concluded from (15.5) and (15.6) as in the proof of Theorem 13.3.

It is interesting to point out that the proof shows that
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)j (15.10)

holds for  with jj = m if at most one of the numbers 

1

; 

2

; 

3

vanishes. Our way of proof

does not work for pure derivatives. Consider for example the case  = (1; 0; 0). To prove (15.10)

with p > 2 (E

h

u is de�ned only for u 2W

1;p

(
) with p > 2.) one would have to skip the trace

on f and to use a trace theorem in the form (12.15). But this leads to
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with some diverging terms at the right hand side. The case  = (1; 0; 0) could be treated only

if
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was valid. It is not clear whether this estimate holds.

Remark 15.2 Our motivation for introducing the operator E

h

was to be able to treat the

general case of three independent mesh sizes h

1

� h

2

� h

3

. Of course this includes the special

case h

1

� h

2

. We point out that in this case the transformation (15.2) can be generalized

to (11.2), (11.3). To see that then the statement of Theorem 15.1 remains true consider an

arbitrary element e 2 T

h

and denote its projection into the x

1

; x

2

-plane by �. Since T

h

is of

tensor product type, and since all �

i

are perpendicular to the x

1

; x

2

-plane, it su�ces to choose

S

e

such that its projection to the x

1

; x

2

-plane is again � (and �

i

� S

e

), compare Figure 15.1.

Via the transformation
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=
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@

h

�1

1

B

e

.

.
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. . . . . . . . .
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. 1
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=:

~
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@

~x

1
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2

~x

3

1

A

;

B

e

from (11.2), the domains e and S

e

can be mapped to ~e and

~

S

e

= S

~e

which satisfy (locally)

the assumptions made at the beginning of this section. That means that Theorem 15.1 holds

true with respect to the coordinate system ~x

1

; ~x

2

; ~x

3

. By observing that

det

~

B � 1; k

~

Bk � 1; k

~

B

�1

k � 1

we �nd that Theorem 15.1 extends to the meshes described above.
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x

1

x

2

x

3

e

e

e

Figure 15.1: Illustration of the possible choice of a smaller S

e

in the case of E

h

(three element

types).

15.2 Stability in weighted Sobolev spaces

As in Subsection 13.2 we do not have an estimate with m = ` = 1 for E

h

. Therefore we consider

a stability estimate for functions from weighted Sobolev spaces V

`;p

�

(S

e

). These spaces were

introduced in (3.9), (3.11). To be able to apply the transformation (15.2) to the weight we will

restrict the consideration to the case h

1

� h

2

. However, we can then relax (15.2) to (11.2), see

Remark 15.2 above.

Lemma 15.3 Consider an element e of a tensor product mesh and assume that (15.1) and

(15.2) are ful�lled. Let m be an integer and �; p; q be real numbers with 0 � m � k, p; q 2 [1;1],

� < 2�

2

p

, � � 1. Then for u 2W

m;p

(S

e

) \ V

m+1;p

�

(S

e

) the stability estimate
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holds if m � 1 or p � 2.

Proof Observe that the relations
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)k; (15.12)
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(compare (13.12), (13.13)) lead to the embedding

V
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) ,! V
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); � < 2�

2

p

;
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that means u 2 W

m+1;1

(S

e

). Therefore we can apply Theorem 15.1 (see also Remark 15.2)

with p = 1:
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Notice further that (15.12), (15.13) lead to the estimate
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So we get
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)k:

Together with (15.14) the assertion (15.11) is concluded.

16 Comments on related work

The well-known Clément operator [64] �ts perfectly in the framework developed in Section 12.

We have just to replace the de�nition of the domains �

i

by �

i

:=

S

e3X

(i)

e and to use P

d

k

instead of P

k;�

i

. The resulting operator C

h

,

(C

h

u)(x) :=

X

i2I

(�

�

i

u)(X

(i)

) � '

i

(x);

is even de�ned for u 2 L

1

(
) and allows the estimate

ju�C

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

h

`�m

ju;W

`;p

(S

e

)j;

0 � m � ` � k + 1, on isotropic meshes.

The operator C

h

in this original form does not reproduce the piecewise polynomials v

h

2 V

h

,

C

h

v

h

= v

h

is in general not satis�ed for v

h

2 V

h

. But this can be corrected by de�ning

�

�

i

: L

2

(�

i

)! V

h

j

�

i

.

A modi�cation of the Clément operator is discussed by Oswald [151]. He �xed just one

(arbitrary) element e =: �

i

with X

(i)

2 e. The resulting operator O

h

allows the same estimates

as C

h

, and we have V

h

j

�

i

= P

k;�

i

.

For C

h

and O

h

one can verify easily that all estimates in Section 12 remain true. Condition

(12.7) can even be omitted; the operator is de�ned for all u 2 L

1

(
). Therefore, estimates

(12.8), (12.9), (12.11), and (12.12) hold for ` = 0 as well. Example 12.2 can be modi�ed in the

obvious way. (Of course, Z

h

has to be substituted by C

h

or O

h

in all relations.) Note that we

need in the proof only C

h

w = w for w 2 P

d

`�1

, which is satis�ed, no matter whether �

�

i

is

acting into P

d

k

or V

h

j

�

i

.

The disadvantage of both C

h

and O

h

is that they do not preserve Dirichlet boundary con-

ditions. To satisfy such boundary conditions one has to consider a modi�cation of C

h

near the

boundary which is small enough to keep the approximation order [64, 117, 174].



90 Chapter III. Scott-Zhang interpolation

Remark 16.1 In the original papers by Clément [64] and Scott/Zhang [171], only a�ne,

isotropic, simplicial elements were considered. It turns out that the theory can easily be ex-

tended to a�ne, isotropic elements of other types (quadrilaterals, hexahedra, pentahedra). For

a study of isoparametric elements, see [44, 145].

Remark 16.2 Siebert [174] and Kunert [117] derived also some results for the operator C

h

for

anisotropic meshes. However, they considered only the case k = 1, p = 2, and only subsets

H

1

T

(
) � W

1;2

(
) of so-called mesh adapted functions. This allows them to prove global results

of the form
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. jv;W

1;2

(
)j; i = 1; : : : ; d;

where %

e

� min

j=1;:::;d

h

j;e

. Using these estimates they prove asymptotic properties of a-

posteriori error estimators. For v they insert the (exact) �nite element error u� u

h

. Unfortu-

nately, the condition u�u

h

2 H

1

T

(
) can not be proved/tested in general, see also the discussion

of anisotropic a-posteriori error estimators in Section 28.

17 Comparison of the operators

The starting point of our investigation was the interpolation operator Z

h

introduced by Scott

and Zhang [171]. We have seen in Section 12 that anisotropic estimates are valid for m = 0

but in general not for m � 1. Therefore we introduced three modi�cations and investigated

the resulting operators S

h

, L

h

, and E

h

, for the de�nitions see pages 73, 79, and 84. In order

to summarize and to compare the di�erent Scott-Zhang type interpolation operators we give a

tabular overview. For comparison we add also the results for the nodal interpolant I

h

and for

the operators C

h

(Clément) and O

h

(Oswald).

In Table 17.1 we �nd the element types which the operator is applicable for. Note the slight

di�erence of tensor product type and tensor product elements in three dimensions. Tensor prod-

uct type corresponds to transformation (11.2), (11.3), and tensor product means the restriction

to transformation (15.2), see also (3.6)�(3.8).

Table 17.2 compares the conditions for which the stability estimate

jQ

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

j�j�`�m

h

�

jD

�

u;W

m;p

(S

e

)j (17.1)

holds, Q

h

2 fC

h

;O

h

;Z

h

; S

h

;L

h

;E

h

; I

h

g. In the case of S

h

and E

h

we additionally proved

stability in weighted Sobolev spaces. The estimate

jQ

h

u;W

m;q

(e)j � (meas

d

e)

1=q�1=p

h

��

1

X

j�j=m�1

X

jtj=1

h

t

kD

�+t

u;V

1;p

�

(S

e

)k

holds under the conditions given in Table 17.3.

The approximation error estimate

ju� Q

h

u;W

m;q

(e)j . (meas

d

e)

1=q�1=p

X

j�j=`�m

h

�

jD

�

u;W

m;p

(S

e

)j (17.2)

holds if the conditions of Table 17.2 are satis�ed and the parameters `; p;m; q are such that the

embedding W

`;p

(e) ,!W

m;q

(e) holds. The operator I

h

plays an exceptional role here, because
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d = 2 d = 3

Z

h

, C

h

, O

h

tensor product meshes meshes of tensor product type

h

1

; h

2

arbitrary h

1

� h

2

. h

3

or h

1

� h

2

& h

3

tensor product meshes

h

1

; h

2

; h

3

independent

S

h

tensor product meshes meshes of tensor product type

h

1

. h

2

h

1

� h

2

. h

3

L

h

tensor product meshes meshes of tensor product type

h

1

& h

2

h

1

� h

2

& h

3

E

h

meshes of tensor product type

h

1

� h

2

. h

3

tensor product meshes

h

1

. h

2

. h

3

I

h

tensor product meshes meshes of tensor product type

h

1

; h

2

arbitrary h

1

� h

2

. h

3

or h

1

� h

2

& h

3

tensor product meshes

h

1

; h

2

; h

3

independent

even for more general meshes, even for more general meshes,

see Sections 5 and 7 see Sections 6, 8 and 9

Table 17.1: Comparison of the operators: Treated �nite elements.

C

h

, O

h

m = 0, 0 � ` � k + 1, p; q 2 [1;1]

Z

h

m = 0, 1 � ` � k + 1, p; q 2 [1;1]

S

h

0 � m � `� 1, 1 � ` � k + 1, p; q 2 [1;1]

for m � 2 triangles and tetrahedra are excluded

L

h

0 � m � `, 1 � ` � k + 1, p; q 2 [1;1]

E

h

1 � m � `� 1, 1 � ` � k + 1, p; q 2 [1;1]

m = 0, 2 � ` � k + 1, p; q 2 [1;1]

m = 0, ` = 1, p 2 (2;1], q 2 [1;1]

I

h

0 � m � `� 1, 1 � ` � k + 1, q 2 [1;1],

p > d=` if ` < d and m = 0,

p > 2 if d = 3 and m = `� 1 > 0

m = 0, ` = 0, p =1, q 2 [1;1]

Table 17.2: Comparison of the operators: Conditions for the stability and error estimates.

C

h

, O

h

, Z

h

not treated

S

h

0 � m � k, p; q 2 [1;1], � < 2� 2=p, � � 1

for m � 2 triangles and tetrahedra are excluded

L

h

not treated

E

h

1 � m � k, p; q 2 [1;1], � < 2� 2=p, � � 1

m = 0, p 2 (2;1], q 2 [1;1], � < 2� 2=p, � � 1

I

h

not treated in this form

Table 17.3: Comparison of the operators: Conditions for the stability in weighted Sobolev

spaces.
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C

h

, O

h

, Z

h

only m = 0

S

h

m = ` excluded, only m = 0; 1 for simplices, in 3D only needle elements

L

h

in 3D only �at elements

E

h

m = ` excluded, restrictions on p when m = 0, ` = 1

I

h

m = ` excluded, restrictions on p when m = 0, ` < d or m = `� 1 > 0

Table 17.4: Comparison of the operators: Restrictions in the applicability.

estimate (17.2) is proved directly. The stability in the sense of (17.1) can be concluded via

jI

h

uj � juj+ ju� I

h

uj. Moreover, anisotropic interpolation error estimates are derived also for

functions from weighted Sobolev spaces, see Subsection 6.2.

Some shortcomings of the operators are given in Table 17.4. Additionally, we state that

Dirichlet boundary conditions u = g 2 V

h

j

�

1

on �

1

can be satis�ed on any part of @
 for Z

h

and I

h

, on parts of the boundary which are parallel to the x

1

-axis/x

1

; x

2

-plane for S

h

and L

h

,

and on parts of @
 which are perpendicular to the x

1

; x

2

-plane for E

h

.

Finally, we mention that S

h

and E

h

have been successfully applied in the study of the Poisson

problem in a domain with an edge where the singularity was treated with anisotropic mesh

re�nement, see Section 20. The operator L

h

was applied by Becker [41] to show the stability

and an approximation error estimate of the stabilized Q

1

=Q

0

-element pair in the context of the

Stokes equation. The anisotropic estimates for I

h

have been applied in the study of di�usion

problems in domains with corners and edges [9, 19, 20, 21, 153], see also Sections 20 and

21, as well as for singularly perturbed convection-di�usion-reaction problems with anisotropic

re�nement in boundary layers [5, 13, 14, 73], see also Sections 25 and 26.



Chapter IV

Anisotropic �nite element

approximations near edges

This chapter is concerned with a speci�c �nite element strategy for solving elliptic boundary

value problems in domains with edges. A class of anisotropically graded meshes is introduced

and the optimal convergence rate of the �nite element error is proved. Numerical tests are

presented.

18 The aim of this chapter

Chapters IV and V (Sections 25�22) contain anisotropic discretization strategies and global error

estimates for model problems, for example the Poisson problem and the convection-di�usion-

reaction problem. The di�erential operators in these problems are simple, the solution is always

only a scalar function. Our main interest is to treat typical peculiarities (typical also for

more complex problems) like boundary layers or edge and corner singularities. We focus on

the applicability of the techniques to general polygonal/polyhedral domains and to piecewise

polynomial trial functions of arbitrary (but �xed) degree k.

In this chapter we study elliptic problems posed over three-dimensional domains with corners

and edges. As discussed in Subsection 19.1 the solution of such problems has both singular and

anisotropic behaviour. The singularity leads to a reduced convergence order of the �nite element

method on quasi-uniform meshes. Two-dimensional problems with corner singularities can be

treated with local mesh grading in order to improve the approximation order, see Subsection

19.2. This approach can be generalized to the three-dimensional case in two ways; we introduce

them in Subsection 19.3. It turns out that the adequate re�nement is anisotropic [9, 19, 21].

In Section 20, we consider the Poisson problem,

��u = f in 
; u = 0 on �

1

;

@u

@n

= 0 on �

2

:= @
 n �

1

;

for simplicity over a three-dimensional tensor product domain 
 = G � (0; z

0

). We prove in

Subsection 20.1 (Theorem 20.2 and Corollary 20.3) for model cases and piecewise (multi-)linear

trial functions the approximation estimate

ku� u

h

;W

m;2

(
)k . h

2�m

kf ;L

2

(
)k; m = 0; 1;

by using the Scott-Zhang interpolation results.

93
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The principal di�culties are the following:

� The solution u is contained in W

2;2

(S

e

) if the neighbourhood S

e

of the element e has

positive distance to the edge. Thus we can estimate the interpolation error by

ju� E

h

u;W

1;2

(e)j .

X

j�j=1

h

�

e

jD

�

u;W

1;2

(S

e

)j: (18.1)

The norm at the right hand side grows, however, to in�nity for some derivatives D

�

if

the distance of S

e

to the edge E tends to zero. So we have to �nd a suitable description

in oder to compensate the large norms with small element sizes h

i;e

.

� The solution u is not contained in W

2;2

(S

e

) if the neighbourhood S

e

of the element e has

zero distance to the edge. In this case we used local estimates for functions from weighted

Sobolev spaces V

2;2

�

(S

e

).

� The estimate (18.1) does not hold if E

h

is replaced by the Lagrange interpolant I

h

. In

this case we need at the right hand side the space W

1;p

(e) with some p > 2, see Section 4.

Nevertheless, one can prove

ku� I

h

u;W

1;2

(
)k . h

but we needed more smoothness of the data (f 2 W

4;2

(
) in [9]) or a stronger re�nement

condition [19].

By using trial functions of higher degree k and a corresponding stronger anisotropic mesh

grading one can prove for model cases (Examples 20.9 and 20.10) that solutions with edge

singularities can be approximated according to

ku� u

h

;W

1;2

(
)k . h

k

:

The basis for this estimate is set by the global interpolation error estimates in Theorems 20.7

(for the Lagrange interpolant and a singularity exponent � > 1=2) and 20.8 (for the modi�ed

Scott-Zhang interpolants S

h

and E

h

and � � 1). Of course, the right hand side f has to be

su�ciently smooth.

For general polyhedral domains or more general di�erential operators one has to combine

the anisotropic re�nement near singular edges with an isotropic re�nement for treating the

additional corner singularities. One of the challenges has been to describe a family of meshes

which is both suited for approximation and for a simple realization in a computer program.

With our proposal [21], see also the summary in Section 21, the construction of such meshes

is principally known. The analysis is done, however only in the case of piecewise linear trial

functions, k = 1 (Theorem 21.4 and Corollary 21.5). The di�culty for k � 2 consists in a

su�ciently �ne description of the properties of the solution u. Section 21 is completed with a

computation of the Poisson equation in the Fichera domain.

One of the surprising results is that the anisotropic mesh grading does not disturb the

asymptotics of the condition number � of the sti�ness matrix. We show in Subsection 20.3 that

� . h

�2

as in the case of a family of quasi-uniform meshes and a smooth solution. However,

this does not imply that optimal preconditioning techniques for families of isotropic meshes can

be used for anisotropic meshes. We analyze this in Section 29.

Note that we present asymptotic estimates always in terms of h := max

e2T

h

diame. Since

we advocate only strategies where the number of elements is N

el

� h

�d

, the error can easily be

expressed in terms of N

el

or the number N of unknowns (degrees of freedom).

We end the current section with a philosophical comment. The performance of the h-

version of the �nite element method is strongly determined by the family of meshes. Therefore
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the choice of an appropriate family of meshes T

h

has to be made carefully. It should satisfy the

following requirements, or it should at least be a good compromise between them.

1. In order to allow an optimal decrease of the �nite element error as the parameter h

describing the family tends to zero, the meshes must be re�ned in certain parts of the

domain. This can be done a-priori by incorporating analytic knowledge of the problem into

the design of the meshes, see Sections 19�26. Alternatively, the family can be de�ned in an

a-posteriori (adaptive) strategy, this means that a new mesh is de�ned by exploiting the

information given by the approximate solution u

h

on the previous mesh(es), see Section 28.

2. Determining a �nite element solution involves the solution of an algebraic system of equa-

tions. If the usual nodal basis functions are used to assemble this system then the re-

sulting matrix (sometimes called the sti�ness matrix ) is ill-conditioned. Solution tech-

niques/preconditioners that are based on a hierarchy of meshes (multi-grid, BPX) turn

out to overcome this problem e�ectively.

3. The meshing strategy should be general enough to handle domains of arbitrary shape.

However, it should be simple enough to allow an e�ective implementation on serial and

parallel computers.

In the examples of Chapters IV and V, the families of meshes are de�ned according to Item 1

above, namely, to establish optimal a-priori error estimates with only O(h

�d

) �nite elements. It

is still a challenge to improve this approach by formulating a corresponding adaptive re�nement

strategy; we comment on this in Section 28. We remark further that the example families of

meshes can be constructed in a hierarchical way. However, the foundation of optimal solution

techniques is still in its infancy, see Section 29. Finally, both types of mesh can be de�ned in

a subdomain approach, see Sections 21, 25 and 26. This makes them suitable in the sense of

Item 3.

19 The Poisson problem in a domain with an edge: an

introduction

19.1 Statement of the problem

In this section, we give an overview over the mathematical problem we want to treat in this

chapter. First we introduce analytical properties of the Poisson problem in a domain with edges.

We will see then that the �nite element method on quasi-uniform meshes su�ers in general

from a reduced order of convergence. Two-dimensional problems with corner singularities can

be treated with local mesh grading in order to improve the approximation order, see Subsection

19.2. This approach can be generalized to the three-dimensional case in two ways; we discuss

this in Subsection 19.3. Before, at the end of this subsection, we mention several other ways to

cope with edge singularities.

Consider the Dirichlet problem for the Poisson equation,

��u = f in 
; u = 0 on @
; (19.1)

over a bounded polyhedral domain 
 � R

3

. For simplicity, let 
 be a prismatic domain,


 = G� Z; (19.2)
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Figure 19.1: Illustration of a prismatic domain with a singular edge.

where G � R

2

is a polygonal domain and Z = (0; z

0

) � R

1

is an interval. The domain G shall

have one corner C with interior angle ! > �. The other interior angles of G shall be smaller

than �, see Figure 19.1. Denote by E = C � Z the edge with the large interior angle.

It is well known that the (variational) solution u of (19.1) has, in general, singular behaviour

near E. The solution u can be decomposed into a singular part u

s

and a regular part u

r

2

W

2;2

(
), u = u

s

+ u

r

, where

u

s

= �(r)(x)r

�

�(�); � =

�

!

: (19.3)

Here we denote by r; � the polar coordinates in a plane perpendicular to the edge (r :=

dist (x;E), � 2 (0; !)), �(r) is a smooth cut-o� function (�(r) = 1 for r < R

0

, �(r) = 0

for r > 2R

0

, R

0

is a constant), (x) 2 W

2;2

�

(
) is a coe�cient function, and �(�) = sin��

[116].

Remark 19.1 Note that  depends on all three spatial coordinates unless the right hand side

f is su�ciently smooth (D

(0;0;j)

f 2 L

2

(
), j = 1; 2). The coe�cient function , sometimes

called stress intensity distribution, can be represented explicitly by a convolution integral,

(r; x

3

) =

1

�

Z

R

r

r

2

+ s

2

q(x

3

� s) ds;

where the smoothness of q can be characterized in Besov spaces depending on � [88].

We remark also that in the two-dimensional case the coe�cient  is a constant (sometimes

called the stress intensity coe�cient). Furthermore, the singular part u

s

may consist of a sum

of several singular functions, u

s

= �(r)

P

i



i

(x)r

�

i

�

i

(�), for example in the case of mixed

boundary conditions. For more general operators the situation becomes more complicated

because the exponents �

i

are not explicitly known. They correspond to eigenvalues of a related

operator eigenvalue problem where �

i

(�) are the eigenfunctions. Moreover, there are special

angles ! where logarithmic terms have to be included in the representation. For an overview

see, for example, the monographs [66, 87, 116].

For our purposes it is su�cient to know integrability properties of derivatives of the solution.

That means that we do not need to know the terms of the representation formula. So we get

by integration

u 62 W

2;2

(
) (19.4)
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even in the case of smooth data f 2 C

1

(
). Furthermore, one can prove that

u 2W

1+s;2

(
) for s < � (19.5)

for f 2 L

2

(
).

Nevertheless, second order (generalized) derivatives of u exist. They are integrable in the

following sense:

r

�

@u

@x

i

2W

1;2

(
) for � > 1� �; i = 1; 2; (19.6)

@u

@x

3

2W

1;2

(
); (19.7)

see Lemma 20.1. We mention here an anisotropic feature of the solution; only the derivatives

in directions perpendicular to the edge are singular.

Finishing the description of the analytic properties of u we would like to point out that the

domain was chosen such that the example is as simple as possible.

� The domain 
 has one �singular edge�. The case of more than one singular edge can be

treated similarly because the singularities are of local nature.

� For general polyhedral domains one has to consider not only edge singularities but also

corner singularities. However, these do not contribute to the anisotropic character of the

solution which is the interest here. Prismatic domains have the advantage that no corner

singularities appear [181, 191], see Comment 22.2 on page 122.

Consider now the solution of Problem (19.1) with a �nite element method. For simplicity let

us use tetrahedral elements and piecewise linear basis functions. If the mesh is quasi-uniform,

h := max

e2T

h

diam(e) � min

e2T

h

%

e

, then the poor regularity of u as given by (19.5) leads to

the �nite element error estimates

ku� u

h

;W

1;2

(
)k . h

��"

; (19.8)

ku� u

h

;L

2

(
)k . h

2(��")

; (19.9)

with arbitrarily small " > 0 [3, page 82], [166]. Using regularity results in Besov spaces instead

of Sobolev-Slobodetski�� spaces it is possible to prove these estimates even for " = 0 [72]. One can

also give an example that shows that estimate (19.8) is sharp in the sense ku�u

h

;W

1;2

(
)k & h

�

[3, page 85].

In view of this loss of accuracy of the standard �nite element method, many specially adapted

numerical methods have been developed which yield error estimates of the same quality as for

problems with a regular solution. In this monograph we shall focus on a-priori local mesh

grading techniques. We introduce this approach in Subsections 19.2 and 19.3. In the remainder

of this subsection we shortly review other methods.

A well-known technique is the singular function method [49, 71], [182, Section 8.2], also called

Fix method [181], augmenting technique [194], or additive separation of the singularities [150,

pages 267�272]. In the two-dimensional case, the basic idea is to augment the �nite element

space V

0h

by singular functions �(r)r

�

i

�

i

(�). Note that u

s

= �(r)

P

i



i

r

�

i

�

i

(�), 

i

2 R, in two

dimensions, see Remark 19.1 above. The proof of �nite element error estimates is then simple

because the coe�cients of these functions are real numbers. The extension to three dimensions

is not straightforward, however. Edge singularities contain a coe�cient function  = (x) which
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has to be approximated [181]. If, additionally, corner singularities appear, then the coe�cients

of these singular functions are constant. However, the exponents �

i

and the eigenfunctions �

i

have to be determined numerically [38] and approximate (non-exact) singular functions have to

be used [39].

A similar approach is to calculate the singular part of the solution explicitly. In addition to

the solution of the eigenvalue problemmentioned in Remark 19.1, this includes the computation

of the corresponding coe�cient, the so-called stress intensity factor [30, 51].

If the solution u and the right hand side f can be represented by a Fourier series, as in

Problem (19.1), (19.2),

u =

1

X

i=0

u

i

(x

1

; x

2

) sin

i�

z

0

x

3

; f =

1

X

i=0

f

i

(x

1

; x

2

) sin

i�

z

0

x

3

;

then the coe�cients u

i

satisfy the boundary value problem

��u

i

+

�

i�

z

0

�

2

u

i

= f

i

in G; u

i

= 0 on @G;

recall that 
 = G� (0; z

0

). The coe�cients u

i

, i = 1; : : : ; N , can be determined approximately

by a �nite element method over G. The error in this method consists of the �nite element

error and a truncation error because only a �nite number of coe�cients can be calculated.

This approach, the Fourier �nite element method, was analyzed for problems in rotationally

symmetric domains in [99, 147, 193]. The functions u

i

have singular behaviour near the corners

of G which can be treated by mesh re�nement [100, 101, 193] or by the singular function method

[122, 124].

The idea of windowing [11], [59, Section 2.5.3.], [150, pages 286�287] or local defect correction

techniques [48, 91], [92, pages 293�302], is to solve the problem on an unre�ned mesh covering

the whole domain and to improve the solution by solving (a) problem(s) in some window(s) in

the neighbourhood of the corners or edges.

Other methods include the hp-version of the �nite element method and the boundary element

method, both with anisotropic mesh re�nement, see for example [89, 153, 169], and the �nite

volume method on graded meshes [132].

19.2 Local mesh grading in two dimensions

Local mesh grading near geometrical singularities was �rst investigated in the two dimensions

[28, 158] [150, page 274f.]. Therefore it is convenient for the motivation to discuss �rst this

case.

As pointed out in Remark 19.1, the singular part u

s

of the solution u may be represented

by

u

s

=  �(r)r

�

�(�);  2 R;

in the two-dimensional case. We now follow an idea of Oganesyan and Rukhovets [149] and

consider the coordinate transformation

�

r

R

0

�

�

=

%

R

0

; � 2 (0; 1]: (19.10)

This means that the neighbourhood

U = fx 2 R : dist (x;C) < R

0

g
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Figure 19.2: Quasi-uniform mesh in the transformed plane (%; �) (left) and graded meshes in

the original (r; �) plane: � = 0:7 (middle) and � = 0:4 (right).

of the corner C = (X

1

; X

2

) is transformed into itself, but u

s

is now

u

s

= u

s

(%; �) = �

�

�(%)%

�=�

�(�):

The advantage is that, in contrast to @

k+1

u

s

=@r

k+1

, the derivatives @

k+1

u

s

=@%

k+1

(k = 1; 2; : : :)

are square-integrable for su�ciently small values of � (� < �=k). So we can suppose that u

s

(%; �)

can be approximated on a quasi-uniform mesh of element size h with optimal order (depending

on the degree of the shape functions).

Trying to avoid this coordinate transformation for practical calculations (for example one

would also have to transform the input data) has led to the idea of creating the mesh only

in the transformed domain, of transforming back immediately and of computing the �nite

element solution on the transformed mesh but in the original coordinate system. (Actually, we

transform only the coordinates of the nodes and connect them again by straight lines.) Two

examples of transformed meshes are given in Figure 19.2. In the following, we derive another

description of the graded mesh so constructed, in the original coordinates. We try to �nd a

relation between the diameter diam(e) of an element e and its distance dist (e; C) from the

corner point. (Instead of dist (e; C) := min

x2e

jx � Cj we can use the more easily computed

quantity min

i=1;:::;n

e

jX

(i)

e

� Cj, where fX

(i)

e

g

n

e

i=1

is the set of vertices of the element e.)

Elements with a vertex at the corner of the domain are contained in the transformed domain

in a circle of radius % = h, which means in the original domain

diam(e) � h

1=�

if dist (e; C) = 0:

For elements without a vertex at the corner we �nd a circular annulus that contains the

element and has an inner radius %

i

and an outer radius %

o

such that %

o

� %

i

� h. In the same

way we can write for the original domain r

o

� r

i

� diam(e), r

�

o

= %

o

, r

�

i

= %

i

. Consequently,

we have

h

diam(e)

�

r

�

o

� r

�

i

r

o

� r

i

= �r

��1

�

for some r

�

2 (r

i

; r

o

). This relation can be rewritten in the form diam(e) � hr

1��

�

. Since

r

i

< r

�

< r

o

= %

1=�

o

� (2%

i

)

1=�

= 2

1=�

r

i

we get r

�

� dist (e; C).

We can summarize and state that within a re�nement neighbourhood U around the corner

C := (X

1

; X

2

) the elements e should have a size according to

diam(e) �

(

h

1=�

if C 2 e;

h dist (e; C)

1��

if C 62 e;

(19.11)
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where h is the parameter of the family T

h

and � is the re�nement parameter. Note that such

meshes have O(h

�2

) elements. It has been proved in [28, 158] [150, page 274f.] that the error

estimates

ku� u

h

;W

1;2

(
)k . h; (19.12)

ku� u

h

;L

2

(
)k . h

2

; (19.13)

hold provided that � is chosen according to

� < � (19.14)

and that piecewise linear trial functions are used. This type of mesh, with � = �=2, is also

optimal in the sense of ku� u

h

;L

1

(
)k [167], [190, Section 14].

The easiest way to construct such a mesh is as described by the motivation above: generate

a quasi-uniform (ungraded) mesh and move the nodes from U via the coordinate transformation

(19.10). This transformation can be written in a programmer's style by

r := [(x

1

�X

1

)

2

+ (x

2

�X

2

)

2

]

1=2

;

x

1

:= X

1

+ (x

1

�X

1

)(r=R

0

)

�1+1=�

;

x

2

:= X

2

+ (x

2

�X

2

)(r=R

0

)

�1+1=�

:

(19.15)

Note that the number of elements and nodes remains unchanged and that condition (1.4)

(bounded aspect ratio, the bound depends on �) is still ful�lled after the transformation.

Another variant to construct such meshes is the method of dyadic partitioning [80]: starting

with a coarse mesh the elements are divided until condition (19.11) is ful�lled.

19.3 Isotropic and anisotropic mesh grading in three dimensions

When the approach of Subsection 19.2 is extended to our example with a three-dimensional

domain we have to distinguish between two types of mesh which can be generated.

1. By describing the meshes via condition (19.11) it is possible to construct a family of

isotropic meshes (bounded aspect ratio) and to prove the error estimates (19.12), (19.13),

for all f 2 L

2

(
) if the parameter � satis�es (19.14) [11, 23, 123]. We suggest that these

isotropic meshes should be constructed using the method of dyadic partitioning [80], see

Figure 19.3 (left).

The disadvantage of such meshes is that for � � 1=3 the asymptotic number of elements

N

el

as well as the condition number � of the sti�ness matrix increase,

N

el

� h

�3

j lnhj; h

�d

j lnhj . � . h

�2�"

for � =

1

3

;

N

el

� h

�1=�

; h

1�1=�

. � . h

1�1=��"

for � <

1

3

;

(19.16)

" > 0 is an arbitrary small number, see [11, 23]. This means that this type of mesh is not

optimal for � � 1=3.

2. When we consider a neighbourhood of the edge and employ the transformation (19.15) to

the nodes of quasi-uniform meshes, we get an anisotropic mesh, see Figure 19.3 (right).

Under a maximal angle condition, see page 33, to the elements e, the estimates (19.12),

(19.13), have been proved for � < � as well, see Remark 19.3 below. The asymptotic
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h

1=�

Figure 19.3: Comparison of isotropic (left) and anisotropic (right) mesh grading: meshes.

number of elements N

el

as well as the condition number � of the sti�ness matrix are in

this case optimal for all �,

N

el

� h

�3

; � � h

�2

for all � 2 (0; 1]: (19.17)

The �rst statement follows by construction. The estimate of the condition number was

originally proved in the preprint version of [19, 20]. Since this version was never published

the proof is included in Subsection 20.3.

One can compare both approaches from a theoretical point of view. The conclusions are

that the �rst strategy does not exploit property (19.7), and it has de�ciencies for small � � 1=3.

The choice � � 1=3 becomes necessary for highly singular solutions of problems with mixed

boundary conditions. But all these considerations are in an asymptotic sense where most of

the constants are unknown. Therefore we will now compare the strategies in a computational

example [15, 18] which was calculated with the �nite element package FEMPS3D. For a short

description of the code see Comment 30.2 on page 172.

Example 19.2 Consider the Laplace equation with essential boundary conditions,

��u = 0 in 
; u = g on @
;

in the three-dimensional domain 
 = f(x

1

; x

2

; x

3

) = (r cos�; r sin�; z) 2 R

3

: r < 1; 0 < � <

3�=2; 0 < z < 1g. The right hand side g is taken such that

u = (10+ z) r

2=3

sin

2

3

�

is the exact solution of the problem. It has the typical singular behaviour at the edge. We

constructed the three types of mesh discussed above (quasi-uniform, isotropically re�ned with

� = 0:5, anisotropically re�ned with � = 0:5) with di�erent numbers N of unknowns. From

the numerical solution and the known exact solution, the energy norm ju� u

h

;W

1;2

(
)j of the

�nite element error was computed. The relative norms

ju� u

h

;W

1;2

(
)j

%

:=

ju� u

h

;W

1;2

(
)j

ju

h

;W

1;2

(
)j

are arranged in a double logarithmic scale in Figure 19.4. The example veri�es the theoretical

results (19.8) and (19.12). The anisotropic strategy gives a slightly smaller error. This can be

taken as an indication that the isotropic strategy leads to overre�nement near the edge, and

that anisotropic meshes are more appropriate to treat edge singularities. 2
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20

15

10

5

3

2

N

ju� u

h

;W
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(
)j
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1

3

2

� = 0:5, anisotropic

quasi-uniform

� = 0:5, isotropic

Figure 19.4: Comparison of isotropic and anisotropic mesh grading: diagram.

We end this section with two remarks motivating the extensive treatment of local interpo-

lation error estimates in this monograph.

Remark 19.3 The investigation of the anisotropic mesh re�nement strategy led to the devel-

opment of a basic theory about anisotropic local error estimates for the Lagrange interpolant,

see [9]. With these estimates it was possible to prove estimate (19.12) under rather high as-

sumptions on the regularity of the right hand side f . These assumptions were relaxed in

[19, 20] where local interpolation error estimates were also proven for functions from weighted

Sobolev spaces, see also Subsection 6.2. However, the most interesting case f 2 L

2

(
) could

still not be treated. This is de�cient because Nitsche's method for obtaining an L

2

(
)-estimate

of the �nite element error is not applicable. Moreover, the re�nement condition in [19, 20] is

slightly stronger than (19.14). Only after proving anisotropic local estimates for modi�cations

of the Scott-Zhang operator, see Chapter III, was it possible to prove the estimates (19.12) and

(19.13) for f 2 L

2

(
) and under the re�nement condition (19.14) [7]. We present this proof in

Subsection 20.1.

Remark 19.4 The introductory example (19.1), (19.2), is the simplest one possible for the il-

lustration in this section. It is usually the starting point for the investigation of new methods. A

broader class of problems includes arbitrary self-adjoint elliptic operators of second order, mixed

boundary conditions, and general polyhedral domains. In [23], the isotropic mesh re�nement

strategy is investigated comprehensively for such problems. One of the di�culties that arise is

that the regularity of the solution u can become so poor that u 62 W

s;2

(
) for any s > 3=2,

which causes the Lagrangian interpolation theory to fail. In this case another approximation

operator must be employed. The one chosen in [23] was the Scott-Zhang operator [171]. This

example further motivates the investigation in Chapter III.
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20 The Poisson problem with edge singularities

20.1 The case of (multi-)linear trial functions

Consider the Poisson problem

�u = f in 
; u = 0 on �

1

;

@u

@n

= 0 on �

2

:= @
 n �

1

; (20.1)

over a bounded polyhedral domain 
 � R

3

. For simplicity, let 
 be a prismatic domain,


 = G� Z; (20.2)

where G � R

2

is a polygonal domain and Z = (0; z

0

) � R

1

is an interval. This restriction is

made because we want to focus on edge singularities in this section. More general domains are

considered in Section 21.

In the previous section we summarized already some facts about the pure Dirichlet problem,

�

2

= ;. We discussed the singular behaviour near edges for f 2 L

2

(
), see (19.3)�(19.7) and

Remark 19.1. Furthermore, we motivated in Subsection 19.3 the utilization of anisotropic

�nite element meshes by theoretical considerations and by a numerical test example. Finally,

we reviewed previous contributions of the author to the numerical analysis of (isotropic and

anisotropic) mesh re�nement techniques [3, 7, 9, 11, 15, 18, 19, 20, 23], see, for example, Remarks

19.3 and 19.4, and we pointed to related literature.

In all previous papers, the investigation of anisotropic mesh re�nement near edges is re-

stricted to the case k = 1, (multi-)linear elements. The �nal result was derived in [7] as an

application of the modi�ed Scott-Zhang operators S

h

and E

h

. We present this estimate next.

In Subsection 20.2 we discuss how the case k � 2 can be treated.

Consider the model situation that

�

1

= fx 2 @
 : 0 < x

3

< z

0

g: (20.3)

We assume that the cross-section G has only one corner with interior angle ! > � at the origin.

Thus 
 has only one �singular edge� E which is part of the x

3

-axis. The case of several singular

edges parallel to the x

3

-axis does not introduce additional di�culties because the singularities

are of local nature.

Let V

0

� W

1;2

(
) be the space of all W

1;2

(
)-functions which vanish at the Dirichlet part

of the boundary, and introduce the bilinear form a(:; :) : V

0

� V

0

! R by a(u; v) :=

R




ru � rv:

Then the variational form of problem (20.1) is given by:

Find u 2 V

0

: a(u; v) = (f; v)




8v 2 V

0

: (20.4)

The existence of a unique variational solution u follows from the Lax-Milgram lemma. The

properties of the solution u can be described favourably using the weighted Sobolev spaces

V

`;p

�

(
) introduced in Section 3.

Lemma 20.1 Assume that (20.2) and (20.3) are satis�ed. Then the solution u of (20.4) satis�es

@u

@x

i

2 V

1;2

�

2

(
);









@u

@x

i

;V

1;2

�

2

(
)









. kf ;L

2

(
)k; i = 1; 2; �

2

> 1� �; (20.5)

@u

@x

3

2 V

1;2

0

(
);









@u

@x

3

;V

1;2

0

(
)









. kf ;L

2

(
)k; (20.6)

where � = �=!.
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The index of �

2

indicates that the weight r

�

2

belongs to second order derivatives, compare

Assumption 20.6 in Subsection 20.2.

Proof The singularity of the edge at the x

3

-axis can be described by (20.5), (20.6), see for

example [116, Sections 26 and 30], Comment 22.3 on page 123 or [19, Section 2]. One can show

by mirror techniques that the corners and edges at the bottom and the top face do not introduce

singularities, see also Comment 22.2 on page 122. Finally, the remaining edges parallel to x

3

-

axis were assumed to have an opening angle smaller than � such that no singularity occurs.

We de�ne now a family of meshes of tensor product type, T

h

, see Sections 3 and 11 for

a de�nition of this type. Such a mesh can be constructed by introducing in G the standard

graded mesh for two-dimensional corner problems, see the end of Subsection 19.2, which is then

extended in the third direction using a uniformmesh size h. In this way we obtain a pentahedral

or, by dividing each pentahedron, a tetrahedral triangulation of 
, see Figure 19.3 on page 101

for an illustration. The grading near the singular edge E is described by a parameter � 2 (0; 1]

such that the elements of the mesh T

h

satisfy the following relations:

h

1;e

� h

2;e

�

8

<

:

h

1=�

if dist (e; E) = 0;

h(dist (e; E))

1��

if 0 < dist (e; E) . 1;

h if dist (e; E) � 1:

h

3;e

� h: (20.7)

By

V

0h

:= fv

h

2 V

0

: v

h

j

e

2 P

1;e

8e 2 T

h

g

we de�ne the standard �nite element space V

0h

� C(
) over T

h

. We derive now an interpolation

result for the solution of (20.4).

Theorem 20.2 Let u be the solution of (20.4) and k = 1 (multi-linear trial functions). Then

the estimate

ju� E

h

u;W

1;2

(
)j . h kf ;L

2

(
)k

holds if � < �. The operator E

h

was de�ned in Section 15.

Proof We reduce the estimation of the global error to the evaluation of the local errors and

distinguish between the elements far from the edge E and the elements close to E. Moreover,

we write shortly r

e

for dist (e; E).

For all elements e with S

e

\E = ; we can use Theorem 15.1 with m = k = 1 and ` = p =

q = 2:

ju� E

h

u;W

1;2

(e)j .

X

j�j=1

h

�

e

jD

�

u;W

1;2

(S

e

)j

.

2

X

i=1

h

i;e

r

��

2

e

�

�

�

�

@u

@x

i

;V

1;2

�

2

(S

e

)

�

�

�

�

+ h

3;e

�

�

�

�

@u

@x

3

;V

1;2

0

(S

e

)

�

�

�

�

(20.8)

for any �

2

> 1��. Here, we have used the fact that r

e

. dist (S

e

; E) holds, which follows from

r

e

� dist (S

e

; E) + h

1;e

0

� dist (S

e

; E) + h [dist (S

e

; E)]

1��

for su�ciently small h, compare also Figure 11.3 on page 68 for an illustration. We apply now

the assumption (20.7) and obtain for r

e

. 1 and �

2

= 1�� the relation h

i;e

r

��

2

e

� hr

1����

2

e

= h
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(i = 1; 2). The choice �

2

= 1 � � is admissible due to the re�nement condition � < �. In the

case r

e

� 1 we have also h

i;e

r

��

2

e

. h. Combining this with (20.8) we obtain

ju� E

h

u;W

1;2

(e)j . h

2

X

i=1

�

�

�

�

@u

@x

i

;V

1;2

�

2

(S

e

)

�

�

�

�

+ h

�

�

�

�

@u

@x

3

;V

1;2

0

(S

e

)

�

�

�

�

: (20.9)

Consider now the elements e with S

e

\ E 6= ;. We use the triangle inequality and Lemma

15.3 with m = k = 1, p = q = 2, �

2

2 (1� �; 1):

ju� E

h

u;W

1;2

(e)j . ju;W

1;2

(e)j+ jE

h

u;W

1;2

(e)j

.

X

j�j=1

kD

�

u; L

2

(e)k+ h

��

2

1;e

X

j�j=1

h

�

e

kD

�

u; V

1;2

�

2

(S

e

)k: (20.10)

For the �rst term we use that r . h

1;e

in e and 1� �

2

> 0 and obtain

X

j�j=1

kD

�

u; L

2

(e)k .

2

X

i=1

h

1��

2

1;e









@u

@x

i

;V

0;2

�

2

�1

(e)









+ h

1;e









@u

@x

3

;V

0;2

�1

(e)









. h

2

X

i=1









@u

@x

i

;V

1;2

�

2

(e)









+ h









@u

@x

3

;V

1;2

0

(e)









: (20.11)

We also used that h

1��

2

1;e

� h

(1��

2

)=�

= h for �

2

= 1 � �. The second term is treated with

similar arguments:

h

��

2

1;e

X

j�j=1

h

�

e

kD

�

u; V

1;2

�

2

(S

e

)k .

2

X

i=1

h

1��

2

1;e









@u

@x

i

;V

1;2

�

2

(S

e

)









+ h

��

2

1;e

h









@u

@x

3

;V

1;2

�

2

(S

e

)









. h

2

X

i=1









@u

@x

i

;V

1;2

�

2

(S

e

)









+ h









@u

@x

3

;V

1;2

0

(S

e

)









: (20.12)

The last term was estimated using r

�

2

� h

�

2

1;e

.

Inserting (20.11) and (20.12) in (20.10) we �nd that (20.9) (with full norms instead of

seminorms at the right hand side) holds for elements with S

e

\ E 6= ; as well. Summing up

over all elements we obtain

ju� E

h

u;W

1;2

(
)j . h

2

X

i=1









@u

@x

i

;V

1;2

�

2

(
)









+ h









@u

@x

3

;V

1;2

0

(
)









;

�

2

= 1 � � 2 (1 � �; 1). Here we used that any patch S

e

overlaps only with a �nite number

(independent of h) of patches S

e

0

. By applying Lemma 20.1 the theorem is proved.

The �nite element solution u

h

is determined by:

Find u

h

2 V

0h

: a(u

h

; v

h

) = (f; v

h

)




8v

h

2 V

0h

: (20.13)

Corollary 20.3 Let u be the solution of (20.4) and let u

h

be the �nite element solution de�ned

by (20.13). Assume that the mesh is re�ned according to � < �. Then the �nite element error

can be estimated by

ju� u

h

;W

1;2

(
)j . h kf ;L

2

(
)k;

ku� u

h

;L

2

(
)k . h

2

kf ;L

2

(
)k:
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Proof The �rst estimate follows from Theorem 20.2 via the projection property of the �nite

element method. Note that E

h

u 2 V

0h

due to (20.3). The L

2

(
)-estimate is obtained by

Nitsche's method.

Remark 20.4 By analogy one can prove for � < � � 1 that

ju� u

h

;W

1;2

(
)j . h

�=��"

kf ;L

2

(
)k;

ku� u

h

;L

2

(
)k . h

2(�=��")

kf ;L

2

(
)k;

for arbitrary small " > 0. That means that we get for the unre�ned mesh (� = 1) only an

approximation order � � " (W

1;2

(
)-norm) or 2(� � ") (L

2

(
)-norm). We conjecture that

the " can be omitted. But this needs another way of proof, for example using the theory of

interpolation spaces, compare [28] for the two-dimensional case. However, one can show by

an example that these estimates cannot be improved further [3]. Numerical tests support the

results, see Example 19.2 and [9, 15, 20].

Remark 20.5 Consider other variants of boundary conditions.

1. If �

1

� fx 2 @
 : x

3

= 0_x

3

= z

0

g, then S

h

u 2 V

0h

and the whole theory can be applied

as well, provided that (20.5) and (20.6) can be shown for this case as well. (This situation

is not covered by the theory reviewed in Comment 22.3 on page 123.)

Note that we used in the proof of Theorem 20.2 only the following properties of E

h

:

ju� E

h

u;W

1;2

(e)j .

X

j�j=1

h

�

e

jD

�

u;W

1;2

(S

e

)j;

jE

h

u;W

1;2

(e)j . h

��

2

1;e

X

j�j=1

kD

�

u; V

1;2

�

2

(S

e

)k:

Both estimates hold true for S

h

as well, see Theorem 13.3 and Lemma 13.5.

We point out that in particular the �rst of these two estimates, the anisotropic local

interpolation estimate, is an essential ingredient of the proof of the optimal global error

estimate. This estimate is neither satis�ed for E

h

replaced by I

h

(see Sections 4 and 6)

nor for Z

h

, C

h

, or O

h

(see the discussion in Section 16).

2. Conditions of third kind can be treated like Neumann boundary conditions.

3. If the type of the boundary condition changes at the edge E we can proceed in the same

way as described by Lemma 20.1 (see also Comment 22.3 on page 123), Theorem 20.2

and Corollary 20.3. We have only to set � = �=(2!).

Note that in this case edges produce a singularity if ! > �=2. Therefore it is very likely

that more than one singular edge has to be treated.

4. If Dirichlet boundary conditions are given on (parts of) both fx 2 @
 : 0 < x

3

< z

0

g and

fx 2 @
 : x

3

= 0_x

3

= z

0

g then neither S

h

u 2 V

0h

nor E

h

u 2 V

0h

. In such cases we have

to modify S

h

or E

h

near the Dirichlet boundary, as it was done by Clément for C

h

[64].

But we will not develop this here.
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20.2 Higher order trial functions

We will now discuss the case of higher order trial functions, k � 2. On the one hand, this case

simpler than k = 1 since we can use the Lagrange interpolant I

h

(when � > 1=2) to obtain

optimal interpolation error estimates. The di�culty with I

h

mentioned in Remarks 19.3 and

20.5 (Item 1) do not occur. However, the critical point for the case k � 2 is the description

of all singularities appearing. Therefore, let us focus on edge singularities and assume for the

moment the following property of u which is a straightforward generalization of (20.5), (20.6).

For a discussion of this assumption see Examples 20.9 and 20.10 at the end of this subsection,

and Comment 22.3 on page 123.

Assumption 20.6 The function u has only one singularity at E = fx 2 @
 : x

1

= x

2

= 0g.

There holds

u 2 V

k+1;2

�

k+1

(
);

@u

@x

3

2 V

k;2

�

k

(
); : : : ;

@

k

u

@x

k

3

2 V

1;2

�

1

(
);

where �

n

= maxfn+ �

�

; 0g, �

�

> ��� 1. Reformulated, this means for all � with j�j � k+ 1

D

�

u 2 V

0;2

�

�

(
); �

�

= maxf�

1

+ �

2

+ �

�

; 0g; �

�

> �� � 1: (20.14)

Then we obtain the following interpolation error estimate.

Theorem 20.7 Let u satisfy Assumption 20.6 with some � > 1=2. Assume that the mesh is

constructed as described in Subsection 20.1. For k � 2 the interpolation error estimate

ju� I

h

u;W

1;2

(
)j . h

k

X

j�j=k+1

kD

�

u;V

0;2

�

�

(
)k (20.15)

holds provided that the grading parameter � satis�es

� <

�

k

if � � k; � = 1 if � > k: (20.16)

Proof The assertion is clear for � > k because we have a quasi-uniform mesh and u 2

W

k+1;2

(
) in this case.

Let now � � k and consider all elements e which do not touch the edge E. We use Theorem

6.4, (20.7), and Assumption 20.6 in order to get

ju� I

h

u;W

1;2

(e)j .

X

j�j=k

X

jj=1

h

�

e

kD

�+

u;L

2

(e)k (20.17)

. h

k

X

j�j=k

X

jj=1

(dist (e; E))

(1��)(�

1

+�

2

)

kD

�+

u;L

2

(e)k

. h

k

X

j�j=k

X

jj=1

kD

�+

u;V

0;2

(1��)(�

1

+�

2

)

(e)k: (20.18)

We show now

(1� �)(�

1

+ �

2

) � �

�+

(20.19)

with �

�+

as introduced in (20.14). From � < �=k we get �� � 1 < �k� � 1. Hence we can

choose �

�

2 (�� � 1;�k�� 1] such that

�

�

�

+ 1

�

� k (20.20)
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and conclude �

1

+ �

2

� k � �(�

�

+ 1)=� < �(�

�

+ 

1

+ 

2

)=�, (1� �)(�

1

+ �

2

) > �

�

+ �

1

+

�

2

+ 

1

+ 

2

. Since � � 1 we obtain also (1� �)(�

1

+ �

2

) � 0. These estimates together give

(20.19). With (20.18) we get

ju� I

h

u;W

1;2

(e)j . h

k

X

j�j=k+1

kD

�

u;V

0;2

�

�

(e)k: (20.21)

If the element touches the edge E, E \ e 6= ;, we use Theorem 6.9 and Assumption 20.6 in

order to obtain

ju� I

h

u;W

1;2

(e)j .

X

j�j=k

X

jj=1

h

�

e

h

��

�+

1;e

kD

�+

u;V

0;2

�

�+

(e)k: (20.22)

This estimate is valid for �

�+

< k � 1=2 only, see the assumption in (6.28), which means for

� = (k; 0; 0),  = (1; 0; 0) that �

�

+ (k + 1) < k � 1=2, �

�

< �3=2. Together with �

�

> �� � 1

this yields the assumption made, � > 1=2. Now we simplify,

h

�

e

h

��

�+

1;e

=

(

h

�

e

. h

k

if �

�+

= 0;

h

��

�

�

1

�

2

1;e

h

�

3

3;e

. h

�

3

�(�

�

+

1

+

2

)=�

if �

�+

= �

�

+ �

1

+ �

2

+ 

1

+ 

2

:

The last exponent can be simpli�ed further by using (20.20) and jj = 1, namely �

3

� (�

�

+



1

+ 

2

)=� � �(�

�

+ 1)=� � k. By inserting this into (20.22) we obtain that (20.21) holds also

in this case. By summing up all the elementwise estimates we get (20.15).

The case � � 1=2 was excluded in Theorem 20.7 since the Lagrangian interpolation operator

can be applied only for continuous functions. For mixed boundary value problems, where

� = �=(2!), this means ! < �. We cannot treat concave edges in this way. This restriction

can be overcome when a modi�ed Scott-Zhang interpolant is used instead of the Lagrange

interpolant, as in Theorem 20.2.

Theorem 20.8 Let u satisfy Assumption 20.6 with some � � 1. Assume that the mesh is

constructed as described in Subsection 20.1 and that the grading parameter � satis�es (20.16).

Then the estimates

ju� S

h

u;W

1;2

(
)j . h

k

X

j�j=k+1

kD

�

u;V

0;2

�

�

(
)k

ju� E

h

u;W

1;2

(
)j . h

k

X

j�j=k+1

kD

�

u;V

0;2

�

�

(
)k

hold for all k � 1.

Proof For k = 1 the theorem was ver�ed in Subsection 20.1. The ideas to prove this theorem

for k � 2 are contained in the proofs of Theorems 20.2 and 20.7. Elements e with S

e

\E = ;

can be treated as in the proof of Theorem 20.7, and the remaining elements as in the proof of

Theorem 20.2. Note that we have assumed � � 1 in order to obtain h

1;e

� h

1=�

� h

k=�

� h

k

in front of the term k@u=@x

3

;V

1;2

0

(
)k.

Let us discuss now applications of the last two theorems.

Example 20.9 Assumption 20.6 covers the typical behaviour of the solution of (20.4) near an

edge, at least for Dirichlet and mixed boundary conditions. This can be derived from the study

of such problems in a dihedral angle fx = (r cos �; r sin�; x

3

) 2 R

3

: 0 < r < 1; 0 < � <
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!; x

3

2 Rg, see Comment 22.3 on page 123 and also Item 3 in Remark 20.5. This means, if

supp f � (
 [E) then one concludes

ju� u

h

;W

1;2

(
)j . h

k

;

ku� u

h

;L

2

(
)k . h

k+1

:

The �rst estimate is obtained for k � 2, � > 1=2, from Theorem 20.7, and for k � 1, � � 1,

from Theorem 20.8. The second estimate is proved by Nitsche's method. 2

Example 20.10 Consider k = 2, general f 2 V

1;2

0

(
) (the weight has to be taken with respect

to all singular edges), and assume (20.3). Then all edges E

j

which are parallel to the x

3

-axis and

with interior angle !

j

> �=2 are singular edges. The behaviour of the solution near these edges is

described by Assumption 20.6, see Comment 22.3 on page 123. All edges which are orthogonal

to the x

3

-axis are non-singular since the leading terms of the decomposition are r sin� = y

and r

3

ln r�(�) 2 W

4�";2

(
). The corner singularities are included in the edge singularities

described above, see Comment 22.2 on page 122. Consequently, the only singularities are near

the singular edges. We can apply the mesh re�nement as described above and obtain

ju� u

h

;W

1;2

(
)j . h

2

;

ku� u

h

;L

2

(
)k . h

3

:

from Theorem 20.7. 2

In the general case we have to treat edge and corner singularities where the singular edges

can also intersect. A suitable re�nement strategy is described for k = 1 in the next section. We

conjecture that this strategy is also adequate for k � 2 (with � depending on k as in (20.16)).

For � > 1=2 the convergence can be proved by using the Lagrange interpolation operator, see

[21, Proof of Theorem 5.1] for k = 1. For k � 2 the proof is even simpler than for k = 1 since

the Hölder technique [21, Proof of Theorem 5.1] can be avoided, see the proof of Theorem 20.7.

The critical part is the proof of the corresponding anisotropic regularity results.

For � � 1=2 the Lagrangian interpolation operator cannot be applied. Since the modi�ed

Scott-Zhang operators are investigated for meshes of tensor product type only, it is not clear

how to prove convergence in this case.

20.3 Condition number of the sti�ness matrix

Consider the nodal basis f'

i

(x)g

N

i=1

with '

i

(X

(j)

) = �

i;j

in V

h

(or V

0h

, respectively), with N

being the number of degrees of freedom. Thus each function v

h

2 V

h

(or V

0h

) can be represented

by v

h

(x) =

P

N

i=1

v

i

'

i

(x), with v

i

= v

h

(X

(i)

).

The sti�ness matrix K := (a

i;j

)

N

i;j=1

has the entries a

i;j

= a('

j

; '

i

). We want to estimate

the condition number � of this matrix,

� :=

�

max

(K)

�

min

(K)

(20.23)

where �

max

and �

min

are the maximal and minimal eigenvalues of K, respectively.

Lemma 20.11 The condition number of the sti�ness matrix A which is related to problem

(20.1) is bounded by

� . h

�2

; (20.24)

That means, the order of the condition number is the same as in the case of smooth solutions

and isotropic meshes.
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Proof Due to the boundedness and the ellipticity of the bilinear form we get

a(v

h

; v

h

) � kv

h

;W

1;2

(
)k

2

8v

h

2 V

h

(V

0h

):

Denoting by h : ; : i the Euclidean scalar product in R

N

and by v := (v

i

)

N

i=1

the grid function

related to v

h

, we obtain the identity a(v

h

; v

h

) = hKv; vi and get by using the Rayleigh quotient

�

max

. max

v2R

N

kv

h

;W

1;2

(
)k

2

hv; vi

;

�

min

& min

v2R

N

kv

h

;W

1;2

(
)k

2

hv; vi

:

We are now looking for an upper and a lower bound of kv

h

;W

1;2

(
)k

2

in terms of hv; vi.

Using the inverse inequality we have

kv

h

;W

1;2

(
)k

2

=

X

e2T

h

kv

h

;W

1;2

(e)k

2

.

X

e2T

h

h

�2

1;e

kv

h

;L

2

(e)k

2

: (20.25)

On the reference element ê we have

kv̂

h

;L

2

(ê)k

2

�

X

j2I

e

v

2

j

; (20.26)

since norms in N

e

-dimensional spaces are equivalent. I

e

is the set of numbers of the nodes

belonging to e. Transforming (20.26) to e we get

kv

h

;L

2

(e)k

2

� meas(e)

X

j2I

e

v

2

j

: (20.27)

Inserting (20.27) into (20.25) and using meas(e) � h

2

1;e

h and that each node belongs only to a

bounded number of elements we get

kv

h

;W

1;2

(
)k

2

. hhv; vi

�

max

. h (20.28)

For the lower estimate of kv

h

;W

1;2

(
)k

2

we use the embedding

W

1;2

(
) ,!W

1;2

1��

(
) ,!W

0;2

��

(
)

which holds for 0 � � < 1 [116, Subsection 0.11]. Consequently, we have

kv

h

;W

1;2

(
)k

2

& kr

��

v

h

;L

2

(
)k

2

: (20.29)

Denoting R

e

:= max

x2e

r(x), and using (20.27) we get from (20.29)

kv

h

;W

1;2

(
)k

2

&

X

i2I

R

�2�

e

kv

h

;L

2

(e)k

2

&

X

i2I

R

�2�

e

h

2

1;e

h

X

j2I

e

v

2

j

Using h

1;e

& hR

1��

e

(which follows from (20.7) and holds for all e 2 I) and choosing � = 1� �,

we obtain

kv

h

;W

1;2

(
)k

2

& h

3

hv; vi

�

min

& h

3

(20.30)

independent of the choice of �.

From (20.28) and (20.30) we get the estimate (20.24).



21. Di�usion problems in domains with corners and edges 111

In the proof we used some ideas of the proof for the case of mesh grading in two dimensions

[150]. With analogous arguments we had investigated in [11] the case of isotropic mesh grading

near edges. In contrast to Lemma 20.11 we get �

min

& h

3

for isotropic elements only in the

case � > 1=3, see [11]. For � � 1=3 we obtain �

min

& h

1=�+"

and thus � & h

1�1=�+"

, " > 0

arbitrarily small. But we stress that Lemma 20.11 is related to anisotropic mesh re�nement.

The author is not aware of a similar result for such meshes.

21 Di�usion problems in domains with corners and edges

In Sections 19 and 20 we considered the Poisson problem in a prismatic polyhedral domain


 � R

3

. There, we focused on the approximation of edge singularities by using anisotropic

�nite element meshes. The aim of this section is to treat a general di�usion problem,

�

3

X

i;j=1

a

i;j

@

2

u

@x

i

@x

j

= f in 
; u = 0 on @
; (21.1)

where 
 � R

3

is an arbitrary polyhedral domain. The coe�cients a

i;j

= a

j;i

are assumed to be

constant. The operator shall be elliptic,

P

3

i;j=1

a

i;j

�

i

�

j

� C

0

> 0 for all �

1

; �

2

; �

3

2 R such that

�

2

1

+ �

2

2

+ �

2

3

= 1. If 
 is not convex then the solution has in general singular behaviour near the

edges and the corners. We summarize here the results which are published in [21]. Therefore

we restrict ourselves to tetrahedral meshes and to linear shape functions (k = 1).

The idea is quite obvious, we want to combine anisotropic mesh re�nement near singular

edges with isotropic re�nement near corners. One di�culty is to describe and to construct the

meshes in the transition from anisotropy to isotropy. A complication is that corner singularities

can be stronger or weaker than edge singularities. In [23], where isotropic mesh re�nement was

considered, this was circumvented by controlling the re�nement with the strongest singularity

appearing in the problem under consideration. We try to avoid this by allowing di�erent

re�nement parameters in di�erent regions. Moreover, in Section 20 the tensor product character

of prismatic domains was used to describe the mesh. But these orthogonalities are no longer

available because we want to treat general polyhedral domains.

A second di�culty is the choice of an approximation operator.

� For linear shape functions we have applied in Section 20 the operators S

h

and E

h

. This

allowed us to prove the desired error estimate under the optimal grading condition (20.16).

But these operators were investigated in Chapter III for meshes of tensor product type

only. It is not clear how to extend this theory to treat the more general meshes which are

necessary here.

� When we use the Lagrangian interpolation operator I

h

then one of the key estimates,

ju� I

h

u;W

1;2

(e)j . (meas

3

e)

1=2�1=p

X

j�j=1

h

�

jD

�

u;W

1;p

(e)j; (21.2)

is not valid for p = 2 but for p > 2 only. Therefore we need the regularity theory in

Banach spaces W

`;p

(
) with p > 2. In particular, the regular part u

r

of the solution must

satisfy u

r

2 W

2;p

(
). For this we assume that the right hand side f of problem (21.1)

satis�es

f 2 L

p

(
) for some p > 2: (21.3)

The drawback is that we obtain the optimal convergence order only with a grading con-

dition which is slightly too strong.
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In any a-priori technique for coping with edge and corner singularities we assume some

knowledge about the singular exponents. In particular, for mesh re�nement techniques a lower

bound of the leading exponent is needed. For edges these exponents can in general be given

analytically, but for corners an eigenvalue problem for the Laplace-Beltrami operator has to be

solved numerically, see Comment 22.1 on page 122. An edge E or a corner C is called singular if

the leading singularity exponent �

E

or �

C

satis�es �

E

� 2� 2=p or �

C

� 2� 3=p, respectively.

The plan of this section is as follows. We discuss the construction of a suitable family of �nite

element meshes as extensive as in [21]. Then we state the regularity and the approximation

result without proofs. They are very technical and can be found in [21]. After some discussion

we present a numerical test example. We end the section with a discussion of shape functions

of higher degree and possible extensions to more general boundary value problems.

In order to explain our approach we subdivide 
 into a �nite number of disjoint tetrahedral

subdomains, 
 =

S

J

j=1




j

, such that each subdomain contains at most one singular edge and

at most one singular corner. In this way we localize the problem and reduce all considerations

to few standard cases. Here we exploit that the singularities are of local nature only.

The freedom in the choice of the �nite element mesh is restricted by the following three

needs:

A. general admissibility conditions arising from the �nite element theory and the subdomain

approach,

B. re�nement conditions, such that the global error estimates can be proven,

C. geometrical conditions on the elements such that anisotropic local interpolation error

estimates can be proven.

We will now elaborate a set of conditions that satis�es all the needs. Afterwards we give

simple examples how one can construct such a mesh. We point out that we do not attempt to

give a minimal set of conditions. Rather, we want to describe a set of conditions that is both

su�cient for our error estimates and simple to be veri�ed for our examples. We also admit (but

do not request) overre�nement in certain regions if the mesh generation algorithm can be kept

simple then.

The general conditions on the triangulation T

h

= feg are the following.

A1. The domain is covered by the closure of the �nite elements e, 
 =

S

e2T

h

e.

A2. The triangulation is such that the subdomains 


j

are resolved exactly: if e\


j

6= ; then

e � 


j

.

A3. The elements are disjoint, e \ e

0

= ; 8e; e

0

2 T

h

, e 6= e

0

.

A4. Any face of any element e is either a subset of the boundary @
 or face of another element

e

0

2 T

h

.

A5. The number N

el

of elements is related to the global mesh parameter h by N

el

� h

�3

:

To describe the re�nement conditions we need some further notation. First, de�ne in each

subdomain 


j

(j = 1; : : : ; J) a Cartesian coordinate system (x

(j)

1

; x

(j)

2

; x

(j)

3

) with the following

properties:

� One corner of 


j

is located at the origin. In particular, if 


j

possesses a re�nement corner,

then this one is chosen.
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� One edge of 


j

is contained in the x

(j)

3

-axis. In particular, if 


j

possesses a re�nement

edge, then this one is used.

We use here the term re�nement edge/corner instead of singular edge/corner since we want to

allow re�nement near edges/corners which are not singular. This can be advantageous for a

simpler construction of the meshes or just since only a lower estimate of the singular exponent

is known.

Next, we denote for each �nite element e � 


j

by

r

e

:= inf

x2e

h

(x

(j)

1

)

2

+ (x

(j)

2

)

2

i

1=2

;

R

e

:= inf

x2e

h

(x

(j)

1

)

2

+ (x

(j)

2

)

2

+ (x

(j)

3

)

2

i

1=2

;

the distances of e to the x

(j)

3

-axis and the origin. Note that R

e

� r

e

. Moreover, we introduce

in each 


j

re�nement parameters �

j

; �

j

2 (0; 1] corresponding to the re�nement edge/corner,

respectively. If there is no re�nement edge/corner we let �

j

= 1 or �

j

= 1, respectively.

As mentioned above we want to admit overre�nement. Therefore we distinguish between

size parameters H

1;e

, H

3;e

(e 2 T

h

),

H

1;e

:=

�

h

1=�

j

if r

e

= 0;

hr

1��

j

e

if r

e

> 0;

H

3;e

:=

�

h

1=�

j

if 0 � R

e

. h

1=�

j

;

hR

1��

j

e

if R

e

& h

1=�

j

;

and actual mesh sizes

~

h

1;e

,

~

h

2;e

,

~

h

3;e

which are de�ned as the lengths of the projections of

e � 


j

on the x

(j)

1

-, x

(j)

2

-, or x

(j)

3

-axis, respectively. (The tilde is used because this de�nition is

di�erent from the mesh sizes h

1;e

, h

2;e

, h

3;e

as used in Section 6.) Note that h

1=�

j

� hR

1��

j

e

for R

e

� h

1=�

j

.

The relation between these sizes is given by condition B1:

B1. If �

j

< 1 then

~

h

1;e

�

~

h

2;e

� H

1;e

,

~

h

3;e

. H

3;e

(e 2 T

h

). But in particular we demand

that

~

h

3;e

� H

3;e

if r

e

= 0.

If �

j

= 1 then

~

h

j;e

. H

3;e

(e 2 T

h

, j = 1; 2; 3) and in particular

~

h

j;e

� H

3;e

if R

e

= 0.

Note that Assumption A5 is indeed a condition but not a consequence of B1. That was

di�erent in Section 20 where overre�nement was not allowed. In this sense we will also demand

two similar conditions:

B2. The number of elements e � 


j

with r

e

= 0 is of order h

�1

.

B3. The number of elements e � 


j

such that 0 � R

e

. h

1=�

j

is bounded by h

2�

j

=�

j

�2

. In

particular, there is only one element e with R

e

= 0.

Though further conditions on the parameters �

j

and �

j

are imposed in Theorem 21.4, we

want to ensure a priori that H

1;e

. H

3;e

for �

j

< 1:

B4. If �

j

< 1 then �

j

� �

j

(j = 1; : : : ; J).

The next set of conditions is imposed such that the anisotropic local interpolation error

estimates of Section 6 hold.

C1. The �nite elements e must satisfy the maximal angle condition, see page 33.

C2. If 


j

contains a re�nement edge then all elements e � 


j

have two vertices such that the

straight line through them is parallel to the x

(j)

3

-axis.
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0

1

2

3

Case 1: Equidistant mesh.

0

1

2

3

Case 2: Re�nement towards a corner

(�

j

= 0:67).

0

1

2

3

Case 3: Re�nement towards an edge

(�

j

= 0:5).

0

1

2

3

Case 4: Re�nement towards a corner

and an edge (�

j

= 0:67, �

j

= 0:5).

Figure 21.1: Illustration of the meshing of the subdomains (n = 4).

C3. If 


j

does not contain a re�nement edge then all elements are isotropic, that means, they

have bounded aspect ratio.

Note that we used in Section 6 the maximal angle condition C1 and a coordinate system

condition which is very technical. It is possible to avoid the latter condition by imposing C2

and

~

h

1;e

�

~

h

2;e

.

Lemma 21.1 For any polyhedral domain
 � R

3

it is possible to generate meshes which satisfy

all the Assumptions A1�C3.

Proof We start with the meshing of one subdomain 


j

and then we discuss the satisfaction of

Condition A4 after gluing together the meshes of the subdomains. Let us distinguish four cases:

1) 


j

contains neither a re�nement corner nor a re�nement edge, 2) 


j

contains a re�nement

corner but no re�nement edge, 3) 


j

contains a re�nement edge but no re�nement corner, 4)




j

contains both a re�nement corner and a re�nement edge.

The meshing in these four situations is illustrated in Figure 21.1. A mathematical description

of this mesh generation procedure can be given as follows: Introduce barycentric coordinates

�

(j)

0

; : : : ; �

(j)

3

(�

(j)

i

> 0,

P

3

i=0

�

(j)

i

= 1) in 


j

such that the re�nement corner has the coordinate

�

(j)

0

= 1 and the re�nement edge is described by �

(j)

1

= �

(j)

2

= 0. Let n 2 N be an integer such

that h � n

�1

.

Case 1: The vertices P

i

1

;i

2

;i

3

have the coordinates

�

(j)

1

=

i

1

n

; �

(j)

2

=

i

2

n

; �

(j)

3

=

i

3

n

; 0 � i

1

+ i

2

+ i

3

� n:
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The tetrahedra are described as quadruples of vertices; they are

(P

i

1

;i

2

;i

3

; P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 1;

(P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

; P

i

1

+1;i

2

;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 2;

(P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 2;

(P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 2;

(P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 2;

(P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

; P

i

1

+1;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

+ i

3

� n� 3:

Case 2: The topology is as in Case 1 but the coordinates of the vertices P

i

1

;i

2

;i

3

change to

�

(j)

1

=

i

1

n

�

i

1

+i

2

+i

3

n

�

�1+1=�

j

; �

(j)

2

=

i

2

n

�

i

1

+i

2

+i

3

n

�

�1+1=�

j

; �

(j)

3

=

i

3

n

�

i

1

+i

2

+i

3

n

�

�1+1=�

j

;

0 � i

1

+ i

2

+ i

3

� n.

Case 3: We introduce here a larger set of nodes P

i

1

;i

2

;i

3

0 � i

1

+ i

2

� n; 0 � i

3

� n if i

1

+ i

2

< n; i

3

= 0 if i

1

+ i

2

= n;

with the coordinates

�

(j)

1

=

i

1

n

�

i

1

+i

2

n

�

�1+1=�

j

; �

(j)

2

=

i

2

n

�

i

1

+i

2

n

�

�1+1=�

j

; �

(j)

3

=

i

3

n

(1 � �

(j)

1

� �

(j)

2

):

The tetrahedra are described in three cases:

Subdivision of pentahedra:

(P

i

1

;i

2

;i

3

; P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

); 0 � i

1

+ i

2

� n� 2;

(P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

; P

i

1

+1;i

2

;i

3

+1

); 0 � i

1

+ i

2

� n� 2;

(P

i

1

;i

2

+1;i

3

; P

i

1

;i

2

;i

3

+1

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

� n� 2;

(P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

); 0 � i

1

+ i

2

� n� 3;

(P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

� n� 3;

(P

i

1

+1;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

; P

i

1

+1;i

2

+1;i

3

+1

); 0 � i

1

+ i

2

� n� 3;

0 � i

3

� n� 1 in all cases.

Subdivision of pyramids:

(P

i

1

+1;i

2

;i

3

; P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

+1;i

2

+1;0

); i

1

+ i

2

= n� 2;

(P

i

1

;i

2

+1;i

3

; P

i

1

+1;i

2

;i

3

+1

; P

i

1

;i

2

+1;i

3

+1

; P

i

1

+1;i

2

+1;0

); i

1

+ i

2

= n� 2;

0 � i

3

� n� 1 in both cases.

Remaining tetrahedra:

(P

i

1

;i

2

;i

3

; P

i

1

;i

2

;i

3

+1

; P

i

1

+1;i

2

;0

; P

i

1

;i

2

+1;0

); i

1

+ i

2

= n� 1; 0 � i

3

� n � 1:

Case 4: The topology is as in Case 3 but the �

(j)

3

-coordinate of the points P

i

1

;i

2

;i

3

changes to

�

(j)

3

=

�

i

3

n

�

1=�

j

(1 � �

(j)

1

� �

(j)

2

):
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We have now to prove that such a mesh satis�es all conditions: A1, A2, A3, and A5 are

obvious. Assumption A4 is equivalent to the necessity that the faces 


j

\ 


j

0

are meshed in

the same way. This leads in general to some cascade e�ect: let M � @
 be a connected set of

re�nement edges and vertices (edges are here considered as closed sets), then we have to choose

�

j

= �

j

= �

M

for all j : 


j

\M 6= ;:

That means that the re�nement is determined by the strongest singularity in this region. An

exception is the case when the face �

(j)

3

= 0 is part of the boundary @
. Then �

j

can be chosen

larger than �

j

. We remark that the cascade e�ect could be avoided by using mortar elements

[45].

The coordinate transformation �

(j)

0

; : : : ; �

(j)

3

7! x

(j)

1

; : : : ; x

(j)

3

is independent of h. Therefore,

Assumption B1 can easily be veri�ed by noting that

(s + h)

1=�

j

� s

1=�

j

� hs

1��

j

;

�

(j)

1

+ �

(j)

2

+ �

(j)

3

�
R

e

for all e with R

e

> 0,

�

(j)

1

+ �

(j)

2

�

r

e
for all e with R

e

> 0.

Indeed, in Case 2 all elements are isotropic, that means

~

h

i;e

is of the size of the distance of the

two planes �

(j)

4

= (

i

1

+i

2

+i

3

+1

n

)

1=�

j

and �

(j)

4

= (

i

1

+i

2

+i

3

n

)

1=�

j

,

~

h

i;e

�

�

i

1

+i

2

+i

3

+1

n

�

1=�

j

�

�

i

1

+i

2

+i

3

n

�

1=�

j

� hR

1��

j

e

(i = 1; 2; 3):

In cases 3 and 4, the projection of the element into the �

(j)

1

; �

(j)

2

-plane is isotropic, that means

~

h

i;e

�

�

i

1

+i

2

+1

n

�

1=�

j

�

�

i

1

+i

2

n

�

1=�

j

� hr

1��

j

e

(i = 1; 2):

Finally, we see in Case 4 that

~

h

3;e

. �

(j)

3

(P

:;:;i

3

+1

)� �

(j)

3

(P

:;:;i

3

) + (

~

h

1;e

+

~

h

2;e

)

.

�

i

3

+1

n

�

1=�

j

�

�

i

3

n

�

1=�

j

+ hr

1��

j

e

. h(x

(j)

3

)

1��

j

+ hr

1��

j

e

. hR

1��

j

e

;

because �

j

� �

j

.

Condition B2 is satis�ed by construction. B3 is checked by realizing that the number

of elements is of order i

2

where i satis�es (i=n)

1=�

j

. (1=n)

1=�

j

, that means i . n

1��

j

=�

j

.

Condition B4 is independent of our meshing strategy. Conditions C1�C3 are also satis�ed by

construction. Note that overre�nement is accepted in Cases 3 and 4 near the edge �

(j)

0

= �

(j)

4

= 0

and due to the cascade e�ect described above.

Remark 21.2 Note that the number of elements is n

3

for Cases 1 and 2, and 3n

3

� 3n

2

+ n

for Cases 3 and 4. We introduced the richer topology in the latter cases to ensure the maximal

angle condition C1. However, we can use the topology of Cases 1/2 if �

j

= �

j

< 1, compare

Figure 21.2. The vertices P

i

1

;i

2

;i

3

have then the coordinates

�

(j)

1

=

i

1

n

�

i

1

+i

2

n

�

�1+1=�

j

; �

(j)

2

=

i

2

n

�

i

1

+i

2

n

�

�1+1=�

j

; �

(j)

3

=

�

i

1

+i

2

+i

3

n

�

1=�

j

� �

(j)

1

� �

(j)

2

:
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0

1

2

3

Figure 21.2: Modi�cation of Case 4 for �

j

= �

j

< 1.

Figure 21.3: Tensor product domain with mesh re�nement near the singular edge and the

corners.

0 � i

1

+ i

2

+ i

3

� n.

We point out that also simpler meshing strategies can be applied where overre�nement

takes place in more regions. Figure 21.5 shows an example where arti�cial re�nement edges are

introduced. Moreover, we introduced the Assumptions A1�C3 in order to allow other re�nement

strategies which are not based on the domain decomposition approach, see Figure 21.3 for an

example with a coordinate transformation.

We introduce now the �nite element space V

h

of all continuous functions whose restriction

to any e (e 2 T

h

) is a polynomial of �rst degree. Furthermore, we let V

0h

be de�ned by

V

0h

:= fv

h

2 V

h

: v

h

j

@


= 0g. Note that V

h

� H

1

(
) and V

0h

� V

0

. The variational

formulation of problem (21.1) reads as follows.

Find u 2 V

0

: a(u; v) = (f; v)




8v 2 V

0

; (21.4)

where the bilinear form a(:; :) is de�ned by

a(u; v) :=

Z




3

X

i;j=1

a

i;j

@u

@x

i

@v

@x

j

:

Furthermore, the �nite element solution is de�ned by

Find u

h

2 V

0h

: a(u

h

; v

h

) = (f; v

h

)




8v

h

2 V

0h

: (21.5)
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Let �

(j)

E;n

and �

(j)

C;n

, n = 1; 2; : : :; be the singularity exponents with respect to the singular

edge and the singular corner of 


j

, j = 1; : : : ; J . De�ne in particular the leading singular

exponents by �

(j)

E

:= �

(j)

E;1

, �

(j)

C

:= �

(j)

C;1

. Note that these exponents are de�ned by 
 (and

the di�erential operator) and not only by 


j

, compare Comment 22.1 on page 122. If no

edge/corner of 


j

is edge/corner of 
 then we de�ne �

(j)

E

:=1, �

(j)

C

:=1, respectively.

The regularity of derivatives of u can be described by means of the weighted Sobolev spaces

V

`;p

�;�

(


j

), see Section 3, page 13, for the de�nition.

Theorem 21.3 [21, Theorem 2.10] Assume that 2 � p < 6, �

(j)

E;n

6= 2 � 2=p, �

(j)

C;n

6= 2 � 3=p,

for all n = 1; 2; : : :, j = 1; : : : ; J , and �

(j)

E

> 1�2=p. Then the solution u of the general problem

(21.1) admits the following decomposition in 


j

:

u = u

r

+ u

s

; (21.6)

where u

r

2W

2;p

(


j

) and

@u

s

@x

(j)

i

2 V

1;p

�;�

(


j

); i = 1; 2; (21.7)

@u

s

@x

(j)

3

2 V

1;p

�;0

(


j

); (21.8)

for any �; � � 0 satisfying � > 2� 3=p� �

(j)

C

and � > 2� 2=p� �

(j)

E

.

In the following, we investigate �rst the global interpolation error for the family of anisotrop-

ically graded meshes introduced above. Then we obtain the global �nite element error estimate

via the Céa lemma.

Theorem 21.4 [21, Theorem 5.1] Let u be the solution of the boundary value problem (21.4)

with f 2 L

p

(
), 2 < p < p

+

,

p

+

:= min

j

(

6;

2

1� �

(j)

C

;

1

1� �

(j)

E

)

: (21.9)

In addition to the condition B4, assume that the re�nement parameters �

j

; �

j

satisfy the fol-

lowing conditions for all j:

�

j

< �

(j)

E

p

2p� 2

; (21.10)

�

j

<

�

�

(j)

C

+

1

2

�

2p

5p� 6

; (21.11)

1

�

j

�

5

2

�

3

p

�

+

1

�

j

�

�

(j)

C

� 2 +

3

p

�

> 1: (21.12)

Then for the interpolation error u� I

h

u the following estimate holds:

ju� I

h

u;W

1;2

(
)j . h kf ;L

p

(
)k: (21.13)

Proof The theorem can be proved by distinguishing the four cases as mentioned in the proof of

Lemma 21.1 and by using the local interpolation error estimates for functions from (weighted)

Sobolev spaces, see [21, Section 5]. Before, one has to ensure that Theorems 6.4, 6.9, and 6.11

can be proved if h

1;e

; h

2;e

; h

3;e

are replaced by

~

h

1;e

;

~

h

2;e

;

~

h

3;e

, as de�ned above. This was done

in [21, Section 4].
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Corollary 21.5 Let u be the solution of the boundary value problem (21.4) with f 2 L

p

(
),

2 < p < p

+

, p

+

from (21.9), and let u

h

be the �nite element solution of (21.5). Then the error

estimate

ku� u

h

;W

1;2

(
)k . h kf ;L

p

(
)k

holds if all re�nement parameters �

j

and �

j

, j = 1; : : : ; J , satisfy the conditions (21.10)�(21.12).

Let us discuss the assumptions of this approximation result. First, we note that the restric-

tion p < p

+

is not essential for this estimate, because f 2 L

p

(
) yields f 2 L

q

(
) for q � p

and kf ;L

q

(
)k . kf ;L

p

(
)k. We can apply Theorem 21.4 for q < p

+

. Nevertheless, we have

to replace p in the conditions of the Theorem 21.4 by minfp; p

+

� �g, � > 0 arbitrarily small.

In order to use meshes which are not too much re�ned, the estimates are most favourable

for p close to 2. For p = 2+ � (� is an arbitrarily small real number), the re�nement conditions

reduce to

�

j

< �

(j)

E

�

1�

�

2 + 2�

�

;

�

j

<

�

�

(j)

C

+

1

2

��

1�

3�

4 + 5�

�

;

1

�

j

+

1

�

j

�

�

(j)

C

�

1

2

�

> 1 +

3�

4 + 2�

�

1

�

j

�

1

�

j

�

:

On the other hand it is not clear in which way the constant in the local interpolation error

estimate depends on p; we suspect that it grows to in�nity for p! 2.

The conditions (21.10) and (21.11) are the edge and corner re�nement conditions, respec-

tively. They are expected because they balance the edge and corner singularities (compare with

[19, 23, 123]). On the contrary, the condition (21.12) seems to be arti�cial but actually it comes

from the anisotropy of the mesh near the corner. Indeed, (21.12) follows from (21.11) and p > 2

in the case �

j

= �

j

. In the case �

j

6= �

j

, it imposes a condition between �

j

and �

j

, this means

that the mesh cannot be too much anisotropic. For the Fichera domain treated in Example

21.6, we have �

C

� 0:45 and �

E

= 2=3. We then see that for p close to 2, the condition (21.12)

holds for �

j

= 0:6 and �

j

= 0:9.

Example 21.6 We consider the Poisson equation with a speci�c right hand side, together with

homogeneous Dirichlet boundary conditions:

��u = R

�1

in 
;

u = 0 on @
:

The domain 
 := (�1; 1)

3

n [0; 1]

3

has three edges with interior angle !

0

=

3

2

�, which meet in

the center of coordinates; we denote by R the distance to this point. Sometimes such a corner

is called Fichera corner. Note that the right hand side is contained in L

p

(
) for p < 3.

In order to determine the regularity of the solution, we consider �rst the corner singularity

and �nd that �

C

� 0:45 [169]. The edge singularities are described by �

E

= �=!

0

= 2=3.

This problemwas solved �rst with ungraded meshes and mesh sizes h

i

= 1=i, i = 2; 3; : : : ; 48.

We compare this with three re�nement strategies. The �rst one is obtained by a simple coor-

dinate transformation

x

i

:= x

i

� jx

i

j

�1+1=�

j

; i = 1; 2; 3;

for all vertices (x

1

; x

2

; x

3

). It leads to overre�nement near the coordinate planes, see Figure

21.5. The second one was described by our constructive proof of Lemma 21.1, see pages 114�

116. The corresponding mesh is illustrated in Figure 21.6. The optically bad elements near the
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Figure 21.4: Example 21.6: Estimated error � in the energy norm for various mesh sizes.

diagonals can be avoided by using the strategy of Case 4a instead of Case 4, compare Remark

21.2 and Figure 21.7. For all j we used the parameters �

j

= �

j

= 0:6.

The calculations were done using the code FEMPS3D which is described shortly in Comment

30.2 on page 172. We remark only that the energy of the �nite element error was estimated

with an error estimator of residual type which was tuned for treating anisotropic meshes, see

also Section 28. The norms are given in form of a diagram in Figure 21.4.

We see that the theoretical approximation order h � N

�1=3

, N is the number of nodes,

can be veri�ed in the practical calculation for all three re�nement strategies. The error is the

smallest in the third re�nement strategy, however, the di�erence between the strategies is small.

2

Remark 21.7 We believe that the approach to mesh re�nement as introduced in this section is

applicable to a larger class of problems since the singularities can be characterized in a similar

way for general second order boundary value problems including systems of equations. For

isotropic mesh re�nement the approximation theory was given in [23] in this generality. For

anisotropic mesh re�nement, however, there are some remaining tasks.

1. We conjecture that Theorem 21.3 can be proved also for other boundary conditions (Neu-

mann, Robin, mixed). Then Theorem 21.4 is valid as long as �

(j)

E

> 1=2 for all j. (Oth-

erwise (21.9) yields p

+

� 2 which contradicts another assumption of Theorem 21.4.) For

�

(j)

E

� 1=2 there is no " > 0 such that u 2 W

3=2+";2

(
). Therefore the Lagrangian in-

terpolation operator is not applicable. It is an open problem to extend the Scott-Zhang
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Figure 21.5: Example 21.6: First strategy, a simple coordinate transformation. Left: perspec-

tive view. Right: cut at x

3

= 0.

Figure 21.6: Example 21.6: Second strategy, re�nement according to Cases 1�4. Left: perspec-

tive view. Right: cut at x

3

= 0.

Figure 21.7: Example 21.6: Third strategy, re�nement with Case 4a instead of Case 4. Left:

perspective view. Right: cut at x

3

= 0.
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interpolation theory to non-tensor product meshes.

2. For more general boundary value problems like the Lamé system of elasticity we do not

know about an anisotropic regularity theory in the sense of Theorem 21.3. In particular,

the theory must be developed in non-Hilbert spaces since we need p > 2.

3. For k � 2 the regularity theory in Hilbert spaces (p = 2) can be applied, compare

Theorem 20.7 on page 107. If the regularity result of Theorem 21.3 can be extended to

higher order derivatives like in Assumption 20.6, then the proof of the approximation

result is straightforward.

22 Three comments on the analytical properties of u

In this section we present some analytical background which was omitted in Sections 19�21

since we wanted to focus on the numerical part of the theory.

22.1 Calculation of the singularity exponents. Consider �rst the Poisson problem. For

homogeneous Dirichlet or Neumann boundary conditions the singularity exponents with respect

to an edge E are given by �

E;n

= n�=!

E

> 1=2, n = 1; 2; : : :, where !

E

is the angle between

the two faces of 
 containing E. In the case of mixed Dirichlet/Neumann boundary conditions

we have �

E;n

= (n� 1=2)�=!

E

> 1=4, n = 1; 2; : : :.

Let C

C

� R

3

be the in�nite polyhedral cone which coincides with 
 in a neighbourhood of

a corner C of 
, and let S

2

C

be the unit sphere centered at C. Set G

C

:= C

C

\ S

2

C

and denote

by �

n

> 0, n = 1; 2; : : :; the eigenvalues (in increasing order) of the Laplace-Beltrami operator

on G

C

(with Dirichlet boundary conditions). Then the singular exponents related to C are

given by �

C;n

= (�

n

+ 1=4)

1=2

� 1=2, n = 1; 2; : : :. Papers on a numerical calculation of the

singular exponents �

C;n

include [40, 121, 169]. In some cases these exponents can be calculated

analytically, see Comment 22.2.

In Section 21 we considered a more general di�erential operator, see (21.1). Since we assumed

constant coe�cients, there exists a linear change of variables y = Bx which transforms the

problem (21.1) into the Poisson problem with homogeneous Dirichlet boundary conditions in

another polyhedral domain 


0

. The singularity exponents can then be calculated as described

above but with respect to the transformed domain.

22.2 Corner singularities in tensor product domains. Tensor product domains in the

sense of Section 20 have the advantage that the corner singularities can be described explicitly.

Consider a corner C at the origin of the coordinate system. A neighbourhood U (C) � 
 can

be described in spherical coordinates by

U (C) = fx = (R cos � sin �;R sin� sin �;R cos �) : O < R < R

0

; 0 < � < !; 0 < � < �=2g:

The singular functions have the form [181, 191]

u

C;i

= R

�

C;i

F

i

(�; �); �

C;i

=

�

�

i

+

1

4

�

1=2

�

1

2

;

where �

i

; F

i

are the eigenvalues/eigensolutions of the eigenvalue problem for the Laplace-

Beltrami operator,

F

��

+ F

�

cot � + F

��

(sin �)

�2

= ��

i

F in G;
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G = fx = (cos � sin �; sin� sin �; cos �) : 0 < � < !; 0 < � < �=2g, and boundary conditions

corresponding to the original problem. Separation of variables, F (�; �) = �(�)�(�), leads to

�

00

+ �

2

E;i

� = 0 in (0; !);

�

00

+�

0

cos � + (�

i

� �

2

E;i

(sin �)

�2

)� = 0 in

�

0;

�

2

�

:

For the Dirichlet problem we get the solution

�

E;1

=

�

!

; �

1

(�) = sin�

E;i

�;

�

1

= (�

E;1

+ 1)(�

E;1

+ 2); �

1

(�) = (sin �)

�

E;1

cos �;

�

C;1

= �

E;1

+ 1;

see also [191]. This means that the leading corner singularity is

U

C;1

= R

�

E;1

+1

sin�

E;1

�(sin �)

�

E;1

cos � = (R sin �)

�

E;1

(R cos �) sin �

E;1

� = x

3

r

�

E;1

sin�

E;1

�;

which has precisely the structure of the leading edge singularity function.

In the case of the mixed boundary value problem with u = 0 for � = 0; !, and @u=@n = 0

for � = �=2 we obtain [191]

�

E;1

=

�

!

; �

1

(�) = sin�

E;i

�;

�

1

= �

E;1

(�

E;1

+ 1); �

1

(�) = (sin �)

�

E;1

;

�

C;1

= �

E;1

;

that means

U

C;1

= R

�

E;1

sin�

E;1

�(sin �)

�

E;1

= r

�

E;1

sin�

E;1

�:

In the case u = 0 for � = 0, and @u=@n = 0 for � = ! and � = �=2 the same results are

valid with �

E;1

= �=(2!).

22.3 Regularity of the solution u of the Poisson problem in a domain with one sin-

gle edge. The regularity theory for elliptic boundary value problems in non-smooth domains

with corners and edges is well developed, especially in the framework of weighted Sobolev spaces.

Boundary value problems in domains with non-intersecting edges are treated in [113, 129, 131],

and in polyhedral domains in [66, 130, 154], see also the monograph [116] and the summary of

results in [23, Section 2].

Let us formulate here a regularity result for domains
 with one single edge E with constant

internal angle (either 
 is a dihedral angle and f is assumed to have bounded support, or 
 is a

bounded domain with only one closed edge). The result was originally proved in [129] in more

general form. We use here the formulation of [116, Theorem 26.3] where we have set speci�cally

m = 1, p = p

1

= 2.

The critical point is hidden in two assumptions.

A1 Let u 2 V

`+2;2

�+`

(
) be a solution of (20.1) with right hand side f 2 V

`;2

�+`

(
) where � � 1

is not a singularity exponent.

This assumption is essential since we investigate the regularity in the scale V

`;p

�

(
) of weighted

Sobolev spaces. But we have existence and uniqueness of the solution u of (20.1) in the space

V

0

� V = W

1;2

(
) which does not belong to this scale. Note that ` can be an arbitrary integer,
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see [116, Lemma 27.2(ii)]. Spaces with negative ` are de�ned by V

`;2

�

(
) = (V

�`;2

��

(
))

0

[116,

Subsection 0.8].

The investigation of the regularity is done by applying a Fourier transform to (20.1) and a

further change of variables, see [116, Subsections 22.4 and 26.1]. The resulting operator pencil

is denoted by A(�; �), � 2 E, � = �1.

A2 For all � 2 E and � 2 f�1g both kerA(�; �) and cokerA(�; �) are trivial.

Both conditions, A1 and A2, are satis�ed for the Dirichlet problem for the Poisson equation

where ` = �1, � = 1 [116, Subsection 28.1], and for mixed boundary conditions, where ` = �1; 0,

� = 1 [116, Subsection 32.2], see also [166, Lemma 4].

Theorem 22.1 [116, Theorem 26.3] Let Assumptions A1 and A2 be valid and assume that

f 2 V

`;2

�+`

(
) \ V

`

1

;2

�

1

+`

1

(
) with �� < �

1

� 1 < � where � is the leading (smallest positive)

singularity exponent. Then u 2 V

`

1

+2;2

�

1

+`

1

(
) and

ku;V

`

1

+2;2

�

1

+`

1

(
)k . kf ;V

`

1

;2

�

1

+`

1

(
)k:

The application of this theorem for f 2 L

2

(
) leads to

ku;V

2;2

maxf�; 0g

(
)k . kf ;V

0;2

maxf�; 0g

(
)k . kf ;L

2

(
)k; � > 1� �; (22.1)

in particular

kD

�

u;V

2�j�j;2

maxf�; 0g�2+j�j

(
)k . kf ;L

2

(
)k; j�j � 2; � > 1� �; (22.2)

Theorem 22.1 does not give the optimal regularity for derivatives of u in tangential direction.

Therefore we state another theorem in the formulation of [116]. This one was originally proved

by [131].

Theorem 22.2 [116, Theorem 30.1(iii)] Let Assumptions A1 and A2 be valid and assume that

f 2 V

`;2

�+`

(
)\ V

`

1

;2

�

1

+`

1

(
) with ` � 0 and ��� 1 < �

1

� 1 < �. Then @u=@x

3

2 V

`

1

+1;2

�

1

+`

1

(
) and









@u

@x

3

;V

`

1

+1;2

�

1

+`

1

(
)









. kf ;V

`

1

;2

�

1

+`

1

(
)k:

The application of this theorem for f 2 L

2

(
) leads to









@u

@x

3

;V

1;2

�

(
)









. kf ;V

0;2

�

(
)k . kf ;L

2

(
)k; � 2 (��; 1 + �);









@u

@x

3

;V

1;2

maxf�; 0g

(
)









.
kf ;L

2

(
)k;
� > ��: (22.3)

For the Dirichlet problem we can now apply both theorems recursively. We change the

notation slightly in order to be in accordance with Assumption 20.6. For f 2 L

2

(
) we obtain

from Theorems 22.1 and 22.2

u 2 V

2;2

�

2

(
);

@u

@x

3

2 V

1;2

�

1

(
); �

n

= maxf� + n; 0g; � > �1� �: (22.4)

Let now f 2 V

1;2

0

(
) � L

2

(
). We conclude with @u=@x

3

= 0 on @
 that @u=@x

3

is the weak

solution of

��

@u

@x

3

=

@f

@x

3

2 L

2

(
) in 
;

@u

@x

3

= 0 on @
:
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The theorems give now

@u

@x

3

2 V

2;2

�

2

(
);

@

2

u

@x

2

3

2 V

1;2

�

1

(
):

Since f 2 V

1;2

0

(
) implies f 2 V

1;2

�

3

(
) we get also u 2 V

3;2

�

3

(
), �

3

as in (22.4).

Proceeding that way for f 2 V

k�1;2

0

(
) gives

u 2 V

k+1;2

�

k+1

(
);

@u

@x

3

2 V

k;2

�

k

(
); : : : ;

@

k

u

@x

k

3

2 V

k+1;2

�

1

(
);

with �

n

from (22.4). This is just what we stated in Assumption 20.6.
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Chapter V

Anisotropic �nite element

approximations in boundary layers

This chapter deals with singularly perturbed reaction-di�usion and convection-di�usion-reaction

problems. Special anisotropic meshes of Shishkin type are investigated in order to derive �nite

element error estimates which are uniformly valid with respect to the perturbation parameter.

23 The aim of this chapter

In this chapter we consider singularly perturbed problems. We are mainly interested in a

resolution of boundary layers. The main results include the following.

In Section 24 we discuss several approximation strategies for the model problem

�"

2

�u+ cu = f in 
 � R

d

(d = 2; 3); u = 0 auf @
:

The solution u is characterized for 0 < "� 1 by a boundary layer of width O("j ln "j). We show

that the �nite element method both on quasi-uniform meshes and on meshes with isotropic

re�nement in the boundary layer does not lead to error estimates which are quasi-uniform with

respect to the perturbation parameter "� 1 (Lemmata 24.1 and 24.3). As our favorite variant

we propose to use in the layer anisotropic elements with size h

1

= h in tangential direction and

h

2

= ah normal to the boundary. The parameter a describes the width of the re�nement zone.

In [5, 6, 14] we proved for a � "j ln "j the uniform error estimate

jjju� u

h

jjj




. h

k

"

1=2

j ln "j

k+1=2

+ h

k+1

(23.1)

in the energy norm jjj : jjj




� "j : ;W

1;2

(
)j + k : ;L

2

(
)k. We note, however, that in these

papers corner/edge singularities were excluded by demanding certain compatibility conditions

on the data. We postpone the proof of (23.1) to Section 25 but we con�rm the result by a

numerical test example. With some remarks (Remarks 24.2, 24.5, 24.6, and 24.7) we refer also

to related literature.

The error analysis for the anisotropic mesh re�nement strategy is presented in Section 25.

Additionally to [5, 6, 14], wee focus on two new points.

1. We incorporate an additional mesh re�nement to treat also corner singularities. This is

restricted to two dimensions but the techniques should work also in three dimensions.

127
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2. Results in related literature led to the assumption that for h � " (which is the interesting

case in practice) a numerical layer of width a = O("j lnhj) is more appropriate. Therefore

we investigate also this case in Section 25.

We mention here that the two cases in Item 2 look similar but they need di�erent strategies for

the proof.

� In the case a = a

�

"j ln "j we get for dist (x; @
) � a the a-priori estimate jD

�

u(x)j .

"

a

�

�j�j

for the solution u. That means we can use the standard interpolation theory for

the large elements in the interior of the domain if only a

�

is su�ciently large such that

jD

�

uj is bounded uniformly in ".

� In the case a = a

�

"j lnhj we get for dist (x; @
) � a the a-priori estimate jD

�

u(x)j .

h

a

�

"

�j�j

. Therefore we must use low derivatives (if possible no derivative) of u in order

to get a bound uniform in ". Fortunately, the powers of h can be extracted due to the

h

a

�

-term in the a-priori estimate above.

The �nal result is

jjju� u

h

jjj




. h

k

"

1=2

minfj lnhj

k+1=2

; j ln "j

k+1

g+ h

k+1

;

if a = a

�

"minfj lnhj; j ln "jg with a suitable constant a

�

(Corollary 25.11). The section ends

with a discussion of insu�cient re�nement near the corners.

We mention again that we present the asymptotic estimates in general in terms of h :=

max

e2T

h

diame. Since we advocate only strategies where the number of elements is N

el

� h

�d

,

the error can easily be expressed in terms of N

el

or the number N of unknowns (degrees of

freedom).

The reaction-di�usion problem (24.1) was chosen as one of the simplest singularly perturbed

problems to motivate the usefulness of anisotropic meshes. In Section 26 we consider a slightly

di�erent example as well. In the convection-di�usion-reaction problem

�"�u+ b � ru+ cu = f in 
 = (0; 1)

2

; u = 0 on @
;

three types of boundary have to be distinguished. At the in�ow boundary (b � n < 0, n is

the outer normal on @
) there is no layer. At the out�ow boundary (b � n > 0) there is an

ordinary (or out�ow) layer of width O("j ln "j). Parts of the boundary with b �n = 0 are called

characteristic. There will appear a parabolic layer of width O("

1=2

j ln "j) in these regions.

In Subsection 26.2 and 26.3 we summarize some approximation results for a pure and a

stabilized Galerkin �nite element method on anisotropic meshes (Theorem 26.6). The surprising

point is that one can even for the pure Galerkin method prove uniform convergence (with respect

to "� 1) in an "

1=2

-weighted W

1;2

(
)-norm [73, 186]. However, as reported in [162], practical

calculations with linear and bilinear elements show that these estimates are very sensitive to the

choice of a certain mesh parameter. Such non-robust behaviour reduces the practical importance

of the pure Galerkin method. Therefore we consider also a stabilized Galerkin method and

summarize and reformulate results which were obtained in [13]. For our proposed choice of the

stabilization parameters we were able to prove, under some assumptions on u, that the �nite

element error converges in an energy type norm with the optimal order almost uniform with

respect to " (Theorem 26.6),

jjju� u

h

jjj


;�

. h

k

j ln "j

k+1=2

:

Here, we used re�nement zones of the width of the boundary layers.
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24 Discretization techniques for a reaction-di�usion prob-

lem: state of the art

Let us study the reaction-di�usion model problem

L

"

u := �"

2

�u+ cu = f in 
 � R

d

; u = 0 on @
; (24.1)

where " 2 (0; 1] is the di�usion parameter, c and f are su�ciently smooth functions, c � c

0

> 0,

and d = 2; 3. We introduce in this section the speci�c di�culties of boundary layers and refer

to relevant literature. In particular, we will see that the numerical approximation of functions

with boundary layers leads naturally to anisotropic �nite elements.

For d = 2 the boundary value problem (24.1)) describes, for example, a temperature dis-

tribution in a thin domain 
 � (0; z

0

), z

0

� 1, where the temperature can be considered as

constant in the x

3

-direction. Heat transfer across the boundary parts x

3

= 0 and x

3

= z

0

enters

the model by the term cu. In addition, problem (24.1) appears within a Newton iteration of

nonlinear reaction-di�usion problems,

�"

2

�u+ g(x; u) = f in 
; u = 0 on @
;

or in an implicit semi-discretization of a time-dependent partial di�erential equation

@u

@t

��u =

~

f

with � = "

2

being the step size.

In the singularly perturbed case "� 1 the solution of (24.1) is characterized by a boundary

layer of width O("j ln "j), see, for example, [96]. This is caused by the fact that the solution u

0

of the algebraic limit equation

c(x)u

0

(x) = f(x) in 
 (24.2)

in general cannot satisfy the given boundary condition. The e�ect is illustrated in Figure 24.1

for the one-dimensional example

�"

2

u

00

+ u = 1 in (0; 1); u(0) = u(1) = 0; (24.3)

where the exact solution can be given analytically,

u(x) =

e

x="

� e

�x="

e

1="

� e

�1="

:

In higher space dimensions, the boundary layer is of the same nature. The consequence is

that one cannot expect an a-priori estimate of the solution better than

ju;W

`;2

(
)j . "

1=2�`

; ` � 1: (24.4)

For this estimate we excluded additional e�ects of higher space dimensions like corner and edge

singularities.

We investigate now error estimates for the �nite element solution u

h

determined by:

Find u

h

2 V

0h

: a(u

h

; v

h

) = (f; v

h

)




8v

h

2 V

0h

: (24.5)

Here, a(u; v) := "

2

(ru;rv)




+ (cu; v)




is the bilinear form which de�nes the energy norm

jjj v jjj




:=

�

a(v; v)

�

1=2

� "jv;W

1;2

(
)j+ kv;L

2

(
)k: (24.6)

The �nite element space V

0h

� C(
) is de�ned by

V

0h

:= fv

h

2 V

0

: v

h

j

e

2 P

k;e

8e 2 T

h

g: (24.7)
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Figure 24.1: Illustration of boundary layers: solution of Problem (24.3) for di�erent values of ".

Lemma 24.1 Consider problem (24.1) and assume that the solution u satis�es the estimate

(24.4). Then the �nite element error satis�es the error estimate

jjju� u

h

jjj




. h

k

"

1=2�k

(24.8)

when a family of quasi-uniform meshes is used.

Proof Due to the Galerkin orthogonality, the error in the energy norm can be estimated via

jjju� u

h

jjj




� jjju� v

h

jjj




8v

h

2 V

0h

: (24.9)

Therefore we need only to bound the interpolation error jjju� I

h

u jjj




.

Since the mesh is quasi-uniform we obtain

jjju� I

h

u jjj




. "ju� I

h

u;W

1;2

(
)j + ku� I

h

u;L

2

(
)k

. "h

k

ju;W

k+1;2

(
)j+ h

k

ju;W

k;2

(
)j:

With (24.4) and (24.9) we obtain (24.8). In the case k = 1 the estimate

ku� I

h

u;L

2

(
)k . hju;W

1;2

(
)j

(which was used above) does not hold for the Lagrangian interpolation operator. Instead, one

has to use another interpolation operator, for example C

h

, O

h

, or S

h

, see Chapter III.

Due to the factor "

1=2�k

in (24.8) we must expect that the convergence order h

k

can be

observed only for small h, when the boundary layer is resolved. This can be seen in the test

described below, see Table 24.1 in Example 24.4.

Remark 24.2 Schatz and Wahlbin [168] analyzed carefully two- (and one-)dimensional prob-

lems. They derived L

2

(
)-, L

1

(
)-, and pointwise error estimates for quasi-uniform meshes
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with linear �nite elements. Also the case of rough data is addressed. We cite two estimates

which hold uniformly in ". For convex 
 and c; f 2 H

1=2;1

(
) (in the sense of interpolation

spaces) the estimate

ku� u

h

;L

2

(
)k . min(

p

h; h

2

"

�3=2

)

holds. Moreover, uniform estimates in the sense

ku� u

h

;L

2

(
)k . min(h; h

2

"

�1

)

jjju� u

h

jjj . min(h; ")

hold if f 2W

1;2

0

(
), that means, if f satis�es homogeneous Dirichlet boundary conditions.

An improvement to the approximation on quasi-uniform meshes is to use locally re�ned

meshes in the boundary layer 


L

:= fx 2 
 : dist (x; @
) � ag, a � "j ln "j.

Lemma 24.3 Let T

h

contain (isotropic) elements of diameter "

1�1=(2k)

h in the boundary layer

but elements of diameter h outside (where the solution has no large derivatives). Under the

assumption that

ju;W

`;2

(


L

)j . "

1=2�`

; ` � 1; (24.10)

ju;W

`;2

(
 n


L

)j . 1; (24.11)

we obtain

jjju� u

h

jjj




. h

k

: (24.12)

However, the number of elements increases (for d = 2; 3) to O("

1�d+d=(2k)

j ln "jh

�d

) in the layer.

Proof We proceed as in the proof of Lemma 24.1. Using (24.10) and (24.11) we derive

jjju� I

h

u jjj




L

. ("

1�1=(2k)

h)

k

�

"ju;W

k+1;2

(


L

)j+ ju;W

k;2

(


L

)j

�

. h

k

"

k�1=2

(" "

1=2�(k+1)

+ "

1=2�k

) = h

k

;

jjju� I

h

u jjj


n


L

. h

k

�

"ju;W

k+1;2

(
 n


L

)j+ ju;W

k;2

(
 n


L

)j

�

. h

k

(" + 1):

With the projection property (24.9) we conclude (24.12). The number of elements is obtained

by dividing the area/volume of the layer by the area/volume of the elements in the layer.

A closer look at the structure of the boundary layer demonstrates that large derivatives only

occur perpendicularly to the boundary and not in the tangential direction. Hence, anisotropic

re�nement, with elements of diameter h in the tangential direction and with thickness of order

"j ln "jh in the normal direction, is much more e�cient in the layer. While using only O(h

�d

)

elements one can prove, under some assumptions on the solution, that the error behaves like

jjju� u

h

jjj




. h

k

("

1=2��

+ h) (24.13)

with � > 0 arbitrarily small, see [5, 6, 14]. We will discuss this for the two-dimensional case

extensively in Section 25. Before, we will present a numerical test and some remarks.

The a-priori error analysis is valuable especially in cases when the asymptotical approxima-

tion order can be con�rmed by numerical tests with a moderate number of elements. Therefore

we document now a test example which was computed with the �nite element multi-grid package

FEMGPM, which is described brie�y in Comment 30.1 on page 171.
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a

Figure 24.2: Anisotropically re�ned mesh for the numerical test, N

el

= 2

7

.

N

el

" = 10

�1

" = 10

�3

" = 10

�5

2

7

0.114 e+0 0.278 e+0 0.282 e+0

2

9

0.570 e�1 0.189 e+0 0.195 e+0

2

11

0.285 e�1 0.128 e+0 0.136 e+0

2

13

0.143 e�1 0.856 e�1 0.955 e�1

2

15

0.713 e�2 0.543 e�1 0.674 e�1

Table 24.1: Error norm for a = 0:5.

N

el

" = 10

�1

" = 10

�3

" = 10

�5

2

7

0.747 e�1 0.894 e�2 0.130 e�2

2

9

0.387 e�1 0.518 e�2 0.657 e�3

2

11

0.196 e�1 0.362 e�2 0.330 e�3

2

13

0.980 e�2 0.298 e�2 0.167 e�3

2

15

0.490 e�2 0.256 e�2 0.877 e�4

Table 24.2: Error norm for a = "j log

10

"j.

N

el

" = 10

�1

" = 10

�3

" = 10

�5

2

7

0.511 e�1 0.134 e�1 0.218 e�2

2

9

0.257 e�1 0.681 e�2 0.112 e�2

2

11

0.129 e�1 0.342 e�2 0.568 e�3

2

13

0.644 e�2 0.171 e�2 0.285 e�3

2

15

0.322 e�2 0.864 e�3 0.143 e�3

Table 24.3: Error norm for a = 2"j log

10

"j.

N

el

" = 10

�1

" = 10

�3

" = 10

�5

2

7

0.912 e�1 0.257 e�1 0.395 e�2

2

9

0.456 e�1 0.134 e�2 0.217 e�2

2

11

0.228 e�1 0.680 e�2 0.112 e�3

2

13

0.114 e�1 0.342 e�2 0.568 e�3

2

15

0.571 e�2 0.171 e�2 0.285 e�3

Table 24.4: Error norm for a = 4"j log

10

"j.

Example 24.4 As a numerical example we took the boundary value problem from [168, Ex-

ample 11.3]:

�"

2

�u+ u = 0 in 
 = (0; 1)

2

; u = e

�x

1

="

+ e

�x

2

="

on @
:

A boundary layer appears only at M = fx 2 @
 : x

1

= 0 _ x

2

= 0g. We introduce a

parameter a describing the width of the numerical boundary layer and use a partition of the

domain into four rectangles (0; a)

2

, (0; a) � (a; 1), (a; 1) � (0; a), and (a; 1)

2

. The rectangles

were uniformly hierarchically re�ned, see Figure 24.2. We varied the number of elements N

el

and computed numerical solutions with piecewise linear trial functions for di�erent values of "

and a [14]. From these solutions we calculated the energy norm jjju�u

h

jjj of the �nite element

error by a numerical integration formula which was determined such that the integration error

was independent of N

el

(but dependent on u(") and a). The error is given in Tables 24.1�24.4.

We can draw three conclusions. In Table 24.1 the error is displayed when a quasi-uniform

mesh is used. We see the asymptotic behaviour of the error in the case of a large value of ",

but the error is far from this asymptotic behaviour in case of small ". For a = a

�

"j log

10

"j

we obtain the expected order of the approximation error for small " as well. That means the
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a-priori error estimates in (24.8) and (24.13) are con�rmed.

Second, The error estimate (24.13) indicates that the error should diminishwith decreasing ".

This e�ect can be seen in Tables 24.2�24.4.

Third, by comparing Tables 24.2�24.4 we see that the performance depends upon the scaling

factor a

�

. The error analysis demands only a lower bound on this parameter but obviously it

should be chosen carefully. 2

We end this section with remarks on related results from other authors, on interior layers,

and on stabilized Galerkin methods.

Remark 24.5 Mesh re�nement near the boundary is not new. An obvious idea to mesh a

rectangular/cuboidal domain is to use the cross product of adapted one-dimensional meshes.

This leads naturally to anisotropic elements in the boundary layer. The main di�erence between

approaches is how they re�ne in one dimension. Bakhvalov [32] used a gradually re�ned mesh

which is optimally adapted to the exponential character of the functions describing the layer,

X

(i)

=

�

"

c

0

ln

q

q�i=N

; i = 0; : : : ; i

0

;

�+ �

i

N

; i = i

0

+ 1; : : : ; N;

with two parameters c

0

and q 2 (0; 1) which determine the remaining constants �; � and i

0

.

Shishkin [139, 173] simpli�ed this mesh and uses piecewise uniform meshes,

X

(i)

=

�

a

i

N

; i = 0; : : : ; N;

a+ (1� a)

i�N

N

; i = N + 1; : : : ; 2N;

with a parameter a � " lnN .

Previous results concerning the resolution of boundary layers for the model problem (24.1)

are due to Shishkin [172, 173] in the context of �nite di�erence methods in two and three

dimensions, due to Blatov [47] in the context of the h-version of the �nite element method

(bilinear elements), and due to Melenk/Schwab [135] and Xenophontos [196] for the hp-version

of the �nite element method, both in two dimensions only. In [47, 172] the authors used meshes

of Bakhvalov type, and in [173] Shishkin meshes. The error estimates were derived in the

maximum norm [47, 172, 173], see also [139], or in the energy norm [135, 196].

A critical review of decompositions of the solution, approximations on locally re�ned meshes,

and error estimates for one- and two-dimensional problems is given in [162].

Remark 24.6 In the case that c and f are not su�ciently regular, for example piecewise

constant, we �nd a discrepancy in the properties of the solutions u and u

0

of (24.1) and (24.2),

respectively. While u is at least contained in W

1;2

(
), this can be violated for u

0

. It can be

interpreted as a smoothing property of the di�usion term �"

2

�u. The result is that u can also

have interior layers. They have similar properties to boundary layers, for example a thickness

of O("j ln "j). However, the geometry of these layers can be arbitrarily complicated. Therefore,

1. we have to approximate curved manifolds, and

2. we cannot assume that certain sides of the �nite elements are always parallel to the

coordinate axes.

Algorithmic ideas about how to do the approximation have been proposed in [125], see, for

example, Figures 9, 10, and 12 of this paper, and in [176]. A numerical localization procedure

for interior layers is also described in [205] in the context of compressible (viscous and inviscid)

�ow problems. All the computational results are promising.
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We remark that it is much easier to approximate a curved interior manifold by anisotropic

elements, than it is to approximate a curved boundary. The reason for this is that in the latter

case only one side of the curved manifold belongs to the domain 
. The other side should not

be covered by the triangulation.

We will not study such problems in this report. But we underline that for the treatment of

them it is necessary to investigate not only elements where the longest side is parallel to an axis

of the coordinate system. (Here we mean a well chosen coordinate system which is adapted to

the boundary or interior layer.) Therefore we discussed in Chapter II the coordinate system

condition quite extensively.

Remark 24.7 In the literature one can �nd a number of variants to stabilize the Galerkin

�nite element method, see for example [31, 79, 105]. The basic idea is to modify the bilinear

and linear forms to become

a(u; v) :=

X

e2T

h

(L

"

u; v + �

e

Lv)

e

;

hf; vi :=

X

e2T

h

(f; v + �

e

Lv)

e

;

where L = L

"

(Galerkin/Least-squares method [105]) or L = �L

"

�

(unusual stabilized �nite

element method [31]). For the self-adjoint di�erential operator L

"

, as in (24.1), the optimization

(with respect to minimizing the energy norm) of the choice of the set of numerical di�usion

parameters �

e

� 0 leads to �

e

= 0 for all e, that is the pure Galerkin method (Galerkin

orthogonality). The result may be di�erent for other norms.

In the case of a constant coe�cient c Franca and Farhat [79] choose L = �L

"

�

and �

e

=

[diam(e)]

2

=[c(diam(e))

2

+ "

2

] and obtain a diminution of the error in the maximum norm.

This, however, was demonstrated only in a computational example (�picture norm�), but not

analytically. The explanation is that for piecewise linear trial functions this method is equivalent

to a pure Galerkin method with an enriched trial space (piecewise linears plus cubic element

bubble functions) [79].

The approximation error of this method was analyzed in [14] for higher order trial functions

and with respect to anisotropic meshes. It turned out that there is a range of values from which

�

e

can be chosen such that the error estimate (24.13) is preserved. This freedom can then be

used to control the error in some other norm. But this was not pursued further.

25 Boundary layers and corner singularities in a reaction-

di�usion problem

25.1 Properties of the exact solution

In the previous section we summarized results on the numerical treatment of the reaction-

di�usion model problem

L

"

u := �"

2

�u+ cu = f in 
; u = 0 on @
; (25.1)

(0 < "� 1, c = c(x) � c

0

> 0).

In this section we will continue this discussion with two additional points. First, we discuss

the analytical properties of u in general polygonal domains, and we treat the arising corner sin-

gularities. Second, we investigate two slightly di�erent versions of anisotropic mesh re�nement.

The di�erence is in the width a of the re�nement layer, see the illustration in Figure 24.2 on
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a

C

1

C
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C
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C
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C
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2;6
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3;2




3;3




3;4




3;5




3;6

Figure 25.1: Illustration of the partition of 
 for a reaction-di�usion problem.

page 132: the original Shishkin meshes [139, 173] are characterized by a � "j lnhj whereas for

the Shishkin type meshes in [14] the relation a � "j ln "j was assumed.

The plan is to introduce some notation and to discuss the analytical properties of u in this

subsection. In the other two subsections we derive estimates for the interpolation error and the

�nite element error, respectively.

We begin with a parameter dependent partition of 
 as illustrated in Figure 25.1. The sub-

domains are obtained by introducing lines with a distance a (this is the parameter), " < a� 1,

to the boundary and eventually, near corners with large angles, some more lines perpen-

dicularly to them. The interior domain is denoted by 


1

, the union of the small subdo-

mains 


2;j

near the corners C

j

by 


2

:=

S

J

j=1




2;j

, and the union if boundary strips by




3

:=

S

J

j=1




3;j

. Furthermore, we de�ne by 


�

2

:=

S

J

j=1




�

2;j

the union of corner regions




�

2;j

:= fx 2 
 : dist (x;C

j

) < "g and note that 


�

2;j

� 


2;j

.

The parameter a will later be chosen as the thickness of the re�nement layer (a = a

�

"j ln "j

or a = minfa




; a

�

"j lnhjg with suitably chosen constants a

�

and a




) but here it is essential

that we can de�ne in 


3

a boundary �tted coordinate system (x

1

; x

2

) with x

2

= dist (x; @
).

Derivatives D

�

are to be understood with respect to this coordinate system. Points in 


1

[


2

can be considered in any Cartesian coordinate system. Moreover, for points in 
 we de�ne by

r the distance to the set of corners fC

j

g

J

j=1

. Note that we have in particular r = dist (x;C

j

)

for x 2 


2;j

.

Assumption 25.1 Let u be the solution of (25.1) where f and c are su�ciently smooth func-

tions, 0 < " � 1, and c � c

0

> 0. For given k; n 2 N, n � k + 1, the solution u can be

decomposed into a smooth term u

s

, a boundary layer term u

b

, a corner singularity u

c

, and a

remainder u

r

, u = u

s

+u

b

+ u

c

+u

r

. There is a constant 

0

> 0 such that the terms satisfy the

following estimates for all � 2 N

2

: j�j � k + 1:

jD

�

u

s

j .

1

in 
; (25.2)

jD

�

u

b

j .

�

"

��

2

e

�

0

x

2

="

+ "

�j�j

e

�

0

r="

in 


3

;

"

�j�j

e

�

0

dist (x;@
)="

in 
 n


3

;

(25.3)
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jD

�

u

c

j .

8

>

>

<

>

>

:

"

��

j

r

�

j

�j�j

e

�

0

r="

in 


�

2;j

when �

j

< k + 1;

"

�j�j

j ln(r=")j e

�

0

r="

in 


�

2;j

when �

j

= k + 1;

0 in 


�

2;j

when �

j

> k + 1;

0 in 
 n


�

2

;

(25.4)

ku

r

;W

`;2

(
)k .

"

n�`

;

` � k + 3; (25.5)

where �

j

= �=!

j

and !

j

is the interior angle at the corner C

j

.

We underline that the constants hidden in . and � are always independent of " (and h) but

they can depend on �. Note further that the term "

�j�j

e

�

0

r="

in (25.3) contains for x 2 


3;j

also the in�uence of layer terms with respect to other boundary sides and of so-called corner

layers. Since the boundary layer has the same structure on the whole boundary @
 we can

use the compact notation u

b

. This is not any longer possible if convection-di�usion-reaction

problems are considered, see the more involved notation in Assumption 26.2. We remark also

that the decomposition of u is usually made much more detailed than here. In particular, the

smaller we want to make the remainder u

r

, this means, the larger we want to make n, the more

terms of the detailed decomposition we have to include into u

s

, u

b

, and u

c

. This is possible if

the data f and c are su�ciently smooth. It is also clear that a large k, this means the existence

of high derivatives of u

s

, u

b

, u

c

, and u

r

, requires more smoothness of the data than a small k.

Remark 25.2 If we replaced �

2

in (25.3) by j�j we could prove Assumption 25.1; the estimates

could then be extracted from [110, 111].

This is not a convincing result, since we want to use the original form of Assumption 25.1.

But for the sake of completeness we will prove the statement of the remark.

Proof Set u

s

=

P

J

j=1

P

2n

i=0

"

i

u

j;i

. From [110, (3.6)] we obtain

u

j;0

= f

0

j;0

=c; u

j;1

= f

0

j;1

=c; u

j;i

= (f

0

j;i

+�u

j;i�2

)=c; i = 2; 3; : : : ;

where f

0

j;i

is de�ned in [110, (4.4)] by

f

0

j;i

=

8

<

:

�

j

f; if i = 0;

0 if i = 1; 3; 5; : : :;

�

P

J

j

0

=0

[2r�

j

� ru

j

0

;i�2

+ u

j

0

;i�2

��

j

] if i = 2; 4; 6; : : :;

where �

j

is a smooth cut-o� function. From jD

�

f j . 1 we get jD

�

u

j;2m

j . c

�(m+1)

0

. 1,

m = 0; 1; : : :. Since u

2m+1

= 0 we obtain (25.2).

In u

b

we collect the boundary layer terms

^

V

j;2n

,

^

W

j;2n

, and Z

j;2n;M

, as well as that terms

of U

(s)

asy;j;2n;M

that are not contained in (25.4). With [110, (3.26) and (3.38)] we obtain the

estimate for z

j;i

: jD

�

z

j;i

j . "

�j�j

e

�

0

r="

. "

�j�j

e

�

0

dist (x;@
)="

. For the other terms let us

distinguish two cases, x 2 
 n


�

2

and x 2 


�

2

.

In the �rst case we have

u

b

=

J

X

j=1

2n

X

i=0

"

i

�

j

(r=") (v

j;i

+w

j;i

) +

J

X

j=1

2n+M

X

i=0

"

i

z

j;i

;

where �

j

is a smooth cut-o� function with �(z) = 0 for z < 1=2 and �(z) = 1 for z > 1, see

[110, page 132]. From [110, (3.13) and (3.16)] we obtain for x 2 


3

jD

�

v

j;i

j . "

�j�j

e

�

0

x

2

="

; jD

�

w

j;i

j . "

�j�j

e

�

0

x

2

="

; (25.6)
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since r� = r�=" � r(sin �)=" = x

2

=" and

jD

�

wj .

X

j�j=j�j

r

��

2

jD

�

1

r

D

�

2

�

wj .

X

j�j=j�j

"

��

2

e

�

0

r�

. "

�j�j

e

�

0

r�

for w = v

j;i

. (Even if the transformation (r; �) ! (x

1

; x

2

) is done more carefully the author

was not able to replace j�j by �

2

in (25.6): since f

1

j;0

= 0, see [110, page 141], we have

v

j;0

= Ce

�

p

q

0

r�="

and jD

(1;0)

v

j;0

j � j

p

q

0

"

�1

e

�

p

q

0

r�="

(� cos �+sin �)j � "

�1

e

�

0

x

2

="

for � � 1.)

A similar argument can be applied for w

j;i

. For x 62 


3

it remains to show that r� & dist (x; @
).

Indeed, if � � 1 this is obvious, and for � < 1 we �nd that r� � r sin � which is the distance to

the boundary edge with � = 0.

Consider now the case x 2 


�

2

. Then we can use [110, Theorem 6.2] to prove (25.3), (25.4),

in that case. Note that u

c

contains only the singular terms of U

(s)

asy;j;2n;M

, and they vanish

outside 


�

2

.

Finally, [110, Theorem 6.1] yields (25.5) where n and ` have a di�erent meaning here and

in [110].

We remark that there is a revised version [111] of [110] where instead of polar coordinates

(r; �) an in general non-orthogonal coordinate system (e; y) is used to describe the terms v

j;i

and

w

j;i

. With this additional material one can prove Assumption 25.1 for ! = �=2 and ! = 3�=2

but it is not clear how to do this for general !.

Writing �

2

in (25.3), however, makes sense since it is well known that layer terms have a

behaviour as e

�

0

dist (x;@
)="

. The di�culty with Kellogg's result is that he used polar coordi-

nates (r; �) centered at the vertices of 
 which seems to be not suited in regions with " . r� 1,

" . � . 1. The problems remain also in the revised version [111] of [110]. In the former paper

[96], Han and Kellogg treated the case when 
 is the unit square. They derived a slightly

di�erent splitting with boundary layer terms u

b

in Cartesian coordinates and with an estimate

as given by (25.3). But in that paper, it was not obtained that the corner singularities (25.4)

restrict to an "-neighbourhood of C

j

. Nevertheless, Assumption 25.1 seems to be correct, a

proof will appear elsewhere [67].

25.2 Interpolation error estimates on locally re�ned meshes

For applying the �nite element method, the inner domain 


1

is meshed in general (see Remark

25.3 for the exception) using O(h

�2

) isotropic triangles or quadrilaterals e with mesh size

diame � h. The boundary layer strips 


3;j

, j = 1; : : : ; J , are subdivided into O(h

�1

)�O(h

�1

)

trapezoids of comparable size. If desired each trapezoid can be divided into two triangles. Thus

we get

h

1;e

� h and h

2;e

� ah in 


3;j

:

The subdomains 


2;j

, j = 1; : : : ; J , are split into O(h

�2

) (possibly isotropic) elements satisfying

the maximal angle condition. If �

j

> k + 1 (recall that k corresponds to the degree of the

polynomial trial functions) then all elements have the same size, otherwise we demand

diame � "h

1=�

j

if C

j

2 e;

diame � "h(r=")

1��

j

if e � 


2;j

; 0 < dist (C

j

; e) . ";

diame . ah if e � 


2;j

; " . dist (C

j

; e):

(25.7)

The parameters �

j

are chosen such that

�

j

<

�

j

k

if �

j

� k; �

j

= 1 if �

j

> k: (25.8)
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� ah

� "h

1=�

j

� "h

Figure 25.2: Illustration of the mesh re�nement near corners.

We explain the construction near corners by the example of an isotropic triangle with edges

of length O(a) and one vertex in C

j

. A subtriangle with edges of length O(") and one vertex

in C

j

(shaded in Figure 25.2) can be covered by a re�ned mesh as explained in Section 19.

The remaining quadrilateral can be divided into O(h

�1

)�O(h

�1

) quadrilateral elements which

can (but do not have to) be split into two triangles each. If the quadrilaterals are obtained

by a uniform splitting we get elements with an aspect ratio a=". This is allowed but it can be

avoided by some transition layer where the element size "h is doubled until ah is reached.

Remark 25.3 We mention that for compatibility reasons elements e with diame � h and

%

e

� ah must be used in regions 


1;j

� 


1

close to corners C

j

with large interior angles.

Observe that these regions are small, meas

2




1;j

� ah.

The �nite element space V

0h

� C(
) is de�ned again by (24.7). In the remaining part of this

subsection we derive interpolation error estimates for u on the family of meshes just described.

We distinguish two di�erent choices of the parameter a.

Lemma 25.4 Let u

c

satisfy (25.4), and let T

h

be as described above. Then the interpolation

error can be estimated by

ju

c

� I

h

u

c

;W

m;2

(
)j . "

1�m

h

k+1�m

; m = 0; 1;

if

�

j

<

�

j

+ 1�m

k + 1�m

for �

j

� k; �

j

= 1 for �

j

> k; j = 1; : : : ; J: (25.9)

Moreover, the estimate

ku

c

� I

h

u

c

;L

1

(
)k . h

k+1

holds if �

j

satis�es

�

j

<

�

j

k + 1

for �

j

� k + 1; j = 1; : : : ; J: (25.10)
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The parameter k corresponds to the degree of the polynomials, see (24.7) and (3.4).

In the case " � 1 the result is classical, see [28], [150, pages 274f.] and [158] for k = 1, and

[81] for general k. However, in these references the construction of the mesh is more restrictive

than here. Note that (25.8) is the stronger of the conditions (for m = 0 and m = 1) mentioned

in the lemma.

Proof We estimate the error in 


�

2;j

with arbitrary j 2 f1; : : : ; Jg and distinguish two cases.

Note that we can assume that �

j

� k + 1 since otherwise u

c

= 0 in 


�

2;j

.

First, let C

j

2 e. By (25.4) and (25.7) we obtain with kI

h

u

c

;L

1

(e)k . ku

c

;L

1

(e)k that

ku

c

� I

h

u

c

;L

1

(e)k . ku

c

;L

1

(e)k . "

��

j

("h

1=�

j

)

�

j

� h

�

j

=�

j

. h

k+1

(25.11)

for �

j

from (25.10). By analogy we get

ku

c

� I

h

u

c

;L

2

(e)k . (meas

2

e)

1=2

ku

c

;L

1

(e)k . "

��

j

("h

1=�

j

)

�

j

+1

� "h

(�

j

+1)=�

j

. h

k+1

(25.12)

for �

j

� minf(�

j

+ 1)=(k+ 1); 1g. For the estimate of the derivative of the interpolation error

we have to modify this proof slightly since we cannot assume that u

c

2W

1;1

(e). But we have

u

c

2 W

1;2

(e). By integration we get

ju

c

;W

1;2

(e)j

2

. "

�2�

j

Z

diam e

0

r

2�

j

�2

r dr . "

�2�

j

(diame)

2�

j

� h

2�

j

=�

j

and hence by using the inverse inequality and (25.11)

ju

c

� I

h

u

c

;W

1;2

(e)j . ju

c

;W

1;2

(e)j+ (diame)

�1

(meas

2

e)

1=2

kI

h

u

c

;L

1

(e)k . h

�

j

=�

j

. h

k

(25.13)

for �

j

� minf�

j

=k; 1g. Note that we have to add a logarithmic term for �

j

= 1,

ju

c

;W

1;2

(e)j

2

. "

�2

Z

diam e

0

�

�

�

ln

r

"

�

�

�

2

r dr

. "

�2

r

2

�

(ln(r="))

2

2

�

ln(r=")

2

+

1

4

�

diam e

0

. h

1=�

j

(lnh)

2

;

but for �

j

< 1=k the result remains the same.

Let now r

e

:= dist (e; C

j

) > 0. In this case we can use the interpolation error estimates. We

get with (25.7) and for m = 0; 1

ju

c

� I

h

u

c

;W

m;2

(e)j

2

. (diame)

2(k+1�m)

ju

c

;W

k+1;2

(e)j

2

. ["h(r

e

=")

1��

j

]

2(k+1�m)

"

�2�

j

Z

e

r

2(�

j

�k�1)

. "

2[�

j

(k+1�m)��

j

]

h

2(k+1�m)

Z

e

r

2[(1��

j

)(k+1�m)+�

j

�k�1]

� "

2[�

j

(k+1�m)��

j

]

h

2(k+1�m)

Z

e

r

2[�

j

�m��

j

(k+1�m)]

since r

e

� r in e. Hence

X

e�


�

2;j

C

j

62e

ju

c

� I

h

u

c

;W

m;2

(e)j

2

. "

2[�

j

(k+1�m)��

j

]

h

2(k+1�m)

Z

"

0

r

2[�

j

�m��

j

(k+1�m)]+1

dr

� "

2[�

j

(k+1�m)��

j

]

h

2(k+1�m)

"

2[�

j

�m��

j

(k+1�m)]+2

� "

2(1�m)

h

2(k+1�m)

(25.14)
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if �

j

�m � �

j

(k + 1�m) > �1 which follows from (25.9). For �

j

= k + 1 we have to include

the logarithmic term as above but the result remains the same. The L

1

-estimate is derived via

ku

c

� I

h

u

c

;L

1

(e)k . (diame)

k+1

ju

c

;W

k+1;1

(e)j

. ["h(r

e

=")

1��

j

]

k+1

"

��

j

r

�

j

�k�1

e

� "

�

j

(k+1)��

j

h

k+1

r

�

j

��

j

(k+1)

e

. h

k+1

since �

j

� �

j

(k + 1) > 0 and r

e

. ".

Together, the estimates (25.12)�(25.14) give the desired result since u

c

= 0 in 
 n


�

2

.

Lemma 25.5 Let u

b

satisfy (25.3) and let T

h

be as described above with a = a

�

"j ln "j, a

�

�

(k + 1)=

0

. Then the interpolation error estimates

ju

b

� I

h

u

b

;W

m;2

(
)j . "

1=2�m

j ln "j

k+1=2

h

k

; m = 0; 1; (25.15)

ku

b

� I

h

u

b

;L

1

(
)k . j ln "j

k+1

h

k+1

; (25.16)

hold.

Proof In 


1

we have jD

�

u

b

j . "

�j�j

e

�

0

a

�

j ln "j

= "

k+1�j�j

. Hence the desired estimates are

satis�ed when restricted to 


1

.

In 


2

we have jD

�

u

b

j . "

�k�1

for j�j = k + 1. Hence we get for m = 0; 1

ju

b

� I

h

u

b

;W

m;2

(


2

)j . (meas

2




2

)

1=2

(ah)

k

ju

b

;W

k+m;1

(


2

)j

. a

k+1

h

k

"

�k�m

� "

1�m

j ln "j

k+1

h

k

;

ku

b

� I

h

u

b

;L

1

(


2

)k . (ah)

k+1

ju

b

;W

k+1;1

(


2

)j

. j ln "j

k+1

h

k+1

:

Finally, in 


3

we have jD

�

u

b

j . "

��

2

+ "

�j�j

e

�

0

a

�

j ln "j

. "

��

2

. By using Theorem 5.5 or

7.17 we get

ku

b

� I

h

u

b

;L

2

(


3

)k . (meas

2




3

)

1=2

X

j�j=k

h

�

1

(ah)

�

2

kD

�

u

b

;L

1

(


3

)k

. (meas

2




3

)

1=2

X

j�j=k

h

�

1

(ah)

�

2

"

��

2

� (meas

2




3

)

1=2

h

k

X

j�j=k

j ln "j

�

2

� h

k

"

1=2

j ln "j

k+1=2

ju

b

� I

h

u

b

;W

1;2

(


3

)j . (meas

2




3

)

1=2

X

j�j=k

h

�

1

(ah)

�

2

jD

�

u

b

;W

1;1

(


3

)j

. (meas

2




3

)

1=2

h

k

X

j�j=k

a

�

2

"

��

2

�1

� h

k

"

�1=2

j ln"j

k+1=2

ku

b

� I

h

u

b

;L

1

(


3

)k .

X

j�j=k+1

h

�

1

(ah)

�

2

kD

�

u

b

;L

1

(


3

)k

. h

k+1

j ln "j

k+1

:

Summing up these estimates we get the assertion.



25. Boundary layers and corner singularities in a reaction-di�usion problem 141

Lemma 25.6 Let u

b

satisfy assumption (25.3) and let T

h

be as described above with a =

minfa




; a

�

"j lnhjg, a

�

� (k+1)=

0

, a




suitably chosen. Then the interpolation error estimates

ku

b

� I

h

u

b

;L

2

(
)k . h

k

(h + "

1=2

j lnhj

k+1

); (25.17)

ju

b

� I

h

u

b

;W

1;2

(
)j . "

�1=2

h

k

j lnhj

k+1

; (25.18)

ku

b

� I

h

u

b

;L

1

(
)k . h

k+1

j lnhj

k+1

; (25.19)

hold.

Some ideas for the following proof were taken from [73].

Proof We prove the lemma �rst for the case a = a

�

"j lnhj. In 


1

we have jD

�

u

b

(x)j .

"

j�j

e

�

0

dist (x;@�)="

. Since

R

1

a

e

�2

0

x

2

="

dx

2

� "e

�2

0

a="

� "h

2(k+1)

we obtain

kD

�

u

b

;L

2

(


1

)k . "

�j�j+1=2

h

k+1

;

kD

�

u

b

;L

1

(


1

)k . "

�j�j

h

k+1

:

Consequently, we derive by using the triangle inequality

ku

b

� I

h

u

b

;L

2

(


1

)k . (meas

2




1

)

1=2

ku

b

;L

1

(


1

)k . h

k+1

ju

b

� I

h

u

b

;W

1;2

(


1

)j . ju

b

;W

1;2

(


1

)j+ h

�1

kI

h

u

b

;L

2

(


1

)k

. "

�1=2

h

k+1

+ h

k

. "

�1=2

h

k

;

ku

b

� I

h

u

b

;L

1

(


1

)k . ku

b

;L

1

(


1

)k . h

k+1

:

The W

1;2

-norm estimate has to modi�ed slightly in the exceptional subregions 


1;j

close to

corners C

j

with large interior angles, see the remark at the end of the description of the mesh.

With %

e

� ah and meas

2




1;j

� ah we obtain

ju

b

� I

h

u

b

;W

1;2

(


1;j

)j . ju

b

;W

1;2

(


1;j

)j+ (ah)

�1

kI

h

u

b

;L

2

(


1;j

)k

. "

�1=2

h

k+1

+ (ah)

�1

(ah)

1=2

h

k+1

. "

�1=2

h

k

;

that means, the result above is valid.

In 


2

we have jD

�

u

b

j . "

�k�1

for j�j = k+1 and we get by analogy to the proof of Lemma

25.5

ju

b

� I

h

u

b

;W

m;2

(


2

)j . "

1�m

h

k

j lnhj

k+1

;

ku

b

� I

h

u

b

;L

1

(


2

)k . h

k+1

j lnhj

k+1

:

In 


3

we evaluate the terms separately. Let u

b

=: u

1

+ u

2

with

jD

�

u

1

j . "

��

2

e

�

0

x

2

="

. "

��

2

;

jD

�

u

2

j . "

�j�j

e

�

0

r="

. "

�j�j

e

�

0

a

�

j ln hj

. "

�j�j

h

k+1

:

The �rst term can be treated as u

b

in the proof of Lemma 25.5. We get

ju

1

� I

h

u

1

;W

m;2

(


3

)j . h

k

"

1=2�m

j lnhj

k+1=2

ku

1

� I

h

u

1

;L

1

(


3

)k . h

k+1

j lnhj

k+1

:

The second term can be bounded as u

b

in 


1

. One has only to mention that the inverse

inequality in the W

1;2

-estimate leads to a factor (ah)

�1

� ("h)

�1

instead of h

�1

. This, however,
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h

�1

" = 10

�1

" = 10

�3

" = 10

�5

4 0.648 0.564 0.552

8 0.650 0.574 0.566

16 0.653 0.576 0.574

32 0.653 0.576 0.576

64 0.653 0.583 0.578

Table 25.1: Example 24.4: Scaled error norm jjju� u

h

jjj




=("

1=2

j log

10

"jh) for a = 2"j log

10

"j.

does not in�uence the result since (meas

2




3

)

1=2

produces another a

1=2

. Summing up the

estimates we get the assertion for a = a

�

"j lnhj.

In the remaining case a = a




6= a(") the mesh is quasi-uniform. We get

ju

b

� I

h

u

b

;W

m;2

(
)j . h

k

ju

b

;W

k+m;2

(
)j . "

1=2�k�m

h

k

;

ku

b

� I

h

u

b

;L

1

(


2

)k . h

k+1

ju

b

;W

k+1;1

(
)j . "

�k�1

h

k+1

:

(The factor "

1=2

is obtained by integration of (25.3).) With " < a




=(a

�

j lnhj) � jlnhj

�1

we

obtain the desired result.

Remark 25.7 We mention that the quality of the interpolation error estimates for u

b

can be

improved. First, the L

2

-estimate can be made of order h

k+1

in both lemmata but this is not

exploited further.

Second, it is possible to diminish the exponent of the logarithmic term in (25.15) from k+1=2

to k, see the preprint version of [14], but this re�ned proof does not extend to three dimensions

when k = 1. Therefore we do not pursue this further. We conclude from a computational

argument that the result is optimal with this modi�cation. Table 25.1 displays the scaled error

norm jjju� u

h

jjj




=("

1=2

j log

10

"jh) for calculations of Example 24.4 with di�erent values of h

and ". It becomes constant for decreasing " and h.

Theorem 25.8 Let u satisfy Assumption 25.1 and consider T

h

as described above with �

satisfying (25.8). For a = a

�

"j ln "j, a

�

� (k + 1)=

0

, we obtain

ju� I

h

u;L

2

(
)j . "

1=2

j ln "j

k+1=2

h

k

+ h

k+1

;

ju� I

h

u;W

1;2

(
)j . "

�1=2

j ln "j

k+1=2

h

k

ku� I

h

u;L

1

(
)k . j ln "j

k+1

h

k+1

:

For a = minfa




; a

�

"j lnhjg, a

�

� (k + 1)=

0

, a




suitably chosen, we get

ku� I

h

u;L

2

(
)k . h

k

(h+ "

1=2

j lnhj

k+1

);

ju� I

h

u;W

1;2

(
)j . "

�1=2

h

k

j lnhj

k+1

;

ku� I

h

u;L

1

(
)k . h

k+1

j lnhj

k+1

:

Proof For u

b

and u

c

use Lemmata 25.4�25.6, for u

s

and u

r

use that

j(u

s

+ u

r

) � I

h

(u

s

+ u

r

);W

m;q

(
)j . h

k+1�m

ju

s

+ u

r

;W

k+1;q

(
)j (25.20)

.

�

h

k+1�m

[(meas

2


)

1=2

+ "

2

] if q = 2

h

k+1�m

[1 + 1] if q =1:

(25.21)

In order to bound u

r

we take n � k+3 in Assumption 25.1. In the case q =1 we use apply the

embeddingW

k+3;2

(
) ,!W

k+1;1

(
) which gives ku

r

;W

k+1;1

(
)k . ku

r

;W

k+3;2

(
)k . 1.
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25.3 Finite element error estimates

We conclude now the error estimate in the energy norm (24.6) for the �nite element solution

u

h

determined by (24.5).

Theorem 25.9 Let u satisfy Assumption 25.1 and let u

h

be the �nite element solution on a

family of meshes as described in Subsection 25.2 where � satis�es (25.8). For a = a

�

"j ln "j,

a

�

� (k + 1)=

0

, we obtain

jjju� u

h

jjj




. h

k

("

1=2

j ln "j

k+1=2

+ h); (25.22)

whereas for a = minfa




; a

�

"j lnhjg, a

�

� (k + 1)=

0

, the estimate

jjju� u

h

jjj




. h

k

("

1=2

j lnhj

k+1

+ h); (25.23)

holds.

Proof Use Theorem 25.8 and the projection property of the �nite element method with respect

to the energy norm.

Remark 25.10 We proved error estimates for the Galerkin solution on two types of anisotrop-

ically re�ned �nite element meshes. Let us compare both approaches. In Shishkin type meshes

we use a = a

�

"j ln "j, a

�

� (k+1)=

0

. That means that the re�ned mesh covers the layer. Indeed,

we have D

(0;j)

e

�

0

x

2

="

� "

k+1�j

in 


1

. With Shishkin meshes, a = minfa




; a

�

"j lnhjg, we

resolve only part of the layer as long as h > ". Is this �more economical� [186]? We obtain with

N

2

elements

jjju� u

h

jjj




.

�

N

�k

"

1=2

j ln "j

k+1=2

+N

�(k+1)

if a = a

�

"j ln "j;

N

�k

"

1=2

j lnN j

k+1

+N

�(k+1)

if a = a

�

"j lnN j:

(25.24)

If the constants in these two estimates (hidden in .) are equal (which is not clear) then the

error is smaller for Shishkin meshes.

The di�erence in (25.24) is much more essential in convection-di�usion-reaction problems,

where the term "

1=2

does not appear in estimates like (25.24), see Section 26. In this case we

get even lim

"!0

jjju� u

h

jjj




=1 for �xed h and Shishkin type meshes.

We would like to propose another de�nition for a, namely

a = a

�

"minfj lnhj; j ln "jg; (25.25)

resulting in a slightly sharper estimate than both (25.22) and (25.23).

Corollary 25.11 Let u satisfy Assumption 25.1 and let u

h

be the �nite element solution of

problem (25.1) on a family of meshes as described above where � satis�es (25.8). For a as in

(25.25) we obtain

jjju� u

h

jjj




. h

k

"

1=2

minfj lnhj

k+1=2

; j ln "j

k+1

g+ h

k+1

:

Remark 25.12 As we have seen in Sections 6, 8, and 9, the validity of the local interpolation

error estimates for anisotropic �nite elements depends critically on the dimension of the domain.

For some cases of the parameters k, m, and q, more regularity has to be assumed in three

dimensions. But in the proofs of Lemmata 25.5 and 25.6 we used only that u

b

2 W

k+1;1

(


3

)

such that the anisotropic error estimates hold in three dimensions as well. However, estimate
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(25.20) in the proof of Theorem 25.8 is not valid in the single instance d = 3, k = 1,m = 1, q = 2.

The way out is to use additional smoothness u

s

+ u

r

2 W

k+2;2

(
) and an interpolation error

estimate as in the second part of Corollary 6.6. With these arguments we see that the results

of Lemmata 25.5 and 25.6 can be extended to three dimensions provided that an assumption

like 25.1 is given.

The critical part in the investigation of the three-dimensional problem is that the singular

part u

c

contains not only corner singularities but also edge singularities. They have to be

approximated, for example, by re�ned meshes similar to them discussed in Section 21.

An analysis for the case 
 = (0; 1)

3

and without corner and edge singularities (as it is

possible under some compatibility conditions on the data) can be found in [14].

Let us discuss the implications of an insu�cient treatment of the corner singularity u

c

.

Example 25.13 Consider an integer j 2 f1; : : : ; Jg such that �

j

< k. Let u

c

satisfy (25.4).

Assume that T

h

is constructed as described at the beginning of Subsection 25.2, with the

exception that T

h

is quasi-uniform in 


�

2;j

. The element size in this subdomain is denoted by h.

2

Lemma 25.14 In the situation of Example 25.13 the interpolation error can be estimated by

ku

c

� I

h

u

c

;L

2

(


�

2;j

)k . h("

�1

h)

�

j

��

;

ju

c

� I

h

u

c

;W

1;2

(


�

2;j

)j . ("

�1

h)

�

j

��

;

ku

c

� I

h

u

c

;L

1

(


�

2;j

)k . ("

�1

h)

�

j

��

:

Before we prove the lemma we formulate a corollary which follows due to the projection

property of the �nite element method.

Corollary 25.15 In the situation of Example 25.13 the �nite element error can be estimated

by

jjju� u

h

jjj




. (" + h)("

�1

h)

�

j

��

. "h

�

j

��

�

8

<

:

1 if �

j

= 1; that means h � "h;

j ln "j

�

j

��

if h � ah and a � "j ln "j;

j lnhj

�

j

��

if h � ah and a � "j lnhj:

Proof (Lemma 25.14) By analogy to the proof of Lemma 25.4 we obtain for elements e with

C

j

2 e (that means r

e

:= dist (e; C

j

) = 0) the estimates

ku

c

� I

h

u

c

;L

1

(e)k . ku

c

;L

1

(e)k . "

��

j

h

�

j

;

ku

c

� I

h

u

c

;L

2

(e)k . (meas

2

e)

1=2

ku

c

;L

1

(e)k . "

��

j

h

1+�

j

;

ju

c

� I

h

u

c

;W

1;2

(e)j . "

��

j

h

�

j

:

For elements with r

e

> 0 we use that h . r

e

. r in e and �

j

< k to obtain for m = 0; 1 and

arbitrary � 2 (0; k� �

j

)

ju

c

� I

h

u

c

;W

m;2

(e)j

2

. h

2(k+1�m)

ju

c

;W

k+1;2

(e)j

2

. h

2(1�m+�

j

��)

h

2(k��

j

+�)

"

�2�

j

Z

e

r

2(�

j

�k�1)

. h

2(1�m+�

j

��)

"

�2�

j

Z

e

r

2(�1+�)
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and similarly

ku

c

� I

h

u

c

;L

1

(e)k

2

. h

2k

ju

c

;W

k+1;2

(e)j

2

. h

2(�

j

��)

"

�2�

j

Z

e

r

2(�1+�)

:

Summing up these estimates we get

ku

c

� I

h

u

c

;L

2

(


�

2;j

)k

2

. "

�2�

j

h

2(1+�

j

)

+ "

�2�

j

h

2(1+�

j

��)

Z

"

0

r

2(�1+�)+1

dr

. "

2(��

j

+�)

h

2(1+�

j

��)

;

ju

c

� I

h

u

c

;W

1;2

(


�

2;j

)j

2

. "

�2�

j

h

2�

j

+ "

�2�

j

h

2(�

j

��)

Z

"

0

r

2(�1+�)+1

dr

. "

2(��

j

+�)

h

2(�

j

��)

;

ku

c

� I

h

u

c

;L

1

(


�

2;j

)k

2

. max

�

"

�2�

j

h

2�

j

; "

�2�

h

2(�

j

��)

Z

"

0

r

2(�1+�)+1

dr

�

. "

2(��

j

+�)

h

2(�

j

��)

:

We conjecture that � = 0 can be achieved by a more involved proof, see [150, page 275] for

a proof with a more special �nite element mesh. In that monograph we �nd also an example

[150, page 265] which can be modi�ed slightly to show that these estimates are sharp in the

following sense.

Lemma 25.16 For v = "

��

r

�

sin�� (r := dist (x;C

j

)) we get in general no better result than

min

v

h

2V

0h

jjj v� v

h

jjj




& "h

�

�

8

<

:

1 if �

j

= 1; that means h � "h;

j ln "j

�

if h � ah and a � "j ln "j;

j lnhj

�

if h � ah and a � "j lnhj;

(25.26)

if the mesh is chosen as described in Example 25.13.

Proof Without loss of generality assume that C

j

= (0; 0). Let e be a triangle with the vertices

(0; 0), (b; 0) on the boundary of 
 and (0; b) in the interior. Since any v

h

2 V

0h

satis�es the

boundary condition we get via v

h

(0; 0) = v

h

(b; 0) = 0 the relation D

(1;0)

v

h

= 0. Consequently,

we obtain by a direct calculation

jv � v

h

;W

1;2

(e)j

2

� kD

(1;0)

v;L

2

(e)k

2

�

Z

�=2

0

Z

b=

p

2

0

(D

(1;0)

v)

2

rdrd�

=

Z

�=2

0

Z

b=

p

2

0

("

��

�r

��1

sin(� � 1)�)

2

rdrd�

= "

�2�

�

2

(2�)

�1

(b=

p

2)

2�

Z

�=2

0

sin

2

(� � 1)� d� � ("

�1

b)

2�

:

Consequently,

min

v

h

2V

0h

j

e

jv � v

h

;W

1;2

(e)j & "

��

h

�

�

�

h

�

if h � "h;

(ah=")

�

if h � ah:

(25.27)
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b

ordinary layer

b

parabolic layer

Figure 26.1: Illustration of the location of ordinary and parabolic boundary layers.

This function v can also be considered in our example since the leading singularity is

"

��

r

�

sin�� [110]. Such a term is in general contained in the solution when the data do

not satisfy certain compatibility conditions. Consequently, we cannot expect a better approx-

imation order for the �nite element solution than that given in (25.26) when no mesh grading

near the corners is applied.

26 A convection-di�usion-reaction problem

26.1 Statement of the problem

This section is concerned with the �nite element solution of the linear(ized) di�usion-convection-

reaction model problem

L

"

u := �"�u+ b � ru+ cu = f in 
; u = 0 on @
; (26.1)

where 
 � R

2

is a bounded polygonal domain, " 2 (0; 1] is the perturbation parameter, and b,

c, and f are su�ciently smooth functions satisfying

r � b = 0; c � 0 almost everywhere in 
: (26.2)

Problem (26.1) is of singularly perturbed type when

"

�1

jb(x)j � 1 and/or "

�1

jc(x)j � 1: (26.3)

The solution u has in general sharp boundary or interior layers, as introduced in Sections 24

and 25 for the special case b � 0 but with a much greater variety, see Example 26.1 for an

introduction. The resolution of such layers is again a typical application of anisotropic meshes.

Example 26.1 The location of boundary layers is well known. To get an example we consider

problem (26.1) in the unit square 
 = (0; 1). Assume that b = (cos�; sin�)

T

. In the case

� 2 (0; �=2) there occur only ordinary (or out�ow) boundary layers of thickness O("j ln "j) at

the two sides x

1

= 1 and x

2

= 1. For � = 0 parabolic (or characteristic) layers of thickness

O("

1=2

j ln "j) are located at x

2

= 0 and x

2

= 1. At the out�ow part of the boundary layer,

x

1

= 1, again an ordinary boundary layer occurs. In all cases there is no layer at the in�ow

part of the boundary, see also Figure 26.1. In the case b � 0 there is a layer along the whole

boundary @
, see Sections 24 and 25. 2

The investigation of properties of the analytical solution and of methods for the numerical

solution of (26.1) are topics of extensive current research. A good review of the state of the art
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�
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�

0

�

�

�

�

C

1

C
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C
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C
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1




2;2




2;3




3;1




3;2




3;3

b

Figure 26.2: Illustration of the partition for a convection dominated problem.

in January 1997 is given in [162]. So we restrict pointers to related literature to a minimum and

present only some results for the �nite element method on anisotropic meshes. But before we

can do that we have to introduce some notation and to discuss assumptions on the analytical

solution.

Denote by �

�

, �

+

, and �

0

the in�ow, out�ow and characteristic parts of the boundary

� = @
; the index denotes the sign of b � n where n is the outward unit normal on �. Note

that corners cannot be classi�ed by this de�nition, so they do not belong to �

�

, �

+

, or �

0

. For

simplicity we assume that the type of the boundary does not change at corners with interior

angle greater than or equal to �. We discuss the additional di�culties with concave corners in

Remark 26.8 at the end of this section.

The parameter dependent partition of 
 is obtained by introducing lines with a distance

a

+

to �

+

and a

0

to �

0

, and eventually (near corners with large angles) some more lines per-

pendicularly to the parallel lines, see the illustration in Figure 26.2. The parameters a

+

and

a

0

will later be chosen as the thickness of the re�nement layer (a

+

� "j ln "j, a

0

� "

1=2

j ln "j,

or a

+

� "j lnhj, a

0

� "

1=2

j lnhj). Again, the interior domain is denoted by 


1

, the union of

the small subdomains 


2;j

near corners C

j

by 


2

:=

S

j




2;j

, and the union of all boundary

strips 


3;j

near �

+

and �

0

by 


3

:=

S

j




3;j

. Note that there are no such subdomains near �

�

.

Moreover, we introduce 


+

:=

S

3

i=2

S

j:@


i;j

\�

+

6=;




i;j

and 


0

:=

S

3

i=2

S

j:@


i;j

\�

0

6=;




i;j

.

In 


3

we can de�ne a boundary �tted Cartesian coordinate system (x

1

; x

2

) with x

2

=

dist (x;�). Particular (in general non-orthogonal) coordinate systems are also considered near

(r . "

1=2

j ln "j) corners C

j

2 �

+

\ �

0

. Then C

j

is assumed to be the origin, �

+

\ @


2;j

is part of the x

1

-axis, and �

0

\ @


2;j

is part of the x

2

-axis. Derivatives (D

�

u)(x) for x in

these subdomains are to be understood with respect to these coordinate systems. Points in

the remaining subdomains can be considered in any Cartesian coordinate system. Finally, we

de�ne by r the distance to the set of corners fC

j

g

J

j=1

.

Assumption 26.2 Let u be the solution of problem (26.1) where b, c, and f are su�ciently

smooth functions satisfying (26.2) and certain compatibility conditions. De�ne index sets

J

++

:= fj : (@


2;j

\ �) � �

+

g; J

+

:= fj : (@


3;j

\ �) � �

+

g;

J

00

:= fj : (@


2;j

\ �) � �

0

g; J

0

:= fj : (@


3;j

\ �) � �

0

g;

J

0+

:= fj : C

j

2 �

+

\ �

0

)g:
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Then the solution u can be split into a smooth term u

s

, boundary layer terms u

b;j

, j 2 J

+

[J

0

,

and corner layer terms u

c;j

, j 2 J

++

[ J

00

[ J

0+

,

u = u

s

+

X

j2J

+

[J

0

u

b;j

+

X

j2J

++

[J

00

[J

0+

u

c;j

;

such that

jD

�

u

s

j .

1

in 
;

jD

�

u

b;j

j .

8

>

>

<

>

>

:

"

��

2

e

�

0

x

2

="

in 


3;j

; j 2 J

+

;

"

�j�j

e

�

0

dist (x;�\


3;j

)="

in 
 n


3;j

; j 2 J

+

;

"

��

2

=2

e

�

0

x

2

=

p

"

in 


3;j

; j 2 J

0

;

"

�j�j=2

e

�

0

dist (x;�\


3;j

)=

p

"

in 
 n


3;j

; j 2 J

0

;

jD

�

u

c;j

j .

8

>

>

<

>

>

:

"

�j�j

e

�

0

dist (x;C

j

)="

if j 2 J

++

;

"

�j�j=2

e

�

0

dist (x;C

j

)=

p

"

if j 2 J

00

;

"

��

1

=2

e

�

0

x

1

=

p

"

"

��

2

e

�

0

x

2

="

if j 2 J

0+

; r . "

1=2

j ln "j;

"

�j�j=2

e

�

0

dist (x;C

j

)=

p

"

if j 2 J

0+

; r & "

1=2

j ln "j;

with some constant 

0

> 0.

This assumption covers the typical behaviour of the solution within (ordinary and para-

bolic) boundary layers, see also Example 26.3. However, problems with corner singularities

and interior layers are excluded. The treatment of corner singularities is not completely clear

since they may, due to the convection, in�uence not only a neighbourhood of the corners. The

treatment of interior layers was already discussed in Remark 24.6. They do not appear in so-

called problems of channel type [13, 141] if the right hand side f and the in�ow boundary are

su�ciently smooth [141, Theorem 2.3]. We admit also that the description of the behaviour

near C

j

2 �

+

[�

0

is speculative. We did not exclude parabolic layers, as it is done in Example

26.3, because we wanted to stress that there is no approximation problem with the terms u

b;j

,

j 2 J

0

.

Example 26.3 Consider


 = (0; 1)

2

; c � 0; b

1

(x) � �2

0

< 0; b

2

(x) � �2

0

< 0: (26.4)

Then we have only ordinary boundary layers at the sides x

1

= 0 and x

2

= 0. It is proved in

[73] that the solution u ful�lls Assumption 26.2 for j�j � 2 provided that the right hand side

satis�es the compatibility conditions

f(C

j

) = 0; j = 1; : : : ; 4; (D

s

f)(1; 1) = 0; jsj � 2: (26.5)

In particular, condition (26.5) guarantees that no interior layer emanates from the corner (1; 1)

in the in�ow boundary layer. 2

Let us discuss now the �nite element solution of (26.1). The variational formulation of (26.1)

reads:

Find u 2 V

0

: a(u; v) = (f; v)




8v 2 V

0

; (26.6)

where

a(u; v) := "(ru;rv)




+

1

2

f(b � ru; v)




� (b � rv; u)




g+ (cu; v)




:
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For a family T

h

of admissible triangulations we can de�ne a �nite element space V

h

, see Section

3. We consider the following stabilized �nite element method of Galerkin/Least-squares type

[105].

Find u

h

2 V

0h

: a

h

(u

h

; v

h

) = hf; v

h

i

h

8v

h

2 V

0h

; (26.7)

with

a

h

(u; v) := a(u; v) +

X

e

�

e

(L

"

u; L

"

v)

e

;

hf; vi

h

:= (f; v)




+

X

e

�

e

(f; L

"

v)

e

;

and a set f�

e

g of non-negative numerical di�usion parameters.

Remark 26.4 Method (26.7) is of Galerkin-Petrov type. This can be seen easily by rewriting

a

h

(:; :) and hf; :i

h

,

a

h

(u; v) :=

X

e

(L

"

u; v + �

e

L

"

v)

e

;

hf; vi

h

:=

X

e

(f; v + �

e

L

"

v)

e

:

Other methods of stabilization can be obtained, for example, by replacing +�

e

L

"

v by ��

e

L

�

"

v

in the expressions above, see also the explanation in Remark 24.7, page 134.

26.2 Error estimates for the pure Galerkin method

With �

e

= 0 8e 2 T

h

we obtain by (26.7) the standard Galerkin method. At least on isotropic

meshes the Galerkin solution may su�er from non-physical oscillations (wiggles) unless the

elementwise numbers

P

e

:= "

�1

diame kb; [L

1

(e)]

d

k; �

e

:= "

�1

(diame)

2

kc;L

1

(e)k; (26.8)

are su�ciently small. As a remedy, stabilized variants have been developed, for example (26.7)

with �

e

> 0 [105]. Practical calculations on quasi-uniform (isotropic) meshes show that wiggles

occur globally in 
 for the standard Galerkin method, but they are restricted to a numerical

layer region of width O(h

�

2

j lnhj) for method (26.7) with suitable chosen parameters �

e

. The

numerical layers are in general larger than the boundary and interior layers which have a width

O("

�

1

j ln "j). The size of �

1

depends on the problem and characterizes the layer, see Example

26.1, whereas �

2

depends on the discretization and is not known in general.

One can try to resolve the layers by means of anisotropic mesh re�nement. For the con-

struction of the �nite element mesh we use ideas from Sections 24 and 25. The boundary strips




3;i

are subdivided into O(h

�1

) � O(h

�1

) trapezoids which can be divided further into two

triangles. Each of the subdomains 


1

and 


2;j

is split into O(h

�2

) elements e satisfying the

maximal angle condition. In each subdomain the elements shall have comparable size.

The Galerkin �nite element method on such meshes is analyzed for bilinear rectangular

elements in [186]. The problem is like the one described in Example 26.3, but with c � c

0

> 0,


 = (0; 1)

2

; c � c

0

> 0; b

1

(x) � �2

0

< 0; b

2

(x) � �2

0

< 0: (26.9)

For a

+

= minf1=2; (2=

0

)"j lnhjg these authors prove the interpolation error estimates

ku� I

h

u;L

1

(


1

)k . h

2

;

ku� I

h

u;L

1

(
 n


1

)k . h

2

j lnhj

2

;

jjju� I

h

u jjj




. hj lnhj; (26.10)
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[186, Theorems 4.2 and 4.3] where

jjj v jjj

2




:= "jv;W

1;2

(
)j

2

+ kv;L

2

(
)k

2

:

Theorem 26.5 Let u be the solution of (26.1) and assume that (26.2), (26.3), (26.5), and

(26.9) are valid. Assume that u

h

2 V

0h

is the Galerkin solution (�

e

= 0 for all e in (26.7)) on a

Shishkin mesh with bilinear rectangular elements and a

+

= minf1=2; (2=

0

)"j lnhjg. Then the

error estimate

jjju� u

h

jjj




. hj lnhj (26.11)

holds.

Proof With

jjju� u

h

jjj




. jjju� I

h

u jjj




+

 

X

e2T

h

min

�

h

�2

2

ku� I

h

u;L

2

(e)k

2

; "

�1

meas

2

e ku� I

h

u;L

1

(e)k

2

	

!

1=2

. jjju� I

h

u jjj




+ h

�1

ku� I

h

u;L

2

(


1

)k+ "

�1=2

(meas

2

(
 n


1

))

1=2

ku� I

h

u;L

1

(
 n


1

)k

and (26.10) the result (26.11) is obtained [186].

Moreover, the pointwise error estimate

max

i

j(u� u

h

)(X

(i)

)j . h

1=2

j lnhj

3=2

; X

(i)

2 
 n


1

; (26.12)

in the re�nement layer is proved in [186] by using the discrete Green function. But this estimate

is not optimal.

We remark also that the estimate (26.10) was proved later in a simpler, more speci�c (term

by term) way in [73]: these authors obtained for triangular and rectangular elements with k = 1

ku� I

h

u;L

2

(
)k . h

2

(1 + "

1=2

j lnhj

2

); (26.13)

"

1=2

ju� I

h

u;W

1;2

(


1

)j . h; (26.14)

"

1=2

ju� I

h

u;W

1;2

(
 n


1

)j . hj lnhj; (26.15)

by using the anisotropic interpolation error estimates of Theorems 5.5 and 7.3. Since these

local estimates are now available also for trapezoidal elements, see Theorem 7.17, these results

extend to more general domains, provided that Assumption 26.2 can be proved.

From the theoretical point of view, estimates (26.11) and (26.12) show that the pure Galerkin

method converges uniformly with respect to " � 1. However, as reported in [162], practical

calculations with linear and bilinear elements show that these estimates are very sensitive to

the choice of the parameter a

+

. Such non-robust behaviour reduces the practical importance

of the pure Galerkin method.

26.3 Error estimates for a stabilized Galerkin method

Let us consider from now on the stabilized Galerkin method of Galerkin/Least-squares type as

given by (26.7) with �

e

> 0. The potential of this method, when combined with anisotropic

�nite element meshes, was �rst investigated theoretically in [14] and numerically in [176]. Let

us recall some results of [14].
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One can prove existence and uniqueness of the solution u

h

2 V

0h

of (26.7) on a general

admissible mesh (including anisotropic re�nement) [14, Theorem 3.4]. The bilinear form a

h

(:; :)

induces a norm in V ,

jjj v jjj

2


;�

:= a

h

(v; v) = "jv;W

1;2

(
)j

2

+ kc

1=2

v;L

2

(
)k

2

+

X

e�


�

e

kL

"

v;L

2

(e)k

2

: (26.16)

The �nite element error can be estimated in this norm via interpolation error estimates by [14,

estimate (3.28)]

jjju� u

h

jjj

2


;�

� inf

v

h

2V

0h

 

2jjju� v

h

jjj

2


;�

+

X

e2T

h

Z

2

e

ku� v

h

;L

2

(e)k

2

!

(26.17)

with Z

e

:= minf"

�1

kb; [L

1

(e)]

d

k

2

; 2�

�1

e

g. (By using the technique of [186, (5.2)�(5.3)] one

can improve Z

e

to Z

e

:= minf"

�1

kb; [L

1

(e)]

d

k

2

; 2�

�1

e

; h

�1

2;e

B

e

(min

e

c(x))

�1=2

g which is helpful

for c(x) � c

0

> 0 and the treatment of Shishkin meshes.) Inserting the local interpolation

error estimates (Theorems 5.5 and 7.3) and the assumptions on the analytical solution u, and

equilibrating some terms leads to a suitable choice of �

e

,

�

e

= "

�1

h

2

2;e

(1 + P

2

e

+ �

2

e

)

�1=2

if P

4

e

� 1 + P

2

e

+ �

2

e

; (26.18)

�

e

= min

(

"

B

2

2

;

h

2

2;e

"

1 + P

2

e

+ �

e

1 + P

2

e

+ �

2

e

)

if P

4

e

� 1 + P

2

e

+ �

2

e

; (26.19)

with P

e

:= "

�1

h

2;e

B

e

, B

e

:= kb; [L

1

(e)]

2

k, �

e

:= "

�1

h

2

2;e

C

e

, C

e

:= kc;L

1

(e)k, h

2;e

� h

1;e

.

With this choice we get for a slightly di�erent mesh than introduced above (h

2;e

= "h in the

ordinary boundary layer and h

2;e

= "

1=2

h in the characteristic boundary layer which leads to a

number of elements of order N

el

� h

�2

j ln "j

2

) the error estimate

jjju�u

h

jjj


;�

. h

k

j ln "j

1=2

(1+kb; [L

1

(
)]

2

kh+kc;L

1

(
)kh

2

)

1=2

� N

�k=2

el

j ln "j

k+1=2

: (26.20)

We will give now an error estimate for the Shishkin type meshes introduced before in this

section (a

+

� "j ln "j, a

0

� "

1=2

j ln "j). We comment on Shishkin meshes (a

+

� "j lnhj, a

0

�

"

1=2

j lnhj) im Remark 26.7 at the end of this section. Since we did not include the dependence

of u(x) on b(x) and c(x) in Assumption 26.2 we simplify further by assuming

"� 1; jb(x)j � 1; jc(x)j . 1 in 
; (26.21)

which results in (26.18) as the proper choice of �

e

,

�

e

= h

2

2;e

("

2

+ h

2

2;e

B

2

e

+ h

4

2;e

C

2

e

)

�1=2

: (26.22)

Theorem 26.6 Let u satisfy Assumption 26.2 and let T

h

be as described above with a

+

=

a

�

"j ln "j, a

0

= (a

�

=2)"

1=2

j ln "j, a

�

� (k + 1)=

0

. Choose �

e

as given by (26.22) and assume

(26.21). Then the error estimate

jjju� u

h

jjj


;�

. h

k

j ln "j

k+1

(j ln "j

�1

+ kb; [L

1

(
)]

2

kh+ kc;L

1

(
)kh

2

)

1=2

(26.23)

. h

k

j ln "j

k+1=2

� N

�k=2

el

j ln "j

k+1=2

(26.24)

is valid.
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Proof We follow the steps of the proof of the related result (26.20) in [14]. From (26.17) we

obtain by using the anisotropic interpolation error estimates

jjju� u

h

jjj

2


;�

.

X

e2T

h

h

"ju� I

h

u;W

1;2

(e)j

2

+ kc

1=2

(u� I

h

u);L

2

(e)k

2

+

+�

e

k"�(u� I

h

u) + b � r(u� I

h

u) + c(u� I

h

u);L

2

(e)k

2

+

+�

�1

e

ku� I

h

u;L

2

(e)k

2

i

(26.25)

.

X

e2T

h

h

"

2

�

e

ju� I

h

u;W

2;2

(e)j

2

+ (" + �

e

B

2

e

)ju� I

h

u;W

1;2

(e)j

2

+

+(C

e

+ �

e

C

2

e

+ �

�1

e

)ku� I

h

u;L

2

(e)k

2

i

.

X

e2T

h

X

j�j=k�1

X

j�j=1

X

jj=1

E

e;�;

h

2(�+�+)

e

kD

�+�+

u;L

2

(e)k

2

(26.26)

with

E

e;�;

:= "

2

�

e

h

�2(�+)

e

+ ("+ �

e

B

2

e

)h

�2

e

+ (C

e

+ �

e

C

2

e

+ �

�1

e

)

. "h

�2

e

+C

e

+ �

e

("

2

h

�2(�+)

e

+ B

2

e

h

�2

e

+C

2

e

) + �

�1

e

. "h

�2

2;e

+ B

e

h

�1

2;e

+C

e

;

where we have used (26.22), such that

jjju� u

h

jjj

2


;�

.

X

e2T

h

("h

�2

2;e

+B

e

h

�1

2;e

+ C

e

)

X

j�j=k+1

h

2�

e

kD

�

u;L

2

(e)k

2

.

X

e2T

h

("h

�1

2;e

h

1;e

+ B

e

h

1;e

+ C

e

h

1;e

h

2;e

)

X

j�j=k+1

h

2�

e

kD

�

u;L

1

(e)k

2

: (26.27)

We show now that

X

j�j=k+1

h

2�

e

kD

�

u;L

1

(e)k

2

. h

2(k+1)

j ln "j

2(k+1)

(26.28)

for all e 2 T

h

by distinguishing several cases.

First, let e � 


1

. From Assumption 26.2 we obtain for j�j = k + 1

jD

�

u

b;j

j .

"

�(k+1)

e

�

0

a

+

="

. "

�(k+1)

e

�(k+1)j ln "j

= 1

for j 2 J

+

;

jD

�

u

b;j

j .

"

�(k+1)=2

e

�

0

a

0

=

p

"

. "

�(k+1)=2

e

�(k+1)j ln "j=2

= 1

for j 2 J

0

;

jD

�

u

c;j

j .

"

��

1

=2

e

�

0

a

0

=

p

"

"

��

2

e

�

0

a

+

="

. "

(k+1)=2

for j 2 J

0+

; r . "

1=2

j ln "j;

jD

�

u

c;j

j .

"

�(k+1)=2

e

�

0

a

0

=

p

"

. 1

for j 2 J

0+

; r & "

1=2

j ln "j:

We can treat u

c;j

with j 2 J

++

and j 2 J

00

like u

b;j

with j 2 J

+

and j 2 J

0

, respectively. That

means kD

�

u;L

1

(e)k . 1. With h

1;e

. h, h

2;e

. h, we obtain (26.28) where the logarithmic

term is even avoided.

The case e � 


2;j

can be treated with equal ideas for j 2 J

++

and j 2 J

00

. Therefore we

introduce the parameter � by

� = 1 for j 2 J

++

; � =

1

2

for j 2 J

00

:
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We have

kD

�

(u

c;j

+ u

b;j�1

+ u

b;j

);L

1

(e)k . e

��j�j

;

all other terms can be treated as in 


1

. Consequently, we get kD

�

u;L

1

(e)k . e

��j�j

, and with

h

1;e

� h

2;e

� "

�

j ln "jh we obtain (26.28).

In corner domains 


2;j

with j 2 J

0+

we have

kD

�

u

c;j

;L

1

(e)k . e

��

1

=2��

2

;

kD

�

u

b;j�1

;L

1

(e)k . e

��

1

=2

;

kD

�

u

b;j

;L

1

(e)k . e

��

2

:

Consequently, it is kD

�

u;L

1

(e)k . e

��

1

=2��

2

and with h

1;e

� "

1=2

j ln "jh, h

2;e

� "j ln "jh,

we �nd again that (26.28) is valid. Note that we did not distinguish here between the non-

orthogonal coordinate system introduced in the paragraph before Assumption 26.2, and a Carte-

sian coordinate system (x

1;?

; x

2;?

) suited for the anisotropic interpolation error estimates, for

example, x

1;?

= x

1

, x

2;?

= x

1

cos !

j

+ x

2

sin!

j

, where !

j

< � is the interior angle at C

j

. The

exposition is to be understood that we have transformed between the two systems whenever

necessary. Since this transformation is independent of " and h and since @=@x

2

= @=@x

2;?

, this

approach is admissible.

In the subdomains 


3;j

we proceed similarly. Set � = 1 if j 2 J

+

and � = 1=2 if j 2 J

0

.

Then we have

kD

�

u

b;j

;L

1

(e)k . e

���

2

;

kD

�

u

b;i

;L

1

(e)k .

�

"

�j�j

e

�

0

a

+

="

. 1 8i 6= j; i 2 J

+

;

"

�j�j=2

e

�
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Consequently, it is kD

�

u;L

1

(e)k . e

���

2

and we get (26.28) with h

1;e

. h, h

2;e

. "

�

j ln "jh.

Finally, we have proved (26.28) for all e. By inserting (26.28) into (26.27) we obtain

jjju� u

h

jjj

2


;�

. h

2(k+1)

j ln "j

2(k+1)

X

e2T

h

("h

�1

2;e

h

1;e

+B

e

h

1;e

+C

e

h

1;e

h

2;e

)

which is the desired result since the number of elements is of order h

�2

and "h

�1

2;e

h

1;e

� j ln "j

�1

,

h

1;e

. h, h

2;e

. h for all e 2 T

h

.

Remark 26.7 Consider now the analysis of the stabilized method for Shishkin meshes (a

+

�

"j lnhj, a

0

� "

1=2

j lnhj). Estimate (26.25) indicates that a term �

e

ju � I

h

u;W

1;2

(e)j

2

has to

be treated. From the estimates (26.14), (26.15), we conjecture that �

e

cannot be chosen larger

than O("),

�

e

= minf"; h

2

2;e

("

2

+ h

2

2;e

B

2

e

+ h

4

2;e

C

2

e

)

�1=2

g: (26.29)

The remaining analysis for proving (26.11) can be done for (bi-)linear elements (k = 1) as dis-

cussed above for the pure Galerkin method. It is the task of further tests whether a stabilization

with �

e

� " in 


1

and 


2;j

, j 2 J

00

, helps. Recall that this is much less than the stabilization

suggested in [14], see (26.18), (26.19), or (26.22). It is not clear whether a result like (26.11)

can be shown for �

e

larger than that given by (26.29).
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a

+

O(h)

a

0

Figure 26.3: Proposed mesh near a concave corner.

For a comparison of Shishkin and Shishkin type meshes we refer to Remark 25.8 which is

essentially applicable also for convection-di�usion-reaction problems.

Remark 26.8 In this section we assumed for simplicity that the type of the boundary (in�ow,

out�ow or characteristic) does not change at concave corners. The reason is that near such

corners di�erent types of mesh re�nement have to overlap in a way which is not clear. In Figure

26.3 we give an example of a corner C

j

2 �

+

\ �

0

with our proposal how the mesh should be

constructed in the re�nement layers. One can observe the transition between mesh sizes a

+

h

and a

0

h. A similar layer has to be added for the transition to elements with mesh size h.



Chapter VI

Open problems

The main part of this chapter (Sections 27�29) is devoted to some topics which are treated

unsatisfactorily up to now. They include a-priori and a-posteriori error analysis as well as the

solution of the arising system of linear equations.

Finally, with Section 30, a short description of software is appended. The three software

packages were used for the numerical examples throughout the whole monograph.

27 A-priori error analysis and further applications

Anisotropic mesh re�nement o�ers a great potential for the e�ective numerical solution of all

kinds of boundary value problems from science and engineering where the solution has di�erent

behaviour in di�erent space directions. This includes in particular boundary layers in viscous

�ow problems and in various plate and shell models, shock phenomena in �ow problems, and

singularities near edges in Poisson type problems like di�usion and linear elasticity.

We are on the way of the understanding of the �nite element method on meshes without a

minimal angle condition. The beginning of this development goes back to the �fties and seven-

ties. A large heuristic and experimental contribution has been made in particular by scientists

and engineers from the �eld of computational �uid dynamics. This monograph complements

this with an attempt to summarize numerical-analytical results in this �eld and to contribute

to the mathematical foundation.

In Chapters IV and V we studied simple model problems and focused on a careful a-priori

error analysis. The strengths of this investigation are the consideration of two- and three-

dimensional problems in general polygonal/polyhedral domains, and the treatment of lower and

higher order �nite elements. We have seen that we needed a large amount of local interpolation

error analysis. We have also seen that the problems are di�cult to treat since very accurate

information on the behaviour of the solution is necessary. This results in open questions even

for these simple problems.

1. In Chapters II and III we developed a quite extensive machinery of anisotropic local

interpolation error estimates. Remaining tasks include

� the development of an interpolation theory for non-smooth functions on non-tensor

product meshes, and

� the de�nition and investigation of an interpolation operator Q

h

which is applicable for

three-dimensional needle elements (h

1;e

� h

2;e

� h

3;e

) and which has the following

155
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properties:

ju�Q

h

u;W

1;2

(e)j . ju;W

1;2

(S

e

)j

ku�Q

h

u;L

2

(e)k .

X

j�j=1

h

�

e

kD

�

u;L

2

(S

e

)k:

These estimates are needed for the investigation of reliability and e�ciency of a-

posteriori error estimates using the ideas of [189].

2. Re�nement strategies for the treatment of corner and edge singularities were considered

in Chapter IV for di�usion problems. For isotropic mesh re�nement it is shown in [23]

that the theory extends straightforward to general boundary value problems of second

order including systems of di�erential equations. An important application is the Lamé

system of linear elasticity. However, the results of Sections 20 and 21 are not su�cient

for this generalization in the case of anisotropic re�nement.

First, we cannot exclude corner singularities as in Section 20 since this was possible only

due to the simplicity of the Poisson equation.

Second, for the proof of Theorem 21.4 we proved the anisotropic regularity in Banach

spaces V

k;p

�;�

(
) with p > 2. It is not clear how to do this for the Lamé system. It would

be desirable to have an approximation theory for p = 2, compare Remark 21.7. This

would be a basis for an extension to general problems.

Finally, we mention that there were some open questions in the treatment of the boundary

conditions, see Remark 20.5. Pointwise �nite error estimates have also not been considered

yet for anisotropically re�ned meshes.

3. In Chapter V we considered singularly perturbed problems. The main drawback is the

lack in the analysis of the solution of such problems, for example, in order to put As-

sumption 26.2 on a solid mathematical basis. In particular, the in�uence of corner and

edge singularities and their appropriate numerical treatment is far from being satisfacto-

rily solved. For convection-di�usion-reaction problems there is also not much theory for

L

1

(
)-estimates of the �nite element error [162].

Regardless of these unsolved problems we will mention other challenges:

� the construction of reliable and e�cient a-posteriori error estimators and automaticmesh

adapting procedures,

� the investigation of the in�uence of anisotropic mesh re�nement on the linear algebra

part of the �nite element calculation, in particular the development of robust and e�cient

solution techniques, and

� the application and extension of the results from Chapters II�V to real application prob-

lems.

In two separate sections, 28 and 29, we review some literature and report on our ongoing research

into the �rst two topics. Concerning the third point we mention in particular �ow problems

where �rst results on the resolution (with anisotropic meshes) of all kinds of layers, shock fronts

and other anisotropic peculiarities can be found in the literature [42, 41, 97, 114, 134, 140, 152,

205]. (This list is certainly incomplete.) We illustrate the utilization of anisotropic meshes by

one example from [134].
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Example 27.1 Viscous, compressible �ow problems were discretized in [134] by an implicit

�nite volume method. We reproduce here one of the examples given there which was used to

test the e�ciency and reliability of this discretization. The example in [134, Subsection 4.2.2]

describes a laminar �ow where two shock waves and a solid body (a cylinder) interact and

produce all types of peculiarities (a contact discontinuity, a shock wave, an expansion wave,

and a boundary layer). The reference values of the Reynolds number and the Mach number

were given by Re

1

= 193:75 and Ma

1

= 8:03 at the in�ow boundary. Figure 27.1 shows a

triangulation of part of the domain (left hand side) and the isolines of the Mach number (right

hand side). In Figure 27.2 we zoom into the mesh in a boundary layer region at the lower side

of the cylinder. We see that elements with high aspect ratio were used. 2

We will end this section by pointing to a further anisotropic approximation problem.

Example 27.2 Consider the numerical solution of the Euler equations by a �nite element

method on triangular meshes [77, 94, 98, 103, 107]. In order to obtain values at the nodes of

the mesh we use a dual mesh and call its elements cells. The simplest numerical solution is

piecewise constant. This constant value in each cell can be interpreted as an average value.

In order to increase accuracy, polynomials of a higher degree (� 1) are reconstructed from

the cell averages, for example by a TVD (Total Variation Diminishing) or ENO (Essentially

Non-Oscillatory) technique, see [179] and the literature cited there. These techniques are well

developed for isotropic meshes but they produce non-physical solutions on anisotropic meshes

unless heuristic (up to now) modi�cations are introduced. The mathematical theory for a

reconstruction which is robust with respect to anisotropic cells, is still in its infancy. 2

28 A-posteriori error estimates and adaptive mesh re�ne-

ment

A-priori analysis considers only the asymptotic behaviour of the �nite element solution as the

number of degrees of freedom tends to in�nity. This is important because it can demonstrate

that a certain family of meshes is optimal in this sense. However, for detailed knowledge of

the errors in a particular �nite element approximation and for assessing its acceptability, an

a-posteriori error estimator has to be provided.

Usually, the a-posteriori error estimator is calculated locally and can thus serve as an indi-

cator for regions with large and small errors, respectively, as the quality of the �nite element

approximation in general varies over the computational domain. So-called automatic mesh

adapting �nite element strategies consist in repeating the three steps

1. calculating an approximate solution,

2a. estimating the error locally (and globally),

3. generating an improved mesh,

until the error is within a desired tolerance. If the adaptive procedure takes account of an

anisotropic solution, then more information has to be extracted from the approximate solution.

This includes at least

2b. determining an appropriate aspect ratio and the stretching direction of the �nite elements.

The aim of this section is not to give an overview over error estimators and re�nement

strategies in general. For this, see, for example, [148, 183, 184, 189]. Rather, we will discuss some

aspects and point to di�culties and open problems in the context of anisotropic discretizations.
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Figure 27.1: Example 27.1: triangulation of part of the domain (left) and isolines of the Mach

number (right).

Figure 27.2: Example 27.1: window with a small part of the triangulation.
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Let us start with error estimation. The estimator is an expression which can be calculated

from the data of the problem and its numerical solution. Usually, the error ist estimated

elementwise by some quantity �

e

which can then be accumulated to a global error estimate �,

for example, � =

�

P

e

�

2

e

�

1=2

. It is desired that the following two properties can be proved.

Reliability. The error estimator should not underestimate the true error in the norm of a

space X(e), for example X = L

2

or X = W

1;2

,

�

e

� ku� u

h

;X(e)k:

Often, this property can be ensured only globally and modulo a constant,

� � C

1

ku� u

h

;X(
)k: (28.1)

E�ectivity. The error estimator should not overestimate the true error,

�

e

� ku� u

h

;X(e)k;

in order to avoid unnecessary re�nement. This property can often be ensured locally, but

up to a constant C

2

(in some cases C

2

= 1) and with respect to some domain of in�uence

!

e

� e at the right hand side,

�

e

� C

2

ku� u

h

;X(!

e

)k: (28.2)

The ratio of estimated error and true error is called e�ectivity index, � := �=ku�u

h

;X(
)k.

Clearly, if (28.2) can be proved, then the e�ectivity index is bounded. In particular, it is

desired that the e�ectivity index approaches one, � ! 1, as the exact error tends to zero.

Then the estimator � is said to be asymptotically exact. Note that this property includes

reliability, at least for h � h

0

.

In the literature the estimators are often evaluated with respect to these properties: can

reliability and e�ciency be proved (analytically, sometimes only by numerical evidence), and

if yes, how large are the constants? Can asymptotical exactness be proved? Let us add here

another point. If we can say nothing about the constants we may have a bad error estimate.

However, the estimator can be a good error indicator, this means, an indicator where to re�ne

or coarsen the mesh. For this it is desirable that the error estimator behaves uniformly in the

whole domain and for any mesh size. The expression �

e

=ku�u

h

;X(e)k should not depend on e,

and in particular not on h

e

. A consequence would be that

� = �(u

h

) � h

�

if ku� u

h

;X(
)k � h

�

: (28.3)

Example 28.1 Consider the Poisson problem with homogeneous Dirichlet boundary condi-

tions,

��u = f in 
; u = 0 on @
:

The frequently used residual type error estimator [29] for estimating the energy norm of the

error reads

�

2

R;e

(u

h

) := c

1
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2

e

kr

e

(u

h

);L
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(e)k
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E
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E
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);L

2
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(28.4)

where the element residual r

e

and the edge residual r

E

(gradient jump) are de�ned by

r

e

(u

h

) := f +�u

h

r

E

(u

h

) := lim

t!+0

�

@

@n

E

u

h

(x+ tn

E

)�

@

@n

E

u

h

(x� tn

E

)

�

; x 2 E:
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Here, E denotes a face of e and n

E

is any of the two unitary normal vectors to E. For a

detailed analysis one has to modify the element residual by replacing f by some projection into

a �nite-dimensional space [189] but we will not go into these details here. There is not much

known about the constants c

1

and c

2

in (28.4); see [60, 61] for latest attempts to compute these

constants for isotropic meshes.

While the actual choice of h

e

and h

E

is of less importance for isotropic meshes this is

problematic in the anisotropic case. The elements are no longer characterized by one single

size parameter. In particular, we point out that an inappropriate choice may give misleading

results. For the tests in [18] we experimented with h

E

:= (meas

2

E)

1=2

and h

E

:= (meas

3

e)

1=3

and obtained inaccurate approximation orders; (28.3) was not satis�ed. Later, better choices

were proposed in [174]

h

e

:= min

i=1;:::;d

fh

i;e

g; h

E

:=

meas

d

e

meas

d�1

E

; (28.5)

and in [117]

h

e

:= min

i=1;:::;d

fh

i;e

g; h

E

:= h

2

e

meas

d�1

E

meas

d

e

: (28.6)

Both authors analyzed their choices and were able to prove results concerning reliability and

e�ciency.

E�ciency is not critical, but the constant C

2

in (28.2) depends on u

h

and T

h

for the esti-

mator (28.4), (28.5), C

2

= C

2

(u

h

; T

h

) [174]. For adequately re�ned meshes we get an uniform

bound for C

2

(u

h

; T

h

). The expression C

2

(u

h

; T

h

) can also be monitored during the �nite ele-

ment calculation. Estimator (28.4), (28.6) is proved to be e�cient without this dependence on

C

2

(u

h

; T

h

).

The critical point for both estimators is reliability. The �constant� C

1

in (28.1) depends in

both papers on r(u�u

h

) and T

h

, at least can the assumptions be reformulated in this way, see

[118]. It turns out again that we obtain C

1

(r(u� u

h

); T

h

) . 1 for adequately re�ned meshes.

But what happens in the general case? In [118] it is proposed to approximate

C

1

(ru�ru

h

; T

h

) � C

1

(r

R

u

h

�ru

h

; T

h

)

where r

R

u

h

is a recovered gradient. First numerical results show that this works well. 2

In Example 28.1 we discussed only the simplest model problem. Even for this it is not clear

at present time which one of the following two hypotheses is true.

H1. It is possible to de�ne h

e

and h

E

in a way such that e�ciency and reliability can be proved

without any assumptions or expressions like C

1

(ru�ru

h

; T

h

), C

2

(u

h

; T

h

).

H2. There is no choice of h

e

and h

E

such that the corresponding error estimator is both reliable

and e�cient for any u and T

h

.

Current insight is supporting the second hypothesis [70]. In [117] and subsequent work of this

author the theory of error estimators for discretizations with anisotropic meshes is extended in

various directions:

� further error estimators for the Poisson equation (a residual based estimator for the L

2

-

norm of the error, local Dirichlet problem error estimators for the energy norm and the

L

2

-norm, a Zienkiewicz-Zhu [206, 207] like error estimator),

� further boundary conditions (Neumann conditions @u=@n = g

2

and Robin conditions

@u=@n = �(g

2

� u)),
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Figure 28.1: Element subdivision strategies: red re�nement (left), blue re�nement (right).

� a residual error estimator for the reaction-di�usion problem �"

2

�u+ cu = f in 
, u = 0

on @
.

Care is taken that the error estimator works uniformly well for � 2 (0;1) in the case of Robin

conditions and for " 2 (0; 1) in the reaction-di�usion problem. In all cases we �nd that the

reliability can only be proved up to the factor C

1

(r(u� u

h

); T

h

).

Finally, we remark that there are other error estimators/indicators for anisotropic discretiza-

tions [42, 152, 155] but the analytical foundation in the above sense is less well developed.

Let us focus now on the generation of an improved mesh. Several authors use the heuristic

argument that (in two dimensions) the local aspect ratio should correspond to the ratio of the

eigenvalues of the matrix of the (approximated) second order partial derivatives of the solution,

and the stretching direction is determined by the eigenvector to the largest eigenvalue of that

matrix, see [2, 68, 69, 152, 205] and the literature cited there. (If the solution is vector-valued,

either a key variable is chosen [205] or the Hessians of the components are combined [62].) It is

not clear whether this choice is also suitable for higher order shape functions, k � 2.

In other applications the direction can be determined from the data, for example from the

streamlines in convection-di�usion problems [176]. One can also try to detect internal layers or

shocks by analyzing the gradient (or gradient jump) of some values [205].

With this information one can construct the new mesh. There are three main strategies.

Remeshing. The �rst one demands a complete remeshing on the basis of some background

information (local mesh sizes, stretching direction); see the overview article [175] and

the literature cited there. Some authors report on anisotropic meshes which have nearly

equilateral elements in a local non-Euclidean metric. In this way standard mesh generating

techniques are used to solve the meshing problem [62].

Large angles are either ignored, see the discussion in Remark 5.9 on page 29, or a struc-

tured mesh is introduced locally [205].

Remeshing is quite expensive but one can produce meshes with a gradually changing mesh

size and arbitrary stretching directions.

Subdivision. The second strategy is based on a subdivision of the existing elements (bisection

[34, 127], division into 2

d

elements [33, 46] by red re�nement, see Figure 28.1, left hand

side). This approach is inexpensive and �ts very well into multi-grid/multi-level strategies

for the solution of the corresponding �nite element equation system. The subdivision

strategy was adapted for anisotropic re�nement in [114], called blue re�nement, see Figure

28.1, right hand side.

The disadvantages are that the mesh size does not change as gradually as in the �rst

approach, and, worse, that the initial mesh determines severely the possible stretching

directions of the elements. This can be compensated by node relocation techniques,

sometimes also called adaptive grid orientation [114] or node relaxation techniques [157].

Relocation. In the third strategy one concentrates on the relocation of the nodes, it is also

called the r-version of the �nite element method. But in order to produce a converging
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method one has to combine this with node insertion or element splitting. In this way

there is a relation to strategy 2. In the recent article [58] such an algorithm is described

which allows anisotropic re�nement on the basis of a local non-Euclidean metric tensor.

It is hard to judge these strategies. The main point is that all of them have to be programmed

carefully, in particular in three dimensions. Preferences in di�erent institutions depend probably

strongly on the available software and on the aim of the programs (treatable problems, applied

discretization and solution techniques). A common feature of all strategies is that hierarchical

meshes in the sense of a classical multi-grid or multi-level method are hardly obtained. The

search for a good compromise among the requirements on a family of meshes (see Section 18,

page 95) is rarely discussed. Here, we see a strength of a-priori re�ned meshes as investigated

in Chapters IV and V. They are both structured and anisotropic. Of course their applicability

is limited. A good compromise could be to use locally structured meshes [176, 205]. A further

discussion of the maximum e�ciency mesh problem can be found in [175].

Remark 28.2 Let us �nally review some experiments from [18]. The initial situation was the

following.

� We know from a-priori error analysis that anisotropic mesh re�nement is suited for com-

pensating the in�uence of an edge singularity on the approximation order, see also Sections

19, 20, and 21. We know qualitatively how these re�ned meshes must be constructed. But

it is not completely clear how large the re�nement neighbourhood has to be.

� A-posteriori error analysis is suited to detect re�nement regions. However, it is not

straightforward how to realize an adaptive algorithm with anisotropic mesh re�nement,

see the discussion above.

� The test examples for validating the a-priori error estimates were realized using a coordi-

nate transformation.

� We wanted to use a graded initial mesh for the adaptive procedure in order to exploit

a-priori information.

Therefore we tested the following adaptive strategy. Repeat the steps coordinate transformation

(grading), calculation of the approximate solution, error estimation (possibly termination of the

loop), marking elements for re�nement, coordinate transformation (�ungrading�), re�nement (2

d

elements from each marked element, �green closure�). In this way we combined the advantages

of a-priori and a-posteriori re�nement. In two test examples, see also Example 28.3, we obtained

the desired discretization error with less degrees of freedom and in particular less re�nement

cycles than in an classical (isotropic) adaptive procedure. The drawback of this strategy is the

coordinate transformation which had been programmed especially for the test examples (two-

and three-dimensional). It is not clear how to do this in the general case.

Example 28.3 The three-dimensional example was the one from Example 19.2. In Figure 28.2

we illustrate the di�erent behaviour of the algorithms by showing cross-cuts through the �nal

meshes at x

3

= 1=3. The development of the �nite element error is shown in Figure 28.3 where

the aim was to reach a relative error of 3%. For details see [15, 17]. 2
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Figure 28.2: Cross-cuts through �nal meshes at x

3

= 1=3: a-priori grading (left), adaptive

without grading (middle), adaptive with grading (right).
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Figure 28.3: Example 19.2: error in the energy norm for adaptive mesh re�nement strategies,
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N � = 1:0 � = 0:8 � = 0:6 � = 0:4

225 21 22 23 26

1377 31 34 40 54

9537 36 41 54 88

70785 40 48 73 140

545025 42 55 97 217

Table 29.1: Numbers of iterations for Example 29.1 with di�erent N and �.

29 Solution of the arising system of linear equations

Choosing an appropriate discretization is only one part of the numerical solution of a boundary

value problem. Additionally, one has to solve a (preconditioned) algebraic system of equations

for the coe�cients of the representation of u

h

in a certain basis. Let us focus here on symmetric,

positive de�nite problems. In modern techniques the number of operations for the solution is

proportional to the number of unknowns. Such techniques include multi-grid methods [52,

92, 95, 185], the method of conjugate gradients (CG) [102] with preconditioning (for example

multi-level preconditioners [24, 25, 26, 50, 55, 65, 85, 109, 151, 197, 198, 199, 200, 203] and

domain decomposition preconditioners [54, 74, 188, 136, 143, 142, 177]) and combinations of

these ideas.

Multi-level preconditioners work with a sequence of discretizations which is (in the h-version

of the �nite element method) based on a sequence of �nite element meshes. One of these

preconditioners, called BPX, was proposed in [55, 197]. Interestingly, the BPX preconditioner

can be analyzed in the additive Schwarz context [203] which gives on the one hand the optimal

estimate for the condition number of the preconditioned system. (For other proofs, see [151, 65].)

On the other hand, it leads to a variant of this preconditioner, called multi-level diagonal

scaling (MDS), which has advantages especially for problems with variable (including piecewise

constant) coe�cients, see also [50, 151].

Typically, the solution methods are analyzed �rst for a discretization of the Dirichlet problem

for the Poisson equation over the unit square, in general with a �ve-point �nite di�erence

method or a �rst order �nite element discretization on uniform meshes. Later the results are

extended to more general di�erential operators, more general domains, other discretizations,

and higher space dimensions. Eventually one �nds that the methods cannot be understood as

�xed algorithms but they have to be adapted (at least in some components) to the problem

under consideration. Of course, methods are preferable which are applicable without change

for a fairly large class of problems/discretizations. Then they are called robust. Let us consider

now the two introductory examples (see Sections 19 and 24) and look at the robustness of the

BPX preconditioner with respect to anisotropic discretizations.

Example 29.1 Consider the Poisson problem

��u = 0 in 
; u = (10 + x

3

) r

2=3

sin

2

3

� on @
;

see Example 19.2 on page 101. The problemwas calculated with the �nite element package SPC-

PMPo 3D (see Comment 30.3 on page 173 for a short description) on sequences of unre�ned

(� = 1:0) and anisotropically re�ned (� = 0:8; 0:6; 0:4) �nite element meshes. The arising

systems of linear equations were solved using the CG method with BPX preconditioning and

a coarse grid solver [16]. Table 29.1 shows the numbers of iterations for di�erent numbers

N of nodal points and di�erent mesh grading parameters �. We can observe for the non-

optimal discretization with � = 1:0 that the number of iterations becomes constant for N !1.
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However, this optimal property of the BPX preconditioner gets lost when anisotropic re�nement

is introduced. A similar behaviour is obtained in other examples, including the Lamé system

of elasticity in the same domain. Therefore we omit the tables with these results here. 2

Example 29.2 Consider two singularly perturbed reaction di�usion problems as introduced

in Section 24. The �rst test problem is the one from example 24.4 on page 132 which was

originally calculated in [168]:

�"

2

�u+ u = 0 in 
 = (0; 1)

2

; u = e

�x

1

="

+ e

�x

2

="

on @
: (29.1)

Since the results are sometimes quite di�erent we document also a second test case,

�"

2

�u+ u = 1 in 
 = (0; 1)

2

; u = 0 on �

1

;

@u

@n

= 0 on �

2

; (29.2)

�

1

:= fx 2 @
 : x

1

= 0 _ x

2

= 0g, �

2

:= @
 n �

1

. In both problems boundary layers appear at

fx 2 @
 : x

1

= 0 _ x

2

= 0g. So we use the same family of meshes as described in example 24.4

on page 132. In Tables 29.2�29.4 we present the numbers of iterations when the CG method is

applied

(a) with diagonal (Jacobi) preconditioning (CG-D),

(b) with the BPX with multi-level diagonal scaling (BPX-MDS).

In all cases we terminated the CG method when a relative error of 10

�6

was reached. One can

draw the following conclusions:

� For large " the behaviour of the system matrix A = "

2

K + M is dominated by the

sti�ness matrix K. The iteration number behaves as h

�1

� N

1=2

for CG-D. For uniform

meshes BPX-MDS converges with a constant number of iterations, but this behaviour is

not robust with respect to a distortion of the mesh towards anisotropic re�nement in the

layers.

� For small " (in comparison with h) the system matrix is dominated by the mass matrix

M . For uniform meshes the iteration numbers of BPX �MDS remain almost the same

as for large " (robustness with respect to "). However the system can be solved cheaper

by CG-D which has also constant iteration numbers.

If we use a better discretization method, namely anisotropic mesh re�nement in the layers,

we �nd that these good properties of the two solvers get lost. First, we observe a di�erent

behaviour in the two quite similar examples, especially with BPX-MDS. For problem

(29.1) there is no hint that BPX-MDS has constant iteration numbers. Second, we see in

the case CG-D that the small iteration numbers obtained with uniform meshes, are not

preserved (CG-D is not robust with respect to a distortion of the mesh).

2

From both examples, 29.1 and 29.2, we �nd that well-known solution techniques have to be

modi�ed in order to cope with anisotropic mesh re�nement. Let us now review some results

connected with anisotropy and found in the literature.

Some authors investigate the robustness of their methods with respect to the coe�cients in

the di�erential operator. A typical example is the anisotropic equation

�a

@

2

u

@x

2

1

� b

@

2

u

@x

2

2

= f in 
 = (0; 1)

2

; u = 0 on @
: (29.3)
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a = 0:5 (uniform) a = 2"j log

10

"j (anisotropic)

CG-D BPX-MDS CG-D BPX-MDS

N (29.1) (29.2) (29.1) (29.2) (29.1) (29.2) (29.1) (29.2)

81 13 14 11 11 17 17 16 15

289 26 27 15 15 37 37 29 25

1089 50 55 17 18 71 74 41 34

4225 95 111 19 21 134 147 49 42

16641 182 222 20 23 252 293 57 48

Table 29.2: Numbers of iterations for Example 29.2 with " = 10

�1

and methods CG-D and

BPX-MDS.

a = 0:5 (uniform) a = 2"j log

10

"j (anisotropic)

CG-D BPX-MDS CG-D BPX-MDS

N (29.1) (29.2) (29.1) (29.2) (29.1) (29.2) (29.1) (29.2)

81 11 10 13 11 12 8 15 10

289 12 10 18 16 22 15 28 17

1089 12 10 21 19 39 27 55 29

4225 11 9 24 21 69 52 111 46

16641 10 8 25 22 121 101 214 58

Table 29.3: Numbers of iterations for Example 29.2 with " = 10

�3

and methods CG-D and

BPX-MDS.

a = 0:5 (uniform) a = 2"j log

10

"j (anisotropic)

CG-D BPX-MDS CG-D BPX-MDS

N (29.1) (29.2) (29.1) (29.2) (29.1) (29.2) (29.1) (29.2)

81 11 10 13 11 12 6 14 6

289 12 10 18 16 18 8 24 8

1089 12 10 22 19 32 12 46 10

4225 12 10 25 21 54 20 101 13

16641 12 9 27 23 86 37 161 16

Table 29.4: Numbers of iterations for Example 29.2 with " = 10

�5

and methods CG-D and

BPX-MDS.



29. Solution of the arising system of linear equations 167

In [92, Subsection 10.1] the problem is �rst considered for a = "� 1, b = 1. The discretization

with a �ve-point scheme on a uniform grid gives the matrix entries

h

�2

2

4

0 �1 0

�" 2 + 2" �"

0 �1 0

3

5

� h

�2

2

4

�1

2

�1

3

5

:

If a multi-grid method is applied for the solution of the resulting algebraic system of equations

one �nds that the y-line Gauÿ-Seidel iteration S

y

is an appropriate smoother but not red-black

Gauÿ-Seidel or x-line Gauÿ-Seidel. What can we learn from this example?

1. In the example, the connection between adjacent nodes is anisotropic, this means, the

connection to some neighbours is more tight than to others, the o�-diagonal elements in

one row are of di�erent order of magnitude. Then it is vital to pay attention to the tight

connections. We come back to this later on.

2. The method used above is not really robust with respect to the size of the coe�cients.

As soon as a � b, an x-line Gauÿ-Seidel smoother S

x

has to be used. One could think

that a smoother S

y

� S

x

based on alternating directions is suited but this is not true any

more if a di�erential operator like

�

1

2

�

@

@x

1

+

@

@x

2

�

2

�

"

2

�

@

@x

1

�

@

@x

2

�

2

is considered where a diagonal-line Gauÿ-Seidel smoother has to be applied. The remedy

proposed in [92] is to use an ILU (incomplete LU decomposition) or ILLU (incomplete

line LU decomposition) smoother. Later, the same author proposes to use the frequency

decomposition multi-grid method [93]. In this method, multiple coarse grid corrections

are used together with particularly associated prolongations and restrictions.

Other authors argue that a-priori information can be used in the solver, so the coe�cients

of the di�erential operator [86]. These authors investigated the problem

�

d

X

i=1

c

i

@

2

u

@x

2

i

+ c

0

u = f in 
 = (0; 1)

d

; u = 0 on @
;

for c

0

� 0, c

i

> 0, i = 1; : : : ; d, and any space dimension d. Their multi-level iterative

method with tensor product subspace splitting shows convergence rates independent of h

and the coe�cients c

i

, i = 1; : : : ; d.

3. In [92, Subsection 10.5] it is mentioned that the approximation of the Poisson problem

on an anisotropic mesh (like in Example 29.1) results in an anisotropic discrete problem.

Using the ideas of Item 1 we conjecture that a multi-grid method with a Gauÿ-Seidel

smoother is appropriate which treats all points with the same x

3

-coordinate together.

Unfortunately, the subsystems are not tri-diagonal here. A further investigation has still

to be done.

The argument of Item 3 is also turned around in [92, Subsection 10.5]: anisotropic prob-

lems produce isotropic discrete equations if one succeeds in constructing a suitable grid. This

approach is followed in [144]. The basic idea is that the problem

�"

2

@

2

u

@x

2

1

�

@

2

u

@x

2

2

= f(x

1

; x

2

) in 
 = (0; 1)

2

; u = 0 on @
; (29.4)
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is equivalent to the problem

��u = f("

�1

x

1

; x

2

) in

~


 = (0; "

�1

)� (0; 1); u = 0 on @

~


:

If

~


 is discretized with a family of quasi-uniformmeshes then the discrete equations are isotropic.

The drawback of this approach is that the number N of nodes grows with "

�1

, N � "

�1

h

�2

.

We conclude that problem (29.3) has been considered in the literature occasionally in order

to investigate robust solver techniques, see also [56, 112] and the references cited there. But the

author does not know about a reference where the problem is discretized in an adequate way.

Problem (29.4) is of singularly perturbed type. For " = 0 we obtain a parameter dependent

one-dimensional problem where it is possible to satisfy the boundary conditions given for x

2

= 0

and x

2

= 1 but not for x

1

= 0 and x

1

= 1. One can expect layers of width O("j ln "j) at these

two sides if 0 � "� 1 is considered [43, 83]. With the ideas of Section 25 it should be possible

to prove optimal "-independent approximation error estimates for a family of meshes which are

anisotropically re�ned in the two layer regions, 


1

and 


2

, and isotropic in the remainder of

the domain, 


0

. For the solution of the resulting algebraic system of equations we have then

to combine the ideas cited above. In 


0

, we have an isotropic, quasi-uniform discretization

as investigated in [86, 92, 93], whereas in 


1

and 


2

we have almost (up to the j ln "j-term)

isotropic discrete equations as investigated in [144]. A comprehensive analysis has still to be

done.

Let us come back to Poisson type problems which are equivalent to

��u = f in 
; u = 0 on @
:

In [155] an adaptive procedure is described which results in anisotropic meshes, see Section 28.

This author had in mind examples like such with an exact solution u = (1�x

2

1

)

2

(1�x

2

2

)

2

which

has a layer near the sides x

1

= 1 and x

2

= 1. He develops in the subsequent paper [156] an

overlapping domain decomposition preconditioner for this type of discretization. Following the

idea of [75] it is stated that the ratio H

j

=�

j

of the diameter H

j

of the subdomain 


j

and the

minimal thickness �

j

of the overlap between 


j

and

S

i 6=j




i

, in�uences the condition number

of the preconditioned system. The (probably not astonishing) consequence is that

� isotropic subdomains with an overlap of width of the order of the diameter of the subdo-

main should be used,

� the local problems in the subdomain should be easily solvable.

Note that this is in agreement with Item 1 above, namely that the nodes with a tight connection

should be treated together.

If we combine these conclusions with the idea that the BPX-MDS preconditioner can be

viewed as an additive Schwarz method with one-dimensional subspaces [203], we suggest the

following preconditioner for the reaction di�usion problem in Example 29.2.

Let '

j;i

, i = 1; : : : ; N

j

, be the nodal basis functions of level j, j = 1; : : : ; J . De�ne for all j

a decomposition 
 =

S

n

j

i=1




j;i

such that the following conditions are satis�ed.

(i) 


j;i

is a union of �nite elements of level j. (Finite elements are considered here as closed

sets.)

(ii) Each element of level j is contained in at mostN

c

subdomains


j;i

where N

c

is independent

of j.

(iii) For all 


j;i

there is at least one '

j;i

0

such that supp'

j;i

0

� 


j;i

.
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Figure 29.1: Illustration of the subdomains for a modi�ed BPX-like preconditioner (left) and

lines of clustered points in the preconditioner BPX-3 (right).

(iv) The subdomains 


j;i

, i = 1; : : : ; n

j

, j = 1; : : : ; J , are isotropic.

(v) The minimal thickness �

j;i

of the overlap between 


j;i

and

S

j

0

6=j

S

i

0

6=i




j

0

;i

0

is of order

diam


j;i

.

An example for this domain decomposition is illustrated in Figure 29.1, left hand side. The

subdomains with nodes on one line do not introduce di�culties. The corresponding local prob-

lems have tridiagonal system matrices which can be solved directly with optimal performance.

The only di�culty is the subdomain in the lower left corner. In a �rst test we avoided this

two-dimensional arrangement of nodes and used only one-dimensional subspaces in this corner.

Hence the resulting preconditioner BPX-3 (3 for 3-dimensional subsystems) is di�erent from

BPX-MDS only in the common consideration of points at the lines illustrated in Figure 29.1,

right hand side. It does not satisfy conditions (iv) and (v) for a small number of points.

Example 29.3 We continue example 29.2 by displaying the iteration numbers for the CG with

preconditioner BPX-3. Additionally, we used the three-diagonal matrix of the �nest level as a

simple preconditioner, CG-3. This can be considered as some kind of Jacobi preconditioning.

The results are given in Tables 29.5�29.7. We �nd that BPX-3 is a preconditioner with a very

similar behaviour for both test examples and for all ". In particular, the iteration numbers are

nearly the same as for BPX-MDS and uniform mesh re�nement. The simpler preconditioner

CG-3 has its strength for small " where it could be used instead of CG-D when a multi-level

algorithm is not implemented. 2

We remark that a preconditioner corresponding to (i)�(v) above can be de�ned without

di�culty in other model situations. In [170], problems with bad parameters were considered.

As a motivation, the Poisson problem was treated in a strip domain
 = (0; 1)�(0; "). For h > "

the quadrilateral mesh had only one element in x

2

-direction. Every pair of nodes with the same

x

1

-coordinate was considered together. In this way one can satisfy conditions (i)�(iii) and (v).

Condition (iv) can be ful�lled only for h . ". In [170], another approach was used: the pairs

of nodes de�ned a block diagonal matrix with 2 � 2 blocks which was used within the Jacobi

smoother of a multi-grid method. As a consequence, the smoother behaved "-independent (but

h-dependent).

From all the literature, tests and remarks in this section we can conclude that it is not

satisfactorily clear how to solve the algebraic systems arising from the �nite element discretiza-

tion with (locally) anisotropic �nite element meshes, even in the case of a symmetric, positive



170 Chapter VI. Open problems

a = 2"j log

10

"j (anisotropic)

CG-3 BPX-3

N (29.1) (29.2) (29.1) (29.2)

81 10 11 11 11

289 23 23 16 16

1089 44 47 19 20

4225 84 97 21 23

16641 164 198 22 26

Table 29.5: Numbers of iterations for Example 29.2 with " = 10

�1

and methods CG-3 and

BPX-3.

a = 2"j log

10

"j (anisotropic)

CG-3 BPX-3

N (29.1) (29.2) (29.1) (29.2)

81 11 7 13 8

289 16 12 16 10

1089 28 21 19 14

4225 49 36 22 17

16641 89 64 27 22

Table 29.6: Numbers of iterations for Example 29.2 with " = 10

�3

and methods CG-3 and

BPX-3.

a = 2"j log

10

"j (anisotropic)

CG-3 BPX-3

N (29.1) (29.2) (29.1) (29.2)

81 � 5 � 5

289 14 6 18 6

1089 24 8 21 7

4225 40 11 23 9

16641 61 8 24 10

Table 29.7: Numbers of iterations for Example 29.2 with " = 10

�5

and methods CG-3 and

BPX-3.
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de�nite system matrix. From the material developed in this section we think that it is worth

to investigate further the following ideas.

� For the Poisson problem in domains with edges:

� multi-grid methods with clustering nodes,

� the CG method with BPX-like preconditioners derived by clustering nodes.

It is not clear whether one can cluster together all nodes with the same x

3

-coordinate (in

Example 29.1) where one does not satisfy condition (iv), or if one has to cluster smaller

portions in order to satisfy condition (iv). Possibly one can use ideas from the algebraic

multi-grid approach to �nd appropriate subspaces.

� The same ideas could be explored for the singularly perturbed problem of Example 29.2.

A promising �rst test was described in Example 29.3. Open is the treatment of the corner

regions. Additional ideas are:

� using multi-grid methods with an ILU smoother, and

� using a classical domain decomposition approach with 4 subdomains. The subdomain

solvers could be constructed with the ideas above since they are meshed in a uniform

way. But it is not clear which Schur complement preconditioner and which basis

transformation has to be used.

It is a task of future research to give a mathematical foundation for the algorithms and to

extend the class of treatable problems.

30 Short description of utilized software

At several places in this monograph we presented numerical test examples. They were calculated

with software which was developed mainly at the Fakultät für Mathematik of the Technische

Universität Chemnitz. In this �nal section we want to describe these packages. (We remark

that this section does not necessarily belong to the topic of this chapter although, of course,

any software has its open problems.)

30.1 The sequential �nite element package FEMGPM. The Finite Element Multi-

Grid Package Mechanics FEMGPM [180] is a member of the FEMGP familywhich has been im-

plemented by B. Heise, M. Jung, W. Queck, T. Steidten and others since 1985. With FEMGPM

the user can solve linear elliptic problems (including the heat equation, plane stress and plane

strain problems), linear and non-linear parabolic problems and coupled thermo-elasticity prob-

lems. In all problems the spatial dimension is two which includes also rotationally symmetric

three-dimensional domains (Fourier �nite element method [99, 147, 193]).

Main features are the following.

� A user mesh must be provided in a �le. FEMGPM works with linear or quadratic shape

functions on triangles. Coe�cients and the right hand side must be programmed and

linked.

� After reading the �le, the user mesh is hierarchically re�ned. This re�nement can be

controlled with several options, for example, to adapt the mesh to material boundaries or

to singular points.
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� The �nite element system of equations can be solved with multi-gridmethods or with pre-

conditioned conjugate gradient methods. Preconditioners include multi-grid and methods

based on hierarchical bases (Yserentant [199], BPX [55, 197]).

� Various information (including CPU times, error norms, pointwise solutions) can be

printed. There is also graphical output for meshes, isolines and deformed domains. Other

postprocessing includes the calculation of derivatives (stresses) using superconvergence

e�ects.

30.2 The sequential �nite element package FEMPS3D. FEMPS3D is a �nite ele-

ment code for solving the Poisson equation with (in general inhomogeneous, mixed) boundary

conditions of Dirichlet, Neumann or Newton (Robin) type. The �rst version was developed in

1987-1989 by the author at a VAX workstation. In 1993 it was ported by G. Hanke to the

UNIX operating system. The main features are the following:

� The mesh can consist of tetrahedra, hexahedra, and pentahedra. Linear and quadratic

shape functions can be used.

� The code does not contain a general mesh generator. It is possible to read mesh data

from a �le generated by any code, eventually after adapting the data structure. Later, we

developed also some special routines to triangulate our test domains.

� The problem data are given in general by function subroutines. For Dirichlet data we

developed the additional feature to interpolate some pointwise values over the surface.

� For the assembly of the equation system many di�erent integration rules are programmed.

Only the non zero elements of the upper right triangle of the matrix are stored. The

system is solved with a conjugate gradient method, preconditioned with di�erent types of

incomplete Cholesky factorization (IC(0), IC(1), MIC), see [161].

� The resulting solution can be interpreted with tables of values in subdomains and with a

representation of isolines. When the exact solution is known in academic examples, the

table of values and the isolines can be given for the error as well. Additionally the error

norms in H

1

(
), L

2

(
) and in a discrete maximum norm are calculated.

In 1993/94 the code was extended by F. Milde and the author, but only for linear tetrahedral

elements:

� In Version 2 we included an error estimator of residual type and an adaptive mesh re�ne-

ment procedure, see details in [17] and in the preprint version of [15].

� For Version 3, parts of the package were reprogrammed. Moreover, the isotropic a-priori

mesh grading by dyadic partition (see Section 19) was included.

� In the expectation of an optimization of the meshes two nodal relaxation procedures were

included: the standard Laplace smoothing and the improved version introduced in [157]

for graded meshes.

� An interface to the visualization package GRAPE [195] was developed.

In 1997 the meshing strategies of Section 21 were included with the help of U. Reichel.
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30.3 The parallel �nite element package SPC-PMPo3D, Version 2. At present

time much e�ort is being spent in both developing and implementing parallel algorithms. The

experimental package SPC-PMPo 3D is part of the ongoing research of the Chemnitz research

group Scienti�c Parallel Computing (SPC) into �nite element methods for problems over three-

dimensional domains. Special emphasis is paid to choose �nite element meshes which exhibit an

optimal order of the discretization error, to develop preconditioners for the arising �nite element

system based on domain decomposition and multilevel techniques, and to treat problems in

complicated domains as they arise in practice.

� In Version 2 [4, 16] the program can solve the Poisson equation and the Lamé system

of linear elasticity with in general mixed boundary conditions of Dirichlet and Neumann

type. The domain 
 � R

3

can be an arbitrary bounded polyhedron.

� The input is a coarse mesh, a description of the data and some control parameters. The

program distributes the elements of the coarse mesh to the processors, re�nes the elements,

generates the system of equations using linear or quadratic shape functions, solves this

system and o�ers graphical tools to display the solution.

� Further, the behavior of the algorithms can be monitored: arithmetic and communication

time is measured, the discretization error is measured, di�erent preconditioners can be

compared.

� The program has been developed for MIMD computers; it has been tested on Parsytec

machines (GCPowerPlus�128 with Motorola Power PC601 processors and GCel�192 on

transputer basis) and on workstation clusters using PVM. The special case of only one pro-

cessor is included, that means the package can be compiled for single processor machines

without any change in the source �les.

We point out that the implementation is based on a special data structure which allows that

all components of the program run with almost optimal performance (O(N ) or O(N lnN )).

The package SPC-PMPo 3D is based on a set of libraries which are still under development.

They are documented in the Programmer's Manual [16] and in other separate papers [90, 133,

137, 138]. An overview over the program, its capabilities, its installation, and handling is

provided in the User's Manual [4]. Test examples are included in [4, 10, 22, 159].

The historical roots of the program are at one hand in several parallel programs for solving

problems over two-dimensional domains using domain decomposition techniques. These codes

have been developed since about 1988 by A. Meyer, M. Pester, and other collaborators. On the

other hand, the author developed 1987�89 a sequential program for the solution of the Poisson

equation over three-dimensional domains which was extended 1993�94 together with F. Milde

Comment 30.2 on page 172. SPC-PMPo 3D, Version 2 [4, 16], was developed in 1995�1996

under the supervision of A. Meyer and the author. Other main contributors are D. Lohse,

M. Meyer, F. Milde, M. Pester, and M. Theÿ. Meanwhile the package is being extended to

include a multi-grid solver (M. Jung), adaptivity (F. Milde), the solution of the Navier-Stokes

equations (St. Meinel) and a plasticity model (D. Michael).

The research group SPC (Scienti�c Parallel Computing) is located at the Fakultät für Mathe-

matik of the Technische Universität Chemnitz. It is part of the DFG-Sonderforschungsbereich

393 Numerical simulation on massively parallel computers.
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