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1. Solving Finite Element Equations by Precon-

ditioned Conjugate Gradients

We consider the usual weak formulation of a second order partial di�erential

equation:

�nd u 2 H

1

(
) (ful�lling Dirichlet{type boundary conditiones on �

D

� @
)

with a(u; v) = hf; vi 8v 2 H

1

0

(
) = fv 2 H

1

(
) : v = 0j

�

D

g: (1.1)

For simplicity let 
 be a polygonal domain in R

d

(d = 2 or d = 3), so using a �ne

triangulation

T

L

= fT � 
g; T are triangles (quadrilaterals) if d = 2

T are tetrahedrons (pentahedrons/hexahedrons) if d=3

with the nodes a

i

(represented by their numbers i), we de�ne a �nite dimensional

subspace V � H

1

(
) and de�ne the �nite element solution u

h

from

a(u

h

; v) = hf; vi 8v 2 V \H

1

0

(
): (1.2)

(The usual generalizations of approximating a(�; �) or hf; �i or the domain 
 from

[T are straight forward, but not considered here).

Let � = ('

1

(x); : : : ; '

N

(x)) be the row vector of the f.e. basis functions de�ned

in V, then we use the mapping V 3 u ! u 2 R

N

by

u = �u: (1.3)

With (1.3) the equation (1.2) is transformed into the vector space, equivalently

to

Ku

ex

= b; (1.4)

when

K = (a('

j

; '

i

))

N

i;j=1

; b = (hf; '

i

i)

N

i=1

and u

h

= �u

ex

:

So we have to solve the linear system (1.4), which is large but sparse. For its

dimension N approximately 10

3

or more the problems in using Gaussian elim-

ination diverge, so we consider e�cient iterative solvers, such as the conjugate

gradient method with modern preconditioners. The preconditioner in the vec-

tor space is a symmetric positiv de�nit matrix C

�1

(constant over the iteration

process) for which 3 properties should be ful�lled as best as possible:

(P1): The action w := C

�1

r should be cheap (O(N) arithmetical operations).

Here r = Ku� b is the residual vector of an approximate solution u � u

ex

and w, the preconditioned residual, has to be an appproximation to the

error u� u

ex

.
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(P2): The condition number of C

�1

K, i.e.

�(C

�1

K) = �

max

(C

�1

K)=�

min

(C

�1

K)

should be small, this results in a small number of � �(C

�1

K)

1=2

iterations

for reducing a norm of r under a given tolerance �.

(P3): The action w = C

�1

r should work in parallel according to the data distri-

bution of all large data (all vectors/matrices with O(N) storage) over the

processors of a parallel computer.

In the past, preconditioning was a matrix{technique (compare: incomplete fac-

torizations), nowadays the construction of e�cient preconditioners uses the an-

alytical knowledge of the f.e. spaces. So, we transform the equation w = C

�1

r

into the f.e. space V for further investigation of more complicate higher order

�nite elements:

Lemma 1: The preconditioning operation w = C

�1

r on r = Ku � b in R

N

is equivalent to the de�nition of a `preconditioned function' w 2 V with

w =

N

X

i=1

 

i

hr;  

i

i

for a special basis 	 in V.

Proof: With w = C

�1

r we de�ne w = �w. For a given u 2 R

N

, we have

u = �u 2 V and de�ne a `residual functional' r 2 H

�1

(
) with

a(u; v)� hf; vi = hr; vi 8v 2 H

1

0

(
):

In the CG algorithm, we have the values hr; '

i

i within our residual vector r:

r = Ku� b =

�

X

a('

j

; '

i

)u

j

� hf; '

i

i

�

N

i=1

= (a(u; '

i

)� hf; '

i

))

N

i=1

= (hr; '

i

i)

N

i=1

So, w = �w = �C

�1

r can be written with any factorization C

�1

= FF

T

(square

root of C

�1

or Cholesky decompotion etc.) as

w = �FF

T

r =

N

X

i=1

 

i

hr;  

i

i;

whenever 	 = ( 

1

: : :  

N

) = �F is another basis in V, transformed with the

regular (N �N){matrix F .
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Remark 1: If no preconditioning is used, we have C

�1

= F = I, the de�nition

of w is

w =

N

X

i=1

'

i

hr; '

i

i

with our nodal basis �.

Remark 2: The well{known hierarchical preconditioner due to YSERENTANT

(see next Chapter) constructs the matrix F directly from the basis transforma-

tion of nodal basis functions � into hierarchical base functions 	 and the action

w := C

�1

r is indeed

w := FF

T

r:

2. Basic Facts on Hierarchical and BPX Pre-

conditioners for Linear Elements

Let the triangulation T

L

be the result of L re�nement steps starting on a given

coarse mesh T

0

. For simplicity let each triangle T

0

in T

l�1

be subdivided into 4

equal subtriangles of T

l

. Then the mesh history is stored within a list of nodal

numbers, where each new node a

i

=

1

2

(a

j

+a

k

) from subdividing the edge (a

j

; a

k

)

in T

l�1

is stored together with his `father' nodes:

(i; j; k) =(Son, Father1, Father2).

This list is ordered from coarse to �ne due to the history. Note that in the quadri-

lateral case this list contains (Son, Father1, Father2) if an edge is subdivided, but

additionally

(Son, Father1, Father2, Father3, Father4)

with the `Son' as interior node and all four vertices of a quadrilateral subdivided

into 4 parts. With this de�nition we have the �nite element spaces V

l

belonging

to the triangulation T

l

equipped with the usual nodal basis �

l

(V

l

= span�

l

; l = 0; : : : ; L):

All functions in this basis are piecewise (bi{)linear with respect to T

l

. From

V

0

� V

1

� � � � � V

L

; (2.1)

we can de�ne a hierarchical basis 	

L

in V

L

recursively:

Let 	

0

= �

0

, from 	

l�1

the hierarchical basis in V

l�1

= span	

l�1

= span�

l�1

we de�ne

	

l

= (	

l�1

.

.

.�

new

l

) (2.2)
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where �

new

l

contains all `new' nodal basis functions of V

l

belonging to nodes a

i

that are new (`Sons') in T

l

(not de�ned in T

l�1

).

For l = L, we have V

L

= span	

L

= span�

L

, so another basis additionally to �

L

is de�ned and there exists a regular (N � N){Matrix F with 	

L

= �

L

F which

is used in our preconditioning procedure as considered in Chapter 1.

From [11] the following facts are derived:

(P2) is ful�lled with �(C

�1

K) = O(L

2

) = O(j loghj

2

) from the good condition

of the `hierarchical sti�ness matrix' K

H

= F

T

KF (�(K

H

) = �(C

�1

K)),

which is a consequence of `good' angles between the subspaces V

l�1

and

(V

l

� V

l�1

).

(P1) is ful�lled from the recursiv re�nement formula: Consider the spaces V

l�1

and V

l

with the bases �

l�1

and �

l

(dimV

l

= N

l

). Then from V

l�1

� V

l

there is an (N

l

�N

l�1

){Matrix

~

P

l�1

with

�

l�1

= �

l

~

P

l�1

: (2.3)

Here

~

P

l�1

is explicitly known

~

P

l�1

=

0

@

I

� � �

P

l�1

1

A

(2.4)

from

'

(l�1)

i

= '

(l)

i

+

1

2

X

j2N (i)

'

(l)

j

: (2.5)

(The sum runs over all `new' nodes j that are neighbours of i, the set N (i)).

That is, P

l�1

hat values

1

2

at position (j; i) i� j is `Son' of i (an edge (i; i

0

)

from T

l�1

was subdivided into (i; j) and (i

0

; j) in T

l

), so the value

1

2

occurs

exactly twice in each row of P

l�1

.

From this de�nition for all l = 1; : : : ; L follows that F is a product of transfor-

mations from level to level, from which the matrix vector multiply w := FF

T

r

becomes very cheap according to the following two basic algorithms:

(A1): y := F

T

r is done by:

1. y := r

2. for all entries within the list (backwards) do:

8

<

:

y(Father1) := y(Father1) +

1

2

y(Son)

y(Father2) := y(Father2) +

1

2

y(Son)
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(A2): w := Fy is done by:

1. w := y

2. for all entries within the list do:

w(Son) := w(Son) +

1

2

(w(Father1) + w(Father2))

Note: In the quadrilateral case sometimes 4 fathers exist then

1

2

is to be replaced

by

1

4

due to another re�nement equation.

Remark 1: This preconditioner works perfectly in a couple of applications in

2D. Basically it has been successfully used for simple potential problems, but

a generalization to linear elasticity problems (plane stress or plane strain 2D)

is simple. Here, we use this technique for each single component of the vector

function ~u 2 (H

1

(
))

2

. The condition number �(C

�1

K) is enlarged by the

constant from Korn's inequality.

Remark 2: For 3D problems, a growing condition number �(C

�1

K) = O(h

�1

)

would appear. To overcome this di�culty, the BPX preconditioner has to be used

[2, 8]. According to (2.3) we have

�

l

= �

L

Q

l

8l = 0; : : : ; L

(Q

l

=

~

P

L

� : : : �

~

P

l

is (N �N

l

)):

(2.6)

Then the BPX preconditioner is de�ned as

w = C

�1

r =

L

X

l=0

N

l

X

i=1

'

(l)

i

hr; '

(l)

i

i � d

l

i

(2.7)

which is (from Chapter 1) equivalent to:

w =

L

X

l=0

Q

l

D

l

Q

T

l

r: (2.8)

Here, D

l

= diag(d

l

1

; : : : ; d

l

N

l

) are scale factors, which can be chosen as 2

(d�2)l

or as

inverse main diagonal entries of the sti�ness matrices K

l

belonging to �

l

: K

l

=

Q

T

l

KQ

l

.

For this preconditioner the fact �(C

�1

K) � const (independent of h) can be

proven and the algorithm for (2.8) is similar to (A1) and (A2).
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3. Generalizing Hierarchical Techniques to

Higher Order Elements

From the famous properties of the preconditioning technique in Chapter 2, we

should wish to construct similar preconditioners for higher order �nite elements

and especially for shell and plate elements.

We propose the same nested triangulation as in Chapter 2: T

0

; : : : ; T

L

. Let

n

l

be the total number of nodes in T

l

, then in Chapter 2 we had N

l

= n

l

(it was

one degree of freedom per node). Now this is di�erent, usually N

l

> n

l

(at least

for l = L, where the �nite element space V

L

= V for approximating our bilinear

form is de�ned).

For using hierarchical{like techniques we have 3 possibilities:

Technique 1: For some kinds of higher order elements, we de�ne the f.e. spaces

V

l

on each level and obtain nested spaces

V

0

� V

1

� : : : � V

L

:

In this case the same procedure as in Algorithms A1/A2 can be used, but due

to a more complicate re�nement formula (instead of (2.5)), the algorithms are to

be adapted.

Example 1: Bogner{Fox{Schmidt{elements on quadrilaterals (with bicubic

functions and 4 d.o.f. per node), see [9, 10].

Technique 2: Usually we cannot guarantee that the spaces V

l

are nested (i.e.

V

l�1

6� V

l

), but our �nest space V = V

L

belonging to the triangulation T

L

contains all piecewise linear functions on T

L

. So we have the nested spaces V

(1)

0

�

: : : � V

(1)

L

� V

L

, when V

(1)

l

are the piecewise linear functions on T

l

(as in Chapter

2). Then we have to represent V

L

= V

(1)

L

+

� W

L

(direct sum) and prove that

 = cos\(V

(1)

L

;W

L

) < 1. This angle is de�ned from the a(�; �) energy{inner

product



2

= sup

a

2

(u; v)

a(u; u)a(v; v)

; where (3.1)

the supremum is taken over all u 2 V

(1)

L

and v 2 W

L

. If  < 1 (independent of h),

the preconditioner works as in Chapter 2 for l = 0; : : : ; L (and linear elements:

A1/A2) and additionally there is one transformation from the nodal basis �

L

of

V

L

into the hierarchical basis (�

(1)

L

.

.

.�

new

L

) of (V

(1)

L

+

� W

L

) and back. Again we

have to calculate a special re�nement formula for this last step:

�

(1)

L

= �

L

~

P

L

: (3.2)
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Here,

~

P

L

has another structure as

~

P

l

(l < L) from Chapter 2. The entries of P

L

are de�ned from

'

(1)

i

= '

higher

i

+

X

j2N(i)

�

ij

'

higher

j

; (3.3)

where �

(1)

L

= ('

(1)

1

; : : : ; '

(1)

n

L

) are the piecewise linear basis functions and '

higher

j

the f.e. basis functions that span V

L

(for example piecewise polynomials of higher

order).

Example 2: V

L

= V

(2)

L

(piecewise quadratic polynomials on 6{node triangles).

Here, �

ij

=

1

2

i� i is vertex node of T

L

and j the node on the midpoint of an edge

(a

i

; a

i

0

). From �

ij

=

1

2

follows that Algorithm A1/A2 can be used without change

(one level more, all edge nodes are `sons' of the vertex nodes of this edges).

Example 3: V

L

= V

(2)

L

(piecewise biquadratic polynomials on 9{node quadri-

laterals).

Here,

�

ij

=

�

1

2

j midpoint of an edge (i; i

0

)

1

4

j interior node

Again Algorithm A1/A2 works without change, one level more.

Example 4: V

L

= V

(2;red)

L

(reduced biquadratic polynomials on 8{node quadri-

laterals).

Here, �

ij

=

1

2

, again use Algorithm A1/A2.

Example 5: V

L

= V

(3;red)

L

(piecewise reduced cubic polynomials on triangles,

the cubic bubble is removed such that all quadratic polynomials are included).

This example has to be considered, because this space occurs as �cticious space

in Technique 3. Here, we de�ne the following functions:

u(x) 2 V

L

is a reduced cubic polynomial on each T 2 T

L

(de�ned by 9 values on

the vertices of T ).

We choose u

i

= u(a

i

) and u

i;j

=

@u

@s

ij

j

a

i

, the tangential derivatives along the edges

of T : a

ij

= a

j

� a

i

; s

ij

= a

ij

=ja

ij

j.

Globally, we have jN (i)j+ 1 degrees of freedom at each node a

i

: u

i

= u(a

i

) and

u

i;j

=

@u

@s

ij

ja

i

8j 2 N (i). From this de�nition, we easily �nd

'

(1)

i

(x) = '

(3)

i

(x) +

X

j2N (i)

1

ja

ij

j

('

j;i

(x)� '

i;j

(x)): (3.4)

Here, '

(3)

(x) is the f.e. basis function with

'

(3)

i

(a

j

) = �

ij

and r'

(3)

i

(a

j

) = (0; 0)

T

8i; j (3.5)
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(with support of all T around a

i

) and '

i;j

(x) ful�ls

'

i;j

(a

k

) = 0 8i; j; k;

@

@s

ij

'

i;j

(a

i

) = 1 (3.6)

@

@s

ik

'

i;j

(x) = 0

(along all edges (i; k) 6= (i; j), so the support are two triangles that share the

edge (i; j)).

In the splitting V

(3;red)

L

= V

(1)

L

+ W

L

; W

L

is spanned by all functions '

i;j

(x).

Technique 3: There are examples, where neither the spaces V

l

are nested, nor

piecewise linear functions V

(1)

L

are contained within the �nest space V

L

. Here, we

can use the Ficticious Space Lemma (see [7, 8]), constructing a preconditioner

which is written as

C

�1

= R

~

C

�1

R

�

; (3.7)

if a �cticious space

~

V exists (in general of higher dimension than V

L

) having a

good preconditioner

~

C

�1

. The key is the de�nition of a restriction operator

R :

~

V ! V

L

with small energy norm.

Example 6: For more complicate plate analysis, the space V

HC

of Hermite{

triangles is used (DKT{elements, HCT{elements). Here u 2 V

HC

is again a

reduced cubic polynomial on each T � T

L

, but we use globally 3 degrees of

freedom per node: u

i

= u(a

i

) and

~

�

i

= ru(a

i

).

Here, ru is discontinuous on the edges, but continuous on each node a

i

. From this

property the spaces cannot be nested and the functions in V

(1)

L

have discontinuous

gradients on all vertices a

i

, so V

(1)

L

6� V

HC

. From V

HC

� V

(3;red)

, we de�ne a

restriction operator R : V

(3;red)

L

! V

L

= V

HC

and use the preconditioner for

V

(3;red)

L

in Example 5 for de�ning

~

C

�1

, which leads to a good preconditioner for

this space V

HC

. The de�nition of R is not unique, we use an easy choice, some

kind of averaging of

@u

@s

ij

j

a

i

to ru(a

i

):

Let ~u 2 V

(3;red)

L

be represented by

u

i

= ~u(a

i

) and u

i;j

=

@~u

@s

ij

j

a

i

(8i; 8j 2 N (i) )

then we de�ne u = R~u 2 V

HC

with u

i

= u(a

i

) and

~

�

i

= ru(a

i

) from

~

�

i

=

1

m

i

S

i

u

i

(u

i

= (u

i;j

)8j):

8



The matrix S

i

contains all normalized vectors s

ij

for all edges meeting a

i

. So,

~

�

i

=

1

m

i

X

j2N (i)

s

ij

�

@u

@s

ij

j

a

i

=

1

m

i

X

u

i;j

s

ij

(3.8)

4. Numerical Examples

Let us demonstrate the preconditioners proposed in Chapter 3 at one example

that allows some of the �nite elements discussed in Example 1 to Example 6.

So, we choose 
 as a rectangle with prescribed Dirichlet type boundary conditions

and solve a simple Laplace equation

�4 u = 0j




u = gj

@


;

�

so, a(u; v) =

R




(ru) � (rv)d
 and we use the following discretization:

a) piecewise linear functions (V

L

= V

(1)

L

)

on a triangular mesh (3{node{triangles)

(b) piecewise bilinear functions (V

L

= V

(1)

L

)

on a quadrilateral mesh (4{node{quadrilaterals)

(c) piecewise quadratic functions (V

L

= V

(2)

L

)

on a triangular mesh (6{node{triangles)

(d) piecewise biquadratic functions (V

L

= V

(2)

L

)

on quadrilaterals (9{node{quadrilaterals)

(e) piecewise reduced quadratic functions (V

L

= V

(2;red)

L

)

on quadrilaterals (8{node{quadrilaterals)

(f) piecewise reduced cubic functions (V

L

= V

HC

)

on a triangular mesh (Hermite cubic triangles)

The preconditioners for cases (a) to (e) were simply described in Examples 1 to

4 in Chapter 3. We will give the matrix representation for the preconditioner of

case (f) from combining Examples 5 and 6:

For V

L

= V

HC

, we have to solve

a(u; v) = hf; vi 8v 2 V

L

\H

1

0

(
)

in solving

Ku

ex

= b:

9



Here u = �u is represented by u

i

= u(a

i

) and

~

�

i

= ru(a

i

), so u 2 R

3n

. The

preconditioner C

�1

from Chapter 1 is an operator which maps the residual func-

tional r(u) to the preconditioned function w. From the �cticious space lemma,

we set

C

�1

= R

~

C

�1

R

�

with R :

~

V = V

(3;red)

L

! V

L

= V

HC

as in Example 6. In the �cticious space

~

V, we

use the preconditioner of Example 5. From Example 5 the matrix representation

of this preconditioner is

~

C

�1

= Q

L

�

FF

T

O

O I

�

Q

T

L

(4.1)

with F from Chapter 1. Here, Q

L

transforms the basis (�

(3)

.

.

.�

(edge)

) of the cubic

functions in V

(3;red)

into the hierarchical basis (�

(1)

.

.

.�

(edge)

).

�

(1)

= ('

(1)

1

; : : : ; '

(1)

n

) piecewise linear functions

�

(3)

= ('

(3)

1

; : : : ; '

(3)

n

) piecewise reduced cubic

with property (3.5)

�

(edge)

= ('

i;j

)8 edges (i; j) at node i piecewise reduced cubic

with property (3.6)

So,

Q

L

=

 

I

.

.

. O

P

L

.

.

. I

!

(4.2)

and entries of P

L

are found in (3.4). Combining this with Example 6, we have

C

�1

= RQ

L

�

FF

T

O

O I

�

Q

T

L

R

T

; (4.3)

when R is the matrix representation of R. The implementation of C

�1

is the

following algorithm (note that RQ

L

is done at once for saving storage, this is a

(3n� 3n){matrix).

The preconditioner C

�1

acts on a residual vector r 2 R

3n

(n = n

L

) with the

entries

r

i

= hr; '

i;0

i and

~

�

i

=

�

hr; '

i;1

i

hr; '

i;2

i

�

de�ned with the basis functions ('

i;�

) in V

HC

:

'

i;0

(a

j

) = �

ij

'

i;1

(a

j

) = '

i;2

(a

j

) = 0

r'

i;0

(a

j

) = (0; 0)

T

r'

i;1

(a

j

) = �

ij

(1; 0)

T

r'

i;2

(a

j

) = �

ij

(0; 1)

T

:

10



Analogously, the result w = C

�1

r contains entries w

i

and

~

�

i

(for w(a

i

) and

rw(a

i

)). From the de�nition

C

�1

= R

~

C

�1

R

T

= RQ

L

�

FF

T

O

O I

�

Q

T

L

R

T

we have to implement the matrix-vector-multiply

(RQ

L

)

T

r

and w = RQ

L

y, which is done at once for saving storage, i.e. there is no need to

store the (approximately 7n) values u

i;j

= s

T

ij

~

�

i

. This is contained in Algorithms

B1 (for y := (RQ

L

)

T

r) and B2 (for w := RQ

L

y).

Algorithm B1: for each edge (i; j) do

�

�

�

�

y

i

:= r

i

� a

T

ij

(

~

�

i

+

~

�

j

)=ja

ij

j

2

y

j

:= r

j

+ a

T

ij

(

~

�

i

+

~

�

j

)=ja

ij

j

2

Algorithm B2: for each edge (i; j) do

�

�

�

�

�

~

�

i

:=

~

�

i

+ a

ij

(a

T

ij

~

�

i

+ w

j

� w

i

)=ja

ij

j

2

~

�

j

:=

~

�

j

+ a

ij

(a

T

ij

~

�

j

+ w

j

� w

i

)=ja

ij

j

2

~

�

i

are evaluated from a Jacobi{preconditioning on the input

~

�

i

, w

i

are the re-

sults of Algorithms A1/A2 on the n{vector y.

The hierarchical{like preconditioners for the elements (a) to (f) require a very

small number of PCG{iterations as presented in the following table.

L n

�

(a) (b) (c) (d) (e) (f)

�

1 289 17 13 19 14 13 19

2 1,089 20 15 22 17 15 21

3 4,225 23 18 24 19 17 24

4 16,641 25 20 26 20 19 26

5 66,049 26 21 27 23 21 27

6 283,169 27 23 28 24 22 28

7 1,050,625 28 25 29 { 23 {

�

note that n is the number of nodes in the �nest mesh T

L

which is equal to

dimension N of the linear system in cases (a) to (d), in (e) N �

3

4

n but in (f) N

is 3n .

11
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A The calculation of  in Example 5

According to (3.1), we have to estimate 

2

with (a(u; w))

2

� 

2

a(u; u)a(w;w) for

all u 2 V

(1)

L

(piecewise linear functions) and all w 2 W

L

= span('

i;j

) from (3.6)

It is well{known that  can be estimated from the element level, so we de�ne

a

T

(u; v) =

R

T

(ru) � (rv)d
 for each T 2 T

L

, yielding

a(u; v) =

X

T

a

T

(u; v)

and estimate 

T

with (a

T

(u; w))

2

� 

2

T

a

T

(u; u)a

T

(w;w) for u 2 V

(1)

L

; w 2 W

L

.

The required inequqality (3.1) follows from Cauchy{Schwarz in the sum over T

(a(u; w))

2

=

 

X

T

a

T

(u; w)

!

2

�

 

X

T



T

a

T

(u; u)

1=2

a

T

(w;w)

1=2

!

2

� max

T



2

T

�

X

T

a

T

(u; u) �

X

T

a

T

(w;w)

with  � max

T2T

L



T

:

Hence, we consider u as linear on T and w is a reduced cubic polynomial on T

with zero values on the vertices de�ned by 6 values of the tangential derivatives

at the edges. Let T have the vertices a

1

; a

2

and a

3

(say), hence

A =

�

a

2

� a

1

.

.

. a

3

� a

1

�

transforms the element T onto the master element

^

T

(with â

1

= (0; 0)

T

; â

2

= (1; 0); â

3

= (0; 1)

T

):

x = Ax̂ + a

1

 ! x̂ = A

�1

(x� a

1

):

The linear function u is given by its three values u

i

= u(a

i

), so we have

ru = A

�T

�

u

2

� u

1

u

3

� u

1

�

on T:

Let v =

�

v

1

v

2

�

=

�

u

2

� u

1

u

3

� u

1

�

for abbreviating this, then

a

T

(u; u) = v

T

(A

T

A)

�1

v �

1

2

detA:

For considering w on T , we have to introduce shape functions '̂

i;j

, on

^

T , i.e.

functions with values '̂

i;j

(â

k

) = 0 and derivatives

@

@ŝ

ij

'̂

i;k

(â

l

) = �

ik

� �

il

(all indicees between 1 and 3, i 6= j and ŝ

ij

= (â

j

� â

i

)=jâ

j

� â

i

j).
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For ful�lling (3.6) we have to de�ne '

i;j

(x) = '̂

i;j

(x̂ = A

�1

(x�a

1

)) �d

i;j

. The

scale factors d

i;j

(j 6= i) are inserted into the (6� 6){diagonal matrix

D = diag (d

1;2

; d

1;3

; d

2;3

; d

2;1

; d

3;1

; d

3;2

)

= diag

�

ja

12

j; ja

13

j; ja

23

j=

p

2; ja

12

j; ja

13

j; ja

23

j=

p

2

�

and will not inuence 

T

.

Hence, a function w 2 W

L

on T is represented by the 6{vector

w = (w

1;2

; w

1;3

; w

2;3

; w

2;1

; w

3;1

; w

3;2

)

T

as w =

P

'

i;j

� w

i;j

=

P

'̂

i;j

d

i;j

w

i;j

, so

a

T

(w;w) =

Z

T

(rw) � rwd
 = w

T

DBDw

with the (6� 6){element matrix

B =

0

@

Z

T

(A

�T

^

r'̂

i;j

) � (A

�T

^

r'̂

k;l

)d


1

A

(i;j)(k;l)

:

Hence,

a

T

(w;w) �

detA

�(A

T

A)

(Dw)

T

^

B(Dw)

with the element matrix of the master element

^

B =

1

360

^

D

0

B

B

B

B

B

B

@

17 �3 10 �8 8 4

�3 17 0 �4 6 8

10 0 23 �13 7 5

�8 �4 �13 19 �17 �11

8 6 7 �17 47 25

4 8 5 �11 25 19

1

C

C

C

C

C

C

A

^

D

^

D = diag (1; 1; 1;

p

2; 1;

p

2):

In the same way a

T

(u; w) = detA � v

T

A

�1

A

�T

^

CDw with the (2� 6){matrix

^

C =

0

B

@

Z

^

T

^

r'̂

i;j

d


1

C

A

(i;j)

=

1

12

�

0 �1 0 1 �1 �1

�1 0 �1 1 �2 �1

�

^

D

so,



2

T

� max

[v

T

(A

T

A)

�1

^

C(Dw]

2

(Dw)

T

^

B(Dw) � v

T

(A

T

A)

�1

v

� 2�(A

T

A)

= 2�(A

T

A) � �

�

(A

T

A)(A

T

A)

�1

^

C

^

B

�1

^

C

T

(A

T

A)

�T

�

�

�(A

T

A)

�

min

(A

T

A)

2�(

^

C

^

B

�1

^

C

T

):
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A direct calculation yields

^

C

^

B

�1

^

C

T

=

�

40 7

7 40

�

360

330�144

so



2

� 0; 72 (�

2

(A))

2

with the spectral condition number of A, which is small for good meshes. So, 

is a constant smaller than 1.

B The Use of the Ficticious Space Lemma

From [8] we recall the Ficticious Space Lemma in a simpli�ed manner as required

here:

Ficticious Space Lemma: Let V �

~

V � H Banach spaces with A : H ! H

�

an

operator equivalent to hAu; vi = a(u; v) 8u; v 2 H , where h�; �i denotes the dual

pairing H

�

� H ! R

1) Let R :

~

V ! V with a(R~u;R~u) � c

R

a(~u; ~u) 8~u 2

~

V

2) Let Q : V !

~

V with RQu = u 8u 2 V

and a(Qu;Qu) � c

�1

Q

a(u; u) 8u 2 V.

3) Let

~

C

�1

: H

�

!

~

V be a good preconditioner for A in

~

V:

� a(~u; ~u) � a(

~

C

�1

A~u; ~u) � �� a(~u; ~u) 8~u 2

~

V

Then C

�1

= R

~

C

�1

R

�

is a good preconditioner for A in V i.e.

a(u; u) � a(C

�1

Au; u) � �a(u; u) 8u 2 V

with �= � (��=�) � (c

R

c

Q

).

Remark: If V;

~

V are �nite dimensional subspaces with a mesh parameter h,

then c

R

; c

Q

; �; �� do not depend on h.

So, we have to de�ne and investigate

R :

~

V = V

(3;red)

! V = V

HC

and Q : V !

~

V:

From V = V

HC

�

~

V = V

(3;red)

we can expand all functions with resprect to the

basis

~

� in

~

V = V

(3;red)

.
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Hence, ~u 2

~

V is ~u =

~

�~u and a(~u; ~u) = ~u

T

~

K~u. Again u 2 V is represented as

u =

~

�u; a(u; u) = u

T

~

Ku. Let u = R~u then we have to calculate

c

R

= max

~u2

~

V

a(R~u;R~u)=a(~u; ~u)

= max

~u

(u

T

~

Ku)=(~u

T

~

K~u)

where u is to be de�ned as coe�cient vector of u = R~u w.r.t.

~

�. On each node

a

i

; ~u 2

~

V is respresented by u

i

= ~u(a

i

) and by a small vector

~u

i

= (~u

i;j

) = (

@

@s

ij

~uj

a

i

) for each edge meeting a

i

. For de�ning u = R~u 2 V

HC

we

let u

i

= ~u(a

i

) = u(a

i

) and set �

i

= ru(a

i

) as �

i

=

1

m

i

S

i

~u

i

with a (2�m

i

){matrix

S

i

containg s

ij

8

j

as its columns. Obvionsly m

i

> 2, hence it is a projection from

~u

i

2 R

m

i

to �

i

2 R

2

. From the fact that ~u

i;j

is the value

@u

@s

ij

j

a

i

for each function

u 2

~

V, we can represent u 2 V from the values u

i

= u(a

i

) = ~u(a

i

) and u

i;j

= s

T

ij

�

i

so u

i

=

1

m

i

S

T

i

S

i

~u

i

de�nes the coe�cients of u w.r.t.

~

�. Hence

c

R

= max

~u

T

D

T

~

KD~u

~u

T

~

K~u

with the block diagonal matrix

D = diag

�

1;

1

m

1

S

T

1

S

1

; 1;

1

m

2

S

T

2

S

2

; : : : ; 1;

1

m

n

S

T

n

S

n

�

:

The entries of S

T

i

S

i

are inner products of the normalized edge vectors: s

T

ij

s

ik

, so

k

1

m

i

S

T

i

S

i

k

2

< k

1

m

i

S

T

i

S

i

k

1

< 1.

From a splitting of D and of the identity matrix into D = I

1

+ D

2

; I = I

1

+ I

2

with

I

1

= diag (1; O ; 1; O; � � � ; 1; O )

I

2

= diag (0; I ; 0; I; � � � ; 0; I )

D

2

= diag (0;

1

m

1

S

T

1

S

1

; 0; � � � ; 0;

1

m

n

S

T

n

S

n

)

and u

1

= I

1

~u; u

2

= I

2

~u we obtain

c

R

= max

u

T

1

K

11

u

1

+ 2u

T

1

K

12

D

2

u

2

+ u

T

2

D

2

K

22

D

2

u

2

u

T

1

K

11

u

1

+ 2u

T

1

K

12

u

2

+ u

T

2

K

22

u

2

with the matrix blocks K

ij

= I

i

~

KI

j

(i; j = 1; 2).

The matrix K

22

is well{conditioned due to the fact that B from Appendix 1 is

the element contribution to K

22

from an element T . Hence, from kD

2

k

2

< 1 we

have

u

T

2

D

2

K

22

D

2

u

2

� �

0

u

T

2

K

22

u

2

with a constant �

0

� �(K

22

).
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Again the complete estimation af c

R

requires a `good' angle between the sub-

space spanned by '

i;0

(x) (de�ning K

11

) and the subspace spanned by '

i;j

(x)

(de�ning K

22

). Analogously to Appendix 1 we have on the master element level



2

master

= max

x2R

3

(

^

B

12

^

B

�1

22

^

B

T

12

x; x)

(

^

B

11

x; x)

=

163

220

:

Here,

^

B

22

is the matrix

^

B in Appendix 1 and

^

B

12

^

B

�1

22

^

B

T

12

=

1

360

�

1

11

0

@

3260 �1630 �1630

�1630 1508 122

�1630 122 1508

1

A

^

B

11

=

1

360

0

@

400 �200 �200

�200 208 �8

�200 �8 208

1

A

:

Hence, there is a constant  (slightly larger than 

master

, but smaller than 1) with

(u

T

1

K

12

u

2

)

2

� 

2

� u

T

1

K

11

u

1

� u

T

2

K

22

u

2

; 8u

1

; u

2

;

and the constant c

R

follows from the inequalities

u

T

1

K

11

u

1

+ 2u

T

1

K

12

(D

2

u

2

) + u

T

2

D

2

K

22

D

2

u

2

� (1 + )(u

T

1

K

11

u

1

+ u

T

2

D

2

K

22

D

2

u

2

)

� �

0

(1 + )(u

T

1

K

11

u

1

+ u

T

2

K

22

u

2

);

u

T

1

K

11

u

1

+ 2u

T

1

K

12

u

2

++u

T

2

K

22

u

2

� (1� )(u

T

1

K

11

u

1

+ u

T

2

K

22

u

2

)

with c

R

� �

0

(1 + )=(1� ).

In the same way, the operator Q is analyzed. For de�ning Q : V !

~

V we

have to guarantee RQu = u. Hence, if R was represented by ~u

i

! �

i

=

1

m

i

S

i

~u

i

,

we de�ne ~u = Qu() ~u

i

= m

i

S

T

i

(S

i

S

T

i

)

�1

�

i

.

The estimation of c

Q

is very similar to c

R

.
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