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1. Solving Finite Element Equations by Precon-
ditioned Conjugate Gradients

We consider the usual weak formulation of a second order partial differential
equation:

find uw € H'(Q) (fulfilling Dirichlet-type boundary conditiones on I'p C 9Q)
with a(u,v) = (f,v) Yv € Hy(Q) ={ve H(Q) :v=0|p,}. (1.1)

For simplicity let 2 be a polygonal domain in R? (d = 2 or d = 3), so using a fine
triangulation

T, ={T C Q}, T are triangles (quadrilaterals) if d = 2
T are tetrahedrons (pentahedrons/hexahedrons) if d=3

with the nodes a; (represented by their numbers 7), we define a finite dimensional
subspace V C H'(Q) and define the finite element solution wuj, from

a(up,v) = (f,v) Vv e VnH;(Q). (1.2)

(The usual generalizations of approximating a(-,-) or (f, ) or the domain € from
UT are straight forward, but not considered here).

Let ® = (¢1(x),...,on(x)) be the row vector of the f.e. basis functions defined
in V, then we use the mapping V> u «+— u € R by

u = du. (1.3)

With (1.3) the equation (1.2) is transformed into the vector space, equivalently
to
Ku® = b, (1.4)

when

K = (a(pj i) =, 0= ((fio))iss  and = Qu.
So we have to solve the linear system (1.4), which is large but sparse. For its
dimension N approximately 10% or more the problems in using Gaussian elim-
ination diverge, so we consider efficient iterative solvers, such as the conjugate
gradient method with modern preconditioners. The preconditioner in the vec-
tor space is a symmetric positiv definit matrix C~" (constant over the iteration
process) for which 3 properties should be fulfilled as best as possible:

(P1): The action w := C~'r should be cheap (O(N) arithmetical operations).
Here r = Ku — b is the residual vector of an approximate solution u ~ u®*
and w, the preconditioned residual, has to be an appproximation to the
error u — u®”.



(P2): The condition number of C~'K, i.e.
K(CT'K) = Anax (C7'K) /Amin(CT'K)

should be small, this results in a small number of ~ ,‘ﬁ(C'_lK)l/2 iterations
for reducing a norm of r under a given tolerance e.

(P3): The action w = C~'r should work in parallel according to the data distri-
bution of all large data (all vectors/matrices with O(NN) storage) over the
processors of a parallel computer.

In the past, preconditioning was a matrix—technique (compare: incomplete fac-
torizations), nowadays the construction of efficient preconditioners uses the an-
alytical knowledge of the f.e. spaces. So, we transform the equation w = C~!r
into the f.e. space V for further investigation of more complicate higher order
finite elements:

Lemma 1: The preconditioning operation w = C~'r on r = Ku — b in RY
is equivalent to the definition of a ‘preconditioned function’ w € V with

N
w= Z Vi, ¥i)
i=1

for a special basis ¥ in V.
Proof: With w = C~!'r we define w = ®w. For a given u € RV, we have
u = ®u € V and define a ‘residual functional’ v € H~'(Q) with

a(u,v) — (f,v) = (r,v) Vv € Hy(Q).

In the C'G algorithm, we have the values (t, ;) within our residual vector r:

N

r=Ku—b = (Za(%a%)%—(ﬁ%»

1=

= (alu, 5) = {f, 0))isy = (v, 00) iy

So, w = dw = ®C~'r can be written with any factorization C~' = FFT (square
root of C~' or Cholesky decompotion etc.) as

N
w = (I)FFTE — Zw’i<ta w2>7

=1

whenever U = (¢;...9y) = ®F is another basis in V, transformed with the
regular (N x N)-matrix F.



Remark 1: If no preconditioning is used, we have C~! = F' = I, the definition
of w is

N
w = Z @it, i)
i=1

with our nodal basis ®.

Remark 2: The well-known hierarchical preconditioner due to YSERENTANT
(see next Chapter) constructs the matrix F' directly from the basis transforma-
tion of nodal basis functions ® into hierarchical base functions ¥ and the action
w = O 'r is indeed

w:=FFTr.

2. Basic Facts on Hierarchical and BPX Pre-
conditioners for Linear Elements

Let the triangulation 7;, be the result of L refinement steps starting on a given
coarse mesh 7y. For simplicity let each triangle 7" in 7,_; be subdivided into 4
equal subtriangles of 7;. Then the mesh history is stored within a list of nodal
numbers, where each new node a; = 3(a; + a;,) from subdividing the edge (a;, a;)
in 7;_; is stored together with his ‘father’ nodes:

(i, 7, k) =(Son, Fatherl, Father2).

This list is ordered from coarse to fine due to the history. Note that in the quadri-
lateral case this list contains (Son, Fatherl, Father2) if an edge is subdivided, but
additionally

(Son, Fatherl, Father2, Father3, Father4)

with the ‘Son’ as interior node and all four vertices of a quadrilateral subdivided
into 4 parts. With this definition we have the finite element spaces V; belonging
to the triangulation 7, equipped with the usual nodal basis ®,

(V; = span®;,1 =0,...,L).
All functions in this basis are piecewise (bi—)linear with respect to 7;. From
VoV, C---CVp, (2.1)
we can define a hierarchical basis ¥y, in V;, recursively:
Let ¥y = @, from ¥;_; the hierarchical basis in V;_; = span¥,_; = span®;_;

we define
Uy = (U, 1:07") (2.2)
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where ®7°" contains all ‘new’ nodal basis functions of V; belonging to nodes q;
that are new (‘Sons’) in 7; (not defined in 7; ;).

For [ = L, we have V;, = span¥;, = span®;, so another basis additionally to &,
is defined and there exists a regular (N x N)-Matrix F' with ¥; = ®; F which
is used in our preconditioning procedure as considered in Chapter 1.

From [11] the following facts are derived:

(P2) is fulfilled with x(C~'K) = O(L?) = O(]logh|?) from the good condition
of the ‘hierarchical stiffness matrix’ Ky = FTKF (k(Ky) = k(C7'K)),
which is a consequence of ‘good’ angles between the subspaces V;,_; and
(V; = V,_1).

(P1) is fulfilled from the recursiv refinement formula: Consider the spaces V; ;
and V; with the bases ®; ; and &, (dimV; = N;). Then from V, ; C V,
there is an (N; x N;_1)-Matrix P,_; with

q)l—l = q)lpl—l- (23)

Here FN’Z,I is explicitly known

3 I
o= --- (2.4)
P
from .
-1 ! !
V=045 D e (2.5)
JEN(3)

(The sum runs over all ‘new’ nodes j that are neighbours of 7, the set N ()).
That is, P,_; hat values § at position (7, ) iff j is ‘Son’ of i (an edge (4,7
from 7,_; was subdivided into (4, j) and (¢, 7) in 7;), so the value 3 occurs
exactly twice in each row of P_;.

From this definition for all [ = 1,..., L follows that F' is a product of transfor-
mations from level to level, from which the matrix vector multiply w := FFTr
becomes very cheap according to the following two basic algorithms:

(A1): y:= FTr is done by:

1.y:==r
2. for all entries within the list (backwards) do:

y(Fatherl) := y(Fatherl) + 1y(Son)

y(Father2) := y(Father2) + 1y(Son)



(A2): w:= Fy is done by:

1. w:=y

2. for all entries within the list do:

w(Son) := w(Son) + %(w(Fatherl) + w(Father2))

Note: In the quadrilateral case sometimes 4 fathers exist then % is to be replaced
by i due to another refinement equation.

Remark 1: This preconditioner works perfectly in a couple of applications in
2D. Basically it has been successfully used for simple potential problems, but
a generalization to linear elasticity problems (plane stress or plane strain 2D)
is simple. Here, we use this technique for each single component of the vector
function @ € (H'(Q2))?. The condition number x(C~'K) is enlarged by the
constant from Korn’s inequality.

Remark 2: For 3D problems, a growing condition number x(C 1K) = O(h™1)
would appear. To overcome this difficulty, the BPX preconditioner has to be used
[2, 8]. According to (2.3) we have

O, =0,Q VI =0,...,L

0 2.6
(Ql:PL'...'BIS (NXN[)) ( )
Then the BPX preconditioner is defined as
L N
w=CTle=3"3 "o (x ) - d (27)
=0 i=1
which is (from Chapter 1) equivalent to:
L
w= Z QzDzQ?E- (2.8)
1=0
Here, D; = diag(d,, ..., d) ) are scale factors, which can be chosen as 2d=2) o1 as

inverse main diagonal entries of the stiffness matrices K; belonging to ®; : K; =

QI KQ.
For this preconditioner the fact x(C~'K) < const (independent of h) can be
proven and the algorithm for (2.8) is similar to (A1) and (A2).
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3. Generalizing Hierarchical Techniques to
Higher Order Elements

From the famous properties of the preconditioning technique in Chapter 2, we
should wish to construct similar preconditioners for higher order finite elements
and especially for shell and plate elements.

We propose the same nested triangulation as in Chapter 2: 7o, ..., 7. Let
n; be the total number of nodes in 7;, then in Chapter 2 we had N, = n; (it was
one degree of freedom per node). Now this is different, usually N; > n,; (at least
for [ = L, where the finite element space V;, =V for approximating our bilinear
form is defined).

For using hierarchical-like techniques we have 3 possibilities:

Technique 1: For some kinds of higher order elements, we define the f.e. spaces
V, on each level and obtain nested spaces

VoCV,C...CV;.

In this case the same procedure as in Algorithms A1/A2 can be used, but due
to a more complicate refinement formula (instead of (2.5)), the algorithms are to
be adapted.

Example 1: Bogner—Fox—Schmidt—elements on quadrilaterals (with bicubic
functions and 4 d.o.f. per node), see [9, 10].

Technique 2: Usually we cannot guarantee that the spaces V; are nested (i.e.
Vi1 ¢ V), but our finest space V. = V belonging to the triangulation 7,
contains all piecewise linear functions on 7. So we have the nested spaces V(()l) C
.. C V(Ll) C V,, when Vl(l) are the piecewise linear functions on 7; (as in Chapter

2). Then we have to represent V, = Vg) 7wy, (direct sum) and prove that
v = cos A(Vg),WL) < 1. This angle is defined from the a(-,-) energy-inner
product

a*(u,v)

v* = sup , where (3.1)

a(u,u)a(v,v)

the supremum is taken over all u € Vg) and v € Wy. If ¥ < 1 (independent of h),
the preconditioner works as in Chapter 2 for [ = 0,..., L (and linear elements:
A1/A2) and additionally there is one transformation from the nodal basis ®;, of

V., into the hierarchical basis (@g)fcbﬁe“’) of (V<L1 )T W; ) and back. Again we
have to calculate a special refinement formula for this last step:

oV =, P, (3.2)
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Here, P;, has another structure as P,(I < L) from Chapter 2. The entries of Py,
are defined from

901(1) — (Pﬁzigher_'_ Z Ozijgp?igher, (33)
JEN (i)
where <I>(Ll) = (<p§1), cey goq(llL)) are the piecewise linear basis functions and go?ighe’"

the f.e. basis functions that span V;, (for example piecewise polynomials of higher
order).

Example 2: V;, = Vg) (piecewise quadratic polynomials on 6-node triangles).
Here, a;; = % iff 7 is vertex node of 77, and j the node on the midpoint of an edge
(a;, a). From a;; = 5 follows that Algorithm A1/A2 can be used without change
(one level more, all edge nodes are ‘sons’ of the vertex nodes of this edges).

Example 3: V;, = V(LQ) (piecewise biquadratic polynomials on 9—node quadri-

laterals).
Oéij = {

Here,
J midpoint of an edge (i,14")
Again Algorithm A1/A2 works without change, one level more.

j interior node

[ M1

Example 4: V; = Vf ired) (reduced biquadratic polynomials on 8-node quadri-
laterals).
Here, a;; = 3, again use Algorithm A1/A2.

Example 5: V;, = Vf’red) (piecewise reduced cubic polynomials on triangles,
the cubic bubble is removed such that all quadratic polynomials are included).
This example has to be considered, because this space occurs as ficticious space
in Technique 3. Here, we define the following functions:

u(z) € Vr, is a reduced cubic polynomial on each T' € Ty, (defined by 9 values on
the vertices of T).

We choose u; = u(a;) and u; j = % |la;, the tangential derivatives along the edges
Of T: aij = (Zj — Qy, Sij = aij/|aij|.

Globally, we have |N(i)| + 1 degrees of freedom at each node a;: u; = u(a;) and
ui; = 2%a; Vj € N(i). From this definition, we easily find

ij

D) =6P@) + 3 2 (4(n) — piy(a)): (3.4)

JEN() &l
Here, ¢®(z) is the f.e. basis function with
o1 (a;) = 65 and Vi) (a;) = (0,0)7Vi, j (3.5)
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(with support of all T around a;) and ¢; ;(x) fulfils

- 0
pij(ak) =0V, j, k, 8—90i,j(az') =1 (3.6)
Sij
0

(along all edges (i,k) # (4,7), so the support are two triangles that share the
edge (i, 7))-
In the splitting Vf”red) = Vg) + Wy, Wy, is spanned by all functions ¢; j(z).

Technique 3: There are examples, where neither the spaces V; are nested, nor

piecewise linear functions V<L1) are contained within the finest space V;,. Here, we
can use the Ficticious Space Lemma (see [7, 8]), constructing a preconditioner
which is written as

C ' =RCIRY, (3.7)
if a ficticious space Y exists (in general of higher dimension than V) having a
good preconditioner C~'. The key is the definition of a restriction operator

R:V-V,
with small energy norm.

Example 6: For more complicate plate analysis, the space V¢ of Hermite—

triangles is used (DKT-elements, HCT-elements). Here u € V¢ is again a
reduced cubic polynomial on each T" C 7T, but we use globally 3 degrees of
freedom per node: u; = u(a;) and 6; = Vu(a;).
Here, Vu is discontinuous on the edges, but continuous on each node a;. From this
property the spaces cannot be nested and the functions in V<L1) have discontinuous
gradients on all vertices a;, so V<L1) ¢ VHC  From VHC ¢ VB we define a
restriction operator R : Vf”red) — Vi = VHY and use the preconditioner for
Vf”red) in Example 5 for defining C~!, which leads to a good preconditioner for
this space VF¢. The definition of R is not unique, we use an easy choice, some
kind of averaging of % a; 10 Vu(a;):

Let @ € Vf’red) be represented by

ou

Gorlu (VX €N ()

U; = a(al) and ui,j =

then we define u = R € VFC with u; = u(a;) and ©; = Vu(a,) from

éi = —S5; u; (Qz = (Ui,j)vj)-



The matrix S; contains all normalized vectors s;; for all edges meeting a;. So,

- 1 ou 1
0, = E Z Sij - E a = E Zui,jsij (3-8)
JEN(9)

4. Numerical Examples

Let us demonstrate the preconditioners proposed in Chapter 3 at one example
that allows some of the finite elements discussed in Example 1 to Example 6.
So, we choose (2 as a rectangle with prescribed Dirichlet type boundary conditions
and solve a simple Laplace equation

—ANu = 0|Q }

u = gloo,
s0, a(u,v) = [(Vu)-(Vv)dQ and we use the following discretization:
Q

a) piecewise linear functions (V, = Vi)
on a triangular mesh (3-node-triangles)

(b) piecewise bilinear functions (V;, = V(Ll))
on a quadrilateral mesh (4-node-quadrilaterals)

(c) piecewise quadratic functions (V;, = V(LQ))
on a triangular mesh (6-node—triangles)

(d) piecewise biquadratic functions (V, = V<L2))
on quadrilaterals (9—node—quadrilaterals)

(e) piecewise reduced quadratic functions (V;, = V&™)
on quadrilaterals (8-node—quadrilaterals)

(f) piecewise reduced cubic functions (Vy, = V)
on a triangular mesh (Hermite cubic triangles)

The preconditioners for cases (a) to (e) were simply described in Examples 1 to
4 in Chapter 3. We will give the matrix representation for the preconditioner of
case (f) from combining Examples 5 and 6:

For V;, = VZ¢ we have to solve

a(u,v) = (f,v) Vv € V;, N Hy ()

in solving
ngz — b



Here u = ®u is represented by u; = u(a;) and 6, = Vu(a;), so u € R, The
preconditioner C~! from Chapter 1 is an operator which maps the residual func-
tional v(u) to the preconditioned function w. From the ficticious space lemma,
we set,

Cl'=RC IR

with R : V= Vf’”‘ed) — V;, = VEC a5 in Example 6. In the ficticious space V, we
use the preconditioner of Example 5. From Example 5 the matrix representation
of this preconditioner is

~ T
OI:QL(FS “,D)QE (4.1)

with F from Chapter 1. Here, @, transforms the basis (®(3):®(¢49¢)) of the cubic

functions in VG e?) into the hierarchical basis (®(1):id(edse)),

o) — ((pgl), e @511)) piecewise linear functions
B = (cp?), e gos’)) piecewise reduced cubic
with property (3.5)
Pledge)  — (¢i;)V edges (i,7) at node i piecewise reduced cubic

with property (3.6)

@L:< - ®) (12)
PL 1

and entries of Py, are found in (3.4). Combining this with Example 6, we have

So,

C™' = RQ, ( e ?) QIR (4.3)

when R is the matrix representation of R. The implementation of C'! is the
following algorithm (note that RQ)y, is done at once for saving storage, this is a
(3n X 3n)-matrix).

The preconditioner C~! acts on a residual vector r € R*" (n = ny) with the

entries
ri = (t,0i0) and ©; = < (r, %Oz:,1> )

defined with the basis functions (p;4) in VHC

Soi,o(aj) = 61']' Pi l(ag) = @i 2(ag) =0
V(Pi,O(aj) = (07 O)T V(Pl 1(& ) — 623(1; O)T
Via(aj) = d;;(0,1)".
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Analogously, the result w = C~!r contains entries w; and 6, (for w(a;) and
Vw(a;)). From the definition

~ T
R A

we have to implement the matrix-vector-multiply
(RQL)TZ

and w = RQry, which is done at once for saving storage, i.e. there is no need to
store the (approximately 7n) values u;; = 3561. This is contained in Algorithms

B1 (for y := (RQ)"r) and B2 (for w := RQLy).

Algorithm B1: for each edge (7, j) do

‘ Yi =15 —az}((:} +0O
yj =1+ a;(0; + 0;)/|ay;|?

Algorithm B2: for each edge (4, j) do

O, are evaluated from a Jacobi-preconditioning on the input ©;, w; are the re-
sults of Algorithms A1/A2 on the n—vector y.

The hierarchical-like preconditioners for the elements (a) to (f) require a very
small number of PCG-iterations as presented in the following table.

n* | (a) | (b) | (¢) | (d) ]| (e) | (£)"
280 | 17 | 13 |19 | 14 | 13 | 19
1,089 | 20 | 15 | 22 | 17 | 15 | 21
4,225 | 23 | 18 | 24 | 19 | 17 | 24
16,641 | 25 | 20 | 26 | 20 | 19 | 26
66,049 | 26 | 21 | 27 | 23 | 21 | 27
283,169 | 27 | 23 | 28 | 24 | 22 | 28
1,050,625 | 28 | 25 | 29 | — | 23 | -~
note that n is the number of nodes in the finest mesh 77 which is equal to
dimension N of the linear system in cases (a) to (d), in (¢) N & 2n but in (f) N
is 3n .

O T W N |

*
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A The calculation of v in Example 5

According to (3.1), we have to estimate v* with (a(u,w))? < v2%a(u,u)a(w,w) for
all u € V(Ll) (piecewise linear functions) and all w € Wy, = span(y; ;) from (3.6)

It is well-known that 7 can be estimated from the element level, so we define
ar(u,v) = [(Vu) - (Vv)dQ for each T € Ty, yielding

T

a(u,v) = Z ar(u,v)

T

and estimate v7 with (ar(u, w))? < v2ar(u, u)ar(w,w) for u € V) w € W,
The required inequqality (3.1) follows from Cauchy—Schwarz in the sum over T

(a(u,w))® = (Zaﬂu,w)) < (Z’YTGT(U,u)l/QaT(w,w)1/2>

T
< m:IE}X"}/% ’ ZGT(UH U) : ZaT(wa U})
T T

with < maxyr.
7= TeTr, T

Hence, we consider u as linear on 1" and w is a reduced cubic polynomial on 7’
with zero values on the vertices defined by 6 values of the tangential derivatives
at the edges. Let T have the vertices a;,as and asz (say), hence

A= <a2 —a; : az — a; | transforms the element T onto the master element T
(Wlth dl = (0, O)T,dQ = (1, 0),&3 = (0, 1)T)Z
r=Ab4+a +— i =AY v —a).

The linear function wu is given by its three values u; = u(a;), so we have

VU:A_T<U2_UI> onT.

usz — Uy

Uz — Uy

Let v = < i ) = ( 2 th ) for abbreviating this, then
TyAT gy—1, L
ar(u,u) =v' (A"A) v - §detA.
For considering w on T, we have to introduce shape functions ¢; ;, on T, ie.
functions with values ¢; ;(ax) = 0 and derivatives %ﬁ@i,k(&l) = &+ 01
(all indicees between 1 and 3, i # j and $;; = (a; — a;)/|a; — a;l).
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For fulfilling (3.6) we have to define ¢, ;(z) = ¢;;(# = A~ (x —ay)) - d; ;. The
scale factors d; ;(j # i) are inserted into the (6 x 6)-diagonal matrix

D = diag (d1,2, d1,3, d2,3, d2,1, d3,1, d3,2)
/\/57 |a12|, |Cl13|, |a23|/\/§)

= diag <|a12|, a3, |azs

and will not influence 7.
Hence, a function w € Wy, on T is represented by the 6—vector
_ T _ I
w = (w12, W13, Wa3, Wa,1, W1, W3p)" S W =7 @i Wiy = Y Pijdijwi, SO

ar(w,w) = /(Vw) -VwdQ=w" DBDw
T

with the (6 x 6)—element matrix

r (i,5) (k,l)

Hence,
det A T A
ar(w, w) > m(Dw) B(Dw)

with the element matrix of the master element
17 -3 10 -8 8 4
-3 17 0 —4 6 8
- ~ 10 0 23 —13 7 5

— 1

B =550 -8 —4 -13 19 —-17 -11
8 6 7T —17 47 25
4 8 5 —11 25 19

D = diag (1,1,1,v2,1,V2).
In the same way ar(u,w) = det A - vTA 1A TC'Dw with the (2 X 6)-matrix

1L/ 0 -1 01 -1 -1
_E<—1 0 -1 1 -2 —1)D

o

C

Il
S
9
©
a
)

S0,
[v" (A" A)~'C(Dw]?

2p(ATA
(Dw)B(Dw) - vrarA 1 P

max

e
IA

— 2p(ATA) - p ((ATA)(ATA)*IOB*ICT(ATA)*T)

p(ATA)

A By—1 AT
< )\min(ATA)Qp(CB c).
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A direct calculation yields CB~'CT = < 470 470 ) 33%% SO

7* <0,72 (ka(A))”

with the spectral condition number of A, which is small for good meshes. So,
is a constant smaller than 1.

B The Use of the Ficticious Space Lemma

From [8] we recall the Ficticious Space Lemma in a simplified manner as required
here:

Ficticious Space Lemma: Let V  V ¢ H Banach spaces with A : H — H* an
operator equivalent to (Au,v) = a(u,v) Yu,v € H, where (-, -) denotes the dual
pairing H* x H - R

1) Let R : V — V with a(Rii, Rii) < cpalii, @) Vi € V

2) Let Q:V — V with RQu =u Yu € V
and a(Qu, Qu) < cg'alu,u)Vu € V.

3) Let C':H* — V be a good preconditioner for A in V:

Then C ! = RC 'R* is a good preconditioner for A in V i.e.
ya(u,u) < a(C " Au,u) < ya(u,u) Vu € V

with 7/y < (a/a) - (cr cq)-

Remark: If V,V are finite dimensional subspaces with a mesh parameter h,
then cg, cg, a, & do not depend on h.
So, we have to define and investigate

RV =V6red 5y = yiC
and Q:V—>V

From V = YH ¢ cV =V6) we can expand all functions with resprect to the
basis ® in V = YGred)
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Hence, i € Vis @ = ®i and a(i, 1) = 4" K. Again u € V is represented as
u = ®u, a(u,u) =u" Ku. Let u = R then we have to calculate

ckg = maxa(Ru,Ru)/a(u,u)
aeV

= max(u" Ku)/(a" K1)

u

where u is to be defined as coefficient vector of u = R w.r.t. ®. On each node
a;, & € V is respresented by u; = @(a;) and by a small vector

i; = () = (32-1|4,) for each edge meeting a;. For defining u = Ra € V7 we
ij
let u; = 4(a;) = u(a;) and set ©; = Vu(a;) as ©; = —S;1; with a (2 X m;)-matrix
S; containg s;;V; as its columns. Obvionsly m; > 2, hence it is a projection from
u; € R™ to ©; € R?. From the fact that ;; is the value %bi for each function
ij

u € V, we can represent u € V from the values u; = u(a;) = u(a;) and u; j = sg;-G)i

SO u; = %S?Sigi defines the coefficients of u w.r.t. ®. Hence

4" DTK Da
CR — max =
o' K

with the block diagonal matrix

1 1 1
D = diag <1, —5rs,,1,—58Ts,, ... 1, —S,{Sn> .
my meo

n

The entries of S S; are inner products of the normalized edge vectors: sZ-Tjsik, SO
ST Sillz < 11787 Sillo < 1.

From a splitting of D and of the identity matrix into D = I, + Do, [ = I} + I,
with

I, = diag (1, O 1, O, ---, 1, 0)
I, = diag (0, I 0, I, ---, 0, I)
D, = diag (0, =SS ,0, o, 0, ST Sh)

and u, = [u,u, = I,u we obtain

Q{Kllﬂl + 2@{K12D222 + QgDQKQQDQQQ
ul Kiyuy + 2ut Kisuy + ul Koou,

Cr = IMaXx

with the matrix blocks K;; = LKI; (i,5 = 1,2).
The matrix Ky is well-conditioned due to the fact that B from Appendix 1 is
the element contribution to Ky, from an element 7. Hence, from || Dyl < 1 we
have

ug Dy Koy Doty < ko Uy Kooty

with a constant kg < k(Ka).
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Again the complete estimation af cg requires a ‘good’ angle between the sub-
space spanned by ¢;o(z) (defining Kj;) and the subspace spanned by ¢; ;(z)
(defining Ks,). Analogously to Appendix 1 we have on the master element level

> ____(BuBy'Bla,x) 163
,Ymaster - ma}:f ~ = —.
bR (Bua,x) 220

Here, BQQ is the matrix B in Appendix 1 and

3260 —1630 —1630
—1630 1508 122
—1630 122 1508

L 11
Bubn B = 555 11

R 1 400  —200 —200
By = 360 —200 208 -8
—-200 -8 208

Hence, there is a constant v (slightly larger than 7,,45zer, but smaller than 1) with
(ulTK12u2)2 < ’72 'Q{Kuﬂl 'QgKQQQQ,VQDQQ,
and the constant cgp follows from the inequalities

QlTKn% + 2@{K12(D2ﬂz) + 22TD2K22D222
< (1 +7)(u] K1y, + ud DoKoy Dous,)
< ko1 +7)(uf Kiuy + ul Kpou,),

ul Kyuy + 2ul Kiou, + +ul Kopu,
> (1= y)(uf K1y, + ud Kaou,)

with cp < Ko(1+7)/(1 — 7). )
In the same way, the operator Q is analyzed. For defining Q : V — V we
have to guarantee RQu = u. Hence, if R was represented by u, = 0; = misla

—1)
we define @ = Qu <= @, = m; ST (S;S])'O;.
The estimation of ¢q is very similar to cg.
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