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Analysis and numerical solution of control problems

in descriptor form

1

Peter Kunkel Volker Mehrmann Werner Rath

Abstract

We study linear variable coe�cient control problems in descriptor form. Based on

a behaviour approach and the general theory for linear di�erential algebraic systems

we give the theoretical analysis and describe numerically stable methods to determine

the structural properties of the system like solvability, regularity, model consistency

and redundancy. We also discuss regularization via feedback.

Keywords: descriptor systems, di�erential-algebraic equations, s-index, regular-

ization, feedback design

AMS(MOS) subject classi�cation: 93C50, 65L05, 34H05, 93B10, 93B11,

93B40

1 Introduction

In this paper we study control problems of the form

E(t) _x = A(t)x +B(t)u+ f(t); (1)

y = C(t)x + g(t) (2)

in a given interval [t

0

; t

f

], with initial condition

x(t

0

) = x

0

: (3)

Here x is the state, u is the input, y is the output of the system. If we denote by

C

r

([t

0

; t

f

];C

n;`

) the set of r-times continuously di�erentiable functions from the inter-

val [t

0

; t

f

] to the vector space C

n;`

of complex n � ` matrices, then we assume that

E 2 C([t

0

; t

f

];C

n;`

), A 2 C([t

0

; t

f

];C

n;`

), B 2 C([t

0

; t

f

];C

n;m

), C 2 C([t

0

; t

f

];C

p;`

).

Control problems of this form arise in mechanical multibody systems [20, 19, 35], elec-

trical circuits [18] or mixed systems, where di�erent models are coupled together. In this

general form they allow to model very complex dynamical systems with constraints, mod-

els that are automatically generated with redundant equations or combinations of models

of di�erent types, see, e.g., [19]. In particular systems of the form (1){(2) also arise as

linearizations of general nonlinear control problems of the form

F(t; x; u; _x) = 0; (4)

y = G(t; x); (5)

1
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where the linearization yields

E(t) =

@F

@ _x

j

(x̂(t);û(t))

; A(t) =

@F

@x

j

(x̂(t);û(t))

;

B(t) =

@F

@u

j

(x̂(t);û(t))

; C(t) =

@G

@x

j

(x̂(t);û(t))

: (6)

To analyze the system behaviour and to control systems of the form (1){(2), we need to

develop the mathematical theory as well as numerical methods that can be used for the

analysis, design and simulation.

Since for a given input function u, the system (1){(2) represents a di�erential-algebraic

equation (DAE), it is clear that the theory for the control problem is related to the theory

of DAEs. This theory has undergone major changes in the last 10 years, see [17, 9, 10,

3, 23, 30, 31, 24, 25, 28]. Several attempts have been made to transfer this theory to the

study of control problems [11, 12, 8, 32] but a major drawback of these attempts was that

they did not lead to a practical numerical method.

Recently in [23, 26, 28] a new theoretical analysis and an associated numerical method

have been introduced that allow to study over- and underdetermined systems and have the

potential to study systems of the form (1){(2) via a behaviour approach (see [38]). Such

an approach combines state, input and output variables into one system vector and then

studies the combined system. The main di�culty with this approach for descriptor systems

is that it needs derivatives of the system and thus also, via the chain rule, derivatives of the

inputs u. But in practice the input function is usually only piecewise continuous (like in

bang-bang control). This makes a general analysis very di�cult. A way out of this dilemma

may be the use of generalized functions as suggested in [31] for linear time varying DAEs,

but this approach has neither been extended to nonlinear systems nor to linear systems

that are over- or underdetermined.

We follow a di�erent direction in this paper and extend the concepts introduced in

[23, 26, 27] to control problems. We will analyze several aspects of the control system

(1){(2). First we give a theoretical analysis using local and global condensed forms under

equivalence transformations and second we construct numerical methods for the compu-

tation of the invariants of these condensed forms. In both cases we discuss solvability,

regularity, consistency and also regularization by feedback. Also we discuss how the new

approach can be used for model veri�cation and model reduction. Furthermore, if the

system properties are not as desired, then they can sometimes be changed by feedback.

Since the concepts for DAEs have changed in recent years, we need to recall some of the

terminology that we will be using.

De�nition 1 Given an input function u, a function x : [t

0

; t

f

] ! C

n

is called solution of

(1) if x 2 C

1

([t

0

; t

f

];C

n

) and x satis�es (1) pointwise. It is called solution of the initial

value problem (1), (3) if x is solution of (1) and x satis�es (3). An initial condition (3) is

called consistent if the corresponding initial value problem has at least one solution.

While solvability is associated with a particular input function we also need a terminology

that allows to check whether the system is solvable for some input function or for every

2



piecewise continuous input function and every (with this input function) consistent initial

value.

De�nition 2 A control problem of the form (1) is called consistent if there exists an input

function u for which there exists a solution.

It is called regular if it has a unique solution for every su�ciently smooth input function

u and inhomgeneity f and every initial value that is consistent for the system with this

input function.

Note that in the case of constant coe�cients regularity is usually associated with the

matrix pair (E;A), but redundancy is usually excluded by assuming that the block matrix

[E;A;B] has full row rank, and that the system is homogeneous. In the general nonlinear

case or the time-varying case, in particular when the problem arises from automatic model

generation, such an assumption would not be appropriate, since it would be one of the

tasks of the analysis to determine redundancies and inconsistencies in the model.

2 Theoretical analysis.

In this section we analyse the control problem via equivalence transformations and con-

densed forms. This is a straightforward generalization of the work in [23] and has been

carried out in detail in [33, 32]. The forms that we discuss here are ordered slightly dif-

ferent than those in [32] but can be obtained in a similar way. After having obtained the

condensed forms, we analyze the properties of the system and discuss how these properties

can be modi�ed by feedback.

2.1 Condensed forms

The standard variable coe�cient equivalence transformations that we can apply to a linear

descriptor system with variable coe�cients are given in the following de�nition.

De�nition 3 Let (E

i

; A

i

; B

i

; C

i

), i = 1; 2, be two quadruples of matrix functions with

E

i

; A

i

2 C([t

0

; t

f

];C

n;l

), B

i

2 C([t

0

; t

f

];C

n;m

), C

i

2 C([t

0

; t

f

];C

p;l

). These quadruples

are called (globally) equivalent if there exist N 2 C([t

0

; t

f

];C

p;p

), P 2 C([t

0

; t

f

];C

n;n

),

Q 2 C

1

([t

0

; t

f

];C

l;l

) and R 2 C([t

0

; t

f

];C

m;m

) with N;P;Q;R pointwise nonsingular, such

that

E

2

= PE

1

Q;

A

2

= PA

1

Q� PE

1

_

Q;

B

2

= PB

1

R;

C

2

= NC

1

Q:

(7)

As in the case of linear DAEs [23], we get the corresponding local equivalence by choosing

_

Q(t) independently of Q(t) at a �xed point t 2 [t

0

; t

f

].
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De�nition 4 Two quadruples of matrices (E

i

; A

i

; B

i

; C

i

), i = 1; 2, with E

i

; A

i

2 C

n;l

,

B

i

2 C

n;m

, C

i

2 C

p;l

are called (locally) equivalent if there exist matrices N 2 C

p;p

,

P 2 C

n;n

, Q; S 2 C

l;l

, R 2 C

m;m

with N;P;Q;R nonsingular such that

E

2

= PE

1

Q;

A

2

= PA

1

Q� PE

1

S;

B

2

= PB

1

R;

C

2

= NC

1

Q:

(8)

Using the local equivalence transformation in (8), we obtain the following local invariants

and condensed form for a quadruple of matrices (E;A;B; C).

Theorem 5 Let E;A 2 C

n;l

, B 2 C

n;m

, C 2 C

p;l

and

(a) T basis of kernelE;

(b) Z basis of corangeE = kernelE

�

;

(d) V basis of corange(Z

�

AT );

(e) W basis of kernel(Z

�

AT );

(f) K basis of corange(V

�

Z

�

B):

(9)

Then, the quantities

(a) r = rankE (rank);

(b) a = rank(Z

�

AT ) (algebraic part);

(c) � = rank(V

�

Z

�

B) (state feedback part);

(d) ! = rank(CTW ) (output feedback part);

(e) s = rank(K

�

V

�

Z

�

AT

0

) (strangeness);

(f) d = r � s (di�erential part);

(g) u

l

= n� r � a� s� � (left undetermined part);

(h) u

r

= l � r � a� ! (right undetermined part);

(10)

are invariant under (8) and (E;A;B; C) is equivalent to the condensed form

s

d

a

s

�

u

l

0

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

4

I

s

0 0 0 0

0 I

d

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 0 0 0 0

0 0 0 0 0

0 0 I

a

0 0

I

s

0 0 0 0

0 � 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 �

0 �

0 �

0 0

I

�

0

0 0

3

7

7

7

7

7

7

7

7

5

;

"

0 0 0 I

!

0

� � � 0 0

#!

:

(11)

Here the last column in the �rst, second and fourth matrix has width u

r

.
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Proof.

The proof is a simple extension of the proof for the DAE case or the approach discussed

in [32]. The complete proof from [33] with all details is given in Appendix A.

Note that (11) is not a canonical form but rather a condensed form, since the blocks

denoted by � can be partitioned further, when proceeding to a canonical form, see [33].

If we apply the results for the local condensed form (11) to equation (1){(2) then we

obtain functions r; a; �; !; s : [t

1

; t

2

] ! N

0

(the other values depend on these invariants).

For the following analysis, we assume that these quantities are constant, i.e.,

r(t) � r; a(t) � a; �(t) � �; !(t) � !; s(t) � s (12)

on [t

0

; t

f

], i.e., we require the local characteristic values at a �xed point to bear global

information of the solution. Then we get the following global condensed form:

Theorem 6 Let E;A;B; C in (1){(2) be su�ciently smooth and let (12) hold. Then the

quadruple (E;A;B; C) is equivalent to a quadruple of matrix functions of the form

s

d

a

s

�

u

l

0

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

4

I

s

0 0 0 0

0 I

d

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 A

12

0 A

14

A

15

0 0 0 A

24

A

25

0 0 I

a

0 0

I

s

0 0 0 0

0 A

52

0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 B

12

0 B

22

0 B

32

0 0

I

�

0

0 0

3

7

7

7

7

7

7

7

7

5

;

"

0 0 0 I

!

0

C

21

C

22

C

23

0 0

#

1

C

C

C

C

C

C

C

C

A

:

(13)

Here the columns in the �rst, second and fourth matrix have dimensions s; d; a; ! and u

r

,

respectively.

Proof. The proof is analogous to the proof of Theorem 4.3 in [23]. For details see

Appendix B or [33].

Writing down the descriptor system equations that belong to the matrix quadruple (13),

(by transforming the inhomogeneities accordingly), we get

(a) _x

1

= A

12

(t)x

2

+ A

14

(t)x

4

+ A

15

(t)x

5

+B

12

(t)u

2

+ f

1

(t);

(b) _x

2

= A

24

(t)x

4

+ A

25

(t)x

5

+B

22

(t)u

2

+ f

2

(t);

(c) 0 = x

3

+B

32

(t)u

2

+ f

3

(t);

(d) 0 = x

1

+ f

4

(t);

(e) 0 = A

52

(t)x

2

+ u

1

+ f

5

(t);

(f) 0 = f

6

(t)

(14)
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and the corresponding output equations

(a) y

1

= x

4

+ g

1

(t);

(b) y

2

= C

21

(t)x

1

+ C

22

(t)x

2

+ C

23

(t)x

3

+ g

2

(t):

(15)

From equation (14d) we see that x

1

� f

4

, i.e., x

1

is �xed. If the inhomogeneity is smooth

enough, then by inserting _x

1

�

_

f

4

in (14a) we get an algebraic equation (note that the

inhomogeneity changes). Doing the same in the output equations leads to zeroing out the

block C

21

and changing the inhomogeneity g

2

.

Remark 1 Note that the equations in (14d) are uncontrollable, i.e., independent of the

input function u. It is very important that only these equations are di�erentiated, since

otherwise derivatives of the input functions would be needed, which would restrict the set

of admissable input functions. Note furthermore, that equations (14){(15) indicate some

of the problems which occur in the analysis of descriptor systems that exhibit a coupling

of algebraic and di�erential equations as via x

1

in (14) (see also [8]). Theoretically the

state components in x

1

are �xed via (14d). But in the descriptor system (1){(2) there

exist linearization errors and there are usually already modelling errors in (4){(5). Hence

we cannot expect that (14d) is ful�lled exactly in the practical problem for which we use

our system as a model. Small perturbations may occur on both sides of the equation and

may lead to structural changes.

For the resulting system, obtained from (14) by di�erentiating the equations in (14d) and

inserting in (14a) and (15), we can again compute characteristic values r; a; �; o; s; d; u

l

; u

r

and the condensed form (14){(15) and we can then proceed inductively. This procedure

leads to a sequence of quadruples of matrix functions (E

i

; A

i

; B

i

; C

i

); i 2 N

0

. Starting with

the quadruple (E

0

; A

0

; B

0

; C

0

) = (E;A;B; C) the matrix quadruple (E

i+1

; A

i+1

; B

i+1

; C

i+1

)

is derived from (E

i

; A

i

; B

i

; C

i

) by bringing it into the form (14){(15) and inserting equa-

tion (14d) into (14a) and (15). Note that although (E;A;B; C) does not determine a

unique sequence (E

i

; A

i

; B

i

; C

i

), the corresponding characteristic quantities r

i

; a

i

; �

i

; !

i

; s

i

are uniquely determined, see [32]. Clearly for this we must assume that in every step i we

have

r

i

(t) � r

i

; a

i

(t) � a

i

; �

i

(t) � �

i

; !

i

(t) � !

i

; s

i

(t) � s

i

: (16)

If these conditions hold then, since the sequence (r

i

) strictly decreases unless s

i

becomes

0, there exists � 2 N

0

, such that this process becomes stationary with s

�

= 0.

This index s

�

is called the strangeness index or s-index of the system in [23, 33, 32]. It

is de�ned if (16) holds for i = 0; : : : ; �. In [25] it was shown that for systems with unique

solutions condition (16) can be signi�cantly relaxed, only the �nal numbers a

�

; d

�

have to

be constant. The proof in [25], however, does not extend to underdetermined systems.

If the s-index � is well de�ned, then we have the following condensed form.

Theorem 7 If the s-index � is well de�ned for the quadruple of matrix functions

(E;A;B; C) in (1){(2), then system (1){(2) is equivalent (in the sense that the solution

6



sets are in one-to-one correspondence via a scaling by nonsingular matrix functions) to a

descriptor system of the form

(a) _x

1

= A

13

(t)x

3

+ A

14

(t)x

4

+B

12

(t)u

2

+ f

1

(t);

(b) 0 = x

2

+B

22

(t)u

2

+ f

2

(t);

(c) 0 = A

31

(t)x

1

+ u

1

+ f

3

(t);

(d) 0 = f

4

(t);

(17)

with associated output equations

(a) y

1

= x

3

+ g

1

(t);

(b) y

2

= C

21

(t)x

1

+ C

22

(t)x

2

+ g

2

(t)

(18)

and initial condition

2

6

6

6

4

x

1

(t

0

)

x

2

(t

0

)

x

3

(t

0

)

x

4

(t

0

)

3

7

7

7

5

=

2

6

6

6

4

x

0

1

x

0

2

x

0

3

x

0

4

3

7

7

7

5

: (19)

Here d

�

; a

�

; !

�

and u

r

�

are the number of the di�erential, algebraic, output feedback and

undetermined components of the state x, whereas �

�

and u

l

�

are the number of equations

in (17c) and (17d).

Proof. The proof is analogous to the proof for DAEs in [23]. Since it is very technical

we refer the reader for details to [33].

Remark 2 It should be noted that in general the s-index and the characteristic quantities

a; d of the control system (1-2) are not equal to corresponding quantities of the DAE

obtained by �xing an input function u. Consider the following example. Let

E =

"

1 0

0 0

#

; A =

"

0 0

1 0

#

; B =

"

0

1

#

:

Then the system has � = 0; �

0

= 1; a

0

= 0; d

0

= 1; u

l

0

= 0 while the DAE obtained for a

�xed input function has � = 1; a

1

= 0; d

1

= 1; u

l

1

= 1.

A direct consequence of Theorem 7 is the following integral equation obtained by inte-

grating and inserting the �rst equation of (17):

(a) 0 = x

1

(t)�

R

t

t

0

[A

13

(�)x

3

(�) + A

14

(�)x

4

(�) +B

12

(�)u

2

(�) + f

1

(�)] d� + x

0

1

;

(b) 0 = x

2

(t) +B

22

(t)u

2

(t) + f

2

(t);

(c) 0 = A

31

(t)

R

t

t

0

[A

13

(�)x

3

(�) + A

14

(�)x

4

(�)] d� + u

1

(t) + f

3

(t)

+ A

31

(t)

R

t

t

0

[B

12

(�)u

2

(�) + f

1

(�)] d� + A

31

(t)x

0

1

;

(d) 0 = f

4

(t):

(20)
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2.2 Solvability, regularity and consistency

From the condensed form (17){(18) we can read o� several of the system properties.

Corollary 8 If a descriptor system has the condensed form (17){(18), then we have the

following properties :

1. The system is consistent if and only if either u

l

�

= 0 or f

4

� 0. If u

l

�

6= 0 and

f

4

(t) � 0 then the equations in (17d) describe redundancies in the system that can be

omitted.

2. If the system is consistent and if �

�

= 0, then for a given input function u, an initial

condition is consistent if and only if it satis�es (17b). Solutions of the corresponding

initial value problem will in general not be unique, since the state components in

x

3

; x

4

are not determined.

3. The system is regular and of s-index 0 (as free system, i.e., for u = 0), if and only if

u

l

�

= 0, �

�

= 0 and d

�

+ a

�

= l.

Proof.

1. If f

4

6� 0 and u

l

�

6= 0, then clearly the system has no solution, regardless how we

choose the input function. Conversely if either u

l

�

= 0 or f

4

� 0 then we can

determine an imput u for which the system is solvable. Setting u

2

= 0, x

3

= 0 and

x

4

= 0, system (17 a) is an ordinary di�erential equation for x

1

. Having �xed x

1

by

solving this equation, we obtain x

2

from (17b) and u

1

from (17c)

2. A consistent system with �

�

= 0 reduces to (17a,b) which is a di�erential-algebraic

system with s-index 0 for every input function u and (17b) represents the algebraic

part which gives the consistency condition for the initial value, see, e.g., [24]. Note

that the solution will in general not be unique.

3. Let us �rst assume that u

l

�

= �

�

= 0 and d

�

+ a

�

= l. In this case (17) reduces to

the system

"

_x

1

0

#

=

"

0

x

2

#

+

"

B

12

(t)u

2

+ f

1

(t)

B

22

(t)u

2

+ f

2

(t)

#

which is uniquely solvable for every input function and every inhomogeneity. More-

over, it has s-index 0 for u

2

= 0. Conversely let the system be regular and have

s-index 0 for u = 0. If �

�

6= 0 then (17c) gives either consistency conditions for

the inhomogeneity or an s-index larger than 0, in contradiction to the assumptions.

Hence �

�

= 0. If u

l

�

6= 0, then the system is not sovable for every inhomogeneity.

Thus u

l

�

. Finally if d

�

+a

�

6= l, then �xing an input u yields a nonsquare di�erential-

algebraic system for x resulting either in conistency conditions for the inhomogeniety

or free solution components. Hence we also have d

�

+ a

�

6= l.

8



Ideally we would like our system to be regular and have s-index 0 (as a free system with

u = 0.) While regularity guarantees unique solvability for a large class of input functions,

it does not guarantee that the s-index is 0 (as a free system). If the s-index is not 0 for

the free system there may be hidden manifolds leading to di�erentiability constraints for

the input function or extra constraints for the initial values or redundancies. For regular

systems of s-index 0 (as a free system), di�erential and algebraic components (fast and

slow modes) can be decoupled, see [8]. If the system does not have these nice properties

already, and Corollary 8 tells us when it has or has not, then we can modify the system to

obtain these properties. This can be done in several di�erent ways.

The �rst possibility is a reinterpretation of variables in the condensed form (17){(18),

see also [7, 8]. The components in x

3

, x

4

can be viewed as inputs, since they can be chosen

freely. So the `real' input of the system is given by x

3

, x

4

and u

2

. Furthermore for given

x

3

, x

4

and u

2

the components in x

1

, x

2

and u

1

are �xed and hence they represent the `real'

states of the system. Also, the system has a feedthrough term, since the `new' input x

3

is

directly obtained as y

1

= x

3

+ g

1

. If it is not intended that we measure again the input

variables in x

3

, then this part can be omitted from the output equation.

If the system is consistent, i.e., either f

4

� 0 or u

l

�

= 0, then by omitting the redundancies

and reinterpreting the variables, we obtain an underlying square system (see also [7, 8])

which is regular and of s-index 0 (as a free system). This system has the form:

2

6

4

I

d

�

0 0

0 0 0

0 0 0

3

7

5

2

6

4

_x

1

_x

2

_u

1

3

7

5

=

2

6

4

0 0 0

0 I

a

�

0

A

31

0 I

�

�

3

7

5

2

6

4

x

1

x

2

u

1

3

7

5

+

2

6

4

A

13

A

14

B

12

0 0 B

22

0 0 0

3

7

5

2

6

4

x

3

x

4

u

2

3

7

5

+

2

6

4

f

1

f

2

f

3

3

7

5

; (21)

y

2

=

h

C

21

C

22

0

i

2

6

4

x

1

x

2

u

1

3

7

5

+ g

2

:

Remark 3 The square system (21) can be viewed as a regularization of the original sys-

tem in the sense that it is regular and has s-index 0 as a free system. In principle further

regularization by elimination or di�erentiation of the algebraic equations is possible. But

elimination of the algebraic equations may increase the sensitivity of the system to pertur-

bations (since the elimination process may be ill-conditioned), while di�erentiation would

change the structure of the solution space, in particular one would need further initial

conditions.

2.3 Regularization by proportional state or output feedback

If the original system was consistent and is square after removing the redundancies, i.e.,

!

�

+ u

r

�

= �

�

, then we can also obtain a regular system that is of s-index 0 (as a free

system) by using state or output feedback. This problem has been studied for constant

9



coe�cient systems in detail in [5, 6, 7, 13] and, based on di�erent condensed forms, also in

[8, 32].

To study this question we need to analyze how the characteristic quantities in Theorem 7

behave under feedback. It is obvious already from the local condensed form that the

quantities a

i

, �

i

and !

i

cannot be invariants under proportional state or output feedback

but we will show in the next section that the quantities �, d

�

, u

l

�

, u

r

�

are invariant. The

regularization via feedback can be obtained directly from Theorem 7.

Corollary 9 Given a descriptor system with coe�cients E(t); A(t); B(t) in the form (17){

(18). There exists a proportional state feedback u = F (t)x + w such that the closed loop

system

E(t) _x = (A(t) +B(t)F (t))x +B(t)w + f(t) (22)

is regular and has s-index 0 (as a free system) if and only if u

l

�

= 0 and d

�

+ a

�

= l.

Proof. If d

�

+ a

�

6= l then with the feedback gain matrix

F =

2

6

4

0 0 I

!

�

0

0 0 0 I

u

r

�

0 0 0 0

3

7

5

and the state feedback

u = F

2

6

6

6

4

x

1

x

2

x

3

x

4

3

7

7

7

5

+

2

6

4

w

1

w

2

w

3

3

7

5

(23)

we obtain the closed loop system

2

6

6

6

4

I

d

�

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

7

5

2

6

6

6

4

_x

1

_x

2

_x

3

_x

4

3

7

7

7

5

=

2

6

6

6

4

0 0 A

13

A

14

0 I

a

�

0 0

0 0 I

!

�

0

0 0 0 I

u

r

�

3

7

7

7

5

2

6

6

6

4

x

1

x

2

x

3

x

4

3

7

7

7

5

+

2

6

6

6

4

0 0 B

12

0 0 B

22

I

!

�

0 0

0 I

u

r

�

0

3

7

7

7

5

2

6

4

w

1

w

2

w

3

3

7

5

+

2

6

6

6

4

f

1

f

2

f

31

f

32

3

7

7

7

5

;

which is regular and has s-index 0 as a free system.

For the converse observe �rst of all that u

l

�

= 0 is necessary to obtain a system that is

regular. For a given

F =

"

F

11

F

12

F

13

F

14

F

21

F

22

F

23

F

24

#

10



partitioned conformally with (17), we obtain that

A+BF =

2

6

4

B

12

F

21

B

12

F

22

A

13

+B

12

F

23

A

14

+B

12

F

24

B

22

F

21

I

a

�

+B

22

F

22

B

22

F

23

B

22

F

24

A

31

+ F

11

F

12

F

13

F

14

3

7

5

:

For the free system to be regular and of s-index 0 we need that

"

I

a

�

+B

22

F

22

B

22

F

23

B

22

F

24

F

12

F

13

F

14

#

has full column rank, i.e., d

�

+ a

�

= l.

We also have a characterization when the system can be regularized by output feedback.

Corollary 10 Given a descriptor system with coe�cients E(t); A(t); B(t); C(t) in the form

(17){(19). There exists an output feedback u = F (t)y+w such that the closed loop system

E(t) _x = (A(t) +B(t)F (t)C(t))x+B(t)w + f(t) +B(t)F (t)g(t) (24)

is regular and has s-index 0 (as a free system) if and only if u

l

�

= 0, u

r

�

= 0 and !

�

= �

�

.

Proof. If u

l

�

= 0, u

r

�

= 0 and !

�

= �

�

, then with

F =

"

I

�

�

0

0 0

#

and the output feedback

u = F

"

y

1

y

2

#

+

"

w

1

w

2

#

=

"

x

3

+ g

1

+ w

1

w

2

#

we obtain the closed loop system

2

6

4

I

d

�

0 0

0 0 0

0 0 0

3

7

5

2

6

4

_x

1

_x

2

_x

3

3

7

5

=

2

6

4

0 0 A

13

0 I

a

�

0

0 0 I

�

�

3

7

5

2

6

4

x

1

x

2

x

3

3

7

5

+

2

6

4

0 B

12

0 B

22

I

�

�

0

3

7

5

"

w

1

w

2

#

+

2

6

4

f

1

f

2

f

3

+ g

1

3

7

5

:

This system is clearly regular and has a free system of s-index 0.

For the converse again it is clear that u

l

�

= 0 is necessary. For given

F =

"

F

11

F

12

F

21

F

22

#

11



partitioned conformally with (17) and (18), we obtain that

A+BFC =

2

6

4

B

12

F

22

C

21

B

12

F

22

C

22

A

13

+B

12

F

23

A

14

+B

12

F

21

B

22

F

22

C

21

I

a

�

+B

22

F

22

C

22

B

22

F

21

0

A

31

+ F

12

C

21

F

12

C

22

F

11

0

3

7

5

:

The same argument as in the proof of Corollary 8, shows that we must have that

"

I

a

�

+B

22

F

22

C

22

B

22

F

21

0

F

12

C

22

F

11

0

#

is square nonsingular, which implies u

r

�

= 0 and !

�

= �

�

.

Remark 4 Note that Corollaries 9 and 10 provide the existence of regularizing feedbacks

only for the condensed forms (17){(19). Note that, using backtransformation, correspond-

ing results can also be obtained for the original system. Since the proofs become simpler

with the techniques of the next section we defer the presentation of these results.

In this section we have discussed condensed forms for linear descriptor systems with variable

coe�cients and we have demonstrated that the approach introduced in [23] for DAEs can be

generalized to descriptor systems. We have also shown how a reinterpretation of variables

can be used to obtain an underlying square system that has s-index 0 (as a free system)

and how the system can be made regular and of s-index 0 via state or output feedback.

However, as is obvious from the results in this section, this approach is not directly

feasible for numerical computation, since we would need a series of variable coe�cient

transformations and their derivatives as well as rank decisions based on these transfor-

mations. We also have used transformations which do not have orthonormal columns, so

numerical backward stability cannot be guaranteed.

For the numerical treatment of DAEs, therefore, in [26] a di�erent approach was devel-

oped and we will modify this approach for descriptor systems in the next section.

3 Numerical methods

In this section we describe an approach to transform the control problem (1){(2) in a way

that can be implemented also as a backwards stable numerical procedure. For linear DAEs

with variable coe�cients it was shown in [28] that the invariants can be determined without

changes of basis from a derivative array, similar to that introduced in [10]. This derivative

array uses the DAE and its derivatives up to a certain order to determine the invariants

and a condensed from that has the same solution set as the original DAE, but displays the

major invariants. This condensed form can also be used for numerical simulation, since it

displays the manifold, including all the hidden manifolds that exist for higher DAEs with

nonvanishing s-index, see [26, 29]. Furthermore with some extra work it also displays the

free variables, which can be interpreted as controls. But on �rst sight this approach has

one major disadvantage when applied to control problems. Since a derivative array has to

12



be formed, also derivatives of the controls u have to be used and this usually restricts the

set of admissable controls. This is the di�culty that is faced also in the approach discussed

in [11, 12]. In the following we show how we can modify the approach of [26] and avoid

the di�erentiation of controls.

3.1 Analysis of the behaviour approach

If we wanted to apply directly the approach of [26, 29], this would mean that we perform

a behaviour approach (see [38]) by introducing a behaviour vector

z =

2

6

4

x

u

y

3

7

5

and rewriting system (1){(2) as

E(t) _z = A(t)z + 
(t); (25)

with

E(t) =

"

E(t) 0 0

0 0 0

#

; A(t) =

"

A(t) B(t) 0

C(t) 0 �I

p

#

; 
(t) =

"

f(t)

g(t)

#

(26)

and initial condition

h

I

n

0 0

i

z(t

0

) = x

0

: (27)

This is a general nonsquare linear DAE with variable coe�cients. Note that the derivative

of the original input u and the output y occur only formally.

If we ingore the fact that the input variables may not be di�erentiable, then we can

successively di�erentiate (25) and obtain the following in
ated system

M

k

(t) _z

k

= N

k

(t)z

k

+ �

k

(t); k = 0; 1; : : : ; (28)

where

(M

k

)

i;j

=

�

i

j

�

E

(i�j)

�

�

i

j+1

�

A

(i�j�1)

; i; j = 0; : : : ; k;

(N

k

)

i;j

=

(

A

(i)

for i = 0; : : : ; k; j = 0;

0 otherwise,

(z

k

)

i

= z

(i)

; i = 0; : : : ; k;

(�

k

)

i

= 


(i)

; i = 0; : : : ; k;

(29)

see also [26]. Here we use the convention that

�

i

j

�

= 0 for i < 0, j < 0 or j > i. For

convenience of notation, in the following we leave out the explicit dependence on t.

In [26] it was shown that global equivalence transformations to (E ;A) establish local

equivalence transformations in (M

k

; N

k

) and how the global characteristic quantities of

(E ;A) and the local characteristic quantities of (M

k

; N

k

) are related via recursion formu-

las. Using these formulas, the global structural information of the system (25) can be

13



determined from the in
ated system (28). Furthermore a system of s-index 0 with the

same solution set as the original system can be extracted from the in
ated system built up

to the level �, where � is the s-index of the system. This extraction procedure determines

smooth matrix valued functions Z

1

; Z

2

; Z

3

with orthonormal columns and maximal rank

such that

h

Z

2

Z

3

i

�

M

�

= 0; Z

�

3

N

�

2

6

6

6

6

4

I

l

0

.

.

.

0

3

7

7

7

7

5

= 0; (30)

where the projected matrices

^

A

2

= Z

�

2

N

�

2

6

6

6

6

4

I

`

0

.

.

.

0

3

7

7

7

7

5

;

^

E

1

= Z

�

1

E (31)

have full row rank and the system associated with

0

B

@

2

6

4

^

E

1

0

0

3

7

5

;

2

6

4

^

A

1

^

A

2

0

3

7

5

1

C

A

(32)

has s-index 0. Here

^

A

1

= Z

�

1

A.

The �rst observation that one can make from this system is that if we form the in
ated

pair from (E ;A), then the output equation contributes to the extracted s-index 0 system

in a very particular way. The parts in the in
ated pair that arise from the output equation

always have full row rank, so they will not contribute to the left nullspace of M

k

at any

level other than k = 0. This means that the output equation will occur unchanged in the

extracted s-index 0 system. To demonstrate this observation consider the array up to level

2 which is

M

2

=

2

6

6

6

6

6

6

6

6

6

4

E 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A�

_

E B 0 E 0 0 0 0 0

C 0 I 0 0 0 0 0 0

_

A� 2

�

E

_

B 0 A�

_

E B 0 E 0 0

_

C 0 0 C 0 I 0 0 0

3

7

7

7

7

7

7

7

7

7

5

;

N

2

=

2

6

6

6

6

6

6

6

6

6

4

A B 0 0 0 0 0 0 0

C 0 I 0 0 0 0 0 0

_

A

_

B 0 0 0 0 0 0 0

_

C 0 0 0 0 0 0 0 0

�

A

�

B 0 0 0 0 0 0 0

�

C 0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

5

:
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Due to the structure ofM

k

the output equation contributes to the left nullspace ofM

k

only

in the �rst block, where the whole equation is used. Hence it makes no sense to include

the output equation in the computations, and we may rather consider the analysis of the

system

E(t) _z = A(t)z + 
(t); (33)

where

z =

"

x

u

#

; E =

h

E 0

i

; A =

h

A B

i

; 
 = f:

For this system the theory of [24, 26] applies and one obtains the following condensed

form.

Theorem 11 Let the s-index � be well de�ned for the system given by (E ;A) in (33).

Setting

â = a

�

;

^

d = d

�

; û

l

= u

l

0

+ : : :+ u

l

�

; (34)

the in
ated pair (M

�

; N

�

) associated with (E ;A) has the following properties:

1. For all t 2 [t

0

; t

f

] we have rankM

�

(t) = (�+1)n� â� û

l

. This implies the existence

of a smooth matrix function Z with orthonormal columns and size ((�+ 1)n; â� û

l

)

satisfying Z

�

M

�̂

= 0.

2. For all t 2 [t

0

; t

f

] we have rankZ

�

N

�

[I

`+m

0 � � � 0]

�

= â and without loss of gen-

erality Z can be partitioned as [Z

2

; Z

3

], with Z

2

of size ((� + 1)n; â) and Z

3

of size

((� + 1)n; û

l

), such that A

2

= Z

�

2

N

�

[I

`+m

0 � � � 0]

�

has full row rank â and that

Z

�

3

N

�

[I

`+m

0 � � � 0]

�

= 0. Furthermore there exists a smooth matrix function T

2

with

orthonormal columns and size (`+m;

^

d),

^

d = l +m� â satisfying

^

A

2

T

2

= 0.

3. For all t 2 [t

0

; t

f

] we have that rank E(t)T

2

(t) =

^

d. This implies the existence of a

smooth matrix function Z

1

with orthonormal columns and size (n;

^

d) so that

^

E

1

= Z

�

1

E

has constant rank

^

d.

Furthermore, system (33) has the same solution set as the s-index 0 system

2

6

4

^

E

1

(t)

0

0

3

7

5

_z =

2

6

4

^

A

1

(t)

^

A

2

(t)

0

3

7

5

z +

2

6

6

4

^

f

1

(t)

^

f

2

(t)

^

f

3

(t)

3

7

7

5

; (35)

where

^

A

1

= Z

�

1

A,

^

f

1

= Z

�

1

f ,

^

f

i

= Z

�

i

�

�

for i = 2; 3.

Proof. The proof is given in [26] for the square case but the proof there is also valid in

the rectangular case.

Note that the third block row in (35) has û

l

equations, which in general is larger than u

l

in (17). The function

^

f

3

contains the part f

4

from (17) and parts of its derivatives.
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An immediate observation that can be made from Theorem 11 is that the constructed

submatrices

^

A

1

and

^

A

2

have been obtained from the block matrix

2

6

6

6

6

4

A B

_

A

_

B

.

.

.

.

.

.

A

(�)

B

(�)

3

7

7

7

7

5

by transformations from the left. This has three immediate consequences.

First of all this means that derivatives of u are nowhere needed, just derivatives of

the coe�cient matrices, i.e., although formally the derivatives of u occur in the in
ated

equations (33), they are not used for the form (35).

Second, it follows from the construction of

^

A

1

and

^

A

2

, that the partitioning into the part

stemming from the original states x and the original controls u is not mixed up and hence

the system that we have extracted from the in
ated pair has the form

(a) E

1

(t) _x = A

1

(t)x+B

1

(t)u+

^

f

1

(t);

(b) 0 = A

2

(t)x+B

2

(t)u+

^

f

2

(t);

(c) 0 =

^

f

3

(t);

(d) x(t

0

) = x

0

;

(36)

where E

1

=

^

E

1

"

I

`

0

#

, A

i

=

^

A

i

"

I

`

0

#

, B

i

=

^

A

i

"

0

I

m

#

, for i = 1; 2.

The third observation that we obtain form comparing (36b) and (17b,c) is that

^

d = d

�

; â = a

�

+ �

�

; u

r

= `�

^

d� â = u

r

�

: (37)

It was observed in [25] for the case of uniquely solvable systems, that the quantity �

may even vary as long as the quantities â;

^

d stay constant. The same is true for over- or

underdetermined systems, if â;

^

d; û

l

are constant. A(t) =

"

0 0

t 0

#

.

We have seen so far that part of the structural information in Theorem 7 can be deter-

mined from the in
ated system (29).

To determine the remaining information we have to perform changes of basis. We can

proceed via the following algorithm.

Algorithm 1 Given a system in the form (36) for which the s-index � is de�ned. At a

�xed point

^

t 2 [t

0

; t

f

] we proceed as follows.

1. Determine a unitary matrix Q = [Q

1

; Q

2

] of size (`; `) such that

E

1

(

^

t)

h

Q

1

Q

2

i

=

h

E

11

0

i

;

where E

11

has size (

^

d;

^

d) and is nonsingular.
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2. Determine unitary matrices U = [U

1

; U

2

], of size (n �

^

d; n �

^

d) and V = [V

1

; V

2

] of

size (`�

^

d; `�

^

d) such that

U

�

A

2

(

^

t)Q

2

V =

"

A

22

0

0 0

#

;

where A

22

is of size (a; a) and nonsingular. Set � = â� a.

3: Determine the column rank ! of C(

^

t)Q

2

V

2

, i.e., determine a unitary W = [W

1

;W

2

],

of size (`� a�

^

d; `� a�

^

d) such that

C(

^

t)Q

2

V

2

W =

h

C

3

0

i

;

where C

3

has full column rank !.

The computation of the unitary transformation matrices Q;U; V;W in Algorithm 1 can

be done via singular value decompositions or rank revealing QR decompositions, see [16].

Remark 5 If we observe a change in the characteristic quantities for consecutive values

t

1

; t

2

2 [t

0

; t

f

], which clearly can only be determined within the range of uncertainty of

numerical rank computation, then this indicates that the s-index is not well-de�ned.

Since Theorem 11 yields the characteristic quantities

^

d = d

�

and â = a

�

+ �

�

of (17) it

follows immediately that the further quantities that we have determined in Algorithm 1,

as long as they are constant, also determine the quantities � = �

�

and ! = !

�

. Hence via

local computation we can determine all the global characteristic values of our problem.

In this subsection we have used a slight modi�cation of the methods introduced in [26]

to analyse the control problem in the form (33) and to determine the structural invariants.

We have seen that the combination of state and control variables is not really necessary,

i.e., the analysis can be carried out without mixing these quantities. This means that for

this numerical method, which we can view as model veri�cation, model reduction and index

reduction, a behaviour approach can be used formally without having to worry about the

di�erentiability properties of the input functions.

3.2 Solvability, consistency and reintrepretation of variables

Since we have established that the global characteristic quantities can be determined via

local computation from the in
ated system, we also immediately have the conclusions of

Corollary 8 in terms of the condensed form (36), i.e.,

1. The system is consistent if and only if either û

l

= 0 or

^

f

3

� 0, where

^

f

3

is de�ned in

(36). If û

l

6= 0 and

^

f

3

� 0 then the equations in (36c) describe redundancies in the

system that can be omitted.
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2. If the system is consistent and if � = 0, then for a given input function u, an initial

condition is consistent if and only if it satis�es (36b). Solutions of the corresponding

initial value problem will in general not be unique.

3. The system is regular and of s-index 0 (as a free system) if and only if û

l

= 0, � = 0

and

^

d+ â = l.

Remark 6 If û

l

6= 0 and

^

f

3

(t) � 0, then the system is consistent and the redundancies

can in principle be removed. But note that in the presence of modelling, linearization and

roundo� errors, redundancies and inconsistencies have to be viewed very critically. The

presented procedure will identify these redundancies and inconsistencies within the range

of uncertainty that is present in any numerical rank determination, i.e., the procedure can

be used for a model veri�cation or model reduction within these limitations.

The structure obtained from Algorithm 1 also allows a reinterpretation of variables. At

every point

^

t 2 [t

0

; t

f

] we obtain which variables can be considered as free variables, i.e.,

controls, and which variables are �xed by choosing some of the others.

If at a �xed point

^

t Algorithm 1 is carried out followed by a column compression

B

3

(

^

t)P

1

= [B

31

; 0] and a row compression P

2

C

3

(

^

t) =

"

C

13

0

#

with nonsingular B

31

, C

13

then we end up with the following transformed quantities: Let

T =

h

Q

1

Q

2

V

1

Q

2

V

2

W

1

Q

2

V

2

W

2

i

;

x(

^

t) = T ~x = T

2

6

6

6

4

~x

1

~x

2

~x

3

~x

4

3

7

7

7

5

; u(

^

t) = P

1

~u = [P

11

; P

12

]

"

~u

1

~u

2

#

;

y(

^

t) = P

2

~y = [P

21

; P

22

]

"

~y

1

~y

2

#

:

Then one obtains that ~x

1

; ~x

2

; ~u

1

correspond to the `real' state variables, while ~u

2

; ~x

3

; ~x

4

cor-

respond to the `real' input variables and ~y

1

represents a feedthrough term. This approach

can therefore be used for model veri�cation.

3.3 Regularization by state or output feedback

As we have already seen in Section 2, we can also modify the system properties by feedback.

To construct such feedbacks in a numerically stable manner has been the topic of many

recent papers, see e.g., [5, 6, 13] for the case of constant coe�cients and [1, 2] for the

variable coe�cient case. Here we present a new and more generally applicable approach

based on the condensed form (36), but before this we give a proof that the s-index is

invariant under feedback.
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Theorem 12 Consider a linear variable coe�cient control system of the form (1) and

suppose that the s-index � of the system is well de�ned. Then the characteristic quantities

^

d, â and û

l

are invariant under proportional state feedback u = F (t)x+w and proportional

output feedback u = F (t)y + w.

Proof. Proportional state feeback is just a change of basis in the behaviour approach

applied to (33), i.e., in (33) we set

"

x

u

#

=

"

I

`

0

F (t) I

m

# "

~x

~u

#

:

Proportional output feedback is an equivalence transformation in the behaviour approach

applied to (25), i.e., in (25) we set

2

6

4

x

u

y

3

7

5

=

2

6

4

I

`

0 0

0 I

m

F (t)

0 0 I

p

3

7

5

2

6

4

~x

~u

~y

3

7

5

and premultiply by the nonsingular matrix

"

I

n

B(t)F (t)

0 I

p

#

.

It follows that the characteristic quantities �, d, � are invariant under both types of

feedbacks.

If we want to make the system (36) regular and of s-index 0 (as a free system) then

clearly the system has to satisfy û

l

= 0. If this is the case, then the extracted system (36)

is given by

"

^

E

1

(t)

0

#

_x =

"

A

1

(t)

A

2

(t)

#

x +

"

B

1

(t)

B

2

(t)

#

u+

"

^

f

1

(t)

^

f

2

(t)

#

(38)

and we can determine proportional state and output feedbacks that make the corresponding

closed loop systems s-index 0 (as a free system). This is more complicated than in the

theoretical case, since the condensed form (36) is not re�ned enough. Fortunately, we can

determine the feedbacks locally at �xed points

^

t via the re�ned structure obtained from

Algorithm 1.

Corollary 13 Consider a descriptor system in the form (1) for which the s-index is well

de�ned and let û

l

;

^

d; â be the characteristic quantities obtained locally at �xed times

^

t from

Algorithm 1 be globally constant in the interval [t

0

; t

f

]. There exists a state feedback u =

F (t)x+ w such that the closed loop system

E(t) _x = (A(t) +B(t)F (t))x +B(t)w + f(t) (39)

is regular (as a free system) if and only if û

l

= 0 and

^

d+ â = l.

Proof. Observe that Theorem 12 implies that applying a state feedback to the original

system and then computing the corresponding reduced system (33) gives the same as �rst
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bringing the original system to the reduced form (33) and then applying the feedback.

Thus (39) is regular as a free system if and only if the form (36) with inserted feedback is

regular and of s-index 0 as a free system. Hence it su�ces to construct the feedback for

the reduced system (33).

We determine piecewise constant feedbacks by constructing them locally in the neigh-

borhood of a �xed time

^

t and using continuity and a �nite covering of the interval we get

a global piecewise constant feedback.

If û

l

= 0 and

^

d + â = l, then at a �xed point

^

t we can construct the required F (

^

t)

as follows. Let Q, V , W be the unitary matrices determined in Algorithm 1 and set

~

B

3

= U

�

2

B

2

. By assumption

~

B

3

has size (�;m) and full row rank. Thus, there exists a

matrix F

3

of size (m;�) such that

~

B

3

F

3

is nonsingular. Set

F (

^

t) =

h

0 0 F

3

i

"

I

d

0

0 V

�

#

Q

�

: (40)

Then in the closed loop system (39) we have that E

1

(

^

t)Q

"

I

d

0

0 V

#

=

h

E

11

0 0

i

and

U

�

(A

2

(

^

t) +B

2

(

^

t)F (

^

t))Q

"

I

d

0

0 V

#

=

"

0 A

22

�

0 0

~

B

3

F

3

#

with nonsingular A

22

and

~

B

3

F

3

and hence the closed loop system is regular and has s-

index 0 at

^

t. By assumption the characteristic quantities are constant and by continuity,

in a neighborhood U of

^

t the constant transformation matrices Q;U; V will not change the

quantities and hence if we apply the same constant feedback in the whole neighborhood

U , we will obtain that the system is regular and of s-index 0 in the whole neighborhood.

By taking a �nite covering of the interval [t

0

; t

f

] with such small neighborhoods, we then

have constructed a piecewise constant global feedback F (t) such that the system is regular

and of s-index 0 as a free system.

For the converse observe, û

l

= 0 is clearly necessary. Furthermore, the condition

^

d+â = l

is also necessary, since otherwise for any given feedback F (t) the closed loop system is

nonsquare and hence not uniquely solvable.

We also have the characterization when the system can be regularized by output feedback.

Corollary 14 Given a descriptor system in the form (1) for which the s-index is well

de�ned and let There exists an output feedback u = F (t)y + w such that the closed loop

system

E(t) _x = (A(t) +B(t)F (t)C(t))x+B(t)w + f(t) +B(t)F (t)g(t) (41)

is regular (as a free system) if and only if û

l

= 0, u

r

= 0 and � = !.

Proof. Again, it su�ces to study the system in the reduced form (33), and we also

construct piecewise constant feedbacks by constructing them locally in the neighborhood

of a �xed time

^

t and using continuity and a �nite covering of the interval we get a global

piecewise constant feedback.
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If û

l

= 0, u

r

= 0 and � = ! then we can construct the feedback as follows. For a

�xed

^

t 2 [t

0

; t

f

] let Q, V , W be the unitary matrices determined in Algorithm 1 and set

~

B

3

= U

�

2

B

2

. Since

~

B

3

has full row rank and C

3

has full column rank, we can determine a

matrix F

33

of size (!; �) such that

~

B

3

F

33

C

3

is nonsingular. With

F (

^

t) =

2

6

4

0 0 0

0 0 0

0 0 F

33

3

7

5

2

6

4

I

d

0 0

0 I

a

0

0 0 W

�

3

7

5

"

I

d

0

0 V

�

#

Q

�

; (42)

we obtain

E

1

(

^

t)Q

"

I

d

0

0 V

#

2

6

4

I

d

0 0

0 I

a

0

0 0 W

3

7

5

=

h

E

11

0 0

i

and

U

�

(A

2

(

^

t) +B

2

(

^

t)F (

^

t)C(

^

t))Q

"

I

d

0

0 V

#

2

6

4

I

d

0 0

0 I

a

0

0 0 W

3

7

5

=

"

0 A

22

�

0 0

~

B

3

F

33

C

3

#

;

where A

22

and

~

B

3

F

33

C

3

are nonsingular. The same arguments as in the proof of Corol-

lary 13 yields the existence of a feedback F (t) such that the closed loop system is regular

and has s-index 0 as a free system. For the converse the argument is as in the proof of

Corollary 13.

Remark 7 If we use Algorithm 1 and the construction given in the proofs of Corollaries 13

and 14 there is some freedom in the choice of F (

^

t) which can be used to make the property

that the system is regular and has s-index 0 (as a free system) robust to perturbations.

For constant coe�cient systems this has been done in [5, 6]. How to obtain a maximally

robust closed loop system in the case of variable coe�cients or in the nonlinear case is

currently under investigation.

In this section we have discussed the construction of feedbacks that make the system

regular and of s-index 0 (as a free system). The regularizing feedbacks can be constructed

via numerical procedures that can be implemented locally as numerically backwards stable

procedures.

3.4 Regularization via derivative feedback

In the constant coe�cient case also the regularization via derivative feedback is impor-

tant and has been analyzed in [5, 6, 13, 14]. If derivative feedback is used then one can

also modify the number of algebraic and dynamic variables. A general proportional and

derivative feedback takes the form

u = F (t)x +G(t) _x+ w (43)
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or in the output case

u = F (t)y +G(t) _y + w: (44)

The di�culty with derivative feedback, however, is that the characteristic quantities �,

^

d,

â, and ! are not invariant under derivative feedback, as is demonstrated in the following

example.

Example 1 Let

E =

"

1 0

0 0

#

; A =

"

0 0

1 0

#

; B =

"

1

0

#

then � = 1; â = 0;

^

d = 1; û

l

= 1; u

r

= 1. With the derivative feedback u = F _x = [1;�1] _x

we obtain the closed loop system matrices

E +BF =

"

0 1

0 0

#

; A =

"

0 0

1 0

#

; B =

"

1

0

#

for which � = 0; â = 1;

^

d = 1; û

l

= u

r

= 0.

Due to this problem it is very di�cult to decide how to use derivative feedback for regu-

larization. It will depend strongly on the application whether an increase or decrease of

the number of dynamic variables is desirable or not and hence in this general setting we

cannot discuss this topic.

3.5 Impulse controllability and observability

In the constant coe�cient case a square system can be made regular and of s-index 0 (as

a free system) via state feedback if it is controllable at in�nity or impulse controllable, [5].

There exists an algebraic condition for this property, i.e.,

rank[E AS

1

B] = n; (45)

where S

1

is a matrix whose columns span kernel(E). As we have seen in (13), in the

variable coe�cient case this algebraic condition is replaced by the requirement that the

system has a well de�ned s-index, and satis�es û

l

= 0,

^

d + â = l. Note that consistency

(i.e., the condition û

l

= 0) is only needed if an inhomogeneity is present, hence we can

de�ne a linear variable coe�cient system to be impulse controllable if it satis�es

^

d+ â = l.

For output feedback in the constant coe�cient case (see [6]) also the dual condition to

(45) is needed, called observability at in�nity or impulse observability. The associated

algebraic condition is

rank

2

6

4

E

T

�

1

A

C

3

7

5

= n; (46)

where T

1

is a matrix whose columns span kernelE

�

. In the variable coe�cient case we

then de�ne analogously the system to be impulse observable if it has a well de�ned s-index

and ! = �.
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It follows from Corollary 14 that there exists an output feedback such that the closed loop

system is regular and has s-index (as a free system) if and only it is impulse controllable

and impulse observable and satis�es û

l

= 0.

For the controllability and observability of the dynamic part of the system we can then

use the standard terminology of ODE control systems, see [22, 37, 34].

4 Numerical examples

In this section we present some numerical examples that were obtained with the code

DGELDS which is a modi�cation of the code DGELDA of [29] for the structural analysis

and simulation of descriptor systems of the form (1){(2).

We have tested the described procedures for several well known benchmark problems in

control and obtained the following results.

For the model of a three-link manipulator model of [21] with dimensions n = 8, l = 8,

m = 3, p = 3, and characteristic quantities � = 2, d

�

= 2, a

�

= 9, u

l

�

= 0, u

r

�

= 3, the

code DGELDS combined with Algorithm 1 returned correctly

^

d = 2, û

l

= 0, â = a = 6,

� = u

r

= ! = 0.

For the model of a simple RLC circuit [15, 4] with dimensions n = 4, l = 4, m = 1, p = 1,

and characteristic quantities � = 0, d

�

= 2, a

�

= 3, u

l

�

= 0, u

r

�

= 1, the code DGELDS

combined with Algorithm 1 returned correctly

^

d = 2, û

l

= 0, â = a = 2, � = u

r

= ! = 0.

Finally we discuss the model of a bearring transmission [36], which has the form

2

6

4

I

3

M

0

3

7

5

_x =

2

6

4

0 I

3

0

�Q �P G

T

H G 0

3

7

5

x +

2

6

4

0

S

�

3

7

5

;

with M being a diagonal mass matrix,

P =

2

6

4

0 0 0

0 d

1

�d

1

0 �d

1

d

1

3

7

5

; Q =

2

6

4

0 0 0

0 c

1

�c

1

0 �c

1

c

1

3

7

5

; S =

2

6

4

1

0

0

3

7

5

;

G =

h

0 1 0

i

; H =

h

�v

u

0 0

i

For the exact parameters of the original model, which included � = 0, see [36]. The

characteristic quantities of the system are � = 1, d

�

= 5, a

�

= 2, u

l

�

= 0, u

r

�

= 1 and

DGELDS combined with Algorithm 1 returned correctly

^

d = 5, û

l

= 0, â = a = 2, � = 1,

u

r

= ! = 0. In this case the system is not controllable at in�nity, so there is no state

feedback that makes the original system regular and of s-index 0 directly. But clearly, as

Corollary 13 states, there exists a state feedback so that after reduction to the form (33)

the system is regular and of s-index 0.

If we slightly modify the system by choosing � = 1, then the characteristic quantities are

� = 0, d

�

= 6, a

�

= 1, u

l

�

= 0, u

r

�

= 1 and DGELDS combined with Algorithm 1 returned
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correctly

^

d = 6, û

l

= 0, â = 1, a = 0, � = 1, u

r

= ! = 0. In this case the system is

controllable at in�nity, so there is a state feedback that makes directly the original system

regular and of s-index 0.

5 Conclusions and outlook

In this paper we have presented the theoretical analysis as well as numerical methods that

allow to perform analysis and regularization for linear control problems with variable co-

e�cients. We have shown that a behaviour approach can be used to apply the DAE-based

methods also for the analysis of linear descriptor control systems with variable coe�cients.

We have given necessary and su�cient conditions that are numerically veri�able for the ex-

istence of regularizing feedbacks and we have described the construction of such feedbacks.

Future research includes the generalization of this apporach to the general nonlinear case.

This generalization faces several di�culties. First of all the general theory and the numer-

ical methods developed in [28] work only for uniquely solvable systems. Thus we cannot

directly apply a behaviour approach, since the solution is in general not unique. Similar

di�culties also occur if the system is inconsistent or has redundant equations. Another

future problem is the generalization of the presented theory to include the case that the

output also depends explicitely on the input u or that we have a disturbance term in the

system that has to be compensated.
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A Proof of Theorem 5

Let (E

i

; A

i

; B

i

; C

i

), i = 1; 2, be equivalent. Since rank(E

2

) = rank(PE

1

Q) = rank(E

1

); r

is invariant.

Note that a as de�ned in (10) is identical to the a de�ned for DAEs in [23]. Hence, we

only need to show that �; ! and s are invariant. The invariance of d; u

l

and u

r

follows then

immediately from (10).

For �; ! and s we must �rst show that they are well{de�ned with respect to the choice

of the bases. Each change of bases can be represented by

~

Z = ZM

Z

;

~

T = TM

T

;

~

T

0

= T

0

M

T

0

;

~

V = M

�1

Z

VM

V

;

~

W =M

�1

T

WM

W

;

~

K =M

�1

V

KM

K

;

with nonsingular matrices M

Z

; M

T

; M

T

0

; M

V

; M

W

and M

K

. Then from

rank(

~

V

�

~

Z

�

B) = rank(M

�

V

V

�

M

��

Z

M

�

Z

Z

�

B) = rank(V

�

Z

�

B);

rank(C

~

T

~

W ) = rank(CTM

T

M

�1

T

WM

W

) = rank(CTW );

and

rank(

~

K

�

~

V

�

~

Z

�

A

~

T

0

)

= rank(M

�

K

K

�

M

��

V

M

�

V

V

�

M

��

Z

M

�

Z

Z

�

AT

0

M

T

0

)

= rank(K

�

V

�

Z

�

AT

0

)
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it follows that the quantities �; ! and s are well-de�ned. Let now bases Z

2

; T

2

; T

0

2

; V

2

;W

2

and K

2

be given for (E

2

; A

2

; B

2

; C

2

), e.g.

rank(E

2

T

2

) = 0; T

�

2

T

2

nonsingular; rank(T

�

2

T

2

) = n� r:

Using (8) and setting

Z

�

1

= Z

�

2

P; T

1

= QT

2

; T

0

1

= QT

0

2

; V

1

= V

2

; W

1

= W

2

; K

1

= K

2

the above Z

1

; T

1

; T

0

1

; V

1

;W

1

; K

1

form bases according to (9). Since

�

2

= rank(V

�

2

Z

�

2

B

2

)

= rank(V

�

2

Z

�

2

PB

1

R)

= rank(V

�

1

Z

�

1

B

1

) = �

1

;

we get the invariance of �. For o we get

o

2

= rank(C

2

T

2

W

2

)

= rank(NC

1

QT

2

W

2

)

= rank(C

1

T

1

W

1

) = o

1

:

Then s is invariant, since

s

2

= rank(K

�

2

V

�

2

Z

�

2

A

2

T

0

2

)

= rank(K

�

2

V

�

2

Z

�

2

PA

1

QT

0

2

�K

�

2

V

�

2

Z

�

2

PE

1

ST

0

2

)

= rank(K

�

1

V

�

1

Z

�

1

A

1

T

0

1

) = s

1

;

where we used Z

�

1

E

1

= 0.

For the derivation of the condensed form (11) we use nonsingular transformation matrices,

i.e., in the �rst step we take a basis Z

0

of rangeE and set P = [Z

0

Z]

�

, etc. As result we

obtain the following sequence of equivalent (�) matrix quadruples:

(E;A;B; C)

�

 "

Z

0

�

ET

0

0

0 0

#

;

"

Z

0

�

AT

0

Z

0

�

AT

Z

�

AT

0

Z

�

AT

#

;

"

Z

0

�

B

Z

�

B

#

;

h

CT

0

CT

i

!

�

 "

I

r

0

0 0

#

;

"

� �

Z

�

AT

0

Z

�

AT

#

;

"

(Z

0

�

ET

0

)

�1

Z

0

�

B

Z

�

B

#

;

h

CT

0

CT

i

!

�

0

B

@

2

6

4

I

r

0 0

0 0 0

0 0 0

3

7

5

;

2

6

4

� � �

V

0

�

Z

�

AT

0

V

0

�

Z

�

ATW

0

0

V

�

Z

�

AT

0

0 0

3

7

5

;

2

6

4

(Z

0

�

ET

0

)

�1

Z

0

�

B

V

0

�

Z

�

B

V

�

Z

�

B

3

7

5

;

h

CT

0

CTW

0

CTW

i

1

C

A
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with W

0

basis of cokernel(Z

�

AT )

�

0

B

@

2

6

4

I

r

0 0

0 0 0

0 0 0

3

7

5

;

2

6

4

� � �

V

0

�

Z

�

AT

0

I

a

0

V

�

Z

�

AT

0

0 0

3

7

5

;

2

6

4

(Z

0

�

ET

0

)

�1

Z

0

�

B

V

0

�

Z

�

B

V

�

Z

�

B

3

7

5

;

h

CT

0

(V

0

�

Z

�

ATW

0

)

�1

CTW

0

CTW

i�

�

0

B

B

B

@

2

6

6

6

4

I

r

0 0

0 0 0

0 0 0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

� � �

� I

a

0

K

0�

V

�

Z

�

AT

0

0 0

K

�

V

�

Z

�

AT

0

0 0

3

7

7

7

5

;

2

6

6

6

4

� (Z

0

�

ET

0

)

�1

Z

0

�

BL

� V

0

�

Z

�

BL

K

0�

V

�

Z

�

BL

0

0

0 0

3

7

7

7

5

;

h

� � CTW

i

1

C

C

C

A

with K

0

basis of range(V

�

Z

�

B), L basis of kernel(V

�

Z

�

B) and L

0

basis of

cokernel(V

�

Z

�

B)

�

0

B

B

B

@

2

6

6

6

4

I

r

0 0

0 0 0

0 0 0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

� � �

� I

a

0

K

0�

V

�

Z

�

AT

0

0 0

K

�

V

�

Z

�

AT

0

0 0

3

7

7

7

5

;

2

6

6

6

4

0 (Z

0

�

ET

0

)

�1

Z

0

�

BL

0 V

0

�

Z

�

BL

I

f

0

0 0

3

7

7

7

5

;

h

� � CTW

i

1

C

C

C

A

�

0

B

B

B

@

2

6

6

6

4

I

r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

7

5

;

2

6

6

6

4

� � � �

� I

a

0 0

K

0�

V

�

Z

�

AT

0

0 0 0

K

�

V

�

Z

�

AT

0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

0 (Z

0

�

ET

0

)

�1

Z

0

�

BL

0 V

0

�

Z

�

BL

I

f

0

0 0

3

7

7

7

5

;

"

� � I

!

0

� � 0 0

#

1

C

C

C

A

�

0

B

B

B

@

2

6

6

6

4

I

r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

7

5

;

2

6

6

6

4

� � � �

0 I

a

0 0

K

0�

V

�

Z

�

AT

0

0 0 0

K

�

V

�

Z

�

AT

0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

0 (Z

0

�

ET

0

)

�1

Z

0

�

BL

0 V

0

�

Z

�

BL

I

f

0

0 0

3

7

7

7

5

;

"

0 0 I

!

0

� � 0 0

#

1

C

C

C

A
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�

0

B

B

B

@

2

6

6

6

4

I

r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

7

5

;

2

6

6

6

4

0 0 0 0

0 I

a

0 0

K

0�

V

�

Z

�

AT

0

0 0 0

K

�

V

�

Z

�

AT

0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

0 (Z

0

�

ET

0

)

�1

Z

0

�

BL

0 V

0

�

Z

�

BL

I

f

0

0 0

3

7

7

7

5

;

"

0 0 I

!

0

� � 0 0

#

1

C

C

C

A

�

0

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

4

I

s

0 0 0 0

0 I

d

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 0 0 0 0

0 0 0 0 0

0 0 I

a

0 0

� � 0 0 0

I

s

0 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

0 [I

s

0][Y

0

Y ]

�1

(Z

0

�

ET

0

)

�1

Z

0

�

BL

0 [0 I

d

][Y

0

Y ]

�1

(Z

0

�

ET

0

)

�1

Z

0

�

BL

0 KV

0

�

Z

�

BL

I

f

0

0 0

0 0

3

7

7

7

7

7

7

7

7

5

;

"

0 0 0 I

!

0

� � � 0 0

#!

with Y basis of kernel(K

�

V

�

Z

�

AT

0

) and Y

0

basis of cokernel(K

�

V

�

Z

�

AT

0

), which at last

leads to (11) by a �nal transformation step.

B Appendix B: Proof of Theorem 6

In the following, we will omit the argument t in the occurring matrices functions. Further-

more, since we are only interested in the block structure of the matrices we change the

notation of the blocks in each step. We need the following well-known Lemma, see [30].

Lemma 15 . Let E 2 C

`

([t

0

; t

f

];C

n;n

), ` 2 N

0

and rankE(t) = r for all t 2 [t

0

; t

f

].

Then there exist U; V 2 C

`

([t

0

; t

f

];C

n;n

) with U(t); V (t) nonsingular (unitary) for every

t 2 [t

0

; t

f

] such that

U(t)

�

E(t)V (t) =

"

�(t) 0

0 0

#

; t 2 [t

0

; t

f

];

where �(t) 2 C

`

([t

0

; t

f

];C

r;r

) is nonsingular.
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Proof of Theorem 6. Applying Lemma 15 to the matrix E and setting N = I; P =

�

y

U

�

; Q = V and R = I, where �

y

:=

"

�

�1

0

0 I

#

, we �nd that (E;A;B) is equivalent to

 "

I

r

0

0 0

#

;

"

A

11

A

12

A

21

A

22

#

;

"

B

11

B

21

#

;

h

C

11

C

12

i

!

:

Now, we apply Lemma 15 to A

22

and set N = I; P = diag(I;�

y

U

�

);

Q = diag(I; V ) and R = I, which yields

0

B

@

2

6

4

I

r

0 0

0 0 0

0 0 0

3

7

5

;

2

6

4

A

11

A

12

A

13

A

21

I

a

0

A

31

0 0

3

7

5

;

2

6

4

B

11

B

21

B

31

3

7

5

;

h

C

11

C

12

C

13

i

1

C

A

:

Proceeding with B

31

we get

0

B

B

B

@

2

6

6

6

4

I

r

0 0

0 0 0

0 0 0

0 0 0

3

7

7

7

5

;

2

6

6

6

4

A

11

A

12

A

13

A

21

I

a

0

A

31

0 0

A

41

0 0

3

7

7

7

5

;

2

6

6

6

4

B

11

B

12

B

21

B

22

I

�

0

0 0

3

7

7

7

5

;

h

C

11

C

12

C

13

i

1

C

C

C

A

:

Applying Lemma 15 to C

13

and setting N = �

y

U

�

, P = I, Q = diag(I

r+a

; V ), R = I we

obtain

0

B

B

B

@

2

6

6

6

4

I

r

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

7

7

7

5

;
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6

6

6

4

A

11

A

12
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C
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Choosing

N = I; P =

2

6
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4

I �B
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I

I
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7

7

7

5

; Q =

2

6

6

6

4

I

I
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I

I
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7

7

7

5

; R = I

we eliminate B

11

and B

21

in the matrix B, C

11

and C

12

in the matrix C and the coarse

block structure of E and A remains unchanged. Now, we can proceed with the last block

row and get

0

B

B

B

B

B

B

B

B

@

2

6

6

6

6

6

6

6

6

4

I

s

0 0 0 0

0 I

d

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7

7

7

7

7

7

7

7

5

;

2

6

6

6

6

6

6

6

6

4

A

11

A

12

A

13

A

14

A

15

A

21

A

22

A

23

A

24

A

25

A
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7
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;
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by applying Lemma 15 to A

41

.

Furthermore, we use the identities in A to eliminate the other entries in the �rst and

third block column of A. Choosing

N = I; P = I; Q =

2

6

6

6

6

6

6

4

I

I

�A

32

I

I

I

3

7

7

7

7

7

7

5

; R = I

we eliminate A

32

and we have PE

_

Q = 0, i.e. we get no �ll in. Using a block permutation,

which moves the fourth block row of E, A and B to the �fth block row we obtain
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Setting N = I, P = I, Q = diag(I

s

; Q

2

; I

`�r

), R = I, where Q

2

is chosen to be the

solution of the initial value problem

_

Q

2

(t) = A

22

(t)Q

2

(t); Q

2

(t

0

) = I;

which is nonsingular at every point t 2 [t

1

; t

2

], we get
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Finally, by setting N = I, P = diag(I

s

; Q

�1

2

; I

n�r

), Q = I, R = I we get the desired

result.
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