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Abstract

Recently, a metal-insulator transition (MIT) was found in the anisotropic Ander-

son model of localization by transfer-matrix methods (TMM) [1, 2, 3]. This MIT

has been also investigated by multifractal analysis (MFA) [4] and the same critical

disorders W

c

have been obtained within the accuracy of the data. We now employ

energy level statistics (ELS) to further characterize the MIT. We �nd a crossover

of the nearest-neighbor level spacing distribution P (s) from GOE statistics at small

disorder indicating metallic behavior to the Poisson distribution at large disorder

characteristic for localized states. An analysis of the system size dependence of the

spectral rigidity �

3

(L) con�rms the values of W

c

found in Ref. [3, 4].

1 Introduction

Recent TMM studies [1, 2, 3] of the anisotropic Anderson model show that an MIT exists even

for strong hopping anisotropy . The values of the critical disorder in the band center were found

to follow a power law W

c

/ (1� )

�

independent of the orientation of the quasi-1D bar. � was

argued to be independent of the strength of the anisotropy. This is supported by multifractal

analysis of the eigenfunctions [4], where the system size dependence of the singularity spectra is

used to determine W

c

. In order to check this further, we employ energy level statistics as another

independent method. ELS is based on random matrix theory [6] and was successfully used to

investigate the MIT in the isotropic case [5, 7, 8]. Directly at the MIT, the ELS was argued to

be given by a universal distribution P

c

(s), which should correspond to a \critical ensemble" [5]

distinct from the case of a Gaussian orthogonal ensemble (GOE) and also from the Poissonian

case. However, recent results [9] show that P

c

(s) depends on the boundary conditions and the

shape of the samples considered.

In this work, we show that the MIT in the anisotropic systems can be characterized conve-

niently by ELS and we �nd that the critical disorders W

c

are in good agreement with the results

of Refs. [3, 4]. We further �nd that P (s) at the MIT in the anisotropic systems depends on the

anisotropy . Thus an estimation of W

c

by use of the \critical ensemble" is incorrect.

2 The anisotropic Anderson model of localization

The Anderson Hamiltonian is given as [10]

H =

X

i

�

i

jiihij+

X

i 6=j

t

ij

jiihjj : (1)

1



We use a simple cubic lattice of size N

3

with orthonormal states jii at site i = (x; y; z). The po-

tential site energies �

i

are random numbers, uniformly distributed in the interval [�W=2;+W=2].

The transfer integrals t

ij

are restricted to nearest neighbors. They depend only on the spatial

direction, thus t

ij

= t

x

, t

y

or t

z

. We study the two cases of: (i) weakly coupled planes with

t

x

= t

y

= 1, t

z

= 1 �  and (ii) weakly coupled chains with t

x

= t

y

= 1 � , t

z

= 1. The

anisotropy parameter  ranges from  = 0, the isotropic case, to  = 1 where the planes/chains

are completely uncoupled.

We use the Lanczos algorithm [11] to compute the spectrum of H . It is well suited for the

diagonalization of our sparse matrices [12] and allows us to compute all eigenvalues of H for

system sizes of N = 48 on a parallel machine within 60 hours. We use 50% of the eigenvalues

around the band center E = 0 and average over up to 400 realizations of the random potential,

such that at least 2 � 10

5

eigenvalues are used for each set of parameters fW; ;Ng. Due to

the large computational e�ort, we restrict the systematic investigations to sizes up to N = 30.

For comparison with predictions of random matrix theory, we unfold the spectra by �tting cubic

splines [7] to the integrated density of states. This sets the mean-level spacing to one. We

then characterize the local spectral uctuations by means of the nearest neighbor level spacing

distribution P (s) and the �

3

statistics. The latter measures the rigidity of the spectra [6].

3 Results

Extended states in a metal contribute to charge transport even at T = 0. The overlap of the

extended states results in level repulsion and their spectral properties are characterized by the

GOE. On the other hand, localized states cannot contribute to charge transfer at T = 0, resulting

in insulating behavior. The energy levels are uncorrelated, consequently the probability that

energy levels are close together is very high and the ELS is given by the Poissonian statistics.

Thus a change from the GOE behavior to Poissonian may indicate the existence of an MIT.

As expected from the isotropic case, we �nd P (s) to be close to the GOE statistics at small

disorder and close to Poisson statistics at large disorder as shown in Fig. 1 for an already quite

strong anisotropy. For stronger anisotropy , the transition occurs at smaller values of the disorder
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Figure 1: P (s) for weakly coupled chains with N = 24 and  = 0:9.
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parameter W .

In an in�nite system, there is a sharp transition from extended to localized behavior at the

MIT. However, in any �nite system, the characteristic lengths scales of the states close to the

transition will exceed the system size. Thus for a given N , one �nds characteristic deviations

which result in a continuous change from GOE to Poissonian statistics as W is varied across

the MIT. Only directly at W

c

the statistical properties are independent of N , because of the

scale invariance of the multifractal wave functions at the MIT [13, 4]. In order to identify the

extended, critical and localized regimes and to determine the critical disorder W

c

properly, we

therefore examine the system size dependence of the ELS.

As an example we show in Fig. 2 the �

3

statistics for weakly coupled planes at  = 0:9 for 4

system sizes N ranging from 13 to 30. For W = 6, we �nd that upon increasing N that there is a

clear trend towards the GOE prediction. On the other hand, the data for W = 12 tend towards

the Poissonian result. At W = 9, the �

3

statistics is independent of N within the accuracy of

our calculation. Thus the critical disorder for the present example is W

c

� 9. In addition to
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Figure 2: �

3

(L) for weakly coupled planes with  = 0:9 for N = 13; 17; 21; 30. Larger N

corresponds to larger symbol size.

this �nite-size dependence, we have also used �nite size scaling analysis for quantities such as

� =

R

30

0

�

3

(L)dL. We have constructed scaling functions, which further support the values of

W

c

obtained above and con�rm the one-parameter scaling hypothesis and thus the existence of

the MIT in these anisotropic systems. Details will be published elsewhere [14].

The critical disorders obtained by this analysis agree reasonably well with the results from

TMM [3] and MFA [4]. W

c

decreases with increasing anisotropy with a power law W

c

= 16:3(1�

)

�

, where � = 0:25 for weakly coupled planes and � � 0:6 for weakly coupled chains, respectively.

For a given anisotropy and system size, we can also identify a disorderW

0

at which P (s) agrees

with the so called \critical statistics", characteristic for the MIT of the isotropic system (cp.

Fig. 1). However, this disorder is much smaller than W

c

for strong anisotropies. And, of course,

the value of W

0

changes when we change the system size. Thus, P

c

(s) is not characteristic for

the MIT in anisotropic systems. We �nd that upon increasing the anisotropy that the statistical

properties at the MIT drift slowly from the \critical statistics" P

c

(s) of the isotropic case [5]

towards Poisson statistics. In that sense, the states at W

c

seem to be less extended in the

3



anisotropic system compared to the isotropic case. This coincides with the results of the MFA

[4].
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Figure 3: W

c

() for weakly coupled planes (above) and chains (below) as obtained with various

methods. The thick solid line is the TMM result of Ref. [3]. The open squares are the disorder

values, where the "critical statistics" is found for system size N = 21.

4 Conclusions

We �nd that a metal to insulator transition exists in the anisotropic Anderson model. The critical

disorders obtained from the ELS coincides reasonably well with the results from TMM [3] and

MFA [4]. The system-size independent P (s) and �

3

(L) at the MIT depend on the speci�c values

chosen for the microscopic hopping elements t

x

, t

y

, and t

z

. They are di�erent for each  and the

two anisotropy realizations, namely, weakly-coupled planes and chains. Furthermore, the ELS at

the MIT is also di�erent from the ELS of the isotropic case. Thus we �nd that P (s) at the MIT

is not universal,i.e., not independent of the microscopic parameters of the model.
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