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Abstract. We investigate the behavior of the thermoelectric power S in disordered systems

close to the Anderson-type metal-insulator transition (MIT) at low temperatures. In the

literature, we �nd contradictory results for S. It is either argued to diverge or to remain

a constant as the MIT is approached. To resolve this dilemma, we calculate the number

density of electrons at the MIT in disordered systems using an averaged density of states

obtained by diagonalizing the three-dimensional Anderson model of localization. From the

number density we obtain the temperature dependence of the chemical potential necessary

to solve for S. Without any additional approximation, we use the Chester-Thellung-Kubo-

Greenwood formulation and numerically obtain the behavior of S at low T as the Anderson

transition is approached from the metallic side. We show that indeed S does not diverge.
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1 Introduction

In this paper, we study the low temperature behavior of the thermoelectric power S in

disordered systems near the Anderson-type metal-insulator transition (MIT). In the

framework of linear response theory, S, commonly abbreviated as the thermopower,

is the coe�cient that relates the temperature gradient in an open circuit with the

induced electric �eld. In the metallic regime, the Sommerfeld theory states that S

is directly proportional to the negative temperature �T [1]. But at a disordered-

induced MIT, such as the Anderson transition in three dimensions (3D) [2], it is still

not a settled issue how S behaves at low T . Theoretical studies have either claimed

that it diverges [3], or that it remains a constant [4] as the MIT is approached from

the metallic side at low T . Moreover, comparing the results of the latter theory

with that of experiments conducted on doped semiconductors [5] and on amorphous

alloys [6] shows that measurements of S are two orders of magnitude higher than

those predicted in theory. Thus, it is of great interest to investigate the behavior of

S at low T near the Anderson-type MIT. Here, for simplicity, we consider only the

di�usion part of S, that is, we consider only the electronic contribution and neglect

any possible electron-phonon interactions. In addition to S, we shall also compute

thermal transport properties such as the thermal conductivity K and the Lorenz

number L

0

.
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2 Theoretical background

The derivation of the thermopower is based on the kinetic coe�cients of the Chester-

Thellung-Kubo-Greenwood formulation of linear response [7],
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where E is the energy, A(E) contains all the system-dependent features, �(T ) is the

chemical potential, f(E; �; T ) = 1=[1 + exp([E � �(T )]=k

B

T )] is the Fermi function,

and k

B
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where e is the electron charge. Measured under the assumption that there is no

electric current and concentration gradient, the thermopower is thus given as

S =

L

12

jejTL

11

: (3)

The Anderson transition is then incorporated into the measurement of S by setting

the function A(E) in the coe�cient L

ij

as proportional to the critical behavior of the

d.c. conductivity � at the MIT, that is,

A(E) =

�

�jE �E

C

j

�

E � E

C

0 E < E

C

(4)

where � is a constant, � is the conductivity index and E

C

is the mobility edge.

With this assignment the coe�cient L

11

is simply �. Furthermore, since K is the

coe�cient that relates the temperature gradient to the induced heat current, it's

low temperature behavior at the MIT can be determined in a similar manner from

hj

2

i with the assumption that there are no particle currents, and using the Anderson

transition form of A(E) as given above. Then the Lorenz number L

0

= (e=k

B

)

2

�=KT

quickly follows. Thus, the low T behavior of S, K and L

0

at the Anderson transition

follows easily after obtaining the kinetic coe�cients, Eq. (1).

2.1 Divergent thermopower

A divergent S at the Anderson transition E = E

C

is obtained if one uses the Sommer-

feld expansion to get the low-T leading contribution to L

ij

[3]. This method assumes

that the chemical potential � is equal to the Fermi energy E

F

even for �nite T . How-

ever, � = E

F

only at T = 0 [1]. A more serious approximation of the Sommerfeld

expansion is the assumption that A(E) is a smoothly varying function at E = E

C

.

This is not the case at the Anderson transition, as can be readily seen in Eq. (4).

2.2 Fixed-point thermopower

The approach proposed by Enderby and Barnes [4] evaluates the kinetic coe�cients

at � = E

C

for �nite T , and afterwards the limit T ! 0 is taken. They �nd that the
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thermopower is a constant at the mobility edge for T ! 0, and is given by

S = �

k

B

jej

(� + 1)

�

I

�+1

I

�

(5)

where I

1

= ln 2, I

�

= (1� 2

(1��)

)�(�)�(�) for Re[�] > 0; � 6= 1, with �(�) and �(�)

the usual gamma and Riemman zeta functions. Hence, S solely depends on �.

3 Calculation of the temperature dependent thermopower

One can determine the temperature dependence of the thermopower if one knows

how � varies with T . This information can be obtained from the number density n of

electrons at the MIT. In general, for any set of noninteracting electrons, the number

density is de�ned as

n(�; T ) =

Z

1

�1

dEg(E)f(E; �; T ) ; (6)

where g(E) is the density of energy levels per unit volume. Using the above equation,

we numerically calculate n using an averaged density of states g(E) obtained by

diagonalizing the Anderson model of localization. Earlier, we determined the averaged

density of states for a 3D isotropic Anderson model with disorder W = 12 [8]. Note

that since our objective is to compare our theoretical results for S with experimental

measurements, such as those from amorphous alloys, the hopping parameter t is of

the order of 1 eV. Hence, we have expressed all energy units in terms of t unless

otherwise speci�ed. We have selected the value of W to be strong enough, such that

we do not have singularities in the density of states. Yet, it should not be too strong,

i.e. too close to the critical disorder. For this particular value ofW , the value of E

C

is

approximately �7:5, according to the mobility edge trajectory E

C

(W ) calculated in

Ref. [9]. The conductivity index � is � 1:3, according to a current numerical estimate

[10]. Then we integrate the density of states for E � E

F

to obtain the corresponding

value of n for a given value of E

F

at T = 0. Keeping n �xed at this value, we vary

T in Eq. (6) and numerically determine the variation of �. Using this information in

Eq. (1), we solve for L

ij

. It is then straightforward to determine S for a particular

value of E

C

from Eq. (3).

4 Results and discussion

In Fig. 1, the temperature dependendence of the chemical potential is shown together

with the averaged density of states from which it was measured. Note that from this

smooth density of states, we obtain a T dependence of � which barely changes when

one selects E

F

in the metallic or the localized region. However, its slope changes

much faster as compared to the chemical potential from a free electron gas as shown

in Fig. 1. Note that this free electron result was also similarly obtained from the same

expression for n given in Eq. (6), but using the Sommerfeld expansion in order to

obtain �.

Next, Fig. 2 shows our thermopower measurements. The curves at the top of Fig. 2

clearly show the MIT, the dividing line between the metallic (E

F

> E

C

) and localized

(E

F

< E

C

) regions. As T ! 0, S gets more negative in the localized region, while

3



0 2 4 6 8 10

T (meV)

0.00

0.05

0.10

E
F
 −

 µ
 (

m
eV

)

EF<EC, localized 
EF=EC, MIT
EF>EC, metallic 
free electron gas
(EF /3) (πkBT/2EF)

2

0 20 40 60 80 100
T (K)

−10 −5 0 5 10
E (eV)

0.00

0.02

0.04

0.06

0.08

g(
E

)

EC

Fig. 1 Top: The low T behavior of �. Near the MIT, �(T ) is similar in both the localized

and the metallic regions. Bottom: The averaged density of states of a 3D isotropic Anderson

model with W = 12. For clarity only every 10th data point is marked by a symbol (�).

S ! 0 in the metallic region. As we move further away from the MIT towards the

metallic region at low T , S behaves as expected from the Sommerfeld theory, that is,

linearly proportional to �T . This indicate nonzero values of �(E

F

) con�rming the

metallic nature in this energy region. More importantly, we see that S is a constant

at the MIT, E

F

= E

C

. As T ! 0, it approaches the value -228.4 �V=K. This value

agrees with the T -independent value for � = 1:3 as predicted by Eq. (5). At the MIT,

a negative S value of the order of hundreds of �V=K has never been experimentally

observed to the best of our knowledge. To see the T -independence of S at the MIT,

we refer to the bottom of Fig. 2. Here we show the behavior of S at di�erent Fermi

energies for di�erent temperatures. It is clearly demonstrated in the inset that for

di�erent values of T , S is a �xed point at the MIT (� = E

C

) verifying what Enderby

and Barnes had previously concluded [4].

Similarly, we have studied the other thermal transport properties K and �. Our

preliminary investigation shows that K ! 0 as T ! 0 at any energy region. Fur-

thermore, in the metallic phase, L

0

approaches the value �

2

=3 which according to

the law of Wiedemann and Franz is a universal value for all metals (see for example

Refs. [1, 7]). At the MIT, however, L

0

has a value dependent only on the conductivity
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Fig. 2 Top: The low T behavior of S. Note that S does not diverge at the MIT as T ! 0.

Bottom: Same data as in the top panel, plotted with respect to � for di�erent Fermi energies.

The lines connect isotherms of S. As shown in the inset, S is a �xed point at the MIT.

index �. Detailed results of these transport properties will be discussed elsewhere.

5 Conclusions

In this work we have studied the low temperature behavior of the thermoelectric

power for the 3D isotropic Anderson model close to the MIT. We have numerically

obtained the temperature dependence of the chemical potential necessary to solve for

S from the general expression of the number density for any set of noninteracting

electrons. We have shown that �(T ) is very similar regardless which energy region

close to the MIT one considers. Using this result and the Chester-Thellung-Kubo-

Greenwood formulation, our calculations yield a sharp contrast of the S behavior

between metallic and localized regions clearly outlining the MIT. Finally, as the MIT

is approached from the metallic side S is a �xed point. As T ! 0 at the MIT, S
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approaches the �xed-point value predicted by Enderby and Barnes which for � = 1:3

is S = �228:4 �V=K. Therefore, we have established that as the MIT is approached

at low T the thermopower does not diverge but remains a constant. Its �xed-point

value depends only on the critical behavior of �. How S behaves for varying degrees

of disorder is a subject of further investigation.
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