
Algebraic Domain Decomposition

Von der Fakult�at f�ur Mathematik der Technischen Universit�at Chemnitz

genehmigte

D i s s e r t a t i o n

zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

von Dipl.{Math. Matthias Bollh�ofer

geboren am 14.05.1966 in Herford

eingereicht am 26.11.1997

Gutachter: Prof. Dr. Volker Mehrmann

Prof. Dr. Ludwig Elsner

Prof. Dr. Thomas Huckle

Tag der Verteidigung: 20.03.1998

Bibliographische Beschreibung

Matthias Bollh�ofer

Algebraic Domain Decomposition

Dissertation

TU Chemnitz, Fakult�at f�ur Mathematik, 1997

211 Seiten, 62 Abbildungen, 135 Tabellen, 82 Literaturverweise

Referat. In der Arbeit wird ein algebraischer Ansatz zur numerischen L�osung gro�er

schwachbesetzter Systeme auf Parallelrechnern diskutiert. Hierbei sollen Techniken aus

den Gebietszerlegungsmethoden in der numerischen Behandlung partieller Di�erentialgle-

ichungen auf den rein algebraischen Fall �ubertragen werden.

Ausgangspunkt dieser Untersuchungen ist die Sherman{Morrison{Woodbury Formel zur

Invertierung von Matrizen bei Modi�kationen von niedrigem Rang.

(S �W)

�1

� (S � FG)

�1

= S

�1

+ S

�1

F (I �GS

�1

F

| {z }

S

c

)

�1

GS

�1

Hauptproblem bei der praktischen Anwendung dieser Formel ist die L�osung eines kleindi-

mensionierten Kopplungssystemes S

c

, welches in der Formel auftritt.

Zur numerischen L�osung dieses Kopplungssystems wird ein Konzept eingef�uhrt, welches

einen Kompromi� zwischen einer iterativen und einer direkten L�osung von S

c

darstellt.

Dies geschieht durch geschachtelte Anwendung der Sherman{Morrison{Woodbury Formel.

Das f�uhrt zu einer Reduktion des Ranges der Restmatrix W in der Anfangszerlegung und

somit zur adaptiven Konstruktion eines Vorkonditionieres durch Modi�kation der Matrix

S. Auf diese Weise sollen die Vorz�uge eines iterativen Verfahrens, wie etwa leichte Im-

plementation auf Parallelrechnern, mit der Gewissheit eines direkten Verfahrens, n�amlich

nach einer bestimmten Anzahl Schritte das System gel�ost zu haben, kombiniert werden.

Es wird der Zusammenhang zu algebraischen Mehrgitterverfahren demonstriert.

Zur parallelen Behandlung werden Zerlegungenmit blockdiagonalen Matrizen S betrachtet.

Hier werden f�ur symmetrische Matrizen und M{Matrizen strukturerhaltende Modi�katio-

nen der blockdiagonalen Matrix untersucht. Dar�uber hinaus werden weitergehende Mod-

i�kationen untersucht, welche die Eigenschaften des Kopplungssystem verbessern sollen.

Dieser Ansatz wird auf approximative L�osungen von algebraischen Riccatigleichungen

zur�uckgef�uhrt.

Zur parallelen Realisierung wird das Konzept addierender und �uberlappender Vektoren,

bekannt aus den Gebietszerlegungsmethoden f�ur partielle Di�erentialgleichungen auf den

algebraischen Fall �ubertragen. Zur parallelen Behandlung der geschachtelten Anwendung

der Sherman{Morrison{Woodbury Formel werden Strategien zur B�undelung der einzelnen

Aufdatierungen verfolgt zwecks Reduktion der Kommunikation. Dadurch l�a�t sich das re-

sultierende Kopplungssystem auf die Behandlung des urspr�unglichen Kopplungssytems mit

zus�atzlichen Modi�kationen von niedrigem Rang zur�uckf�uhren.

Schlagw�orter. Sherman{Morrison{Woodbury Formel, Gebietszerlegungsmethoden, al-

gebraische Mehrgitterverfahren, blockdiagonale Zerlegungen, gro�e schwachbesetzte Sys-

teme, parallele Algorithmen, iterative L�osungsverfahren, direkte L�osungsverfahren, adap-

tive Vorkonditionierer.

Ich m�ochte mich an dieser Stelle recht herzlich bei meinem Betreuer Prof.

Dr. Volker Mehrmann f�ur die Betreuung dieser Arbeit bedanken. Seine Un-

terst�utzung sowie seine vielen Anregungen und fruchtbaren Diskussionen

mit ihm haben mir sehr bei der Erstellung dieser Arbeit geholfen.

Notation

Unless we need explicitly R or C , we will use the symbol F, which may be replaced by

both, R or C , i.e. F 2 fR; Cg.

We use the

�

to denote the adjoint operation with respect to a given inner product (�; �).

If nothing di�erent is mentioned, we assume that the inner product is the standard inner

product. In this case,

�

is either the transposing operation

T

for the real case or the

conjugate transposition operator

H

for the complex case.

For any pair A;B of n� n symmetric (Hermitian) matrices we de�ne

A 6 B :() B �A positive semide�nite:

For any pair A;B of n� n real matrices we de�ne

A � B :() a

ij

6 b

ij

; for all i; j = 1; : : : ; n:

A � B :() a

ij

< b

ij

; for all i; j = 1; : : : ; n:

Analogously �;� are de�ned.

Some further notation:

M (m� n;F) m� n matrices with entries in F

GL (n;F) nonsingular n� n matrices

I; I

n

Identity matrix of order n

diag(a

11

; : : : ; a

nn

) diagonal matrix with diagonal entries a

11

; : : : ; a

nn

diagA (a

11

; : : : ; a

nn

); vector containing the diagonal entries of A

�

a

ij

�

i=1;:::;m; j=1;:::;n

entries of the m� n matrix A

�

a

(k)

ij

�

i=1;:::;m; j=1;:::;n

entries of the m� n matrix A

k

kAk

p

sup

x6=0

kAxk

p

kxk

p

; induced p{norm

kAk

F

s

n

P

r;s=1

ja

rs

j

2

; Frobenius norm of A

cond

p

(A) kAk

p

kA

�1

k

p

; condition number of A; if A is nonsingular

�(A) f� 2 C : det(A� �I) = 0g; set of all eigenvalues of A

D(z; r) fw 2 C : jz � wj < rg; open disc with center z and radius r in C

C(
) space of continuous functions de�ned on

#S number of elements in the set S

Real z real part of the complex number z

i

Contents

Notation i

Introduction v

1 General Approach 1

1.1 Domain Decomposition Methods in the Numerical Treatment of Partial Dif-

ferential Equations . 1

1.1.1 Substructuring Methods . 2

1.1.2 Overlapping Domain Decomposition Methods 4

1.2 Algebraic Domain Decomposition . 5

1.3 An Equivalent Approach for the Use of Low Rank Modi�cations 8

1.4 Approximate Inverses . 9

2 Algebraic Properties of the Coupling System 11

2.1 General Properties . 11

2.2 Properties of the Coupling System in the Symmetric Positive De�nite Case 14

2.3 Properties of S

c

in the M{Matrix Case . 16

2.4 Properties of S

c

in the SymmetricM{Matrix Case 22

3 Nested Divide & Conquer 25

3.1 Motivation . 25

3.2 General Construction of Nested Splittings 28

3.3 Algorithmic Description of Nested Divide & Conquer Methods 30

3.4 Algebraic Properties of Coupling Systems Obtained by Nested Divide &

Conquer Methods . 32

ii

3.5 Modifying Schur{Complements by A Priori Orthogonal Transformations . 36

3.5.1 Optimal Conditioning Schur{Complements of Symmetric Positive

De�nite Matrices by A Priori Orthogonal Transformations 38

4 Relations to Algebraic Multigrid Methods 41

4.1 Incomplete block LU Decompositions as Algebraic Multigrid Method . . . 43

4.2 Theoretical Results for the Positive De�nite Case 44

4.3 Divide & Conquer as AMG . 46

4.3.1 The Positive De�nite Case . 48

5 Block Jacobi{like Splittings 53

5.1 General Construction of Block Jacobi{like Splittings 53

5.2 Block Jacobi{like Splittings With Respect to Special Classes of Matrices . 58

6 Modi�ed Block Jacobi Splittings 60

6.1 Motivation for the Choice of Modi�cations 60

6.2 Simpli�cations on R(X) for Block 2{Cyclic Matrices 65

6.3 Su�cient Conditions for the Nonsingularity of C 70

6.4 The General Nonsingular Case . 75

6.5 Approximate Solution T

1

(�) . 77

6.6 Optimal Choice of Modi�cations in the Symmetric Positive De�nite Case . 80

6.7 Algorithm . 87

7 Parallel Treatment of the Coupling System 93

7.1 Distribution of the System and Preprocessing 93

7.2 Representation of S

c

. 95

7.3 Deriving the Block Graph of S

c

. 99

7.4 Parallel Treatment of S

c

. 104

7.5 Direct Solution of S

c

x = b . 109

7.6 Iterative Solution of S

c

x = b . 111

8 Parallel Treatment of Nested Divide & Conquer Methods 113

iii

8.1 Overview . 113

8.2 Treatment of Products of Low Rank Modi�cations 116

8.3 Handling a Product of Householder Re
ectors 118

8.4 Parallel Treatment of S

c;m

. 121

8.5 Parallel Application of S

�1

m

. 127

9 Numerical Results 131

9.1 Numerical Examples on Modi�ed Block Jacobi Splittings 131

9.2 Parallel Numerical Results for the Positive De�nite Case 146

9.3 Some Unsymmetric Examples . 161

Conclusions 182

Bibliography 184

Summary of the Thesis 190

iv

Introduction

In this thesis we will present an algebraic method for the parallel solution of large sparse

linear systems. The method is based on the Divide & Conquer approach [12], [59] and

uses the Sherman{Morrison{Woodbury formula for low rank modi�cations. In contrast to

domain decomposition methods in the numerical treatment of partial di�erential equations

our method will be an exclusively algebraic domain decomposition method and therefore

it can be applied to a large class of problems. The concept of domain decomposition

methods for partial di�erential equations and the techniques for developping parallel

algorithms using domain decomposition are transferred to an algebraic method. The

method involves the solution of a coupling system of small size, which is involved by

applying the Sherman{Morrison{Woodbury formula to a low rank splitting. Most work is

spent in how this coupling system can be solved and moreover how to do this in parallel

computations. Since it may happen that the coupling system is ill{conditioned, most

interest will concentrate on the properties of the coupling system and how to improve

the properties. The main idea of improving the properties of the coupling system and

the underlying solution process consists of adaptively constructing a preconditioner and

reducing the rank of the corresponding coupling system at the same time. Even if an

iterative solution process would fail the reduction of the rank will stay and in this case

the reduction of the rank will �nally lead to a direct method. Of course a purely algebraic

method will never be able to compete with a method which has been adapted to a

speci�c related problem. But it may be applied to a wide class of problems by making

a compromise between direct and iterative methods. The concept itself invokes several

questions and not all of them can be answered in this thesis. Although several parts of

this concept can be applied to general systems, here most work is spend in the symmetric

positive de�nite case. For general systems many questions are still open.

For the strategy which will be the topic of this thesis we will give a short overview.

To apply the Sherman{Morrison{Woodbury formula we need a given low rank splitting.

Thus we will concentrate on splittings with block diagonal matrices when applying the

Sherman{Morrison{Woodbury formula. For this we need a preprocessing process, that

suitably partitions the initial system. This step will be assumed to be done a priori. Based

on this assumption, we will modify the diagonal blocks with respect to certain aspects.

One aspect will be preserving given structures like positive de�niteness and M{matrix

property for the block diagonal matrix itself and especially for the coupling system. A

further aspect will be a local minimization of the rank of the remaining matrix in order

to keep the coupling system small. Beside these modi�cations we need to modify the

diagonal blocks to improve the properties of the initial splitting and the underlying coupling

system for the case when the block diagonal part of the initial matrix is ill{conditioned

or singular. Analogous to partial di�erential equations we will discuss modi�cations of the

diagonal blocks which one can view as some kind of algebraic boundary conditions subject

to maintain the minimal rank property. So far we still need that the block diagonal part

of the initial system is nonsingular. In future works we have to generalize this kind of

v

algebraic boundary conditions.

The coupling system which is obtained by the Sherman{Morrison{Woodbury formula, has

to be solved. Circumstances like the distribution of the coupling system over the processors

in parallel computations aggravate the solution process. Thus we need a concept for the

solution of the coupling system which combines the advantages of an iterative solution

process with the certainty of a direct solution process. To do this a nested divide & conquer

strategy will be introduced. This strategy is a compromise between a direct solution and

an iterative solution of the coupling system. The main idea is to solve some part of the

coupling system directly and to obtain a new reduced remaining coupling system. To split

the coupling system into a small part and a remaining part, orthogonal transformations

are used. While in the symmetric case we can determine orthogonal transformations which

optimally reduce the coupling system in the sense of quadratic forms in general it is open

which orthogonal transformation will be most suitable. For the nested divide & conquer

strategy close relations to algebraic multigrid methods will be shown.

For the parallel realization of this method we need a parallel model for the treatment of

the initial coupling system from the Sherman{Morrison{Woodbury formula and moreover

for the nested application of this formula in the divide & conquer process. We will present

a parallel concept which discusses the parallel use of the Sherman{Morrison{Woodbury

formula. By transferring the idea of adding type vectors and overlapping type vectors,

which has already been used in domain decomposition methods, we will get a convenient

way to treat the coupling system in parallel. This idea can be generalized to the case when

the nested divide & conquer process is used. In addition it will be shown how the nested

divide & conquer method can be treated in parallel without having too much data tra�c.

The complete concept can be summarized in the following table.

'

&

$

%

Minimal

Rank

'

&

$

%

Preserve

Structures

'

&

$

%

Algebraic

Boundary

Conditions

'

&

$

%

Block

Diagonal

Splitting

Modi�ed Block Diagonal Splitting

'

&

$

%

'

&

$

%

Coupling System

'

&

$

%

Nested Divide & Conquer

Algebraic Multigrid

'

&

$

%

Parallel

Realization

- �

?

?

?

-

-

-

vi

In Chapter 1 we will recall methods of domain decomposition for partial di�erential equa-

tions. Especially substructuring methods are shortly discussed. Analogous to domain de-

composition methods we will introduce two variants of algebraic domain decomposition

based on low rank modi�cation formulas for a given splitting A = S �W , where W has

low rank. It will be shown that in theory both methods are equivalent.

In Chapter 2 the properties of the coupling system will be discussed. It will be shown, that

the coupling system can be interpreted as the restriction of AS

�1

to a special invariant

subspace. Analogous to Schur{complements for substructuring methods, we will show that

structures like symmetry, positive de�niteness, the M{Matrix property, the symmetric

M{Matrix property are inherited by the coupling system if the initial splitting is suitably

modi�ed.

In Chapter 3 we will introduce a nested divide & conquer strategy to improve the properties

of the coupling system. This will be an alternative to the usual way which consists in

constructing preconditioners. The nested use of low rank modi�cation formula will result

in a nested sequence of splittings and consequently a sequence of coupling systems. It will

turn out that the related coupling systems can be viewed as diagonal blocks of a block LU{

decomposition of the initial coupling system after a suitable pre{ and post multiplication.

In Chapter 4 we will point out the close relations to algebraic multigrid methods. It will

be shown that algebraic domain decomposition can be interpreted as Schur{complement

approach with respect to a suitably extended system. Therefore results from substructuring

methods are applicable. A further interpretation as subspace correction method will be

pointed out and results from algebraic multigrid methods [72] can be applied.

The relation between the nested use of the low rank modi�cation formulas and algebraic

multigrid can be summarized in the following table.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

Nested Divide & Conquer (low rank modi�cations)

Left Inverse Approach

Sherman-Morrison-Woodbury

Formula

Schur-Complement

Methods

Subspace Correction

Methods

Block ILU Decompositions

Algebraic Multigrid

(in the sense of Axelsson,

Dahmen, Elsner)

Algebraic Subspace Correction

(in the sense of Ruge, St�uben)

In Chapter 5 we will discuss block Jacobi splittings and moreover modi�ed block Jacobi

vii

splittings. The latter are studied more precisely to construct a factorization of the remaining

low rank part. Modi�cations of the diagonal blocks are applied to inherit structures.

In Chapter 6 we will focus on modi�cations of block Jacobi{like splittings subject to

minimize the rank and to improve the properties of the coupling system. It will be shown

that this problem can be traced back to the solution of algebraic Riccati{equations. It

will be shown that under relatively general assumptions the Riccati{equation will have

explicit solutions. Detailed discussion is carried out for the case that the quadratic part of

the algebraic Riccati{expression is nonsingular. For certain classes of matrices it will be

shown that this is a realistic assumption. For the special case of symmetric positive de�nite

matrices optimality will be discussed.

In Chapter 7 parallel aspects will be discussed for the coupling system obtained by the

Sherman{Morrison{Woodbury formula based on modi�ed block Jacobi splittings.

It will be shown that the coupling system has a natural distribution over the proces-

sors. This kind of distribution allows the use of so{called overlapping type vectors and

adding type vectors for the parallel treatment of the initial coupling system. Consequently

a convenient parallel treatment of the initial coupling system analogous to the numerical

treatment of partial di�erential equations will be possible. The block graph of the initial

coupling system and two ways to derive it from the block graph of the initial system will

be discussed.

In Chapter 8 parallel aspects are generalized to nested divide & conquer methods based

on modi�ed block Jacobi splittings.

For this we use that implicitly a special block LU{decomposition of the coupling system

is carried out. Techniques for reducing the data tra�c will be discussed which are based

on collecting products of low rank modi�cations to one matrix. Using these techniques the

treatment of the coupling system arising from the nested divide & conquer approach can

be traced back to the initial coupling system using additional low rank updates.

'

&

$

%

Initial

coupling system

'

&

$

%

block

graph

'

&

$

%

distri-

bution

'

&

$

%

Use of overlap./

adding type

vectors

�

�

�

@

@

@

Nested Divide & Conquer

'

&

$

%

'

&

$

%

partial generation

of the LU

decomposition

of the

coupling system

'

&

$

%

collected product

of low rank

modi�cations

�

�

�

�

Use of overlapping/adding type vectors

'

&

$

%

Initial coupling system

+ additional low rank updates

?

?

6

?

In Chapter 9 the theory is illustrated for several numerical examples.

viii

Chapter 1

General Approach

1.1 Domain Decomposition Methods in the Numeri-

cal Treatment of Partial Di�erential Equations

We begin with the description of domain decomposition methods in the numerical treat-

ment of partial di�erential equations. Consider a linear operator L from some vector space

U into another vector space V . Here U; V are assumed to be suitable subspaces of C(
),

where
 is a domain in R

d

. We denote by � = @
 the boundary of the domain
. Let B be

a linear operator from space U

�

into a space W � C(�). We consider the following linear

problem: Let f 2 V; g 2 W . Find u 2 U such that

Lu = f in
;

Bu = g on �:

In the following we will assume that u is uniquely determined by these equations. In

the numerical treatment of these equations the continuous domain
 is replaced by a

�nite union of polygonal domains

h

=

S

i2I

T

h

i

, where h is some discretization parameter

corresponding to the largest diameter of T

h

i

; i 2 I. � is replaced by �

h

= @

h

, where

�

h

=

S

j2J

s

h

j

is de�ned with respect to

h

. fs

h

j

: j 2 Jg is the set of edges corresponding

to those T

h

i

which intersect with @

h

. The spaces U; V are replaced by some appropriate

�nite dimensional subspaces U

h

; V

h

. Typically U

h

T

h

i

; V

h

T

h

i

are subspaces of the space of

polynomials of degree k on T

h

i

for some small �xed k, e.g. k = 1. Analogously W

h

s

h

i

is

a subspace of the space of polynomials of degree k on s

h

i

. Since U

h

; V

h

;W

h

are �nite

dimensional, we can �nd some basis for each space. In addition each basis function u

i

in

U should have a local support, i.e., supp u

i

� T

i

1

[: : : [T

i

l

, where l is �xed, l � #I

and u

i

(x) = 0 if x 62 supp u

i

. We can thus replace the continuous problem by a discrete

problem: Let f 2 V

h

; g 2 W

h

. Find u 2 U

h

such that

L

h

u = f in

h

;

B

h

u = g on �

h

;

1

where L

h

;B

h

are some discrete approximations to L;B. Again we will assume that u is

uniquely determined by these equations. For simplicity let dimU

h

= n;dimV

h

= m and

dimW

h

= n � m. Since we have a representation u =

P

n

i=1

x

i

u

i

; f =

P

m

i=1

b

i

v

i

; g =

P

n�m

i=1

c

i

w

i

for base u

1

; : : : ; u

n

of U

h

, v

1

; : : : ; v

m

of V

h

and w

1

; : : : ; w

n�m

of W

h

, where each

u

i

has a local support, we can reformulate this problem in terms of coordinates as

Ax �

�

L

B

�

x =

�

b

c

�

where L

h

u

j

=

P

m

i=1

l

ij

v

i

, B

h

u

j

=

P

n�m

k=1

b

kj

w

k

.

For the coe�cients l

ij

; b

kj

we will assume that l

ij

= 0 implies that supp u

i

\supp u

j

has zero

d{dimensional measure and b

kj

= 0 implies that supp u

m+k

\suppu

j

has zero d{dimensional

measure. This is a typical property of problems arising from partial di�erential equations.

By theses assumptions we obtain a nonsingular sparse matrix A. Moreover, the sparsity

pattern is essentially determined from the discretization of the domain and the choice of

the local support for the basis functions. Since A is nonsingular, it follows that B must

have full rank. Thus we can �nd n�m linear independent columns in B. Without loss of

generality we can assume that the last n�m columns are linear independent. We partition

L = (L

I

; L

I;�

); B = (B

�;I

; B

�

) and x =

�

x

I

x

�

�

such that B

�

is nonsingular. Then we can

reduce the system

�

L

I

L

I;�

B

�;I

B

�

��

x

I

x

�

�

=

�

b

c

�

to

�

L

I

� L

I;�

B

�1

�

B

�;I

�

| {z }

K

x

I

= b� L

I;�

B

�1

�

c

| {z }

d

;

which is the Schur{complement of A with respect to B

�

. We setK = L

I

�L

I;�

B

�1

�

B

�;I

; d =

b�L

I;�

B

�1

�

c. Usually one is not interested in x

�

, so that it su�ces to solve the last system.

Note that the Schur{complement K di�ers from L

I

at most in those entries k

ij

, where

supp u

i

and supp u

j

have a nontrivial intersection with

S

k=m+1;:::;n

supp u

k

, which is the

common support of those basis functions which correspond to B

�

. This can be seen by an

argument from graph theory [27].

In general there are two approaches of domain decomposition methods to problems of this

type.

1.1.1 Substructuring Methods

The �rst class of techniques are called substructuring methods. For such methods

h

is

subdivided into subdomains

h

1

; : : : ;

h

p

which are simply connected with respect to

h

and

h

i

\

h

j

has zero d{dimensional measure if i 6= j. On each subdomain one has to consider the

corresponding smaller dimensional problem. But usually the problem is no longer uniquely

determined due to the additional boundary between neighbouring subdomains. For any

r = 1; : : : ; p we denote by u

(r)

1

; : : : ; u

(r)

k

r

those basis functions which have a nontrivial support

in

h

r

; r = 1; : : : ; p. On each subdomain we consider the corresponding problem: Find

2

u 2 spanfu

(r)

1

; : : : ; u

(r)

k

r

g such that

L

h

u = f in

h

r

;

B

h

u = g on �

h

\ @

h

r

;

C

h

u = 0 on @

h

r

n �

h

The additional boundary condition C

h

u = 0 has been added to the problem in order to

obtain a unique solution. The number of equations, which have to be added is just the

number of basis functions in fu

(r)

1

; : : : ; u

(r)

k

r

g whose support is not covered by

h

r

. For those

basis functions, which have a support in more than a single subdomain, we have to consider

an additional coupling system. For the discrete system Kx

I

= d this means, that we have

up to a permutation P

K = P

0

B

B

B

@

K

1;1

K

1;p+1

.

.

.

.

.

.

K

p;p

K

p;p+1

K

p+1;1

� � � K

p+1;p

K

p+1;p+1

1

C

C

C

A

P

T

;

where each K

ii

; i = 1; : : : ; p corresponds to the discrete problem for the basis functions

with support covered by

h

i

. Together with the additional boundary conditions of the form

�

C

(i)

p+1;i

; C

(i)

p+1;p+1

�

�

u

v

�

= 0 we obtain subproblems of the form

�

K

ii

K

i;p+1

C

(i)

p+1;i

C

(i)

p+1;p+1

�

�

u

v

�

=

�

d

i

0

�

:

Applying the Schur{complement gives

^

K

ii

u �

�

K

ii

�K

i;p+1

C

(i)

p+1;p+1

�1

C

(i)

p+1;i

�

u = d

i

From this it follows that we have to solve a system with

^

K instead of K, where

^

K is de�ned

^

K := K �

0

B

B

B

@

K

1;p+1

.

.

.

K

p;p+1

O O O

1

C

C

C

A

0

B

@

C

(1)

p+1;p+1

.

.

.

C

(p)

p+1;p+1

1

C

A

�1

0

B

@

C

(1)

p+1;1

O

.

.

.

O

C

(p)

p+1;p

O

1

C

A

For problems which ensure that each principal submatrix is nonsingular like pos-

itive de�nite matrices, M{matrices or diagonal dominant matrices we can choose

�

C

(i)

p+1;i

; C

(i)

p+1;p+1

�

= (O; I). In this case we obviously have

^

K = K. Otherwise

^

K dif-

fers from K by a low rank modi�cation. The rank is related to the basis functions with

support in more than a single subdomain. A system with

^

K can be solved using the Schur{

complement approach, i.e., using the following factorization for

^

K

0

B

B

B

@

I

.

.

.

I

K

p+1;1

^

K

�1

11

� � � K

p+1;p

^

K

�1

pp

I

1

C

C

C

A

0

B

B

B

@

^

K

11

.

.

.

^

K

pp

C

p+1;p+1

1

C

C

C

A

0

B

B

B

@

I

^

K

�1

11

K

1;p+1

.

.

.

.

.

.

I

^

K

�1

pp

K

p;p+1

I

1

C

C

C

A

;

3

where C

p+1;p+1

= C

p+1;p+1

�

P

p

i=1

K

p+1;i

^

K

�1

ii

K

i;p+1

denotes the Schur{complement. Unless

^

K = K one has to solve an additional coupling system in order to obtain the solution of

Kx

I

= d. For the solution of systems by the Schur{Complement approach most interest is

focussed on solving the Schur{Complement system C

p+1;p+1

, since usually C

p+1;p+1

is not

computed explicitly. For this purpose Krylov subspace based methods [41] are used, which

only need matrix vector multiplications. In order to accelerate the iteration process pre-

conditioners are constructed for C

p+1;p+1

. For the case of elliptic boundary value problems

e�cient preconditioners have been developed in [9], [24],[15]. Another way to solve the sys-

tem Kx

I

= d is to use an approximate factorization for

^

K, i.e. a factorization where each

^

K

�1

ii

is replaced by a suitable approximation. This incomplete factorization can be used as

preconditioner for K. Again it is necessary to solve an approximate Schur{complement in

each step, where one can use the preconditioners just mentioned. Such methods have been

proposed by [45], [46].

1.1.2 Overlapping Domain Decomposition Methods

A second class of domain decomposition methods is given by overlapping or additive

Schwarz methods. For these methods the domain
 is again replaced by

H

, which is

a union of "coarse" polygons T

H

i

. But this time each polygon T

H

i

is re�ned into a union of

smaller polygons T

h

ij

; j = 1; : : : ; l

i

. The initial decomposition of

H

is given by the coarse

polygons T

H

i

. Then each subdomain T

H

i

is enlarged by some neighbouring polygons T

h

kj

resulting in a subdomain

^

T

H

i

. A basis u

h

1

; : : : u

h

n

with local support of the re�ned domain

can be constructed with respect to the polygons T

h

ij

and an additional basis u

H

1

; : : : ; u

H

k

with local support can be constructed for the coarse space

H

. By construction we have

span fu

H

1

; : : : ; u

H

k

g � span fu

h

1

; : : : ; u

h

n

g. The main di�erence to substructuring methods is

that here the subdomains

^

T

H

i

have to be su�ciently large in order to ensure that for any

u

r

there exists at least one subdomain

^

T

H

i

such that supp u

r

�

^

T

H

i

. For any r we denote

by u

(r)

1

; : : : ; u

(r)

k

r

the basis functions, which have support in

^

T

H

r

. For each subdomain

^

T

H

r

one has to consider the corresponding subproblem. Find u 2 spanfu

(r)

1

; : : : ; u

(r)

k

r

g such that

L

h

u = f in

^

T

H

r

;

B

h

u = g on �

h

\ @

^

T

H

r

;

C

h

u = 0 on @

^

T

H

r

n �

h

In addition one may consider the coarse problem. Find u 2 spanfu

H

1

; : : : ; u

H

k

g such that

L

H

u = f in

H

;

B

H

u = g on �

H

:

We can write the reduced matrix K as

K = P

r

K

(r)

11

K

(r)

12

K

(r)

21

K

(r)

22

!

P

T

r

;

4

where P

r

is a permutation matrix and K

(r)

11

corresponds to the subproblem for those basis

functions which have support in

^

T

H

r

. Analogous to substructuring methods we can rewrite

the subproblems on

^

T

H

r

in the form

^

K

(r)

11

u � (K

(r)

11

�K

(r)

12

C

(r)

22

�1

C

(r)

21

)u = d

r

;

where

�

C

(r)

21

; C

(r)

22

�

corresponds to the additional boundary condition C

h

u = 0. Again

^

K

(r)

11

di�ers from K

(r)

11

only by a low rank modi�cation, which is related to the basis functions

with support in more than one subdomain. By the choice of T

h

i

we can already build a

complete approximate solution to Kx

I

= d from these subproblems.

For the coarse problem we can �nd a matrix G such that

�

u

H

1

; : : : ; u

H

k

�

=

�

u

h

1

; : : : ; u

h

n

�

G.

The corresponding linear operator is given by

^

K = G(G

T

KG)

�1

G

T

+

p

X

r=1

P

r

�

(

^

K

(r)

11

)

�1

O

O O

�

P

T

r

:

This matrix is used as preconditioner for K in Krylov subspace based methods. It has

been shown in [25], [26] that for elliptic boundary value problems with shape regular �nite

element discretization,

�

max

(

^

K

�1

K)

�

min

(

^

K

�1

K)

has a condition number independent on h;H and p,

provided that the overlap size of

^

T

H

r

with respect to T

H

r

is bounded from below by �xed

fraction of H. If the expression G(G

T

KG)

�1

G

T

is omitted, then

�

max

(

^

K

�1

K)

�

min

(

^

K

�1

K)

grows at least

as fast as 1=H

2

, which has been shown in [83].

1.2 Algebraic Domain Decomposition

Consider a large sparse nonsingular matrix A 2 GL (n;F) as it occurs in the numerical

treatment of partial di�erential equations (see e.g. [48]). Typically the sparsity can be char-

acterized as follows: In each row there are only a small number of nonzero entries and the

pattern of the matrix is almost symmetric. The matrix can be permuted by a symmetric

permutation into a form which is almost block tridiagonal or block cyclic with blocks of

moderate size. Although we do not need this property explicitly, the method will be de-

signed for such matrices.

Now we will discuss algebraic domain decomposition, which is based on a low rank mod-

i�cation formula. For an algebraic method the linear system is the only information we

have. For domain decomposition methods arising from partial di�erential the decompo-

sition is constructed by geometric aspects. Here the domain decomposition will be done

partitioning the vector of unknowns according to some strategy which should be related

to the undirected graph of A, where the graph G(A) = (V; E) of A is de�ned as follows:

V = f1; : : : ; ng; E = f(i; j) 2 V � V : a

ij

6= 0 or a

ji

6= 0g

For strategies of permuting A by renumbering the nodes of V we refer to [52], [17], [34],

[70], [80]. This preprocessing part is assumed to be done a priori.

5

We wish to solve the linear system

Ax = b;(1.1)

where x; b 2 F

n

, on a parallel computer. This is done by splitting the matrix A into a sum

of two matrices S 2 GL (n;F);W 2 M(n � n;F), such that

A = S �W;(1.2)

where S is nonsingular, the solution of a linear system for S can be \easily" done in parallel

and W is a matrix of low rank. The most common choice for S will be a block diagonal

matrix with as many diagonal blocks as processors. But so far we will not �x this explicitly.

For W we assume more precisely, that W is a product of matrices W = FX

�1

G, where

F;G

T

2 M(n� r;F);X 2 GL (r;F) with suitable r 2 N, r � n.

Example 1.3 Consider a block tridiagonal matrix A 2 GL(n;R), where

A =

0

B

B

B

B

B

@

A

1;1

A

1;2

A

2;1

A

2;2

A

2;3

.

.

.

.

.

.

.

.

.

A

m�1;m�2

A

m�1;m�1

A

m�1;m

A

m;m�1

A

m;m

1

C

C

C

C

C

A

and the A

i;j

's are matrices of suitable size. Assume that each principal submatrix is invert-

ible.(This condition is ful�lled for example if A is strictly diagonal dominant, symmetric

positive de�nite or an M{Matrix). Split A into a block diagonal matrix S with p diago-

nal blocks and remaining W , where for suitable m

1

; : : : ;m

p�1

2 f1; : : : ;m � 1g;m

0

:=

0;m

p

:= m

S =

0

B

@

S

1;1

.

.

.

S

p;p

1

C

A

and for j = 1; : : : ; p the diagonal blocks of S are

S

j

=

0

B

B

B

@

A

m

j�1

+1;m

j�1

+1

A

m

j�1

+1;m

j�1

+2

A

m

j�1

+2;m

j�1

+1

A

m

j�1

+2;m

j�1

+2

A

m

j�1

+2;m

j�1

+3

.

.

.

.

.

.

.

.

.

A

m

j

;m

j

�1

A

m

j

;m

j

1

C

C

C

A

and W = S �A is of low rank. This splitting is illustrated in the �gure below:

0

B

B

B

B

B

B

B

B

B

B

B

@

� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� �

1

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

A

=

0

B

B

B

B

B

B

B

B

B

B

B

@

� �

� � �

� �

� �

� �

� �

� �

� �

� �

1

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

S

�

0

B

B

B

B

B

B

B

B

B

B

B

@

�

�

�

�

�

�

1

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

W

6

If A arises from the numerical treatment of partial di�erential equations, then the block

diagonal part S can be interpreted as domain decomposition of the problem. W corresponds

to the connections between neighbouring domains.

Set F :=

�

E

m

1

; E

m

1

+1

; E

m

2

; E

m

2

+1

; : : : ; E

m

p�1

; E

m

p�1

+1

�

, where the identity matrix I is par-

titioned in block columns analogous to the block structure of A, i.e., I = (E

1

; E

2

; : : : ; E

m

).

Then W may be written in the following way:

~

W :=

0

B

B

B

B

B

B

B

@

0 �A

m

1

;m

1

+1

�A

m

1

+1;m

1

0

.

.

.

0 �A

m

p�1

;m

p�1

+1

�A

m

p�1

+1;m

p�1

0

1

C

C

C

C

C

C

C

A

;

G :=

~

WF

�

;

=)W = FG = F (

~

WF

�

):

Obviously F has full rank and its number of columns is for (p � m) much less than n.

Here we have chosen X = I.

We may solve a linear system of this form (1.2) using the Sherman{Morrison{Woodbury

formula [41], p.51:

A

�1

= (S � FX

�1

G)

�1

= S

�1

+ S

�1

FS

�1

c

GS

�1

; where S

c

= X �GS

�1

F:(1.4)

S

c

is called the coupling system. We note that if S and X are nonsingular, then S

c

is

nonsingular if and only if A is nonsingular.

We get the following abstract algorithm:

Algorithm 1.5

Let A 2 GL(n;F) be split as A = S � FX

�1

G,

where S 2 GL(n;F); F;G

T

2 M(n� r;F);X 2 GL(r;F).

Solve S = b

� := G

Solve S

c

� = �, where S

c

= X �GS

�1

F

u := F�

Solve S
 = u

x :=
 +

=) x � A

�1

b

In general, we may choose X = I in our factorization, but there may still be di�culties in

the practical implementation of this algorithm.

First of all, we have to solve a system with S. If we use a direct method, like LU or

7

QR decompositions [41],pp.92�, pp.211�, we need most of the computing time for the

decomposition, while solving several systems with S is not so expensive. For the coupling

system we have to decide, whether we want to use a direct or iterative method. At least

if we use an iterative method we should ensure, that we only have to apply matrix vector

operations, because the explicit computation of S

c

may be expensive. For a direct method

in general, we have to compute S

�1

F explicitly and then to use a method which requires

explicit knowledge of S

c

. Such an approach was performed for block tridiagonal matrices

in [12], [59]. In addition, in [59] the rank of F has been chosen as small as possible, to

decrease the computational e�ort. For matrices arising from the numerical treatment of

partial di�erential equations such a strategy corresponds to a special choice of boundary

conditions on each subdomain.

1.3 An Equivalent Approach for the Use of Low Rank

Modi�cations

In this section we will derive an equivalent way to write the inverse of a matrix A subject

to low rank modi�cations. This formula will later be used to get another interpretation of

using low rank modi�cations.

For this we have to assume that X = I in our low rank splitting (1.4), i.e.

A = S � FG;(1.6)

where S 2 GL (n;F); F;G

T

2 M(n� r;F) and at least F must have full rank.

In this case there exists H 2 M(r � n;F) such that

HF = I

r

(1.7)

and we obtain

GS

�1

= H(I �AS

�1

); S

c

= I �GS

�1

F = HAS

�1

F =: T

c

:(1.8)

T

c

is also called a coupling system. Thus we can write the inverse of A slightly di�erent

than in the previous section as

A

�1

= S

�1

+ S

�1

FT

�1

c

H(I �AS

�1

):(1.9)

It is easy to verify by straightforward computation that this formula is equivalent to the

Sherman{Morrison{Woodbury formula (1.4) from the previous section, provided that F

has full rank. Moreover, in this case the coupling systems T

c

; S

c

are identical.

Example 1.10 Consider the matrix from Example 1.3. In this case we can choose H = F

�

.

8

1.4 Approximate Inverses

In this section we consider the case, when in formula (1.4),(1.9) the exact inverse S

�1

is

replaced by an appropriate approximation

~

S

�1

. We state the result as a lemma:

Lemma 1.11

Let A 2 GL (n;F) be split as A = S � FG, where S 2 GL (n;F); F;G

T

2 M(n � r;F).

Consider an

~

S 2 GL (n;F) such that A� (S �

~

S) is still nonsingular. Then

~

S

�1

+

~

S

�1

F

~

S

c

�1

G

~

S

�1

= [A� (S �

~

S)]

�1

;(1.12)

where

~

S

c

= I �G

~

S

�1

F .

Assume that rankF = r and let H 2 M(r � n;F) such that HF = I. Then

~

S

�1

+

~

S

�1

F

~

T

c

�1

H(I �A

~

S

�1

) = [A� (I � FH)(S �

~

S)]

�1

;(1.13)

where

~

T

c

= HA

~

S

�1

F .

Proof:

(1.12) follows directly from applying the Sherman{Morrison{Woodbury formula (1.4) to

~

A =

~

S � FG.

If we apply (1.9) to

^

A = A� (I � FH)(S �

~

S) =

~

S � F (G+H(

~

S � S)), we get

^

A

�1

=

~

S

�1

+

~

S

�1

F (H

^

A

~

S

�1

F)

�1

H(I �

^

A

~

S

�1

)

=

~

S

�1

+

~

S

�1

F (H

^

A

~

S

�1

F)

�1

H(I �

^

A

~

S

�1

):

We have that

H

^

A = H(

~

S � F (G+H(

~

S � S)))

= H

~

S �G �H(

~

S � S)

= HS �G

= H(S � FG)

= HA:

From this it follows that

H

^

A

~

S

�1

F = HA

~

S

�1

F

and

H(I �

^

A

~

S

�1

) = H �H

^

A

~

S

�1

= H �HA

~

S

�1

= H(I �A

~

S

�1

):

2

9

Remark:

We note that (1.12) can be used to de�ne linear iteration schemes for solving systems with

A. Especially (1.13) is of interest, since

(I � [A� (I � FH)(S �

~

S)]

�1

A)

= (I �

~

S

�1

F

~

T

c

�1

HA) (I �

~

S

�1

A); where

~

T

c

= HA

~

S

�1

F:(1.14)

This means, if we use (1.13) for linear iteration schemes, then the corresponding iteration

operator decouples into a product of two iteration operators.

Note that one can use analogous arguments if G has full rank instead of F .

Summary

Analogous to domain decomposition methods we have introduced an algebraic way

of domain decomposition, where the decomposition is done with respect to low rank

modi�cations. Both approaches involve the solution of a small coupling system.

The Sherman{Morrison{Woodbury formula (1.4) will play a central role in our forthcoming

investigations while the equivalent approach (1.9) will give another interpretation of using

low rank modi�cations. The formula as it stands now may cause problems in its practical

application.

For the concept of algebraic domain decomposition problems may be the following ones.

1. What general properties of the coupling system S

c

can be shown and can we suitably

modify the initial splitting A = S �W to improve the properties of S

c

?

2. Can we modify the initial splitting such that the coupling system inherits structures

of the initial system like symmetry, positive de�niteness, M{matrix property?

3. Iterative methods applied to the coupling system and especially Krylov subspace

methods may fail when being applied to S

c

while direct methods require explicit

knowledge of S

c

. And even if S

c

is explicitly available, a direct solution typically will

be aggravated by the distribution over the processors. Can we �nd a compromise

between both approaches? I.e., if we need more and more iterations then more and

more of the coupling system should already be directly solved leading �nally to a

direct solution of S

c

.

4. Since we are interested in parallel computations we will restrict ourselves to modi-

�ed block diagonal splittings. When adaptively generating parts of S

c

this must be

carefully handled in parallel. The question will be how this can be done.

We will try to give an answer to these questions in the following chapters.

The algebraic properties of the coupling system will be discussed in the next chapter.

10

Chapter 2

Algebraic Properties of the Coupling

System

In this chapter we will discuss properties of the system matrix S

c

of the coupling system

from (1.4).

The coupling system S

c

plays a central role in the use of the Sherman{Morrison{Woodbury

formula (1.4). We will illustrate how the application of formula (1.4) is connected to the

invariant subspace of AS

�1

spanned by the columns of F . To do this we will apply the

formula to a given right hand side b:

x

0

:= S

�1

b. Thus we can compute the residual r = b � Ax

0

= b � AS

�1

b = F (GS

�1

b).

Here we have used the relation A = S�FG from (1.6). After we he have computed x

0

the

residual r lies in the subspace spanned by the columns of F . Since F has low rank we are

able to compute the desired solution x of Ax = b by solving a system of small size. But

the system of small size is S

c

since we have (AS

�1

)F = F S

c

. If F has full rank, then S

c

is

precisely the restriction of AS

�1

to the invariant subspace of AS

�1

formed by the columns

of F . This indicates the close relation between S

c

and AS

�1

.

We will discuss general properties of S

c

and more special properties for some classes of

matrices, namely symmetric matrices, symmetric positive de�nite matrices, M{matrices.

Note that for substructuring methods in the numerical treatment of partial di�erential

equations most work is spent on the solution of the Schur{complement. A well{known

advantage of the Schur{complement is that it inherits several structures from the initial

system like symmetry, positive de�niteness, diagonal dominance or theM{matrix property.

However, for the coupling system S

c

of an algebraic domain decomposition we will show

in this chapter, that we have to construct the splitting and the factorization W = FX

�1

G

carefully to obtain analogous results. For this we have to examine the properties of the

coupling system and its relation to the splitting A = S �W .

2.1 General Properties

Lemma 2.1 Let A;B 2 M(n� r; C). Assume that n > r.

11

(i) There exist nonsingular matrices Y

1

; Y

2

2 GL (n; C) such that

Y

�1

1

AB

�

Y

1

=

�

J O

O N

1

�

; Y

2

B

�

AY

�1

2

=

�

J O

O N

2

�

;

are both in Jordan canonical form and N

1

and N

2

are nilpotent. If s; t are the smallest

numbers such that N

s

1

= O; N

t

2

= O, then js� tj 6 1.

(ii) If A has full rank, then there exists a nonsingular matrix Y 2 GL (n; C) such that

Y

�1

(AB

�

)Y =

�

B

�

A �

O O

�

;

where the �rst r columns of Y are those of A.

Proof:

For the �rst assertion we make a full rank decomposition of A:

A = FG

�

;

where F 2 M(n � l;F), G 2 M(r � l;F), l = rankA. If A has already full rank, then we

choose F = A, G = I. We can always �nd H 2 M(n� (n� l);F) in such a way that

~

Y

1

= (F;H)

is nonsingular. Then we partition

~

Y

�1

1

=

^

F

�

^

H

�

!

:

From this it follows, that

~

Y

�1

1

AB

�

~

Y

1

=

^

F

�

F

^

H

�

F

!

G

�

B

�

Y

1

=

�

I

O

�

G

�

B

�

Y

1

=

�

I

O

�

(G

�

B

�

F;G

�

B

�

H)

=

�

G

�

B

�

F G

�

B

�

H

O O

�

:(2.2)

Analogously we �nd a nonsingular

~

Y

2

=

�

G

�

K

�

�

such that

~

Y

2

B

�

A

~

Y

�1

2

=

�

G

�

B

�

F O

K

�

B

�

F O

�

:(2.3)

We can transform G

�

B

�

F to Jordan canonical form:

G

�

B

�

F = Z

�

J O

O N

�

Z

�1

;(2.4)

12

where N is the nilpotent part. We set

Y

1

= Y

1

0

@

Z �Z

�

J

�1

O

O O

�

Z

�1

G

�

B

�

H

O I

1

A

; Y

2

=

0

@

Z

�1

O

�K

�

B

�

FZ

�

J

�1

O

O O

�

Z

�1

I

1

A

~

Y

2

and obtain

Y

�1

1

AB

�

Y

1

=

0

@

J O O

O N �

O O O

1

A

; Y

2

B

�

AY

�1

2

=

0

@

J O O

O N O

O � O

1

A

:(2.5)

From (2.5) we see, that AB

�

and B

�

A have the same Jordan blocks with respect to the

nonzero eigenvalues. If � is the smallest integer such that N

�

= O then

�

N O

� O

�

�+1

= O;

�

N �

O O

�

�+1

= O;

which implies assertion (i).

Assertion (ii) follows from (2.2) in the case, when A has full rank. 2

As a direct consequence of this lemma we get

Corollary 2.6 Let A;S 2 GL (n;F); A = S � FG, where F;G

T

2 M(n� r;F); r 6 n.

Set S

c

:= I �GS

�1

F .

(i) There exist Y

1

; Y

2

2 GL (n; C) such that

Y

�1

1

S

�1

AY

1

=

�

J O

O J

1

�

; Y

�1

2

S

c

Y

2

=

�

J O

O J

2

�

;

are both in Jordan canonical form and J

1

and J

2

have only ones on the main diagonal.

If s; t are the smallest numbers such that (J

1

�I)

s

= O; (J

2

�I)

t

= O, then js�tj 6 1.

(ii) If F has full rank, then there exists Y 2 GL (n; C) such that

Y

�1

(AS

�1

)Y =

�

S

c

�

O I

�

;

where the �rst r columns of Y are those of F .

Remark: This corollary shows, that the spectra of AS

�1

and S

c

are almost the same.

Moreover they have almost the same Jordan canonical form. If also F has full rank, then

S

c

is the restriction of AS

�1

to the invariant subspace spanned by the columns of F and

several structures are inherited by S

c

. E.g. we have a one to one correspondence between

eigenvectors x of S

c

and eigenvectors Fx of AS

�1

.

One reason for the use of low rank modi�cations is their applicability in Krylov{subspace

based methods as cg{like or semi{iterative methods [37]. For these methods the degree

13

of the minimum polynomial of a matrix [3],p.47� gives a theoretical upper bound for the

number of iteration steps (See e.g. [3], pp.517{518). From Corollary 2.6 it follows that the

minimum polynomial of S

�1

A is essentially given by the minimum polynomial of S

c

. By

Corollary 2.6 we have an interpretation of our coupling system S

c

from (1.4). After at least

one step of the iteration with I�S

�1

A, i.e. for a given residual r = b�Ax the approximate

solution x is replaced x � S

�1

r, the new residual is in a suitable small subspace, which

ensures that cg{like and semi{iterativemethods in exact arithmetic terminate after at most

rankW + 1 steps, where W = FX

�1

G.

2.2 Properties of the Coupling System in the Sym-

metric Positive De�nite Case

For the class of symmetric, positive de�nite matrices we will now examine, how this

property can be inherited by the coupling system. Naturally this is closely connected to

the factorization of W = FG in the splitting A = S �W . Even if A;S are symmetric,

the factorization W = FG need not to be of the form W = FF

�

, since in general W is

not necessarily positive semide�nite. If for example, S is a block diagonal part of A, then

typically W is inde�nite. However we will show that under some full rank assumptions

for F;G the coupling system is still positive de�nite and self adjoint with respect to a

suitably chosen inner product.

Consider a symmetric (Hermitian) matrix A with respect to the standard inner product

(�; �), and split A as A = S �W , where S is symmetric (Hermitian). We are interested in

the properties of the coupling system S

c

obtained as in (1.4).

Lemma 2.7 Let A;S 2 GL (n;F); A = A

�

; S = S

�

; A = S � FG, where F;G

T

2

M(n� r;F). S

c

:= I �GS

�1

F .

(i) If S is positive de�nite and if F has full rank, then S

c

is self-adjoint with respect to

(F

�

S

�1

F�; �):

(ii) If A is positive de�nite and if F has full rank, then S

c

is self-adjoint with respect to

(F

�

A

�1

F�; �):

(iii) If both matrices, S and A are positive de�nite and if F has full rank, then S

c

is

positive de�nite.

Proof:

From Corollary 2.6 we know that S

c

has essentially the same spectrum as S

�1

A and AS

�1

.

If A and S are positive de�nite, then AS

�1

is similar to S

�1=2

AS

�1=2

and S

c

must already

have positive eigenvalues. So the third statement is a consequence of (i) and (ii).

We note, that FS

c

= AS

�1

F and S

�1

c

G = GA

�1

S.

(F

�

S

�1

FS

c

v;w) = (F

�

S

�1

AS

�1

Fv;w)

14

= (S

�1

Fv;AS

�1

Fw)

= (S

�1

Fv; FS

c

w)

= (F

�

S

�1

Fv; S

c

w):

So S

c

is self-adjoint with respect to (F

�

S

�1

F�; �) which implies the �rst statement. The

proof of assertion 2 is analogous. 2

Another way to preserve the positive de�niteness consists in modifying the given initial

splitting A = S �W to A =

^

S �

^

W such that in addition W is positive semide�nite. In

principle this is always possible since

^

S = A+

^

W , i.e., we have to add a suitable positive

semide�nite matrix

^

W to A in order to obtain

^

S, which is then symmetric positive de�nite

likewise. For

^

W one has to perform a symmetric factorization of the form

^

W = FX

�1

F

�

.

The corresponding coupling system X � F

�

^

S

�1

F is obviously symmetric. So the main

question will be, when will the coupling system be also positive de�nite. We will show this

under more general assumptions, which do not require the positive de�niteness of A;S.

Lemma 2.8 Let A;S 2 GL (n;F); A = A

�

; S = S

�

; A = S � FX

�1

F

�

, where F 2

M(n� r;F); X 2 GL (r;F);X = X

�

. S

c

:= X � F

�

S

�1

F . Then

�

S O

O S

c

�

and

�

A O

O X

�

have the same inertia.

Proof:

Using the symmetric Schur{complement of the matrix

M =

�

S F

F

�

X

�

we obtain

M =

�

I O

F

�

S

�1

I

��

S O

O X � F

�

S

�1

F

��

I S

�1

F

O I

�

and

M =

�

I FX

�1

O I

��

S � FX

�1

F

�

O

O X

��

I O

X

�1

F

�

I

�

:

As a direct consequence of Sylvester's law of inertia [41], p.416, we get that

�

S O

O X � F

�

S

�1

F

�

and

�

S � FX

�1

F

�

O

O X

�

have the same inertia. 2

Corollary 2.9 Let A;S 2 GL (n;F); A = A

�

; S = S

�

; A = S � �FF

�

, where F 2

M(n� r;F); � 2 R and set S

c

:= I � �F

�

S

�1

F .

If A and S have the same inertia, then S

c

is positive de�nite.

15

This corollary simpli�es the proof of Theorem 1 in [59].

As direct consequence of Corollary 2.6 and Lemma 2.8 we see that a linear system with

S

c

is at least as well conditioned as a linear system with S

�1

A. More precisely, both

systems have (nearly) the same distribution of eigenvalues. This is an important fact for

preconditioned conjugate gradient methods.

Example 2.10 Consider following matrix T and a block diagonal matrix S:

T =

0

B

B

@

1 �1

�1 2 �1

�1 2 �1

�1 2

1

C

C

A

; S =

0

B

B

@

1 �1

�1 2

2 �1

�1 2

1

C

C

A

)W � S�A =

0

B

B

@

0 0

0 0 1

1 0 0

0 0

1

C

C

A

:

In order to apply Corollary 2.9 we have to modify W such that the modi�ed W becomes

either positive semide�nite or negative semide�nite. One choice could be

W :=

0

B

B

@

0 0

0 1 1

1 1 0

0 0

1

C

C

A

=) S =

0

B

B

@

1 �1

�1 3

3 �1

�1 2

1

C

C

A

:

The modi�ed S will be nonsingular since we have added something nonnegative to the

diagonal entries. In principle one could also make W negative semide�nite by inserting �1

instead of 1. But in this case the modi�ed S will become singular.

2.3 Properties of S

c

in the M{Matrix Case

Similar to the symmetric positive de�nite case, we will examine for the case ofM{matrices

which properties have to be required for the splitting A = S �W and the factorization

W = FG in order to preserve the M{matrix property for the coupling system.

De�nition 2.11 A 2 GL (n;R) is said to be inverse nonnegative, if its inverse is

element-wise nonnegative.

A is said to be an M{Matrix, if it is inverse nonnegative and its o�{diagonal elements are

nonpositive.

One important equivalent criterion for M{Matrices is given by the following lemma:

Lemma 2.12 Let A 2 GL (n;R) such that a

ij

6 0 for any i 6= j; i; j = 1; : : : ; n. Then

A is an M{Matrix if and only if there exists c 2 R

n

; c � 0 such that Ac � 0.

Proof:

See [8], pp.132� 2

16

Analogous to the positive de�nite case, where we required a positive semide�niteW , here

we will require an element-wise nonnegative W .

Lemma 2.13 Let A;S 2 GL (n;R) where A is inverse nonnegative, A = S � FG,

where F;G

T

2 M(n � r;R): S

c

:= I � GS

�1

F . Assume that both matrices F and G are

nonnegative or nonpositive. Then

(i) S

c

is inverse nonnegative.

(ii) If in addition, the o�{diagonal entries of S are nonpositive, then A;S and S

c

are

M{Matrices.

Proof:

We note that

S

�1

c

= I +GA

�1

F;(2.14)

which can be veri�ed by straightforward computation. From this and the assumptions, (i)

follows immediately.

For (ii) we note that if the o�{diagonal of S are nonpositive then this also holds for

the o�{diagonal entries of A. Thus A is an M{Matrix. By Lemma 2.12 we obtain that

S = A+FG is an M{Matrix. Finally it follows that the o�{diagonal entries of S

c

have to

be nonpositive, since S

�1

� O. This completes the proof. 2

The assumptions of Lemma 2.13 imply that W = FG � O. If we obtain W � O from the

splitting A = S �W , then there exists an obvious way to factorize W , if W is sparse. Let

i

1

; : : : ; i

r

denote the nonzero rows of W , then W can be factorized as W = [e

i

1

; : : : ; e

i

r

]

~

W ,

where e

i

denotes the i{th unit vector and

~

W denotes the nonzero rows of W .

In general, S

c

need not be an M{Matrix if F or G do not satisfy the sign condition of the

lemma.

Example 2.15 Consider the matrix

A =

0

B

B

B

B

B

@

T �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T

1

C

C

C

C

C

A

;

where all blocks of A have size m�m

T =

0

B

B

B

B

B

@

4 �1

�1 4 �1

.

.

.

.

.

.

.

.

.

�1 4 �1

�1 4

1

C

C

C

C

C

A

17

This matrix arises from the so{called �ve point star discretization of Poisson's di�erential

equation on a rectangle (see [49]). We split A similar to a block Jacobi like splitting: For

suitable m

1

; : : : ;m

p�1

2 f1; : : : ;m� 1g:

S =

0

B

@

S

1

.

.

.

S

p

1

C

A

(2.15)

and for j = 1; : : : ; p the diagonal blocks of S are:

S

1

=

0

B

B

B

B

B

@

T �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T � I

1

C

C

C

C

C

A

;(2.16)

j = 2; : : : ; p � 1 :

S

j

=

0

B

B

B

B

B

@

T � I �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T � I

1

C

C

C

C

C

A

;(2.17)

S

p

=

0

B

B

B

B

B

@

T � I �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T

1

C

C

C

C

C

A

(2.18)

and W = S �A equals

W =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

.

.

.

�I I

I �I

.

.

.

�I I

I �I

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

W has many columns and rows, which are zero. Thus W = V

~

WV

T

for a suitable block

18

diagonal matrix

~

W :

0

B

B

B

B

B

B

B

B

B

B

B

B

@

I

I

I

I

1

C

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

V

0

B

B

B

B

B

B

B

@

�I I

I �I

.

.

.

�I I

I �I

1

C

C

C

C

C

C

C

A

| {z }

~

W

0

B

B

@

I

I

I

I

1

C

C

A

| {z }

V

T

:

We can write

~

W as

~

W = �

~

F

~

F

T

, where

~

F =

0

B

B

B

B

B

@

�I

I

.

.

.

�I

I

1

C

C

C

C

C

A

:

We choose F = V

~

F and G

T

= �V

~

F . Then S

c

= I � GS

�1

F = I +

~

F

T

V

T

S

�1

V

~

F . We

will show, that S

c

has a block orientated sign pattern, i.e., the diagonal blocks of S

c

are

nonnegative and the o�{diagonal blocks are nonpositive. We can derive this by a symbolic

notation, where we set a � for an nonnegative block and a 	 for a nonpositive block in F

and V

�

S

�1

V . We note that S

�1

is nonnegative, because S is still an M{Matrix. Therefore

V

�

S

�1

V is a block diagonal matrix with nonnegative blocks:

0

B

B

B

B

B

B

B

B

B

B

@

�

� �

� �

� �

� �

� �

� �

�

1

C

C

C

C

C

C

C

C

C

C

A

:

Obviously

~

F has the following sign pattern:

0

B

B

B

B

B

B

B

B

B

B

@

	

�

	

�

	

�

	

�

1

C

C

C

C

C

C

C

C

C

C

A

:

19

Thus

~

F

T

V

T

S

�1

V

~

F has the following sign pattern:

0

B

B

@

� 	

	 � 	

	 � 	

	 �

1

C

C

A

:

As S

c

= I+

~

F

T

V

T

S

�1

V

~

F , this shows, that S

c

has the suitable sign pattern forM{Matrices

if and only if all T 's are of order one. So in general, S

c

can not be an M{Matrix, but it is

still symmetric positive de�nite (Corollary 2.9).

Example 2.16 Consider again the model problem:

S =

0

B

@

S

1

.

.

.

S

p

1

C

A

and for j = 1; : : : ; p choose the diagonal blocks of S as follows:

S

1

=

0

B

B

B

B

B

@

T �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T + I

1

C

C

C

C

C

A

;

j = 2; : : : ; p � 1 :

S

j

=

0

B

B

B

B

B

@

T + I �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T + I

1

C

C

C

C

C

A

;

S

p

=

0

B

B

B

B

B

@

T + I �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T �I

�I T

1

C

C

C

C

C

A

:

In this case we have that W = S �A has the form

W =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0

.

.

.

I I

I I

.

.

.

I I

I I

.

.

.

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

20

As above, W can be factored as W = V

^

WV

T

.

0

B

B

B

B

B

B

B

B

B

B

B

B

@

I

I

I

I

1

C

C

C

C

C

C

C

C

C

C

C

C

A

| {z }

V

0

B

B

B

B

B

B

B

@

I I

I I

.

.

.

I I

I I

1

C

C

C

C

C

C

C

A

| {z }

^

W

0

B

B

@

I

I

I

I

1

C

C

A

| {z }

V

T

:

We can write

^

W as

^

W =

^

F

^

F

T

, where

^

F =

0

B

B

B

B

B

@

I

I

.

.

.

I

I

1

C

C

C

C

C

A

:

Choosing F = V

^

F and G

T

= V

^

F we obtain S

c

= I � GS

�1

F = I �

^

F

T

V

T

S

�1

V

^

F .

Applying Corollary 2.9 and Lemma 2.13 we get that S

c

is symmetric, positive de�nite and

an M{Matrix, i.e., S

c

is a Stieltjes matrix.

Next we use a well{known result for inverse positive matrices and regular splittings (see

[18], pp.118�).

De�nition 2.17 Let A 2 GL(n;R) be split as A = S � W . Such a splitting is called

weak regular, if S 2 GL (n;R) is inverse nonnegative and S

�1

W is nonnegative.

The splitting is called regular, if S 2 GL (n;R) is inverse positive and W is nonnegative.

For z 2 C , r > 0, we denote by D(z; r) := fw 2 C : jz �wj < rg the open disc with center

z and radius r in the complex plane and by D(z; r) := fw 2 C : jz � wj 6 rg its closure.

Denote by �(A) the set of eigenvalues of A and by �(A) the largest eigenvalue of A in

modulus.

Lemma 2.18 Let A 2 GL(n;R) be inverse nonnegative and consider a weak regular

splitting A = S �W , where W = FG, F;G 2 M(n� r;R). Set S

c

= I �Gs

�1

F . Then

(i) �(I � S

�1

A) =

�(A

�1

W)

1 + �(A

�1

W)

< 1.

(ii) �(S

c

) � D(1; �(I � S

�1

A)) � D(1; 1).

(iii) min

�2�(S

c

)

j�j = 1 � �(I � S

�1

A); �(S

c

) 6 1 + �(I � S

�1

A).

21

Proof:

For the �rst assertion see [18], p.119.

By Corollary 2.6 assertion (ii) is a direct consequences of the �rst one.

The third assertion follows from assertion (ii) and the well{known Perron{Frobenius

theory [82] for nonnegative matrices. 2

We also note a well{known result, see [49],p.158 for inverse nonnegative matrices and the

relations between the spectral radii of two regular splittings:

Lemma 2.19 Let A 2 GL(n;R) be inverse nonnegative and consider two regular split-

tings, A = S

1

�W

1

= S

2

�W

2

. Assume that W

1

� W

2

(component-wise). Then

�(I � S

�1

1

A) 6 �(I � S

�1

2

A) < 1:

If in addition A

�1

is element-wise positive and W

1

� W

2

, then

�(I � S

�1

1

A) < �(I � S

�1

2

A) < 1:

As a consequence of these two Lemmata, we see, that under the assumptions of Lemmata

2.18 and 2.19 with W

1

= F

1

G

1

;W

2

= F

2

G

2

the related coupling systems S

c1

= I �

G

1

S

�1

1

F

1

; S

c2

= I � G

2

S

�1

2

F

2

have the property, that the eigenvalues of S

c1

are enclosed

in a smaller disc. This means, the smaller the matrix W in the splitting A = S �W , the

smaller the disc is in which the eigenvalues are included.

2.4 Properties of S

c

in the SymmetricM{Matrix Case

At last we consider the case of symmetric positive de�nite M{Matrices, i.e. Stieltjes{

Matrices, and discuss the question whether we are able to preserve theM{Matrix property

and the positive de�niteness for the coupling system at same time.

Lemma 2.20 Let A 2 GL (n;R) be a symmetric M{Matrix. Assume that A is split as

A = S �W . Then the following are equivalent:

(i) S is a symmetric M{Matrix and W symmetric and nonnegative;

(ii) s

ii

> a

ii

for all i and 0 > s

ij

= s

ji

> a

ij

for all i 6= j.

Proof:

(i) =) (ii) is trivial.

If the inequalities of (ii) hold, then it follows immediately by element-wise comparison,

that S and W have the correct sign pattern. Applying Lemma 2.12 we obtain that S is an

M{Matrix. 2

22

In the next theorem we will show that a splitting quite similar to the one in Lemma 2.20 can

be modi�ed by some changes in the diagonal entries to a splitting which gives in addition

a coupling system which is also a symmetricM{Matrix.

Theorem 2.21 Let A 2 GL (n;R) be a symmetric M{Matrix. Assume that A is split

as A = S �W such that s

ii

= a

ii

for all i and 0 > s

ij

= s

ji

> a

ij

for all i 6= j. De�ne

^

S := S+ diag (

P

j

w

1j

; : : : ;

P

j

w

nj

). Then A =

^

S�

^

W where

^

S is a symmetric M{Matrix

and

^

W is nonnegative. In addition

^

W can be factorized as

^

W =

X

i<j

w

ij

>0

f

p

w

ij

(e

i

+e

j

)gf

p

w

ij

(e

i

+e

j

)g

T

=

�

: : : ;

p

w

ij

(e

i

+ e

j

); : : :

�

| {z }

F

�

: : : ;

p

w

ij

(e

i

+ e

j

); : : :

�

T

| {z }

F

T

;

where the e

1

; : : : ; e

n

are the unit vectors and the matrix F =

�

: : : ;

p

w

ij

(e

i

+ e

j

); : : :

�

con-

tains all columns

p

w

ij

(e

i

+ e

j

) for i < j;w

ij

> 0 in a suitable order. The coupling system

S

c

= I � F

T

^

S

�1

F is also a symmetric M{Matrix.

Proof:

It follows directly from Lemma 2.20 that

^

S is a symmetric M{Matrix and that

^

W is

nonnegative.

^

W can be disassembled as a sum of essential 2 � 2 matrices

^

W =

X

i<j

[e

i

; e

j

]

�

w

ij

w

ij

w

ij

w

ij

�

[e

i

; e

j

]

T

:

By construction

�

w

ij

w

ij

w

ij

w

ij

�

has rank 1 and a factoriztion

�

w

ij

w

ij

w

ij

w

ij

�

=

p

w

ij

�

1

1

�

p

w

ij

(1; 1):

The resulting factorization has all properties to ensure that S

c

is both, M{Matrix and

symmetric positive de�nite. 2

Remark:

� It follows immediately from Theorem 2.21 that the order of S

c

is equal to the number

of nonzero entries in

^

W above the diagonal, while the rank of F is less than or equal

to the number of nonzero rows/columns in

^

W . So in general one can not expect that

F has full rank.

� By Lemma 2.18 we know that the eigenvalues of S

�1

A and

^

S

�1

A lie in the interval

(0; 2). According to Lemma 2.19 the consequence in the change of the diagonal entries

is that the largest eigenvalue of

^

S

�1

A is now less than or equal to 1, because

^

W is

positive semide�nite. The smallest eigenvalue of the

^

S

�1

A is less than or equal to

the smallest eigenvalue of S

�1

A. This may not be a disadvantage for the use of

^

S

23

as preconditioner to A in the cg{method. It has been shown in [4],[5] that if the

spectrum of

^

S

�1

A satis�es

�(

^

S

�1

A) � [a; b] [f1g;

where 0 < a 6 b < 1, then the number of iterations of the cg{method needed to

obtain kx� x

(k)

k

A

1=2

6 "kx� x

(0)

k

A

1=2

is at most

k = d

1

2

r

b

a

ln

2

"

+ 2e:

This gives a better bound than the conventional estimate [41], p.525

k = d

1

2

r

1

a

ln

2

"

+ 1e = d

1

2

q

cond

2

(

^

S

�1

A) ln

2

"

+ 1e:

In other words: Instead of the condition number

1

a

the ratio

b

a

of the largest eigenvalue

b less than 1 and the smallest eigenvalue a determines the convergence speed of the

cg{method.

Summary

In this chapter we have shown that the coupling system S

c

can be interpreted as the

restriction of the preconditioned matrix AS

�1

to a special invariant subspace. Several

algebraic properties can be obtained from this fact. For two special classes of matrices we

have also discussed how the structures of the initial system can be inherited by the coupling

system.

From our list of questions on Page 10 we have partially given an answer to the �rst and

the second question.

Solving a linear system with the matrix S

c

can still be di�cult, if the coupling system

is ill{conditioned even if the coupling systems inherits structures of the initial system.

For Schur{complement methods a better conditioned system is constructed by the use

of suitable preconditioners. Typically the construction of preconditioners requires either

information about the underlying problem or an explicit representation of the given matrix.

For the coupling system from the Divide & Conquer approach an ill{conditioned system

can be viewed as consequence of an unsatisfactory splitting. This means, that instead of

constructing preconditioners for the coupling system we can construct a more suitable

splitting A = S � W in order to improve the properties of the coupling system. The

question is, how we have to modify a given splitting A = S �W to obtain a more suitable

splitting A =

^

S �

^

W . This will be the topic of the next chapter.

24

Chapter 3

Nested Divide & Conquer

In this chapter we will discuss the nested use of the Sherman{Morrison{Woodbury formula

(1.4) for divide & conquer methods. The reason for the nested use is, that the coupling

system arising from the splitting A = S � FG by the divide & conquer approach can

be ill{conditioned or for practical purposes the order of the coupling system may still be

too large. The nested use of the Sherman{Morrison{Woodbury formula deals with both

problems.

3.1 Motivation

We will �rst give a motivation on the nested use of the Sherman{Morrison{Woodbury for-

mula. The idea is to adaptively construct a nested sequence of splittings S = S

0

; S

1

; : : : ; S

m

where the rank of the remaining matrix is reduced at each step. As motivation we will only

consider one step of this nested construction. Assume that we have a splitting

A = S � FG � S

0

� F

0

G

0

;

where A;S

0

2 GL (n;F); F

0

; G

T

0

2 M(n � r;F). Now it may happen that S

0

is ill{

conditioned or even worse S

0

may be well{conditioned but the corresponding coupling

system S

c;0

= I�G

0

S

�1

0

F

0

may be ill{conditioned. On one hand, if we would like to apply

a method of Krylov{subspace type [37] to S

c;0

, this may lead to slow convergence or even no

convergence at all. On the other hand a direct solution of S

c;0

is sensitive to perturbations.

Above all this is advisable only if the size r of S

c;0

is small. So it may be useful to replace

S

0

by a more suitable approximation, which can still be easily solved on a parallel machine.

A natural choice can be S

1

= S

0

�

~

F

0

~

G

0

, where

~

F

0

;

~

G

T

0

2 M(n� s;F); s� r, e.g. s = 1.

Solving a system with S

1

is almost as easy as with S

0

if we just apply the Sherman{

Morrison{Woodbury formula to S

1

. Once we have computed the resulting small s � s

coupling system

~

S

c;0

= I �

~

G

0

S

�1

0

~

F

0

, we can solve this small system directly.

S

�1

1

= S

�1

0

+ S

�1

0

~

F

0

~

S

�1

c;0

~

G

0

S

�1

0

We will illustrate this by an example.

25

Example 3.1 Let n = 30 and consider matrices A and S, where

A � A

n

=

0

B

B

B

B

B

@

3 �2 0

�1 3 �2

.

.

.

.

.

.

.

.

.

�1 3 �2

0 �1 3

1

C

C

C

C

C

A

2 R

n;n

; S =

0

@

A

n=3

O

A

n=3

O A

n=3

1

A

:

For simplicity let us factorize the remaining matrix W = S �A as W = FG, where

F =

0

B

B

B

B

B

B

B

B

@

O

1 0

0 1

O O

1 0

0 1

O

1

C

C

C

C

C

C

C

C

A

2 R

n;4

; G =

0

B

B

B

B

@

0 2

O

1 0

O

0 2

O

1 0

O

1

C

C

C

C

A

2 R

4;n

:

Using MATLAB [60] we �nd that the condition number of A is very large, cond

2

(A) �

3:9 � 10

10

(for arbitrary n it will be � 2

n

). The condition number of S will be approximately

cond

2

(S) � 2 �10

4

which is much better than the condition number of A. But the condition

number of S

c

is worse, cond

2

(S

c

) � 1:2 � 10

7

. By Theorem 2.6 the matrix AS

�1

is closely

connected to S

c

, cond

2

(AS

�1

) � 5:7 � 10

7

which is of the same magnitude as the condition

number of S

c

. Consider now the following two choices of rank 1 updates.

~

F = F

�

1 0 0 0

�

T

;

~

G =

�

1 0 0 0

�

G;

�

F = F

�

1

p

2

1

p

2

0 0

�

T

;

�

G =

�

1

p

2

1

p

2

0 0

�

G:

We set

~

S = S �

~

F

~

G;

�

S = S �

�

F

�

G. In order to solve one system with

~

S or

�

S we can apply

the Sherman{Morrison formula (1.4). To do this we have to solve systems with

~

F;

�

F as

right hand sides, i.e.

~

E = S

�1

~

F ;

�

E = S

�1

�

F:

By setting

~

S

c

= 1 �

~

G

~

E,

�

S

c

= 1 �

�

G

�

E we obtain

~

S

�1

= (I +

~

E

1

~

S

c

~

G)S

�1

;

�

S

�1

= (I +

�

E

1

�

S

c

�

G)S

�1

:

It turns out that solving a system with

~

S;

�

S is only slightly more expensive than solving

a system with S, after

~

E;

�

E have been computed. The interesting question is, whether we

did improve the properties of

~

S

�1

; A

~

S

�1

,

�

S

�1

; A

�

S

�1

by this rank 1 update or not. One can

verify that

cond

2

(

~

S

�1

) cond

2

(A

~

S

�1

) cond

2

(

�

S

�1

) cond

2

(A

�

S

�1

)

2:2 � 10

4

4:8 � 10

7

3:1 � 10

7

9:4 � 10

4

26

We see that the condition number of

~

S is almost the same as that of S, while the condition

number of

�

S is closer to that of A. From this point of view

~

S seems to be a better choice

than

�

S, but anyway we only have to solve a system with S while the remaining part is done

by a rank 1 update. So the increase in the condition number of

�

S is not so critical. From the

practical point of view it is much more interesting how the preconditioned systems A

~

S

�1

and A

�

S

�1

behave. Here the condition number of A

~

S

�1

does not essentially di�er from that

of AS

�1

while the condition number of A

�

S

�1

has been extremely reduced.

Example 3.1 shows that when replacing the initial matrix S

0

by a low rank modi�cation

S

1

= S

0

�

~

F

0

~

G

0

only slightly more work is necessary to solve a system with S

1

than to

solve a system with S

0

. In this case we obtain

A = S

0

� F

0

G

0

= S

1

� F

1

G

1

;

where S

1

= S

0

�

~

F

0

~

G

0

and

~

F

0

;

~

G

0

have small rank.

The question is, in which way we should choose

~

F

0

;

~

G

0

. A natural criterion will be, that the

resulting system splitting A = S

1

� F

1

G

1

, where F

1

; G

T

1

2 M(n � (r � s);F) should have

a smaller rank if we replace S

0

by S

1

. By again using the Sherman{Morrison{Woodbury

formula (1.4) for A = S

1

� F

1

G

1

we obtain

A

�1

= S

�1

1

+ S

�1

1

F

1

S

�1

c;1

G

1

S

�1

1

; with S

c;1

= I �G

1

S

�1

1

F

1

and the size of S

c;1

has just been reduced by s compared with the initial coupling system

S

c

� S

c;0

.

Example 3.2 In Example 3.1 our choices of

~

F ;

~

G and

�

F ;

�

G will have a resulting splitting

A = S

1

� F

1

G

1

with matrices F

1

G

1

of rank 3. For

~

F;

~

G this is trivial by taking the last

three rows/columns of F;G as F

1

; G

1

and for

�

F;

�

G use

F

1

= F

0

B

B

@

1=

p

2 0 0

�1=

p

2 0 0

0 1 0

0 0 1

1

C

C

A

; G

1

=

0

B

B

@

1=

p

2 0 0

�1=

p

2 0 0

0 1 0

0 0 1

1

C

C

A

T

G:

Another criterion for the choice of

~

F

0

;

~

G

0

should be of course, that at least the properties

of the new coupling system S

c;1

= I �G

1

S

�1

1

F

1

should be improved, e.g. it should have a

better condition number than the previous one.

Example 3.3 In Example 3.1 the initial coupling system I �GS

�1

F will be

S

c;0

=

0

B

B

@

1 �9:9951 � 10

�1

�5:0024 � 10

�1

0

�1 1 0 0

0 0 1 �9:9951 � 10

�1

0 �4:8852 � 10

�4

�4:9976 � 10

�1

1

1

C

C

A

:

27

As mentioned earlier, its condition number is cond

2

(S

c;0

) � 1:2 � 10

7

. For our choice of

~

F;

~

G we get for S

1

= S

0

�

~

F

~

G a small coupling system

~

S

c;0

= 1 �

~

GS

�1

~

F = 1. For

A = S

1

� F

1

G

1

a new coupling system S

c;1

= I �G

1

S

�1

1

F

1

of size 3 � 3 is obtained,

S

c;1

=

0

@

4:8852 � 10

�4

�5:0024 � 10

�4

0

0 1 �9:9951 � 10

�1

�4:8852 � 10

�4

�4:9976 � 10

�1

1

1

A

:

One can easily verify that its condition number is 6:5647 � 10

6

while for the other choice

�

F;

�

G the condition number of the corresponding S

c;1

will be 8:1870 � 10

3

.

It is clear that we can successively repeat the strategy of replacing S

0

by S

1

leading to a

nested sequence of splittings S

0

; S

1

; : : : ; S

m

and therefore we obtain a nested sequence of

coupling systems S

c;0

; S

c;1

; : : : ; S

c;m

.

We will now discuss the following topics.

� A formal description of the nested divide & conquer process as motivated above.

� The properties of the sequence of coupling systems.

� The choice of low rank modi�cations.

3.2 General Construction of Nested Splittings

We start with some general comments on the construction of nested splittings.

We will brie
y describe the idea behind the construction of a nested sequence of splittings.

Assume that an initial splitting A = S

0

� F

0

G

0

is given. In order to construct a low rank

splitting of the form S

1

= S

0

�

~

F

0

~

G

0

and a resulting splitting A = S

1

�F

1

G

1

we introduce

a matrix

~

U 2 M(r� s;F) such that

~

U

�

~

U = I

s

and extend it to an orthogonal matrix U =

[

~

U;

^

U]. Then we set

~

F

0

= F

0

~

U ,

~

G

0

=

~

U

�

0

G

0

. Since UU

�

= I and F

0

G

0

=

~

F

0

~

G

0

+ F

0

^

U

^

U

�

G

0

we obtain in a natural way F

1

= F

0

^

U , G

1

=

^

U

�

1

G

0

and thus S

1

.

This strategy can be obviously generalized in the following way. Consider two matrices

~

U;

~

V

T

2 M(r � s;F) such that

~

V

~

U = I, i.e., the columns of

~

U and the rows of

~

V are

biorthogonal. In this case both matrices can be extended to matrices U = [

~

U;

^

U], V = [

~

V

^

V

]

such that V U = I.

Here we will restrict ourselves to the use of orthogonal matrices U . The more general case

has already been discussed in [10].

The general construction can be described as follows. Given an initial splitting A = S �

FG � S

0

� F

0

G

0

we consider numbers s

0

; s

1

; : : : ; s

m�1

with

P

m�1

i=0

s

i

< r and de�ne

successively r

0

= r, r

k+1

= r

k

�s

k

, k = 0; : : : ;m�1. We consider a sequences of orthogonal

matrices U

k

2 GL (r

k

;F) partitioned as U

k

= [

~

U

k

;

^

U

k

], where

~

U

k

has size r

k

�s

k

and

^

U

k

has

size r

k

�r

k+1

. Using this sequence of matrices we will de�ne a nested sequence of splittings.

S

0

:= S; F

0

:= F; G

0

:= G(3.4)

28

k = 0; : : : ;m� 1 :

8

>

>

>

>

>

<

>

>

>

>

>

:

h

~

F

k

; F

k+1

i

:=

h

F

k

~

U

k

; F

k

^

U

k

i

= F

k

U

k

�

~

G

k

G

k+1

�

:=

�

~

U

�

k

G

k

^

U

�

k

G

k

�

= U

�

k

G

k

S

k+1

:= S

k

�

~

F

k

~

G

k

(3.5)

By the de�nition of the nested sequence of splittings we are now in the situation that

S

k+1

= S

k

�

~

F

k

~

G

k

; k = 0; : : : ;m� 1; A = S

k

� F

k

G

k

; k = 0; : : : ;m:(3.6)

The sequence of nested splittings as it has been de�ned so far involves two sequences of

coupling systems. One sequence of small coupling systems

~

S

c;k

from the relation S

k+1

=

S

k

�

~

F

k

~

G

k

and another sequence of resulting coupling systems S

c;k

from the relation A =

S

k

� F

k

G

k

. They will be de�ned by

~

S

c;k

:= I �

~

G

k

S

�1

k

~

F

k

; k = 0; : : : ;m� 1;

S

c;k

:= I �G

k

S

�1

k

F

k

; k = 0; : : : ;m:

(3.7)

Using twice the Sherman{Morrison{Woodbury formula (1.4) we obtain

S

�1

k+1

= S

�1

k

+ S

�1

k

~

F

k

~

S

�1

c;k

~

G

k

S

�1

k

; k = 0; : : : ;m� 1

A

�1

= S

�1

k

+ S

�1

k

F

k

S

�1

c;k

G

k

S

�1

k

; k = 0; : : : ;m

(3.8)

The successive use of nested splittings generates in every step a remaining coupling system

S

c;k

. Even if the reduced coupling system S

c;k

is not better conditioned than S

c;k�1

, at least

the size has been reduced by s

k

.

So in any step of the successively de�ned splittings we have the following coupling systems.

k splitting small coupling systems remaining coupling system

0 A = S � FG S

c

1 A = S

1

� F

1

G

1

~

S

c;0

S

c;1

2 A = S

2

� F

2

G

2

~

S

c;0

;

~

S

c;1

S

c;2

.

.

.

m A = S

m

� F

m

G

m

~

S

c;0

; : : : ;

~

S

c;m�1

S

c;m

Before we will give an algorithmic description of the generation and the way of applying the

nested sequence splittings, we will brie
y comment on the equivalent approach using left

inverses in Section 1.3. In (1.7) we have assumed that rankF = r and thatH 2 M(n�r;F)

is chosen such that HF = I. This assumption has lead to an equivalent way to write A

�1

as it is shown in (1.9).

A

�1

= S

�1

+ S

�1

FT

�1

c

H(I �AS

�1

); where T

c

= HAS

�1

F:

29

We easily get left inverse matrices

~

H

k

;H

k+1

analogously to the construction of

~

G

k

; G

k+1

.

H

0

= H;

�

~

H

k

H

k+1

�

:=

�

~

U

�

k

H

k

^

U

�

k

H

k

�

= U

�

k

H

k

; k = 0; : : : ;m� 1:(3.9)

Analogously to (3.4){(3.8) we can successively use the low rank modi�cation formula (1.9).

Since the nested generation for the left inverse approach is quite analogous to the �rst

description in (3.4){(3.8) we need not go into detail to describe the analogous procedure

for the left inverse approach. This has been done in [10].

3.3 Algorithmic Description of Nested Divide & Con-

quer Methods

In this section we will give an abstract algorithm for the generation of nested splittings.

From the de�nition of the nested sequence in (3.4){(3.8) it seems as if the application of

A

�1

= S

�1

k

+ S

�1

k

F

k

S

�1

c;k

G

k

S

�1

k

with S

c;k

= I � G

k

S

�1

k

F

k

involves a exponential call of

S

k

; S

k�1

; S

k�2

; : : : when used for larger numbers k, since S

�1

k

appears four times in the

Sherman{Morrison formula. One can avoid this, if in any step of the generation of nested

splittings a matrix E

k

= S

�1

k

~

F

k

is once computed and used in further steps. Using this E

k

we immediately obtain

~

S

c;k

= I �

~

G

k

E

k

(3.10)

and

S

�1

k+1

= (I + E

k

~

S

�1

c;k

~

G

k

)S

�1

k

= (I + E

k

~

S

�1

c;k

~

G

k

) � � � (I + E

0

~

S

�1

c;0

~

G

0

)S

�1

:(3.11)

From this we can derive an algorithm for solving systems with S

k

.

Algorithm 3.12 (Solving systems with nested D & C operators)

Let A 2 GL(n;F) be split as A = S � FG, where F;G

T

2 M(n � r;F). Using

the notation of (3.4){(3.11), we assume that all S

0

; : : : ; S

k

are nonsingular.

Suppose in addition that E

0

; : : : ; E

k�1

are already computed and that for any

l = 0; : : : ; k � 1 an LU decomposition

~

S

c;l

= L

c;l

U

c;l

has been computed. Then

a system S

k

x = b can be solved in the following way:

Solve Sx = b

for l = 0; 1; : : : ; k � 1

� :=

~

G

l

x

Solve L

c;l

U

c;l

� = � directly

 := E

l

�

x := x+

For Algorithm 3.12 we have required that E

0

; : : : ; E

k�1

have already been computed and

that an LU decomposition has been computed for

~

S

c;l

. To construct the nested sequence of

splittings itself and to provide these assumptions we have to formulate another algorithm.

30

Before we do this we will brie
y comment on one technical detail. Note that by (3.5),

~

F

k

and

~

G

k

can be directly obtained from F;G without using F

k�1

; G

k�1

:

~

F

k

= FY

k

;

~

G

k

= Y

�

k

G; where Y

k

=

^

U

0

(� � �

^

U

k�2

(

^

U

k�1

~

U

k

) � � �):(3.13)

Analogously F

k

; G

k

satisfy

F

k

= F

^

U

0

� � �

^

U

k

; G

k

=

^

U

�

k

� � �

^

U

�

0

G:(3.14)

Thus in order to compute

~

F

k

;

~

G

k

we need not explicitly compute F

k�1

; G

k�1

but only Y

k

and then apply it to F;G. This is important, since for small s

k

, F

k�1

and G

k�1

will have

almost r columns/rows and consequently their computation may be expensive, while Y

k

only has s

k

columns and the application to F;G will probably be cheap, since F;G are

sparse.

Algorithm 3.15 (Generation of nested D & C operators)

Let A 2 GL(n;F) be split as A = S � FG, where F;G

T

2 M(n � r;F). Using

the notation of (3.4){(3.11), we assume that all S

0

; : : : ; S

k

are nonsingular.

S

0

� S; r

0

� r.

for k = 0; : : : ;m� 1

Consider s

k

� r

k

and

~

U

k

2 M(r

k

� s

k

;F) such that

~

U

�

k

~

U

k

= I and

expand

~

U

k

to an orthogonal matrix U

k

=

h

~

U

k

;

^

U

k

i

.

r

k+1

:= r

k

� s

k

.

Y

k

:=

^

U

0

(� � �

^

U

k�2

(

^

U

k�1

~

U

k

) � � �)

~

F

k

:= FY

k

Solve S

k

E

k

=

~

F

k

applying Algorithm 3.12.

~

S

c;k

:= I �

~

G

k

E

k

.

Factorize

~

S

c;k

= L

c;k

U

c;k

(LU decomposition)

Algorithm 3.15 itself calls Algorithm 3.12. But at this stage E

0

; : : : ; E

k�1

are already been

computed. Also an LU decomposition has been performed for

~

S

c;0

; : : : ;

~

S

c;k�1

.

The interaction between Algorithm 3.15 and Algorithm 3.12 is shown in the following table.

provided by Alg. 3.15

k to compute by Alg. 3.15

for Alg. 3.12

call of Alg. 3.12

E

0

0

~

S

c;0

= L

c;0

U

c;0

| no

E

1

E

0

1

~

S

c;1

= L

c;1

U

c;1

L

c;0

U

c;0

yes, with k=1

.

.

.

E

m

E

0

; : : : ; E

m�1

m

~

S

c;m

= L

c;m

U

c;m

L

c;0

U

c;0

; : : : ; L

c;m�1

U

c;m�1

yes, with k=m

31

Remark: By construction we have

A = S

m

� F

m

G

m

:(3.16)

This leads to a remaining coupling system

S

c;m

:= I �G

m

S

�1

m

F

m

=

^

U

�

m�1

� � �

^

U

�

0

(I �GS

�1

m

F)

^

U

0

� � �

^

U

m�1

(3.17)

As long as we use a Krylov{subspace based method [41], pp.475�, [37] for solving a system

with S

c;m

, we only have to multiply vectors with F

^

U

0

� � �

^

U

m�1

,

^

U

�

m�1

� � �

^

U

�

0

G. Therefore

we do not have to assemble the product explicitly. If we would have to form the product,

this would be expensive, since we have assumed that each s

k

is small compared with r.

So if m is not too large, each

^

U

l

would be almost an r � r matrix, while in principle a

multiplication with

^

U

k

can be done in O(s

k

) steps because of the special relation to

~

U

k

.

It might be sensible to compute the product GS

�1

m

F explicitly, since this can be easily done

in parallel. If we would solve the coupling system explicitly this would be even necessary.

Beside this fact an explicit computation of GS

�1

m

F might be useful if multiplications with

S

c;m

have to be performed several times to avoid the more expensive solution of systems

with S

m

.

The general construction of nested splittings and its algorithmic description involve several

questions.

Conditions have to be formulated in order to guarantee the rigorous assumption that

all S

k

are nonsingular. The properties of the sequence of small coupling systems

~

S

c;k

and

remaining coupling systems have to be examined. Especially the properties of the remaining

coupling S

c;m

are of great interest, since the nested use of splittings has been introduced to

improve the properties of S

c;m

. An answer to these problems will given in the next section.

Finally one has to discuss the choice of

~

U

k

. This will be done lateron.

3.4 Algebraic Properties of Coupling Systems Ob-

tained by Nested Divide & Conquer Methods

In this section we will discuss conditions which ensure that the sequence of nested splittings

de�ned by (3.5),(3.6) will exist. We will see that this is closely related to the choice of

~

U

k

in (3.5). In addition we may ask about the properties of the sequence of small coupling

systems

~

S

c;k

from (3.7) and especially the last remaining coupling system

S

c;m

=

^

V

m

� � �

^

V

1

(I �GS

�1

m

F)

^

U

1

� � �

^

U

m

;

which is obtained by Algorithms 3.15 and 3.12. This is of great interest, because usually

we would like to solve this system by a Krylov{subspace based method.

The following lemma will give an answer. We will show that the sequence of coupling

systems arising from the nested sequence of splittings can be obtained from a block LU

decomposition of S

c

after a similarity transformation with the product of U

0

� � �U

m�1

32

Lemma 3.18 Let A = S � FG with A;S 2 GL (n;F) and F;G

T

2 M(n � r;F). Using

the notation of (3.4)-(3.8) we assume that for k = 0; 1; : : : ;m� 1 the matrix

~

U

k

is chosen

such that

~

S

c;k

is nonsingular. Then S

0

; : : : ; S

m

and S

c;0

; : : : ; S

c;m

are also nonsingular.

In this case de�ne for any U

k

=

h

~

U

k

;

^

U

k

i

of size r

k

� r

k

the augmented matrix U

k

of size

r � r by

U

k

:=

�

I

r�r

k

O

O U

k

�

and set Q := U

0

� � �U

m�1

. The product Q induces a column partitioning with columns of

size s

0

; : : : ; s

m�1

; r

m

. Then Q

�

S

c

Q has a decomposition

Q

�

S

c

Q = LDR;

where

L =

0

B

B

B

B

B

B

@

~

S

c;0

O

~

B

1;0

.

.

.

.

.

.

.

.

.

.

.

.

~

B

m�1;0

� � �

~

B

m�1;m�2

~

S

c;m�1

B

m;0

� � � B

m;m�2

B

m;m�1

I

1

C

C

C

C

C

C

A

;(3.19)

D = diag

�

~

S

�1

c;0

; : : : ;

~

S

�1

c;m�1

; S

c;m

�

;(3.20)

R =

0

B

B

B

B

B

B

@

~

S

c;0

~

B

0;1

� � �

~

B

0;m�1

B

0;m

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

~

B

m�2;m�1

B

m�2;m

~

S

c;m�1

B

m�1;m

O I

1

C

C

C

C

C

C

A

:(3.21)

For any 0 6 l < k < m,

~

B

kl

and

~

B

lk

satisfy

~

B

kl

=

~

U

T

k

^

U

T

k�1

� � �

^

U

T

l

S

c;l

~

U

l

;

~

B

lk

=

~

U

T

l

S

c;l

^

U

T

l

� � �

^

U

k�1

~

U

k

:(3.22)

For any l = 0; : : : ;m� 1, B

ml

and B

lm

satisfy

B

ml

=

^

U

T

m�1

� � �

^

U

T

l

S

c;l

~

U

l

; B

lm

=

~

U

T

l

S

c;l

^

U

T

l

� � �

^

U

m�1

:(3.23)

Proof:

The proof consist of three steps.

As �rst step we will show the nonsingularity of S

0

; : : : ; S

m

, S

c;0

; : : : ; S

c;m

.

As second step we will show that

U

T

k

S

c;k

U

k

=

�

~

S

c;k

O

^

U

T

k

S

c;k

~

U

k

I

��

~

S

�1

c;k

O

O S

c;k+1

��

~

S

c;k

~

U

T

k

S

c;k

^

U

k

O I

�

:(3.24)

And �nally as third step we will prove the LDR decomposition of Q

�

S

c

Q with L;D;R

from (3.19){(3.23) by induction on m using (3.24).

33

Step 1: We will �rst show the nonsingularity of S

0

; : : : ; S

m

, S

c;0

; : : : ; S

c;m

. For this we note

that if A = S � FG with a nonsingular matrix S, then A is nonsingular, if and only if the

coupling system S

c

= I � GS

�1

F is nonsingular. We have already pointed this fact out

when introducing the Sherman{Morrison{Woodbury formula in (1.4).

For m = 0 there is nothing to show, since S

0

= S;A are assumed to be nonsingular, so

S

c;0

= S

c

is nonsingular.

If S

0

; : : : ; S

m�1

, S

c;0

; : : : ; S

c;m�1

are nonsingular for some m > 0 and

~

U

m�1

is chosen such

that

~

S

c;m�1

is nonsingular, then S

m

must be nonsingular, too. This follows from the fact

that

~

S

c;m�1

is the coupling system with respect to the splitting S

m

= S

m�1

�

~

F

m

~

G

m

and

from the nonsingularity of S

m�1

;

~

S

c;m�1

.

But if S

m

is nonsingular, then S

c;m

will also be nonsingular. This follows from the fact that

S

c;m

is the coupling system with respect to the splitting A = S

m

� F

m

G

m

and from the

nonsingularity of A;S

m

.

Step 2: For (3.24) we have to show that

S

c;k+1

=

^

U

T

k

S

c;k

^

U

k

�

^

U

T

k

S

c;k

~

U

k

~

S

�1

c;k

~

U

T

k

S

c;k

^

U

k

:

But by (3.6) and (3.8) we have that

S

c;k+1

= I �G

k+1

S

�1

k+1

F

k+1

= I �

^

U

T

k

G

k

(S

�1

k

+ S

�1

k

~

F

k

~

S

�1

c;k

~

G

k

S

�1

k

)F

k

^

U

k

=

^

U

T

k

(I �G

k

S

�1

k

F

k

)

^

U

k

�

^

U

T

k

G

k

S

�1

k

F

k

~

U

k

~

S

�1

c;k

~

U

k

G

k

S

�1

k

F

k

^

U

k

=

^

U

T

k

S

c;k

^

U

k

�

^

U

T

k

S

c;k

~

U

k

~

S

�1

c;k

~

U

k

S

c;k

^

U

k

:

Step 3: The proof of the LDR decomposition of Q

�

S

c

Q will be done by induction on m.

For m = 0 this is just (3.24) with m = k = 0. Now assume that (3.19){(3.23) hold for some

m. To distinguish between step m and m+1 we assume that L � L

m

, D � D

m

, R � R

m

,

Q � Q

m

. We will show that (3.19){(3.23) are true for m replaced by m+ 1.

By (3.24) we have

U

T

m

S

c;m

U

m

=

�

~

S

c;m

O

B

m+1;m

I

��

~

S

�1

c;m

O

O S

c;m+1

��

~

S

c;m

B

m;m+1

O I

�

:(3.25)

From this it follows that

Q

T

m+1

S

c

Q

m+1

= (U

m

)

T

(Q

T

m

S

c

Q

m

)U

m

= ((U

m

)

T

L

m

U

m

)((U

m

)

T

D

m

U

m

)((U

m

)

T

R

m

U

m

):

(U

m

)

T

L

m

U

m

will be the matrix from (3.19) with [B

m;0

; : : : ; B

m;m�2

; B

m;m�1

] replaced

by

�

~

B

m;0

� � �

~

B

m;m�2

~

B

m;m�1

B

m+1;0

� � � B

m+1;m�2

B

m+1;m�1

�

. Analogous arguments can be applied to

(U

m

)

T

R

m

U

m

.

To complete the proof we note that (U

m

)

T

D

m

U

m

= diag

�

~

S

�1

c;0

; : : : ;

~

S

�1

c;m�1

; U

T

m

S

c;m

U

m

�

and U

T

m

S

c;m

U

m

can be replaced by the decomposition (3.25). 2

34

Remark: It follows from Lemma 3.18 that we get the coupling systems

~

S

c;0

; : : : ;

~

S

c;m�1

; S

c;m

by performing a block LU{decomposition of U

�

S

c

U .

From the practical point of view we can easily obtain the sequence of resulting coupling

systems S

c;k

throughout the process. Given a coupling system S

c;k

at some stage of the

nested generation we apply a similarity transformation with U

k

to S

c;k

:

S

c;k

! U

�

k

S

c;k

U

k

:

After this similarity transformation we partition the new matrix with respect to U

k

=

h

~

U

k

;

^

U

k

i

:

�

~

U

�

k

^

U

�

k

�

S

c;k

�

~

U

k

^

U

k

�

=

�

T

11

T

12

T

21

T

22

�

:

By Lemma 3.18 it follows that T

11

=

~

S

c;k

is the small coupling system while the Schur{

complement T

22

� T

21

T

�1

11

T

12

= S

c;k+1

will be the new coupling system. For S

c;k+1

one can

apply the same strategy again.

We will illustrate this by an example.

Example 3.26 In Example 3.1 the initial coupling system will be

S

c;0

=

0

B

B

@

1 �9:9951 � 10

�1

�5:0024 � 10

�1

0

�1 1 0 0

0 0 1 �9:9951 � 10

�1

0 �4:8852 � 10

�4

�4:9976 � 10

�1

1

1

C

C

A

:

Using the �rst choice

~

F;

~

G we need not perform a similarity transformation to S

c

since

~

F;

~

G is the �rst column/row for F;G. We can choose U = I and U

�

S

c

U = S

c

. We obtain

as small coupling system

~

S

c;0

= 1 and as remaining coupling system

0

@

1 0 0

0 1 �9:9951 � 10

�1

�4:8852 � 10

�4

�4:9976 � 10

�1

1

1

A

�

0

@

�1

0

0

1

A

�

�9:9951 � 10

�1

�5:0024 � 10

�1

0

�

=

0

@

4:8852 � 10

�4

�5:0024 � 10

�4

0

0 1 �9:9951 � 10

�1

�4:8852 � 10

�4

�4:9976 � 10

�1

1

1

A

= S

c;1

:

By Lemma 3.18 it is not surprising that the remaining coupling system which has been

derived here coincides with that of Example 3.3.

In this section we have shown, that if

~

U

k

is chosen such that

~

S

c;k

is nonsingular in any

step, then the nested sequence of splittings exists. The corresponding remaining coupling

systems S

c;k+1

can be obtained from their predecessor by a similarity transformation with

U

k

and then taking the Schur{complement.

The question, which has not been discussed so far is the choice of

~

U

k

. Of course we have

some hints what conditions should be ful�lled by

~

U

k

. First it should ensure that

~

S

c;k

35

is nonsingular and second it should improve the properties of the new coupling system

S

c;k+1

. Example 3.3 has shown that di�erent choices of

~

U

k

may lead to completely di�erent

conditioned coupling system. In one case, the condition number only has slightly changed,

while in the other case it drastically decreased. This topic will be discussed in the next

section.

3.5 Modifying Schur{Complements by A Priori Or-

thogonal Transformations

In this section we will discuss the following problem:

Let M 2 GL (r;F). Which kind of orthogonal matrix U = [

~

U;

^

U] with

~

U 2 M(r � s;F),

^

U 2 M(r � (r � s);F) is suitable to improve the properties of the Schur{complement of

the transformed matrix U

�

MU . I.e., we are interested in improving the properties of

B =

^

U

�

M

^

U �

^

UM

~

U (

~

U

�

M

~

U)

�1

~

U

�

M

^

U:(3.27)

This question will be of great interest for the construction of nested splittings.

Independent on the choice of U we have for any

~

U such that

~

U

�

M

~

U is nonsingular

kB

�1

k

2

6 kM

�1

k

2

:(3.28)

This follows immediately from the fact that B

�1

is the lower right diagonal block of

(U

�

MU)

�1

.

A very simple choice for

~

U

k

can be the following one. Denote by �

1

; : : : ; �

r

the eigenvalues

of M . Assume that

~

U corresponds to an invariant subspace of M with respect to the

eigenvalues �

1

; : : : ; �

s

. For any orthogonal matrix U = [

~

U;

^

U] the Schur{complement B

from (3.27) will have the eigenvalues �

s+1

; : : : ; �

r

. It is clear that by this choice of

~

U

k

the

condition number of B will be less than or equal to the condition number of M .

More interesting will be the following result which uses a linear combination of two orthog-

onal eigenvectors.

Lemma 3.29 Let M 2 GL (r;F) and suppose that there exist u; v 2 F

r

such that Mu =

�u;Mv = �v and [u; v]

T

[u; v] = I. We de�ne

~

U by

~

U = cu+

p

1 � c

2

v, where c 2 [0; 1] is

chosen such that

c

2

�+ (1 � c

2

)� 6= 0:

Then

~

U

�

M

~

U = c

2

� + (1 � c

2

)� and for any orthogonal (unitary) U =

h

~

U;

^

U

i

the set of

eigenvalues of B will be the set of eigenvalues of M with �; � replaced by � =

��

c

2

�+(1�c

2

)�

.

Proof:

We consider an orthogonal (unitary) matrix W , such that the �rst two columns of W are

36

u and v. An equivalence transformation W

�

MW will produce a matrix of following form.

W

�

MW =

0

@

� 0 M

13

0 � M

23

0 0 M

33

1

A

:

We set s =

p

1 � c

2

and G

2

=

�

c s

�s c

�

. We apply a further equivalence transformation

to W

�

MW using the block diagonal orthogonal matrix G which has G

2

as upper left 2� 2

block and I in the other block diagonal position. This will lead to the following matrix.

G

�

W

�

MWG =

0

@

c

2

� + s

2

� cs(�� �) cM

13

� sM

23

cs(�� �) s

2

� + c

2

� sM

13

+ cM

23

0 0 M

33

1

A

:

Since c

2

�+ s

2

� is assumed to be di�erent from 0, we can take the Schur{complement with

respect to the upper left 1 � 1 block:

�

��

c

2

�+s

2

�

^

M

23

0 M

33

�

:

If U is any matrix such that the �rst column of U is that of WG, then the columns

2 to r of U can be obtained from columns 2 to r of WG by multiplication with an

orthogonal (unitary) matrix Q of size (r � 1) � (r � 1) from the right. But this will be

an orthogonal similarity transformation toB which does not change the eigenvalues of B. 2

Remark: Note that the construction of

~

U is possible for any normal matrix. Otherwise

one cannot guarantee to �nd a pair of orthogonal eigenvectors. One has to be careful how

to choose c, since the function

f

�;�

(t) =

��

t�+ (1� t)�

has poles, if the convex hull of � and � contains 0.

It is clear that one can generalize Lemma 3.29 if one can �nd 2k piecewise orthogonal

eigenvectors and combines k times pairs of eigenvectors. For the general case it is not clear

if choosing eigenvectors of the matrix is advisable. At least some success has been made

for the GMRES method in [62] when augmenting the Krylov subspace with eigenvectors

corresponding to eigenvalues with small modulus. Another interesting approach using low

rank modi�cations has been made in [53]. This might be an interesting approach for future

works.

For the symmetric positive de�nite case we can derive optimal orthogonal transformations,

which will be discussed next.

37

3.5.1 Optimal Conditioning Schur{Complements of Symmetric

Positive De�nite Matrices by A Priori Orthogonal Trans-

formations

In the case when M 2 GL (r;F) is a symmetric (Hermitian) positive de�nite matrix M 2

GL (r;F) we can determine the optimal choice of an orthogonal (unitary) U = [

~

U;

^

U],

~

U 2 M(r � s;F), with respect to the condition number, i.e. �nd U = [

~

U;

^

U] such that

cond

2

(B) = cond

2

(

^

U

�

M

^

U �

^

UM

~

U (

~

U

�

M

~

U)

�1

~

U

�

M

^

U)

!

= min :(3.30)

In other words: We look for an orthogonal (unitary) matrix U which minimizes the condi-

tion number of the Schur{complement of U

�

MU with respect to the upper left s� s block.

The following lemma shows, that skillfully combining the eigenvectors of the smallest eigen-

values and largest eigenvalues pairwise will lead to the optimal choice.

Theorem 3.31 Let M 2 GL (r;F); M = M

�

positive de�nite. Let s be a number

satisfying 0 < s < r=2. Denote by �

1

> : : : > �

r

> 0 the set of eigenvalues of M

and by v

1

; : : : ; v

r

a corresponding set of orthonormal eigenvectors. We de�ne u

i

= c

i

v

i

+

p

1� c

2

i

v

r�i+1

, where c

i

2 [0; 1] is chosen such that

�

i

=

�

i

�

r�i+1

c

2

i

�

i

+ (1 � c

2

i

)�

r�i+1

2 [�

r�s

; �

s+1

]

for all i = 1; : : : ; s. Let U = [

~

U;

^

U] be orthogonal (unitary), such that

~

U = [u

1

; : : : u

s

].

Then the eigenvalues of B be from (3.30) are

�

1

; : : : ; �

s

; �

s+1

; : : : ; �

r�s

(3.32)

and B satis�es in the sense of quadratic forms

�

r�s

I 6 B 6 �

s+1

I:(3.33)

This choice is optimal in the following sense: for any orthogonal (unitary) W = [

~

W;

^

W]

with same partitioning as U it follows from

I 6

^

W

�

M

^

W �

^

WM

~

W (

~

W

�

M

~

W)

�1

~

W

�

M

^

W 6 �I

that
 6 �

r�s

, �

s+1

6 �.

Proof:

First of all we point out that by applying Lemma 3.29 s times with the pairs

(v

1

; v

r

); (v

2

; v

r�1

); : : : ; (v

s

; v

r�s+1

) we get a Schur{complement B where the eigenvalues

�

1

; : : : ; �

s

, �

r�s+1

; : : : ; �

r

of M have been replaced by �

1

; : : : ; �

s

while the remaining eigen-

values are those of M . This shows (3.32). But the choice of c

1

; : : : ; c

s

ensures that the s

new eigenvalues lie between the remaining eigenvalues �

s+1

; : : : ; �

r�s

. From this it follows

that

�

r�s

I 6 B 6 �

s+1

:

38

Finally we will show the optimality. For any orthogonal (unitary) W =

h

~

W;

^

W

i

with the

same partitioning as U we have that D

�1

=

h

^

W

�

M

^

W �

^

WM

~

W (

~

W

�

M

~

W)

�1

~

W

�

M

^

W

i

�1

is the (r � s)� (r � s) diagonal block of (W

�

MW)

�1

in the lower right corner. Using the

Rayleigh quotient characterization of eigenvalues [41], p. 411, we have that

1

�

r�s

= min

dim(S)=r�s

max

x2Snf0g

x

�

M

�1

x

x

�

x

;

1

�

s+1

= max

dim(S)=r�s

min

x2Snf0g

x

�

M

�1

x

x

�

x

:

The space which is spanned by the columns of

^

W is one possible choice for S, so

1

>

1

�

r�s

,

1

�

6

1

�

s+1

, from which the assertion of the theorem follows. 2

Summary

In this chapter we have shown that a nested use of the Sherman{Morrison{Woodbury

formula can be employed to improve the properties of the remaining coupling system S

c;m

.

Note that for substructuring methods the improvement of the Schur{complement is usually

done by construction of preconditioners. Here, for Divide & Conquer methods the successive

modi�cation of the initial splitting gives an additional way to achieve an improved coupling

system. The successive modi�cation can be read as adaptively constructing a sequence of

preconditioners S = S

0

; S

1

; : : : ; S

m

where the rank of the remaining matrix is reduced at

the same time. This strategy can be summarized in the following table.

Nested Divide & Conquer

Level Current Splitting remaining size Current Coupling System

initial splitting initial coupling system

0

A = S

0

� F

0

G

0

r

0

S

c;0

current splitting

+rank s

0

Schur-complement of the current coup-

ling system after transformation

1

A = S

0

� F

0

G

0

#

A = S

1

� F

1

G

1

r

0

� s

0

S

c;0

#

S

c;1

.

.

.

current splitting

+rank s

k�1

Schur-complement of the current coup-

ling system after transformation

k

A = S

k�1

� F

k�1

G

k�1

#

A = S

k

� F

k

G

k

r

0

� s

0

� � � � s

k�1

S

c;k�1

#

S

c;k

We can interpret this strategy as a compromise between a direct solution and an iterative

solution of the coupling system. This problem was part of question 3 from our list of ques-

tions on page 10. It has turned out that the related coupling systems

~

S

c;0

; : : : ;

~

S

c;m�1

; S

c;m

39

can be viewed as diagonal blocks in a block LU{decomposition of the original coupling

system, after a suitable pre{ and post multiplication. In general it is still open what trans-

formation should be used for the pre{ and post multiplication.

The interpretation as LU decomposition leads to the question in which way Divide & Con-

quer methods are related to block ILU{decompositions and algebraic multigrid methods.

This will be discussed in the next chapter.

40

Chapter 4

Relations to Algebraic Multigrid

Methods

In this chapter we will demonstrate the close relationship between the nested use of the

Sherman{Morrison{Woodbury formula (1.4), (1.9), especially their nested use in Chapter

3, and algebraic multigrid methods.

Recall that we have two equivalent low rank modi�cation formulas for writing the inverse

of A = S � FG, where A;S 2 GL (n;F), G;F

T

2 M(n � r;F). The �rst one, referred as

Sherman{Morrison{Woodbury formula (1.3) can be seen as Schur{complement approach

for a suitably extended system. The second one in (1.9), which assumes the existence of

a left inverse matrix H 2 M(r � n;F) such that HF = I can be viewed as a two level

iteration for A.

These two di�erent points of view and their application will be discussed in this chapter.

We will start with some general results from algebraic multigrid methods.

De�nition 4.1 Consider a linear system Ax = b; A 2 GL (n;F); x; b 2 F

n

and a linear

operator B 2 M(n� n;F).

Then a linear iteration{scheme is given by the iterates

�

x

(k)

�

k2N

, where

x

(0)

2 F

n

is an initial guess, x

(k+1)

= x

(k)

�B(Ax

(k)

� b); k = 0; 1; 2; 3; : : :

The matrix I �BA is called linear iteration operator.

Some well{known results are given in the following Lemma (see [41], [18]):

Lemma 4.2 Consider a linear system Ax = b; A 2 GL (n;F); x; b 2 F

n

and a linear

operator B 2 M(n� n;F). Then

� x

(k)

� x = (I �BA)

k

(x

(0)

� x)

� The sequence

�

x

(k)

�

k2N

converges to x for any x

(0)

2 F

n

if and only if �(I�BA) < 1.

�(I�BA) denotes the largest eigenvalue in modulus of I�BA (see De�nition 2.17).

41

We will now explain an algebraic multigrid iteration.

De�nition 4.3 Consider a non{singular linear operator A : F

n

�! F

n

and a sequence

of l > 2 nested spaces F

n

� F

n

1

� F

n

2

� : : : � F

n

l

6� f0g.

For each k 2 f1; : : : ; l � 1g we consider linear operators A

k

;�

k

: F

n

k

�! F

n

k

de�ned as

follows. A

l

: F

n

l

�! F

n

l

, where A

1

= A and each A

k

is non{singular, k = 1; : : : ; l.

We consider further linear restriction operators R

k+1;k

: F

n

k

�! F

n

k+1

and prolongation

operators P

k;k+1

: F

n

k+1

�! F

n

k

for k = 1; : : : ; l � 1.

Then an algebraic multigrid operator M �M

1

is recursively de�ned by:

I �M

k

A

k

= (I � P

k;k+1

M

k+1

R

k+1;k

A

k

)

m

k

(I ��

k

A

k

)

�

k

; k < l

M

l

= A

�1

l

;

(4.4)

where �

k

;m

k

are natural numbers, m

k

> 0, �

k

> 0.

The corresponding iteration

x

(t+1)

:= x

(t)

�M(Ax

(t)

� b); x

(0)

initial guess

is called algebraic multigrid iteration(AMG{iteration).

�

k

is called (pre{) smoother.

A

l

is called coarse grid correction.

Remark:

� In [47],[48],[49], all m

k

are identical and chosen as 1 or 2.

For m

k

� 1 the iteration scheme is often called V-cycle.

For m

k

� 2 the iteration scheme is often called W-cycle.

� Multigrid methods are often used in the numerical treatment of partial di�erential

equations. There the subspaces F

n

k

; k = 1; : : : ; l correspond to hierarchical grids. For

the matrix A

k

often a model{dependent linear operator is used.

Restrictions and prolongations are usually chosen with respect to the special grid

hierarchy.

� Each A

k

can be viewed as approximation to A on a suitable subspace, i.e.

R

k+1;k

A

k

P

k;k+1

� A

k+1

In fact, if R

k+1;k

A

k

P

k;k+1

= A

k+1

for any 0 < k < l � 1, then the nested iteration

from De�nition 4.3 can already be read as a product iteration for A

k

itself, which

will be shown in the next lemma. This generalizes a result of [85] for the symmetric

positive de�nite case and R

�

k+1;k

= P

k;k+1

; R

�

k;k+1

R

k+1;k

= I.

Lemma 4.5 Let k 6 n;A 2 GL (n;F); B 2 GL (k;F); P;R

T

2 M(n �

k;F); M;N

1

; : : : ; N

l

2 M(k� k;F). Let I�MB = (I �N

1

B) � � � (I�N

l

B). If B = RAP ,

then

I � PMRA = (I � PN

1

RA) � � � (I � PN

l

RA)

42

Using the notation of De�nition 4.3 we have for 1 < k < l: If R

k;k�1

A

k�1

P

k�1;k

= A

k

,

then

I � P

k�1;k

M

k

R

k;k�1

A

k�1

= (I � P

k�1;k

P

k;k+1

M

k+1

R

k+1;k

R

k;k�1

A

k�1

)

m

k

(4.6)

�(I � P

k�1;k

�

1;k

R

k;k�1

A

k�1

)

�

k

Proof:

We prove the �rst part by induction on l.

For l = 1 this is obviously true.

Assume that the assertion holds for some l > 1. Then

I � PMRA = I � P [I � (I �N

1

B) � � � (I �N

l

B)(I �N

l+1

B)]B

�1

RA

= I � P [I � (I �N

1

B) � � � (I �N

l

B)]B

�1

RA

�P (I �N

1

B) � � � (I �N

l

B)N

l+1

RA

Ind:

= (I � PN

1

RA) : : : (I � PN

l

RA)

�(I � PN

1

RA) � � � (I � PN

l

RA)PN

l+1

RA

= (I � PN

1

RA) � � � (I � PN

l

RA)(I � PN

l+1

RA)

The second part then follows immediately. 2

Successively applied, (4.6) will �nally end in a product iteration of the form

I �M

1

A = (I � P

1

N

1

R

1

A) � � � (I � P

r

N

r

R

r

A);

where r = �

1

+m

1

(�

2

+m

2

(� � � �

l�2

+m

l�2

(�

l�1

+m

l�1

) � � �)) is the total number of iteration

steps. Each P

i

; R

i

can be written as product of the form P

i

= P

12

P

23

� � �P

k

i

;k

i

+1

, R

i

=

R

k

i

+1;k

i

R

k

i

;k

i

�1

� � �R

21

. N

i

is either �

k

i

+1

or M

l

, if k

i

= l� 1.

This shows that the nested iteration from De�nition 4.3 can be lifted to a product iteration

for A if the induced system matrix on the smaller space is chosen to be the Ritz approxima-

tion B = RAP . In other words, for algebraic multilevel methods with Ritz approximation

as coarse grid system any nested iteration can be read as multiplicative iteration for the

initial system using the corresponding products of restriction and prolongation operators.

For the symmetric positive case this was already shown in [85].

4.1 Incomplete block LU Decompositions as Alge-

braic Multigrid Method

We will brie
y explain how a block LU decomposition and also an incomplete block LU

decomposition can be read as algebraic multigrid method. Any nonsingular matrix A �

�

A

11

A

12

A

21

A

22

�

2 GL (n;F) with nonsingular A

11

can be written as

A =

�

I O

A

21

A

�1

11

I

��

A

11

O

O S

22

��

I A

�1

11

A

12

O I

�

; where S

22

= A

22

�A

21

A

�1

11

A

12

:(4.7)

43

It is well{known (see e.g. [20]) that a block LU{decomposition can read as exact algebraic

2{level method. This can be seen from the fact that

O = (I �

�

�A

�1

11

A

12

I

�

| {z }

P

S

�1

22

�

�A

21

A

�1

11

I

�

| {z }

R

A)(I �

�

A

�1

11

O

O O

�

| {z }

�

A):(4.8)

For a block ILU decomposition one typically replaces A

11

2 GL (r;F) by some nonsingular

approximations L

11

; U

11

;D

11

and S

22

by D

22

. This leads to the following matrix

�

I O

A

21

L

�1

11

I

�

| {z }

L

�

D

11

O

O D

22

�

| {z }

D

�

I U

�1

11

A

12

O I

�

| {z }

U

(4.9)

and de�nes in a natural way an algebraic 2{level method by setting

R =

�

�A

21

L

�1

11

I

�

; P =

�

�U

�1

11

A

12

I

�

; � =

�

A

�1

11

O

O O

�

:

A special case is the choiceD

22

= RAP = S

22

+E

22

, where E

22

= A

21

(L

�1

11

�A

�1

11

)A

11

(U

�1

11

�

A

�1

11

)A

12

. In this case Lemma 4.5 is applicable, i.e. when successively applying an incomplete

block LU decomposition with D

22

= S

22

+ E

22

the iteration can be lifted to a product

iteration for the initial matrix A.

4.2 Theoretical Results for the Positive De�nite Case

Let us consider the case when A is symmetric (Hermitian) and positive de�nite. We will

cite two results for algebraic multigrid methods. The �rst one [45], [46] discusses spectral

equivalence properties for incomplete LU{decompositions. The second one [72] discusses

the convergence rate of the 2{level scheme (4.3). These two results can be applied to the

two low rank modi�cation formulas (1.4),(1.9).

The �rst result [45], [46] will be a result concerning the approximation properties of in-

complete LU{decompositions.

For a pair A;B of two symmetric (Hermitian) positive de�nite matrices a typical way to

get estimates for cond

2

(B

�1=2

AB

�1=2

) is comparing A and B in the sense of quadratic

forms, i.e., we have to �nd �;
 > 0 such that

B 6 A 6 �B:

From this it follows that cond

2

(B

�1=2

AB

�1=2

) 6

�

.

Here we want to approximate A by a block ILU{decomposition. The question is, how

;� > 0 have to be chosen such that

LDL

�

6 A 6 �LDL

�

44

The condition number plays a key role for Krylov{subspace methods in the positive de�nite

case. We cite a result from [45], [46] on so{called substructuring methods. Later this result

will be applied to algebraic domain decomposition methods based on the nested use of the

Sherman{Morrison{Woodbury formula.

We can apply (4.7) to a given symmetric (Hermitian) positive de�nite matrix A 2

GL (n;F).

Analogously to the general case we can replace A

11

2 GL (r;F) by some nonsingular

approximations L

11

; U

11

= L

�

11

;D

11

and S

22

by D

22

. This leads to the following matrix

�

I O

A

21

L

�1

11

I

�

| {z }

L

�

D

11

O

O D

22

�

| {z }

D

�

I L

��

11

A

12

O I

�

| {z }

L

�

;(4.10)

where at least D

11

;D

22

are assumed to be symmetric (Hermitian) positive de�nite. For the

approximation properties of (4.10) the following result can be shown.

Theorem 4.11 Let A 2 GL (n;F) be symmetric (Hermitian), positive de�nite. Consider

the block ILU{decomposition of A from (4.10). Consider
;� > 0 such that

D

11

6 A

11

6 �D

11

;
D

22

6 S

22

+ E

22

6 �D

22

;

where E

22

is de�ned by E

22

:= A

21

(A

�1

11

� L

�1

11

)A

11

(A

�1

11

� L

��

11

)A

12

and S

22

is taken from

(4.7). Set � = �(S

�1

22

E

22

). Then the block ILU{factorization (4.10) satis�es

�

1 �

r

�

1 + �

�

LDL

�

6 A 6 �

�

1 +

r

�

1 + �

�

LDL

�

:(4.12)

Furthermore the condition number of (LDL

�

)

�1

A can be estimated by

�

�

p

�+

p

1 + �

�

2

6

�

max

((LDL

�

)

�1

A)

�

min

((LDL

�

)

�1

A)

6

�

�

p

�+

p

1 + �

�

2

;(4.13)

where

r

�

1 + �

= cos\(span

�

I

O

�

; span

�

�L

��

11

A

12

I

�

)(4.14)

and the angle is taken with respect to the inner product de�ned by A.

Proof:

See [45]. 2

Remark:

Note that � = �(S

�1

22

E

22

) implies that

�

1+�

= �((S

22

+ E

22

))

�1

E

22

) � �. Thus we can

replace

q

�

1+�

by

p

� in Theorem 4.11.

The second result from [72] can be used to get estimates for the convergence rate of the

2{level scheme in the symmetric positive de�nite case.

45

In the following we denote for x 2 F

n

;K 2 GL (n;F); K = K

�

positive de�nite, the

K{norm by

kxk

K

=

p

x

�

Kx:

For any n� n matrix A we denote by

kAk

K

= sup

x6=0

kAxk

K

kxk

K

the corresponding matrix norm.

Theorem 4.15 Let A 2 GL (n;F), A = A

�

positive de�nite, H 2 M(n�r;F); rankH =

r. H will be used as prolongation operator and its adjoint matrix H

�

as restriction operator.

Let N 2 M(n� n;F) be a smoother in the sense of De�nition 4.3. Set A

H

= H

�

AH;T =

I �HA

�1

H

H

�

A and choose

~

A

H

2 GL (r;F) such that

kI �

~

A

�1

H

A

H

k

A

H

6 � < 1:(4.16)

If there exists � > 0 such that

k(I �NA)ek

2

A

6 kek

2

A

� �kT (I �NA)ek

2

A

(4.17)

for any e 2 F

n

, then

k(I �H

~

A

�1

H

H

�

A)(I �NA)k

A

6 maxf�;

r

1

1 + �

g:(4.18)

Proof:

See [72]. 2

4.3 Divide & Conquer as AMG

We will now apply the results from algebraic multigrid theory to the nested Divide &

Conquer methods from Chapter 3. For this we will recall the properties of nested splittings

obtained by nested Divide & Conquer algorithms. We consider a splitting

A = S � FG � S

0

� F

0

G

0

;(4.19)

where A;S 2 GL (n;F); F;G

T

2 M(n � r;F). Similar to Chapter 3 we assume that

there exists a sequence of orthogonal (unitary) matrices U

k

=

h

~

U

k

;

^

U

k

i

2 GL (r

k

;F); k =

0 : : : ;m� 1 such that

~

U

k

2 M(r

k

� s

k

;F). Let r

k+1

= r

k

� s

k

; r

0

= r.

In this case we can write A as a nested splitting in the following way: De�ne successively

for k = 0; : : : ;m� 1

~

F

k

= F

^

U

0

� � �

^

U

k�1

~

U

k

;

~

G

k

=

~

U

�

k

^

U

�

k�1

� � �

^

U

�

0

G;(4.20)

S

k+1

= S

k

�

~

F

k

~

G

k

:

46

Then we obtain

A = S

m

� F

m

G

m

; where

F

m

= F

^

U

0

� � �

^

U

m�1

;(4.21)

G

m

=

^

U

�

m�1

� � �

^

U

�

0

G:

By successive use of the Sherman{Morrison{Woodbury formula we obtain:

S

�1

0

= S

�1

;

S

�1

k+1

= S

�1

k

+ S

�1

k

~

F

k

(I �

~

G

k

S

�1

k

~

F

k

| {z }

~

S

c;k

)

�1

~

G

k

S

�1

k

; k = 0; : : : ;m� 1;(4.22)

A

�1

= S

�1

m

� S

�1

m

F

m

(I �G

m

S

�1

m

F

m

| {z }

S

c;m

)

�1

G

m

S

�1

m

:

Now we will show that the Sherman{Morrison{Woodbury formula can be interpreted as

Schur{complement for a suitable extended system, which shows the close relations to Schur{

complement methods:

Theorem 4.23

Let A;S 2 GL (n;F); F;G

�

2 M(n � r;F) and assume that A = S � FG. Set S

c

=

I �GS

�1

F . Then

Ax = b; if and only if

�

S F

G I

��

x

y

�

=

�

b

0

�

:(4.24)

Using the notation of (4.19){(4.22) we have

Ax = b; if and only if

0

B

B

B

B

B

@

S

~

F

0

� � �

~

F

m�1

F

m

~

G

0

I

.

.

.

.

.

.

~

G

m�1

I

G

m

I

1

C

C

C

C

C

A

0

B

B

B

B

B

@

x

y

1

.

.

.

y

m

ŷ

m

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

b

0

.

.

.

0

0

1

C

C

C

C

C

A

:(4.25)

The augmented system has a block LU{decomposition of the form

^

L �

^

D �

^

R, where

^

L =

0

B

B

B

B

B

@

S O

~

G

0

.

.

.

~

G

m�1

G

m

L

1

C

C

C

C

C

A

;

^

D = diag

�

S

�1

;D

�

;

^

R =

�

S

~

F

0

� � �

~

F

m�1

F

m

O R

�

(4.26)

and L;D;R taken from (3.19)-(3.21).

47

Proof:

(4.24) follows from

�

I O

�

�

S F

G I

�

�1

�

I

O

�

= (S � FG)

�1

= A

�1

:

In the same way (4.25) follows from

�

I O � � � O O

�

0

B

B

B

B

B

@

S

~

F

0

� � �

~

F

m�1

F

m

~

G

0

I

.

.

.

.

.

.

~

G

m�1

I

G

m

I

1

C

C

C

C

C

A

�1

0

B

B

B

B

B

@

I

O

.

.

.

O

O

1

C

C

C

C

C

A

= (S �

~

F

1

~

G

1

� : : :�

~

F

m�1

~

G

m�1

� F

m

G

m

)

�1

= A

�1

:

(4.26) immediately follows from Lemma 3.18. 2

As a consequence of Theorem 4.23, we can get x = A

�1

b by the Schur{complement ap-

proach for the extended system:

x = (I; O)

�

S F

G I

�

�1

�

b

0

�

=

�

I; �S

�1

F

�

�

S

�1

O

O S

�1

c

��

I

�GS

�1

�

b:(4.27)

But this is just the Sherman{Morrison{Woodbury formula for inverting A = S � FG.

Similarly we can proceed for a nested application of the Sherman{Morrison{Woodbury

formula.

The main di�erence to substructuring methods is, that we extend the initial system with

respect to the given splitting A = S �W and the factorization W = FG, while substruc-

turing methods only work with permutations.

Analogous to Schur{complement methods we can use the nested Divide & Conquer and a

corresponding ILU{decomposition to de�ne an approximation to the original system A.

4.3.1 The Positive De�nite Case

For the special case of symmetric positive de�nite matrices we consider an approximate

nested Divide & Conquer scheme similar to (3.4){(3.8).

We assume that A;S are symmetric positive de�nite and G = F

�

. It is clear that G

m

=

F

�

m

;

~

G

k

=

~

F

�

k

.

Now we consider approximations �;� 2 GL (n;F) to S, where at least � should also

be positive de�nite. This case may occur, if S is perturbed or if one uses an incomplete

Cholesky decomposition for S.

48

First of all we de�ne recursively a sequence �

k

of approximations to S

k

; k = 0; : : : ;m and

�

c;k

to

~

S

c;k

; k = 1; : : : ;m. �

k

is not necessarily symmetric. Essentially we will replace S

�1

k

in (3.8) by �

�1

k

, but in any step we will introduce an additional factor �

k

; k = 0; : : : ;m�1.

The numbers �

0

; : : : ; �

m�1

are positive numbers. Their choice will be discussed later.

�

�1

0

� �

�1

0

(�

0

) = �

0

�

�1

;

E

k

= �

��

k

~

F

k

�

�1

k+1

� �

�1

k+1

(�

k+1

) = �

k+1

(I + E

k

�

�1

c;k

~

F

�

k

)�

�1

k

; k = 0; : : : ;m� 1;(4.28)

where �

c;k

= I � [E

�

k

~

F

k

+

~

F

�

k

E

k

� E

�

k

S

k

E

k

]; k = 0; : : : ;m� 1:

Obviously E

k

= �

��

k

~

F

k

;�

c;k

can be obtained analogously to Algorithm 3.12,3.15.

The main di�erence between (4.28) and (3.8) is the de�nition of �

c;k

. If �

�1

k

= S

�1

k

, then

�

c;k

= S

c;k

. The reason for this de�nition will be given in Corollary 4.30.

Following the de�nition of �

k

; k = 0; : : : ;m we de�ne symmetric positive de�nite operators

�

k

as approximations to S

k

.

�

0

= �; �

�1

k+1

:= �

�1

+

k

X

l=0

E

l

�

�1

c;l

E

�

l

; k = 0; : : : ;m� 1:(4.29)

If �

l

= 1, for all l = 0; : : : ; k, then by the de�nition we have �

�1

k

� �

�1

k

= �

�1

� �

�1

. In

theory, we have A = S

m

�F

m

F

�

m

. But if we replace S by �;� we do not have the low rank

property any more. But one can still use �

m

as preconditioner for A. For S

m

we know,

that AS

�1

m

F

m

= F

m

S

c;m

. So essentially S

c;m

will correspond to the preconditioned system

AS

�1

m

. Here we have to examine, which in
uence the use of �

�1

instead of S

�1

will have

for A�

�1

m

. To get estimates we can apply Theorem 4.11.

Corollary 4.30 Using the notation of (4.28){(4.29) let �;
 be constants such that � >

1 >
 and

� 6 S 6 ��

for some symmetric positive de�nite matrix �. Set

�

k

:= �(

~

S

�1

c;k

~

F

�

k

(S

�1

k

� �

�1

k

)S

k

(S

�1

k

� �

��

k

)

~

F

k

); k = 0; : : : ;m� 1:

Then the following estimates hold:

�

min

(S

c;m

)

m�1

Y

k=0

�

1�

r

�

k

1 + �

k

�

�

m

6 A 6 �

m�1

Y

k=0

�

1 +

r

�

k

1 + �

k

�

�

m

:(4.31)

Furthermore

�

max

(�

�1

m

A)

�

min

(�

�1

m

A)

6

�

�

min

(S

c;m

)

m�1

Y

k=0

�

p

�

k

+

p

1 + �

k

�

2

;(4.32)

where

r

�

k

1 + �

k

= cos\(span

�

I

O

�

; span

��

��

k

~

F

k

I

!

); k = 0; : : : ;m� 1;(4.33)

49

and the angles are taken with respect to the inner product de�ned by

�

S

k

~

F

k

~

F

k

I

�

; k =

1; : : : ;m.

Proof:

The proof consists of two steps. First of all we know, that

�

min

(S

c;m

)S

m

6 A 6 S

m

(4.34)

The right inequaltiy follows directly from the de�nition of S

m

. The left inequality is a

consequence of the fact that �(S

c;m

) [f1g = �(S

�1

m

A).

Second we have to estimate the relations between �

m

and S

m

in the sense of quadratic

forms. To show this we will apply Theorem 4.11 to

�

S

k

~

F

k

~

F

�

k

I

�

and the block ILU de-

composition

�

I O

~

F

�

k

�

�1

k

I

�

| {z }

L

k

�

S

k

O

O �

c;k

�

| {z }

D

k

�

I �

��

k

~

F

k

O I

�

| {z }

L

�

k

:

From Theorem 4.11 it follows that

�

1�

r

�

k

1 + �

k

�

L

k

D

k

L

�

k

6

�

S

k

~

F

k

~

F

�

k

I

�

6

�

1 +

r

�

k

1 + �

k

�

L

k

D

k

L

�

k

;

where

r

�

k

1 + �

k

= cos\(span

�

I

O

�

; span

�

��

k

~

F

k

I

!

)

and the angle is taken with respect to the inner product de�ned by

�

S

k

~

F

k

~

F

�

k

I

�

. We

compare the upper left blocks of

�

S

k

~

F

k

~

F

�

k

I

�

�1

and (L

k

D

k

L

�

k

)

�1

and obtain

1

1 �

q

�

k

1+�

k

(S

�1

k

+ �

�1

k

~

F

k

�

�1

c;k

~

F

�

k

�

��

k

) > S

�1

k+1

>

1

1 +

q

�

k

1+�

k

(S

�1

k

+ �

�1

k

~

F

k

�

�1

c;k

~

F

�

k

�

��

k

):

This gives us a recursive characterization of S

�1

k+1

and the perturbed system S

�1

k

+

�

�1

k

~

F

k

�

�1

c;k

~

F

�

k

�

��

k

. Successively applied we will �nd that

S

�1

m

>

1

Q

m�1

k=0

�

1 +

q

�

k

1+�

k

�

(S

�1

+

m�1

X

k=0

�

�1

k

~

F

k

�

�1

c;k

~

F

�

k

�

��

k

)

and

1

Q

m�1

k=0

�

1�

q

�

k

1+�

k

�

(S

�1

+

m�1

X

k=0

�

�1

k

~

F

k

�

�1

c;k

~

F

�

k

�

��

k

) > S

�1

m

:

50

Replacing S

�1

by � shows that

m�1

Y

k=0

�

1 �

r

�

k

1 + �

k

�

�

m

6 S

m

6 �

m�1

Y

k=0

�

1 +

r

�

k

1 + �

k

�

�

m

;

which yields the assertion. 2

By Corollary 4.30 we get a criterion for the choice of �

0

; : : : ; �

m�1

. We should try to choose

�

k

> 0 such that

~�

k

(�

k

) = min

�

�(

~

S

�1

c;k

~

F

�

k

(S

�1

k

� �

�1

k

(�))S

k

(S

�1

k

� �

��

k

(�))

~

F

k

); k = 1; : : : ;m:

For the simplest case s

k

= 1 we obtain the scalar problem

~�

k

(�

k

) = min

�

~

F

�

k

(S

�1

k

� ��

�1

k

(1))S

k

(S

�1

k

� ��

��

k

(1))

~

F

k

~

S

c;k

:

This minimum will be attained for

�

k

=

Real (

~

F

�

k

�

��

k

(1)

~

F

k

)

~

F

�

k

�

�1

k

(1)S

k

�

��

k

(1)

~

F

k

:

It is an open problem how �

k

should be chosen in practice, when s

k

> 1. One problem,

which we have in determining �

k

is that we know neither

~

F

�

k

S

�1

k

~

F

k

nor

~

S

c;k

in practice. At

least the function f(�) = �(

~

S

�1

c;k

~

F

�

k

(S

�1

k

� ��

�1

k

(1))S

k

(S

�1

k

� ��

��

k

(1))

~

F

k

) is convex. Thus

there exists a global minimum.

Another possibility to use �

m

for a preconditioner is

^

A

�1

:= �

�1

m

+ �

��

m

F

m

S

�1

c;m

F

�

m

�

�1

m

;

where one has to perform an inner iteration for solving a system with S

c;m

. Here it may

be too expensive to compute �

��

m

F

m

explicitly, since the number of columns of F

m

is r

m

which is close to r. For the preconditioning properties of

^

A in principle we could apply

Corollary 4.30. But if we solve a system with S

c;m

inexactly or using only a few steps of

the cg{iteration, then the bounds for the condition number obtained by Corollary 4.30 are

probably far too pessimistic, since we can expect that

^

A is not worse as preconditioner

than �

m

. Note that for substructuring methods one must solve the Schur{complement

at least approximately, since otherwise the preconditioner would be singular. For Divide

& Conquer methods this is not necessary, since we do not need to solve the arti�cial

extended system but only the subsystem corresponding to the original problem.

Beside the nested use of the divide & conquer method based on (1.4) we have another

interpretation in the sense of subspace correction methods using the equivalent approach

(1.9). For this we assume in addition that rankF = r and that H 2 M(r � n;F) satis�es

HF = I. (1.9) can equivalently be written as

O = (I � S

�1

FT

�1

c

HA)(I � S

�1

A); where T

c

= HAS

�1

F:(4.35)

51

In order to have an interpretation in the sense of Theorem 4.15, we de�ne H =

(F

�

S

�1

F)

�1

F

�

S

�1

obtain T

c

= (F

�

S

�1

F)

�1

((S

�1

F)

T

AS

�1

F) and

O = (I � S

�1

F ((S

�1

F)

T

AS

�1

F)

�1

S

�1

F

T

A)(I � S

�1

A):(4.36)

When replacing S

�1

by a perturbed matrix �

�1

we obtain a 2{level scheme.

The di�erence between algebraic multigrid methods in [72] and the algebraic domain de-

composition is, that for algebraic domain decomposition the coarse grid corresponds to

an invariant subspace of AS

�1

, while for algebraic multigrid methods the coarse grids are

constructed with respect to the relations between the coe�cients of the matrix A.

Summary

In this chapter we have shown the close relations between the nested application of both

versions of the Sherman{Morrison{Woodbury formula and algebraic multigrid methods.

The �rst version, de�ned by the nested sequence in (3.4){(3.8) can be seen as block LU{

decomposition of a suitably extended system. When the exact inverse S

�1

is replaced by

an approximate inverse, results for incomplete block LU{decompositions were applicable.

The equivalent approach from (1.9) gives us another interpretation of divide & conquer

methods as subspace correction method for A. When the exact inverse S

�1

is replaced by

some approximation, we immediately obtain an algebraic multilevel scheme.

From our list of questions on page 10 we have made a suggestion to answer question 1{3.

The concept so far can be applied to any low rank splitting and does not require a special

splitting A = S �W . This can be summarized in the following picture.

'

&

$

%

�

�

�

�

Algebraic Properties

Low Rank Splitting

'

&

$

%

Coupling System

'

&

$

%

Nested Divide & Conquer

Algebraic Multigrid

?

?

?

To handle the nested divide & conquer method in parallel, i.e., to give an answer to question

4 on page 10, a concrete class of splittings, namely (modi�ed) block diagonal splittings will

be considered and a corresponding parallel model will be derived. Therefore modi�ed block

diagonal splittings will be discussed in the next chapter.

52

Chapter 5

Block Jacobi{like Splittings

In this chapter, we will discuss the class of block diagonal splittings. These are the classical

block Jacobi splitting as well as modi�ed block Jacobi splittings chosen with respect to

minimize the rank of the remaining matrix.

The reason for examining this class of splittings is its simple use for parallel computations.

Since we are interested in applying the Sherman{Morrison{Woodbury formula (1.4) to a

splitting A = S �W with a nonsingular block diagonal matrix S, we have to discuss in

addition factorizations of W = FG. F;G should be low rank matrices in order to reduce

the size of the coupling system S

c

= I �GS

�1

F from (1.4).

Let A 2 GL (n;F), p some positive number counting the number of blocks. Assume that

A is partitioned as

A =

0

B

@

A

11

� � � A

1p

.

.

.

.

.

.

A

p1

� � � A

pp

1

C

A

(5.1)

with square diagonal blocks of size n

1

; : : : ; n

p

.

Since we are interested in parallel computations on distributed memory machines with p

processors, we have to describe which block of A should be related to which processor.

Here we assume that any block A

qr

is located on processor q and on processor r at the

same time. For q 6= r, A

qr

will be stored twice. For sparse matrices this overhead will be

acceptable, since many A

qr

are zero or only have a few number of entries. This memory

distribution and its consequences will be the topic of Chapter 7. Here we will only keep

in mind this distribution in order to construct special block diagonal splittings. This is of

great importance for the factorization of the remaining part.

5.1 General Construction of Block Jacobi{like Split-

tings

We will start with the classical block Jacobi splitting.

53

De�nition 5.2 The splitting A = S

J

�W

J

is called block Jacobi splitting, if

S

J

=

0

B

@

A

11

O

.

.

.

O A

pp

1

C

A

:(5.3)

We are interested in modi�ed block Jacobi splittings A = S�W for large sparse matrices.

In addition we would like to have W of low rank and W should should be factorized as

W = FG. Since we consider block diagonal splittings for reasons of parallel computation,

the factorization W = FG should be performed in parallel. This reduces the possibility of

e�ciently constructing factors F;G with as small rank as possible.

Let I

n

be the identity matrix of order n and write I

n

as

I

n

= (E

1

; : : : ; E

p

) ;(5.4)

where the partitioning corresponds to the block partitioning of A. Then we can write A as

A =

p

X

q=1

E

q

A

qq

E

T

q

| {z }

S

J

�

X

16q<r6p

[E

q

; E

r

]

�

O �A

qr

�A

rq

O

��

E

T

q

E

T

r

�

| {z }

W

J

= S

J

�W

J

Note that many pairs fq; rg; q < r only exist formally, if A

qr

and A

rq

are zero. Therefore

we de�ne the index set

I := ffq; rg : q 6= r; A

qr

6= O or A

rq

6= Og :(5.5)

We can restrict ourselves to pairs fq; rg 2 I instead of considering any pair fq; rg, 1 6

q; r 6 p. Assume that the indices i of I are taken in some �xed order i

1

; : : : ; i

s

. Whenever

we consider elements i of I as indices for blocks of matrices, we will assume that they are

taken in this order.

If a block A

qr

is stored on processors q and r, then we can �nd a straightforward factor-

ization if we just construct a factorization of

�

O �A

qr

�A

rq

O

�

:

We can also modify this 2�2 block matrix in the block diagonal positions. Then we obtain

a splitting

A =

p

X

q=1

E

q

(A

qq

+

X

r: i=fq;rg2I

A

i

rr

)E

T

q

| {z }

S

�

X

i=fq;rg2I

[E

q

; E

r

]

�

A

i

qq

�A

qr

�A

rq

A

i

rr

��

E

T

q

E

T

r

�

| {z }

W

(5.6)

= S �W

54

De�nition 5.7 The splitting A = S �W from (5.6) is called modi�ed block Jacobi

splitting.

Note that the block Jacobi splitting from De�nition 5.2 is a special case of a modi�ed block

diagonal splitting using A

fq;rg

rr

= O for any fq; rg 2 I.

Assume that i = fq; rg and that

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

is factorized as

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

=

�

F

i

q

F

i

r

�

�

G

i

q

G

i

r

�

(5.8)

for suitable matrices F

i

q

; (G

i

q

)

T

2 M(n

q

� n

i

;F); F

i

r

; (G

i

r

)

T

2 M(n

r

� n

i

;F) for some

positive number n

i

.

We de�ne

n

c

=

X

i2I

n

i

:(5.9)

The ordering i

1

; : : : ; i

t

of the elements in I and the corresponding sizes n

i

1

; : : : ; n

i

t

induce a

block partitioning for vectors in F

n

c

and matrices in M (n�n

c

;F); M(n

c

�n;F). Partition

the identity matrix I

n

c

of size n

c

� n

c

columnwise as

I

n

c

=

�

E

i

1

; : : : ; E

i

t

�

;(5.10)

where E

i

l

denotes n

i

l

unit vectors one after another.

Here we would like to brie
y comment on the notation. Whenever a matrix contains an

index of the form i which is superposed, then the matrix corresponds to what we will later

de�ne as the coupling system and its related block size. For all indices q; r which are used

as sub indices with a matrix, the matrix corresponds to the initial system and the initial

block partitioning. Equation (5.8) is no contradiction to this notation. A matrix with a

lower index and an upper index at same time will be used for both systems, the (small)

coupling system and the (big) initial system.

Assumption (5.8) is no restriction, since we can always obtain such a factorization, if e.g.

�

F

i

q

F

i

r

�

is set to the identity or if we perform an LU{decomposition of

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

.

Example 5.11 Let

A =

0

B

B

B

B

B

B

@

A

11

A

12

O

A

21

A

22

A

23

A

32

A

33

A

34

A

43

A

44

A

45

A

54

A

55

A

56

O A

65

A

66

1

C

C

C

C

C

C

A

; S =

0

B

B

B

B

B

B

@

A

11

A

12

A

21

A

22

A

33

A

34

A

43

A

44

A

55

A

56

A

65

A

66

1

C

C

C

C

C

C

A

;

55

then a simple way to factorize the remaining matrix W = S �A will be

W =

0

B

B

B

B

B

B

@

I

I

I

I

1

C

C

C

C

C

C

A

0

B

B

@

�A

23

�A

32

�A

45

�A

54

1

C

C

A

:

Using the (local) factorization (5.8) we obtain a straightforward factorization of W ,

W =

X

i=fq;rg2I

�

E

q

F

i

q

+ E

r

F

i

r

� �

G

i

q

E

T

q

+G

i

r

E

T

r

�

:

In order to recover the four components F

i

q

; F

i

r

; G

i

q

and G

i

r

we will introduce four matrices

L;M;

�

L;

�

M . We will distinguish between F

i

q

and F

i

r

(G

i

q

and G

i

r

) by taking the minimum

and the maximum value of fq; rg. Set

L =

X

i2I

E

min i

F

i

min i

(E

i

)

T

=

�

� � � E

min i

F

i

min i

� � �

�

i2I

M =

X

i2I

E

max i

F

i

max i

(E

i

)

T

=

�

� � � E

max i

F

i

max i

� � �

�

i2I

�

L =

X

i2I

E

i

G

i

min i

E

T

min i

=

2

6

4

.

.

.

G

i

min i

E

T

min i

.

.

.

3

7

5

i2I

(5.12)

�

M =

X

i2I

E

i

G

i

max i

E

T

max i

=

2

6

4

.

.

.

G

i

max i

E

T

max i

.

.

.

3

7

5

i2I

By construction we have

L

�

M =

0

B

B

B

@

O �A

12

� � � �A

1p

.

.

.

.

.

.

.

.

.

.

.

.

�A

p�1;p

O O

1

C

C

C

A

:

Using the matrices L;M;

�

L;

�

M we can factorize W as

W =

�

� � � E

min i

F

i

min i

+ E

max i

F

i

max i

� � �

�

i2I

| {z }

L+M

2

6

4

.

.

.

G

i

min i

E

T

min i

+G

i

max i

E

T

max i

.

.

.

3

7

5

i2I

| {z }

�

L+

�

M

(5.13)

= (L+M)

| {z }

F

(

�

L+

�

M)

| {z }

G

= FG;

56

where blocks in F;G are taken with respect to the underlying ordering i

1

; : : : ; i

s

of I. Using

this notation we can rewrite the block Jacobi splitting as

A = S

J

� (L

�

M +M

�

L

| {z }

W

J

)(5.14)

and the modi�ed block Jacobi splitting can be rewritten as

A = (S

J

+ L

�

L+M

�

M)

| {z }

S

� (L+M)(

�

L+

�

M)

| {z }

W

(5.15)

with block diagonal matrices L

�

L;M

�

M .

The introduction of F;G and L;

�

L;M;

�

M as well de�nes a block partitioning of the form

S

c

= (S

i;j

c

)

i;j2I

for matrices like the coupling system S

c

= I � GS

�1

F . According to our

convention the indices are superposed and the order of the blocks is assumed to be some

ordering i

1

; : : : ; i

s

. In the sequel we will use this notation also for other matrices which

correspond in size and their partitioning to S

c

.

Example 5.16 Let us assume that A is block tridiagonal. In this case we get I =

ff1; 2g; f2; 3g; : : : ; fp� 1; pgg and

L =

0

B

B

B

@

F

f1;2g

1

.

.

.

F

fp�1;pg

p�1

O

1

C

C

C

A

; M =

0

B

B

B

@

O

F

f1;2g

2

.

.

.

F

fp�1;pg

p

1

C

C

C

A

�

L =

0

B

@

G

f1;2g

1

.

.

.

G

fp�1;pg

p�1

O

1

C

A

;

�

M =

0

B

@

O G

f1;2g

2

.

.

.

G

fp�1;pg

p

1

C

A

:

L

�

L =

0

B

B

B

@

F

f1;2g

1

G

f1;2g

1

.

.

.

F

fp�1;pg

p�1

G

fp�1;pg

p�1

O

1

C

C

C

A

;

M

�

M =

0

B

B

B

@

O

F

f1;2g

2

G

f1;2g

2

.

.

.

F

fp�1;pg

p

G

fp�1;pg

p

1

C

C

C

A

:

57

5.2 Block Jacobi{like Splittings With Respect to Spe-

cial Classes of Matrices

In this section we are interested in conditions for the 2� 2 subproblem (5.8) which ensure

that properties of A are inherited by S from a modi�ed block Jacobi splitting and the

related coupling system S

c

= I �GS

�1

F . E.g. if A is symmetric, S and S

c

should also be

symmetric.We will do this for the class of symmetricmatrices andM{matrices. Essentially

we can derive conditions for the 2� 2 subproblem (5.8) by applying the theory of Chapter

2.

Corollary 5.17 Let A 2 GL (n;F), A = A

�

, positive de�nite. Assume that for any

i = fq; rg 2 I, �A

qr

;�A

rq

are factored as �A

qr

= F

i

q

G

i

r

;�A

rq

= F

i

r

G

i

q

� (G

i

r

)

�

(F

i

q

)

�

.

De�ne A

i

qq

; A

i

rr

by A

i

qq

:= F

i

q

(F

i

q

)

�

, A

i

rr

:= (G

i

r

)

�

(G

i

r

).

Then we already have a factorization

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

=

�

F

i

q

(G

i

r

)

�

�

�

(F

i

q

)

�

G

i

r

�

:

L;M;

�

L;

�

M from (5.12) and F;G from (5.13) satisfy

�

L = L

�

;

�

M =M

�

; G = F

�

:

We obtain a modi�ed block Jacobi splitting of the form A = S � FF

�

, where S and S

c

=

I � F

�

S

�1

F are symmetric (Hermitian) positive de�nite.

Proof:

By construction A = S � FF

�

is a modi�ed block Jacobi splitting. S is also symmetric

(Hermitian) positive de�nite, since S = A + FF

�

. By Lemma 2.8 we obtain that S

c

is

positive de�nite. 2

By Corollary 5.17 the choice of A

i

qq

; A

i

rr

not only reduces the size of the coupling system

by a factor of two, it also ensures the symmetry and the positive de�niteness of S

c

.

Corollary 5.18 If A is an M{Matrix and A

i

qq

; A

i

rr

are diagonal matrices with nonnega-

tive entries for any i = fq; rg 2 I, then S is an M{matrix.

Assume in addition that we have a factorization

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

=

�

F

i

q

F

i

r

�

�

G

i

q

G

i

r

�

for any i = fq; rg 2 I with nonnegative matrices F

i

q

; F

i

r

; G

i

q

; G

i

r

, then we obtain a modi�ed

block Jacobi splitting of the form A = S � FG, where S and S

c

= I � GS

�1

F are M{

matrices.

58

Proof:

Again we get by construction a modi�ed block Jacobi splitting. Using Lemma 2.13 we

obtain that S; S

c

are M{matrices. 2

If A is an M{matrix, then we do not have as much freedom in the choice of A

i

qq

; A

i

rr

as in

the positive de�nite case, since we have to care about the sign pattern of S. Nonnegative

diagonal matrices A

i

qq

; A

i

rr

will in general not allow to reduce the size of S

c

e�ciently.

Since

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

is a nonnegative matrix we can perform a trivial factorization of

this matrix with exclusively nonnegative factors, if we just choose one of the factors to be

the identity.

In general it is not necessarily true that F or G has full rank, if

�

F

i

q

F

i

r

�

,

�

G

i

q

G

i

r

�

have

full rank. At least for block tridiagonal matrices this is su�cient.

Lemma 5.19 Assume that A is block tridiagonal.

If

F

fq;q+1g

q

F

fq;q+1g

q+1

G

fq;q+1g

q

G

fq;q+1g

q+1

9

>

>

>

=

>

>

>

;

has full rank for all q = 1; : : : ; p� 1, then

8

>

>

<

>

>

:

L

M

�

L

�

M

has full rank.

If L has full rank or if M has full rank, then F has full rank.

If

�

L has full rank or if

�

M has full rank, then G has full rank.

Proof:

For block tridiagonal matrices L;M;

�

L;

�

M are block diagonal.

We have F = L +M , where F is block bidiagonal. The upper diagonal blocks are those

of L, the lower diagonal blocks are those of M . Analogous one can proceed for G. 2

Summary

In this chapter we have discussed block Jacobi-like splittings. We have generalized block

Jacobi splittings in such a way that the remaining part can be factorized in a straightfor-

ward way while modi�cations for the diagonal blocks are still possible. For positive de�nite

matrices and M{matrices, we have examined which modi�cations are allowed or necessary

to inherit the structure for the modi�ed block diagonal matrix and the related coupling

system.

Note that in principle the theory of block Jacobi{like splittings can be extended to the

case of overlapping diagonal blocks. This would be rather technical and will be done in a

future paper.

The modi�cations that have been subject of this chapter have addressed the low rank

property and modi�cations have been chosen to inherit structures. The topic of the next

chapter will be, how the freedom in constructing low rank splittings can be used to improve

the properties of the coupling system beyond just preserving structures.

59

Chapter 6

Modi�ed Block Jacobi Splittings

In general the main problem in using block Jacobi splittings is that the diagonal blocks may

be singular or at least ill{conditioned.Modi�cations should not only preserve structures like

in the positive de�nite case. They should also improve the condition number of the diagonal

blocks or at least improve the properties of the coupling system S

c

. Since (AS

�1

)F = F S

c

an improvement of the eigenvalue distribution of S

c

could also be useful for the properties

of S.

6.1 Motivation for the Choice of Modi�cations

We will now discuss more general factorizations for modi�ed block Jacobi splittings. Recall

that by (5.8) we have local block 2 � 2 problems

�

A

i

qq

�A

qr

�A

rq

A

i

rr

�

=

�

F

i

q

G

i

q

F

i

q

G

i

r

F

i

r

G

i

q

F

i

r

G

i

r

�

=

�

F

i

q

F

i

r

�

�

G

i

q

G

i

r

�

;

for any i = fq; rg 2 I. By introducing a nonsingular matrix X

i

we can change this block

2� 2 problem to

�

^

A

i

qq

�A

qr

�A

rq

^

A

i

rr

�

=

�

F

i

q

X

i

G

i

q

F

i

q

G

i

r

F

i

r

G

i

q

F

i

r

(X

i

)

�1

G

i

r

�

:(6.1)

By modifying this local problem the block diagonal matrix S will also change. In addition,

the modi�cation here does not essentially change the rank, since

�

F

i

q

X

i

G

i

q

F

i

q

G

i

r

F

i

r

G

i

q

F

i

r

(X

i

)

�1

G

i

r

�

=

�

F

i

q

X

i

F

i

r

�

(X

i

)

�1

�

X

i

G

i

q

G

i

r

�

:(6.2)

Example 6.3 Consider as concrete example the matrix A from Example 2.15. A arises

from the discretization of the problem

��u = f in [0; 1]

2

u = g on @[0; 1]

2

60

using �ve point star di�erence discretization [48]. Set

S =

�

S

1

O

O S

2

�

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

T �I

�I

.

.

.

.

.

.

.

.

.

T �I

�I T + I O

O T + I �I

�I T

.

.

.

.

.

.

.

.

.

�I

�I T

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

This block matrix S can be read as dividing the discrete problem into two subproblems with

a suitable boundary condition on the interface between both subdomains.

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

S

1

S

2

The block 2 � 2 problem here changes from

�

I I

I I

�

to

�

X I

I X

�1

�

. Analogously the

lower right diagonal block of S

1

and the upper left block of S

2

changes from T + I to

T +X;T +X

�1

. These changes only a�ect those nodes which are located at the internal

boundary between both subproblems.

The example has illustrated that the introduction of X

i

in (6.1) can be read as the intro-

duction of some kind of algebraic boundary conditions to improve the properties of S; S

c

with the additional requirement to maintain the low rank.

If one would like to have two factors instead of three factors on the right hand side of (6.2),

then write X

i

as X

i

= N

i

�

N

i

and one obtains

�

F

i

q

X

i

G

i

q

F

i

q

G

i

r

F

i

r

G

i

q

F

i

r

(X

i

)

�1

G

i

r

�

=

�

F

i

q

N

i

F

i

r

(

�

N

i

)

�1

�

�

�

N

i

G

i

q

(N

i

)

�1

G

i

r

�

:(6.4)

After this introduction we will now formally describe the problem (6.1) as problem for the

modi�ed block Jacobi splitting. Instead of writing

FG = (L+M)(

�

L +

�

M)

we will use the freedom in this factorization and change FG to

FG = (LN +M

�

N

�1

)(

�

N

�

L+N

�1

�

M)(6.5)

61

for some nonsingular N;

�

N . (6.5) corresponds to (6.4) when taking all i 2 I. These new

F;G from (6.5) di�er from the choice of F;G in (5.13) of Chapter 5 if N;

�

N are di�erent

from the identity . Thus S from (5.15) will change to S = S

J

+LN

�

N

�

L+M

�

N

�1

N

�1

�

M . In

order to preserve the block diagonal property of S we have to restrict ourselves to block

diagonal matrices N;

�

N , if p > 2.

To do this we now choose nonsingular matrices N

i

;

�

N

i

2 GL (n

i

;F) and let

N =

X

i2I

E

i

N

i

(E

i

)

T

= diag

�

� � � N

i

� � �

�

i2I

�

N =

X

i2I

E

i

�

N

i

(E

i

)

T

= diag

�

� � �

�

N

i

� � �

�

i2I

(6.6)

X = N

�

N:

By construction we have

F = LN +

�

M

�

N

�1

; G =

�

N

�

L +N

�1

M;S = LX

�

L +MX

�1

�

M:(6.7)

Hence A can be written as

A = S

J

� L

�

M �M

�

L

= (S

J

+ LX

�

L +MX

�1

�

M)

| {z }

S

� (LX +M)X

�1

(X

�

L+

�

M)

| {z }

FG

;(6.8)

where S � S(X) is also block diagonal.

Using this formal description for the modi�ed diagonal blocks we are interested in improv-

ing the properties of S

c

, where

S

c

= I � (

�

N

�

L+N

�1

�

M)S

�1

(LN +M

�

N

�1

)(6.9)

or equivalently

S

�1

c

= I + (

�

N

�

L+N

�1

�

M)A

�1

(LN +M

�

N

�1

):(6.10)

By multiplying with N from the left and

�

N from the right, we obtain

NS

�1

c

�

N = X + (X

�

L +

�

M)A

�1

(LX +M):(6.11)

Formally it is easier to consider NS

�1

c

�

N than to consider NS

c

�

N , since S

c

contains the

expression S(X)

�1

.

To improve the properties of S

�1

c

we will investigate the expression

R(X) = N(S

�1

c

� �I)

�

N(6.12)

for some � 2 R n f0g. Ideally we would like to have N(S

�1

c

� �I)

�

N = O. In this case S

�1

c

is a multiple of the identity, which would be optimal. An equation of the form

R(X) �

�

MA

�1

M + (1� �)X +X (

�

LA

�1

M) + (

�

MA

�1

L)X +X (

�

LA

�1

L)X = O(6.13)

62

is called algebraic Riccati{equation. For the study of Riccati{equations we refer to [58], [54].

To get N;

�

N we can derive solutions for X from R(X) and after that we can reconstruct

N;

�

N , e.g., by using the LU{decomposition for X.

So the problem of improving the properties of S

�1

c

has been traced back to �nding block

diagonal solutions of algebraic Riccati equations.

In order to have a block diagonal matrix S we need a block diagonal matrix X, if p > 2. In

general block diagonal solutions of R(X) = O not necessarily exist. But what we can do

is to derive approximate solutions of R(X) = O and to use these approximate solutions to

obtain a resulting block diagonal matrix X. A special case where we will show that explicit

solutions exist is the case when the block graph of A is block 2{cyclic (see De�nition 6.16).

It is an open problem how the theory can be generalized to the non block 2{cyclic case.

Of course we could ignore the property `block 2{cyclic' and choose some approximate X

and hope for the best but this seems not to be senseful.

In what follows we will examine R(X) in more detail.

First in Lemma 6.19 we will simplify R(X) for the case that the block graph of the initial

matrix A is block 2{cyclic. Under some assumptions we will show that R(X) can be

rewritten in the form

R(X) = Q+ (X +B)C(X +B):(6.14)

This will be the topic of Lemma 6.36.

Since the rank of C will be essential for deriving solutions of R(X) = O, we will give

su�cient conditions on the nonsingularity of C.

After rewriting R(X) in the form (6.14) we will show in Theorem 6.46 that the equation

R(X) = O has explicit solutions, if � is suitably chosen.

Since explicit solutions of R(X) = O require the computation of a matrix square root, we

will show how this can be avoided.

For symmetric positive matrices we will derive almost optimal modi�cations in the sense

of quadratic forms. Moreover we will discuss the sharpness of these bounds.

The results will be summarized in an algorithm.

Example 6.15 To illustrate the steps in deriving X we will consider a model matrix

A

n

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �1 1 0

O

0 �1 0 1

�1 0 2 �1 .

.

.

0 �1 0 0

.

.

.

.

.

.

1 0

0 1

O

�1 0 2 �1

0 �1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

� 10

�3

I 2 M(n� n;R)

for which the steps will be illustrated. Our most frequently choice will be n = 12 and p = 3.

63

In this case a quite easy minimum rank splitting will be

A

12

=

0

B

B

B

B

B

B

@

A

2

I

�I B

2

+ I

B

2

� I I

�I B

2

� I

B

2

+ I I

�I B

2

1

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

@

O

I

I

�I

I

O

1

C

C

C

C

C

C

A

�

O I �I

I I O

�

:

Here B

2

=

�

2 � 10

�3

�1

0 �10

�3

�

and A

2

=

�

�1� 10

�3

�1

0 �1 � 10

�3

�

. From the split-

ting A = S � FG we obtain the following coupling system S

c

= I �GS

�1

F of (1.4):

S

c

�

0

B

B

@

1 9:99 � 10

2

0:501 �5 � 10

�4

0 10

6

0 0:5

�0:5 5 � 10

�4

1:21 �0:357

0 �0:5 0 0:501

1

C

C

A

:

Unfortunately this coupling system is very ill{conditioned. Its eigenvalues will be

approximately 1:11 � 0:489i; 10

6

; 0:501 and its singular values are approximately

10

6

; 1:37; 1:11; 0:481.

Another choice of a minimum rank splitting will be A = S � FG, where

F=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

O

1 0

0 10

�2

0:5 �1:5 � 10

�3

O

0 �10

�2

O

�0:25 0:15

0 10

�3

1 0

0 1

O

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; G=

0

B

B

B

@

O

2 �0:3 �1 0

O

0 �10

2

0 �10

2

O

1 0 4 �6 � 10

2

O

0 1 0 �10

3

1

C

C

C

A

and S = A+ FG. Here we have

S

c

�

0

B

B

@

0:575 1:13 � 10

�3

6:9 � 10

�2

�4:21 � 10

�2

0 0:5 0 �0:1

�0:138 3:93 � 10

�3

0:488 �2:33 � 10

�2

0 10

�2

0 0:499

1

C

C

A

with eigenvalues 0:531�0:0874i; 0:5�0:0316i and singular values 0:6; 0:55; 0:487; 0:453.

The second minimum rank splitting is far away from being obvious. But it drastically im-

proves the resulting coupling system.

64

6.2 Simpli�cations on R(X) for Block 2{Cyclic Matri-

ces

The expression R(X) as well as NS

�1

c

�

N contain the term A

�1

, which we will not have in

practice. From this point of view a more convenient representation of R(X) is desirable.

We will now show that for the class of block 2{cyclic matrices we can extremely simplify

NS

�1

c

�

N .

De�nition 6.16 A matrix of the form

0

B

B

B

B

B

B

B

@

A

1;1

O

.

.

.

O A

s;s

A

1;s+1

� � � A

1;p

.

.

.

.

.

.

A

s;s+1

� � � A

s;p

A

s+1;1

� � � A

s+1;s

.

.

.

.

.

.

A

p;1

� � � A

p;s

A

s+1;s+1

O

.

.

.

O A

p;p

1

C

C

C

C

C

C

C

A

is called block 2{cyclic.

Many sparse matrices ful�l this condition up to a suitable permutation if the corresponding

block graph is bipartite [13],p.4, i.e., up to a suitable relabelling of the blocks. E.g. for block

tridiagonal matrices, block circulant matrices (if p is even) �rstly the blocks with the odd

numbers have to be taken and then the even ones. Similarly matrices whose block graph

is a checker board can be reordered.

Lemma 6.17 Let A 2 GL (n;F) with partitioning from (5.1). Assume that A is block

2{cyclic and that the diagonal blocks of A are invertible. If A = S

J

� L

�

M �M

�

L is the

standard block Jacobi splitting from (5.14), then

�

LS

�1

J

M = O;

�

MS

�1

J

L = O.

Proof:

We will only show

�

LS

�1

J

M = O, the proof of

�

MS

�1

J

L = O is analogous. By de�nition we

have

�

L =

2

6

4

.

.

.

G

i

min i

E

T

min i

.

.

.

3

7

5

i2I

; M =

�

� � � E

max i

F

i

max i

� � �

�

i2I

:

Since A is assumed to be block 2{cyclic, there exists a �xed number s such that for any

i 2 I we always have min i 6 s < max i.

Let i; j 2 I, then the block of

�

LS

�1

J

M at position i; j will be

G

i

min i

E

T

min i

S

�1

J

E

max j

F

j

max j

:

Since S

J

is block diagonal, this block can only be di�erent from O if min i = max j. Since

min i 6 s < max j this case does not occur. 2

65

Example 6.18 Let us assume that A is block tridiagonal and that p is even (for sim-

plicity). Instead of permuting A we can achieve the same e�ect by separating odd and even

numbers, i.e., we obtain the following factors L;M;

�

L;

�

M :

L =

h

E

1

F

f1;2g

1

; E

3

F

f2;3g

3

; E

3

F

f3;4g

3

; : : : ; E

p�1

F

fp�2;p�1g

p�1

; E

p�1

F

fp�1;pg

p�1

i

M =

h

E

2

F

f1;2g

2

; E

2

F

f2;3g

2

; : : : ; E

p�2

F

fp�3;p�2g

p�2

; E

p�2

F

fp�2;p�1g

p�2

; E

p

F

fp�1;pg

p

i

�

L =

2

6

6

6

6

6

6

6

6

4

G

f1;2g

1

E

T

1

G

f2;3g

3

E

T

3

G

f3;4g

3

E

T

3

.

.

.

G

fp�2;p�1g

p�1

E

T

p�1

G

fp�1;pg

p�1

E

T

p�1

3

7

7

7

7

7

7

7

7

5

;

�

M =

2

6

6

6

6

6

6

6

6

4

G

f1;2g

2

E

T

2

G

f2;3g

2

E

T

2

.

.

.

G

fp�3;p�2g

p�2

E

T

p�2

G

fp�2;p�1g

p�2

E

T

p�2

G

fp�1;pg

p

E

T

p

3

7

7

7

7

7

7

7

7

5

:

We denote the elements of L;

�

L by `�' and the elements of M;

�

M by `+' and illustrate

F = L+M;G =

�

L+

�

M in the following pattern.

F =

0

B

B

B

B

B

B

@

�

+ +

� �

+ +

� �

+

1

C

C

C

C

C

C

A

; G =

0

B

B

B

B

@

� +

+ �

� +

+ �

� +

1

C

C

C

C

A

:

By construction we obtain A = S

J

�L

�

M�M

�

L. We illustrate this in the following picture

0

B

B

B

B

B

B

@

� �

� � �

� � �

� � �

� � �

� �

1

C

C

C

C

C

C

A

| {z }

A

=

0

B

B

B

B

B

B

@

�

�

�

�

�

�

1

C

C

C

C

C

C

A

| {z }

S

J

�

0

B

B

B

B

B

B

@

�

� �

� �

1

C

C

C

C

C

C

A

| {z }

L

�

M

�

0

B

B

B

B

B

B

@

� �

� �

�

1

C

C

C

C

C

C

A

| {z }

M

�

L

In fact we have

�

MS

�1

J

L = O;

�

LS

�1

J

M = O. The modi�ed block diagonal matrix will be

S = S

J

+ LX

�

L +MX

�1

�

M . By de�nition, for any odd i we have

S

i;i

= A

i;i

+ F

fi�1;ig

i

X

fi�1;ig

G

fi�1;ig

i

+ F

fi;i+1g

i

X

fi;i+1g

G

fi;i+1g

i

and for any even i we have

S

i;i

= A

i;i

+ F

fi�1;ig

i

(X

fi�1;ig

)

�1

G

fi�1;ig

i

+ F

fi;i+1g

i

(X

fi;i+1g

)

�1

G

fi;i+1g

i

:

(Here we have to set F

f0;1g

1

; G

f0;1g

1

; F

fn;n+1g

n

; G

fn;n+1g

n

to O).

66

The property

�

LS

�1

J

M = O;

�

MS

�1

J

L = O from Lemma 6.17 will be essential in simplifying

NS

�1

c

�

N , which will be done in Lemma 6.19. Note that Lemma 6.19 will not explicitly

require that S

J

is block diagonal. This will be true for the whole theory in Section 2,4 and

5.

Lemma 6.19 Let A 2 GL (n;F). Let A = S

J

�L

�

M�M

�

L and assume that S

J

is invert-

ible. Set C =

�

LA

�1

L;D =

�

MS

�1

J

M;

�

D =

�

LS

�1

J

L. Suppose that

�

MS

�1

J

L = O;

�

LS

�1

J

M = O.

Then I �

�

DD is nonsingular,

C = (I �

�

DD)

�1

�

D:(6.20)

Moreover, for X = N

�

N , NS

�1

c

�

N from (6.11) can be written as

NS

�1

c

�

N = (X +D)C(X +D) + (X +D):(6.21)

Proof:

We have A = S

J

� [L;M]

h

�

M

�

L

i

with nonsingular A and S

J

. In this case the related coupling

system, here denoted by G

c

= I �

h

�

M

�

L

i

S

�1

J

[L;M], is nonsingular and has the form

G

c

=

�

I �D

�

�

D I

�

:

We have two ways to write G

�1

c

. The �rst one is to use the corresponding Schur{

complements I �D

�

D and I �

�

DD, which must be nonsingular:

G

�1

c

=

�

(I �D

�

D)

�1

D(I �

�

DD)

�1

(I �

�

D

�

D)

�1

�

D (I �

�

DD)

�1

�

:

The second way is using the Sherman{Morrison{Woodbury formula for G

c

:

G

�1

c

= I +

�

�

M

�

L

�

A

�1

[L;M] =

�

I +

�

MA

�1

L

�

C

C I +

�

LA

�1

M

�

;

where

�

C =

�

MA

�1

M . From this it follows that C = (I�

�

DD)

�1

�

D;

�

C = D(I�

�

DD)

�1

. This

shows (6.20). Next we want to simplify

NS

�1

c

�

N =

�

MA

�1

M +X +X

�

LA

�1

M +

�

MA

�1

LX +X

�

LA

�1

LX

=

�

C +X +X(

�

LA

�1

M) + (

�

MA

�1

)LX +XCX:

In order to obtain (6.21) we have to show that

�

C = D +DCD;

�

LA

�1

M = CD;

�

MA

�1

L = DC:(6.22)

In this case a straightforward calculation yields (6.21).

It remains to show (6.22). Calculating D +DCD gives

D +DCD = D +D(I �

�

DD)

�1

�

DD = D(I �

�

DD)

�1

(I �

�

DD +

�

DD) =

�

C;

67

which shows the equation for

�

C in (6.22). Again using the Sherman{Morrison{Woodbury

formula, this time for A

�1

, we �nd that

A

�1

= (S

J

� [L;M]

�

�

M

�

L

�

)

�1

= S

�1

J

+ S

�1

J

[L;M]G

�1

c

�

�

M

�

L

�

S

�1

J

:

It follows that

�

MA

�1

L =

�

MS

�1

J

L+

�

MS

�1

J

[L;M]G

�1

c

�

�

M

�

L

�

S

�1

J

L

= [O;D]G

�1

c

�

O

�

D

�

= D(I �

�

DD)

�1

�

D

= DC:

Analogously we can proceed to obtain

�

LA

�1

M = CD. This shows (6.22). 2

By Lemma 6.19, NS

�1

c

�

N no longer explicitly contains A

�1

. Essentially one only needs

D;

�

D, which only require the block diagonal matrix S

�1

J

.

If C

�1

exists, then it is easier to access than C, since C

�1

=

�

D

�1

�D and

�

D,D are almost

block diagonal, i.e.,

�

D is block diagonal if the block size is suitably enlarged.

�

D =

�

LS

�1

J

L

can be written as

�

D =

p

X

q=1

�

LE

q

A

�1

qq

E

T

q

L;

where E

1

; : : : ; E

p

are the block columns of the identity matrix from (5.4). It follows that

�

D can be written as a sum of up to p matrices

�

LE

q

A

�1

qq

E

T

q

L. By the de�nition of L;

�

L from

(5.12), we only have to consider those q 2 f1; : : : ; pg which satisfy q = min i for at least

one i 2 I. For q with this property we have

�

LE

q

A

�1

qq

E

T

q

L =

X

i;j2I: i\j=fqg

E

i

G

i

q

A

�1

qq

F

j

q

(E

j

)

T

:

It immediately follows that for q 6= r, the blocks of

�

LE

q

A

�1

qq

E

T

q

L and

�

LE

r

A

�1

rr

E

T

r

L do not

intersect. Thus

�

D is a matrix having the block entries of

�

LE

q

A

�1

qq

E

T

q

L as diagonal blocks

of larger size. Analogous properties hold for D. We will illustrate this in an example.

Example 6.23 For the block tridiagonal matrix from Example 6.18 we obtain that the

matrices D;

�

D will be block diagonal with the following block pattern.

�

D =

0

B

B

B

B

B

B

B

@

�

� �

� �

.

.

.

� �

� �

1

C

C

C

C

C

C

C

A

;D =

0

B

B

B

B

B

B

B

@

� �

� �

.

.

.

� �

� �

�

1

C

C

C

C

C

C

C

A

:

68

If

�

D

�1

exists,then C

�1

=

�

D

�1

�D is block tridiagonal.

Particularly for the model matrix A

12

from (6.15) we obtain

�

D �

0

B

B

B

@

1 �2 � 10

�3

O

0 �1

O

0:4 �0:201

0 �10

�3

1

C

C

C

A

; D �

0

B

B

@

�0:4 0:201 �0:2 �0:4

0 10

�3

0 �1

0:2 0:4 �0:4 0:201

0 1 0 10

�3

1

C

C

A

:

As a nice consequence of Lemma 6.19 we can see, that the nonsingularity of

�

D and C are

strongly connected. This can be seen from the following observation. We have

�

Dx = 0, (I �

�

DD)

�1

�

Dx = 0, Cx = 0 and y

�

D = 0 , y

�

D(I �D

�

D)

�1

= 0 , yC = 0:

This connection can be generalized to the singular case in Corollary 6.24.

Corollary 6.24 Under the assumptions of Lemma 6.19 we have the following relation

between

�

D and C.

Suppose that

�

D = U

�

�

D

11

O

O O

�

V

�

for orthogonal (unitary) matrices U = (U

1

; U

2

), V =

(V

1

; V

2

) and a nonsingular

�

D

11

of order s� s (this can be achieved, e.g. using the singular

value decomposition). Set

�

D

11

D

12

D

21

D

22

�

= V

�

DU . Then C has rank s and

C = U

1

(I �

�

D

11

D

11

)

�1

�

D

11

V

�

1

:(6.25)

Proof:

From C = (I �

�

DD)

�1

�

D it follows that

C = U

�

I �

�

�

D

11

O

O O

��

D

11

D

12

D

21

D

22

��

�1

�

�

D

11

O

O O

�

V

�

= U

�

I �

�

D

11

D

11

�

�

D

11

D

12

O I

�

�1

�

�

D

11

O

O O

�

V

�

= U

1

�

I �

�

D

11

D

11

�

�1

�

D

11

V

�

1

:

2

The close relation between

�

D and C will give us the opportunity to get the left and right

null space of C from

�

D. But as we have already shown,

�

D is almost block diagonal. The

nonsingularity of

�

D as well as left and right null space can be computed in parallel, since

only S

�1

J

is required.

In the sequel we will restrict ourselves to the case of nonsingular C. The generalization to

the singular case is more technical. Several assertions from the nonsingular case still hold

in the singular case. In the appendix we will discuss an example for the singular case.

In this section we have simpli�ed the expression R(X) from (6.12) for the class of block

2{cyclic matrices which has lead to a more convenient representation of R(X) that does

69

not longer contain A

�1

explicitly. For the representation of NS

�1

c

�

N in (6.21) the rank of C

will be essential. Since we will only consider the nonsingular case here, su�cient conditions

on the nonsingularity of C will be presented in the next section.

6.3 Su�cient Conditions for the Nonsingularity of C

In Section 2 we have shown that the problem of improving S

c

can be traced back to �nding

solutions of the algebraic Riccati equation (X +D)C(X +D) + (X +D)��X = O. Since

the rank of C will be essential in this equation we will give a su�cient condition for the

nonsingularity of C =

�

LA

�1

L. A necessary condition will be that L;

�

L have full rank. In

general this will not be su�cient except for some classes of matrices.

In the sequel we assume that A is block 2{cyclic, i.e., there exists s such that for any

A

rq

6= O; A

qr

6= O we have q 6 s < r. In other words, for any pair i = fq; rg 2 I we

can assume that q 6 s < r. The blocks of L;

�

L are obtained from the factorization of

�A

qr

= F

i

q

G

i

r

;�A

rq

= F

i

r

G

i

q

. By construction F

i

q

will become a part of L and G

i

q

will

belong to

�

L. In (6.1) we did not discuss how this decomposition should be constructed. A

very simple factorization could be

�A

qr

= I

|{z}

F

fq;rg

q

(�A

qr

)

| {z }

G

fq;rg

r

; �A

rq

= (�A

rq

)

| {z }

F

fq;rg

r

I

|{z}

G

fq;rg

q

:

In this case the block columns of L and block rows of

�

L would correspond to the block unit

vectors E

q

, E

r

. This factorization is much too rough, since A

qr

; A

T

rq

typically have many

rows which are zero and we should make use of this property.

Example 6.26 Consider A from Example 6.18. There we have the following L.

L=

h

E

1

F

f1;2g

1

; E

3

F

f2;3g

3

; E

3

F

f3;4g

3

; : : : ; E

p�1

F

fp�2;p�1g

p�1

; E

p�1

F

fp�1;pg

p�1

i

:

This matrix has the following patterns.

L =

0

B

B

B

B

B

B

@

�

� �

� �

1

C

C

C

C

C

C

A

:

Obviously it su�ces to require that [F

f2i�2;2i�1g

2i�1

; F

f2i�1;2ig

2i�1

] has full rank to ensure that L

has full rank. Analogous arguments can be used for

�

L.

For the model matrix A

n

from (6.15) with n = 12; p = 3 we have already seen in Example

6.18 that L;

�

L will have full rank. The situation changes if we choose p = 4 and choose S

J

70

as the block diagonal part of A

12

with diagonal blocks all of size 3 � 3. We obtain

L =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0

1 0 O O

0 1

O O O

1 0 0 0

O 0 1 1 0

0 0 0 1

O O O

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;

�

L = L

T

:

In this case L;

�

L will be singular.

Example 6.26 has illustrated that a full rank requirement on L;

�

L is not unrealistic.

The entries of A

qr

correspond to the rows

P

q�1

w=1

n

w

+1; : : : ;

P

q

w=1

n

w

of A from (5.1), since

any diagonal block A

ww

is assumed to be a n

w

� n

w

matrix. Under these assumptions we

can �nd numbers l

1

; : : : ; l

s

2 f

P

q�1

w=1

n

w

+1; : : : ;

P

q

w=1

n

w

g such that A

qr

only has nonzero

entries in those rows corresponding to l

1

; : : : ; l

s

and likewise A

rq

only has nonzero entries

only in columns corresponding to l

1

; : : : ; l

s

. We will denote this set by A

qr

. We can formally

de�ne A

qr

by

A

qr

:= fl 2 f1; : : : ; ng : e

T

l

E

q

A

qr

6= O or A

rq

E

T

q

e

T

l

6= Og; q 6 s;(6.27)

where e

l

denotes the l{th unit vector in R

n

. A

qr

is the union of nonzero rows of A

qr

and

A

T

rq

as part of the initial matrix A.

Using this set A

qr

we can �nd a factorization of A

qr

for q 6 s, i = fq; rg such that

�A

qr

= F

i

q

G

i

r

; F

q

2 M(n

q

�#A

qr

;R);

�

e

T

l

E

q

F

i

q

�

l2A

qr

2 GL (#A

qr

;R):(6.28)

Here #A

qr

denotes the number of elements. Likewise we are able to achieve

�A

rq

= F

i

r

G

i

q

; G

q

2 M(#A

qr

� n

q

;R);

�

G

i

q

E

T

q

e

l

�

l2A

qr

2 GL (#A

qr

;R):(6.29)

By construction the factors F

i

q

; G

i

q

are full rank matrices for any q 6 s and L;

�

L only consist

of F

i

q

; G

i

q

for q 6 s! The easiest way to �nd such F

i

q

; G

i

q

is just to take a diagonal matrix

with respect to the elements of A

qr

.

Example 6.30 Consider the model matrix A = A

n

from (6.15) and n = 12; p = 3. Here

A

1;2

; A

2;1

; A

2;3

; A

3;2

are given by

A

1;2

= A

2;3

=

0

B

B

@

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

1

C

C

A

; A

2;1

= A

3;2

=

0

B

B

@

0 0 �1 0

0 0 0 �1

0 0 0 0

0 0 0 0

1

C

C

A

:

71

The union of nonzero rows of A

1;2

; A

T

2;1

will be 3; 4 and the union of nonzero rows of

A

2;3

; A

T

3;2

will be 7; 8 as rows of the whole matrix A. We can factorize A

1;2

; A

2;1

as

�A

1;2

=

0

B

B

@

0 0

0 0

�1 0

0 �1

1

C

C

A

| {z }

F

f1;2g

1

�

1 0 0 0

0 1 0 0

�

| {z }

G

f1;2g

2

; �A

2;1

=

0

B

B

@

1 0

0 1

0 0

0 0

1

C

C

A

| {z }

F

f1;2g

2

�

0 0 1 0

0 0 0 1

�

| {z }

G

f1;2g

1

:

The roles of A

2;3

; A

3;2

have to be interchanged in order satisfy the condition block 2{cyclic

for A

1;2

.

�A

2;3

=

0

B

B

@

0 0

0 0

1 0

0 1

1

C

C

A

| {z }

F

f2;3g

2

�

�1 0 0 0

0 �1 0 0

�

| {z }

G

f2;3g

3

; �A

3;2

=

0

B

B

@

1 0

0 1

0 0

0 0

1

C

C

A

| {z }

F

f2;3g

3

�

0 0 1 0

0 0 0 1

�

| {z }

G

f2;3g

3

:

The factorization which has been use here ensures that

�

F

f1;2g

1

O

�

;

�

O

F

f2;3g

3

�

have full rank.

These matrices will become block columns of L. Likewise

�

G

f1;2g

1

;O

�

;

�

O; G

f2;3g

3

�

have full

rank and will become block rows of

�

L.

Using this kind of factorization we have a su�cient condition for the nonsingularity of L;

�

L

in terms of A

q;r

, fq; rg 2 I.

Lemma 6.31 Let A 2 GL (n;F) with partitioning from (5.1). Assume that A is block

2{cyclic,i.e., there exists s such that any pair fq; rg 2 I satis�es q = minfq; rg 6 s < r =

maxfq; rg. Let A = S

J

�L

�

M �M

�

L be the standard block Jacobi splitting from (5.14) and

assume that for q 6 s < r, A

qr

; A

rq

are factored according to (6.28), (6.29). Suppose that

for any q = 1; : : : ; s,

A

qr

\ A

q;r

0

= ;; for any fq; rg 6= fq; r

0

g 2 I:(6.32)

Then L;

�

L have full rank. Moreover, the matrices

(e

T

l

L)

l2

S

q6s<r

A

qr

; (

�

Le

l

)

l2

S

q6s<r

A

qr

(6.33)

are block diagonal and nonsingular. They coincide with the nonzero rows/columns of L;

�

L.

Proof:

We will only show that L has full rank. The proof for

�

L is analogous. De�ne for q = 1; : : : ; s,

L

q

by

L

q

=

�

� � �F

fq;rg

q

� � �

�

r: fq;rg2I

72

Then L can be written as

L = [E

1

L

1

; : : : ; E

s

L

s

] :

L has full rank, if any L

q

has full rank. But since A

q;r

\ A

q;r

0

= ; for any r 6= r

0

, L

q

has

full rank if any F

fq;rg

q

has full rank. This is true by construction.

The matrices from (6.33) are just the restrictions of L;

�

L to their nonzero rows/columns.

Therefore they have to be nonsingular block diagonal matrices. 2

The condition A

q;r

\ A

q;r

0

= ; for any r 6= r

0

has an interpretation in terms of graph

theory. We assign an undirected graph (V; E) with the matrix A by setting V = f1; : : : ; ng,

E = ffi; jg : a

ij

6= 0; i 6= jg. For any diagonal block A

qq

we can analogously de�ne V

q

, E

q

.

The set A

qr

describes those nodes of V

q

which have a common edge with some node of V

r

,

q 6 s < r. In other words A

qr

describes the connection between the subgraphs (V

q

; E

q

) and

(V

r

; E

r

) as part of the whole graph. The requirement A

q;r

\ A

q;r

0

= ; for any r 6= means,

that any node of V

q

,q 6 s has at most one connection to another subgraph.

Example 6.34 Consider the matrix A

n

from (6.15) and n = 12; p = 3. The following

picture shows the undirected graph of A

n

the subgraphs of any diagonal block.

s s s s s s

s s s s s s

'

&

$

%

'

&

$

%

'

&

$

%

1 3 5 7 9 11

2 4 6 8 10 12

In order to satisfy the block 2{cyclic requirement, we assume that the diagonal blocks with

the odd numbers are taken �rst. Here we have A

1;2

= f3; 4g, A

3;2

= f9; 10g. Condition

(6.32) will be satis�ed, since for q = 1 or q = 3 there only exists one set A

qr

.

Now we assume that p = 4 and the block diagonal part of A will have blocks of size 3 � 3.

x

s s s s s s

s s s s s s

'

&

'

&

�

	

�

	

� �

$

%

$

%

�

�

� �

1 3 5 7 9 11

2 4 6 8 10 12

We have A

1;2

= f2; 3g, A

3;2

= f7; 8g, A

3;4

= f8; 9g. Condition (6.31) is violated, since

A

3;2

\ A

8;9

= f8g 6= ;.

The assumptions that L;

�

L have full rank are in general only necessary to guarantee the

nonsingularity of C. But for L;

�

L from Lemma 6.31 the situation is better, since these

matrices are essentially block diagonal matrices, i.e., to have a nonsingular C =

�

LA

�1

L

it su�ces to require that the reduced diagonal block of A

�1

according to

S

q6s<r

A

qr

is

nonsingular.

73

Corollary 6.35 Assume that the conditions of Lemma 6.31 are ful�lled. Suppose that

any diagonal block of A is nonsingular, i.e., for any subset I � f1; : : : ; ng the matrix

(a

ij

)

i;j2I

is nonsingular. Then C is nonsingular.

Partition C;C

�1

as C = (C

i;j

)

i;j2I

C

�1

= ((C

�1

)

i;j

)

i;j2I

with respect to (5.10). Then any

diagonal block of C;C

�1

with respect to this partitioning will be nonsingular.

Proof:

Note that if any diagonal block of A is nonsingular, this will be true for any diagonal block

of A

�1

and any Schur{complement of A. We can factorize

A =

�

A

11

A

12

A

21

A

22

�

=

�

I O

A

21

A

�1

11

I

��

A

11

O

O A

22

�A

21

A

�1

11

A

12

��

I A

�1

11

A

12

O I

�

:

The nonsingularity of A together with the nonsingularity of A

11

imply that S

22

= A

22

�

A

21

A

�1

11

A

12

is nonsingular. The block of A

�1

in the lower right corner will be S

�1

22

. This

argument can be used as well for any symmetric permutation of A and any principal

submatrix of A.

C =

�

LA

�1

L and since by Lemma 6.31

�

L;L are essentially block diagonal, the reduced

matrix

(e

T

l

A

�1

e

m

)

l;m2

S

q6s<r

A

qr

must be nonsingular, too. This matrix di�ers from C up to nonsingular block diagonal

factors from the left and from the right side. The partitioning is precisely that of C. So C

is nonsingular and the same is true for any diagonal block of C;C

�1

with respect to the

partitioning C = (C

i;j

)

i;j2I

, C

�1

= ((C

�1

)

i;j

)

i;j2I

. 2

The assumption that any diagonal block of A is nonsingular will be ful�lled for a wide class

of matrices, e.g. diagonally dominant matrices[8],p.186, M{matrices[8],p.133. In principle

this assumption can be extended to the case of matrices with an underlying block structure

like block diagonally dominant matrices[35], generalizedM{matrices [63],[64]. So for a wide

class of matrices we can derive the nonsingularity of C from the graph theoretic criterion

A

q;r

\ A

q;r

0

= ;; r 6= r

0

given in Lemma 6.31.

In this section we have discussed su�cient conditions on A and its graph to guarantee the

nonsingularity of C and the diagonal blocks of C;C

�1

. This shows that the requirement

on the nonsingularity of C is not too unrealistic. Moreover, for several classes of matrices

we have a graph theoretical criterion that ensures the nonsingularity of C, provided that

the o�{diagonal blocks A

qr

; A

rq

are suitably factorized.

The criterion presented in this section allows us to investigate more precisely the case

where C is nonsingular and to �nd conditions under which the algebraic Riccati{equation

R(X) from (6.12) has explicit solutions.

74

6.4 The General Nonsingular Case

Using the general formulation for modi�ed block Jacobi splittings, which has been intro-

duced in Section 1 we will examine the choice of X more detailed. We will only consider the

case when C from (6.20) is nonsingular. In Section 3 we have given a su�cient condition

for the nonsingularity of C.

The following lemma plays a key role for the subsequent theory. It will show that under rel-

atively general assumptions, i.e.,

�

MS

�1

J

L =

�

LS

�1

J

M = O and a nonsingularity requirement

on

�

D from Lemma 6.19 we are able to use quadratic expansion. This extremely simpli�es

the treatment of Riccati equations and will be a step towards �nding explicit solutions.

Lemma 6.36 Let A 2 GL (n;F). Let A = S

J

� L

�

M � M

�

L and assume that S

J

is

nonsingular. Assume that

�

MS

�1

J

L = O;

�

LS

�1

J

M = O and that

�

D from Lemma 6.19 is

nonsingular. In this case C from Lemma 6.19 is nonsingular and we can de�ne T

1

; T

2

by

T

1

(�) =

�� 1

2

C

�1

�D =

�� 1

2

�

D

�1

�

�+ 1

2

D;(6.37)

T

2

(�) =

�

� � 1

2

�

2

C

�1

� �D =

�

�� 1

2

�

2

�

D

�1

�

�

� + 1

2

�

2

D:(6.38)

Then we get for X = N

�

N

N(S

�1

c

� �I)

�

N = (X � T

1

(�))C(X � T

1

(�))� T

2

(�):(6.39)

Proof:

By Lemma 6.19 we have

N(S

�1

c

� �I)

�

N = (X +D)C(X +D)� (� � 1)(X +D) + �D

= (X +D �

�� 1

2

C

�1

)C(X +D �

� � 1

2

C

�1

)�

�

�� 1

2

�

2

C

�1

+ �D

= (X � T

1

(�))C(X � T

1

(�)) � T

2

(�):

2

By Lemma 6.36 we are able to obtain

ZCZ = T

2

(�);(6.40)

if there exists a matrix square root of CT

2

(�). If a square root exists, then we would

be able to solve this equation exactly as long as we have any freedom in the choice of

X = Z+T

1

(�). For the existence of a matrix square root of a matrix B it is su�cient that

all eigenvalues of B are in the open right complex plane. The next lemma will prepare this

step.

75

Lemma 6.41 Assume that

�

D from Lemma 6.19 is nonsingular and set W =

�

DD (by

Lemma 6.19, I �W is nonsingular). Then (6.40) is equivalent to

Z

2

= CT

2

(�);(6.42)

where Z = C(X � T

1

). If � 2 R n f0g satis�es

(�+ 1)

2

> 4�Re�(6.43)

for any eigenvalue � of (I �W)

�1

, then the eigenvalues of CT

2

(�) have nonnegative real

parts. If in addition � > 1, then the eigenvalues of CT

1

(�) also have nonnegative real parts.

If � strictly satis�es inequality (6.43), then the eigenvalues of CT

1

(�); CT

2

(�) do not touch

the imaginary axis. In this case there exists B such that

B

2

= CT

2

(�)(6.44)

and all eigenvalues � of B satisfy Re� > jIm�j.

Proof:

Equation (6.42) immediately follows from (6.39).

If � is an eigenvalue of (I �W)

�1

, then 1�

1

�

is an eigenvalue of W .

We have CT

2

(�) = (I �W)

�1

(

�

��1

2

�

2

I �

�

�+1

2

�

2

W). Thus the eigenvalues of CT

2

(�) are

�

�

�� 1

2

�

2

�

�

� + 1

2

�

2

�

1 �

1

�

�

!

= ���+

(�+ 1)

2

4

for any eigenvalue � of (I�W)

�1

. This shows (6.43). Analogously we can proceed to show

that the eigenvalues of CT

1

(�) are

��+

�+ 1

2

;

which has nonnegative real part, if � > 1 satis�es (6.43).

If in inequality (6.43) the equality is excluded, then no real part of CT

1

(�) or CT

2

(�)

will be 0. In this case the eigenvalues of CT

2

(�) are in the open right complex plane and

thus a square root B of CT

2

(�) exists. The eigenvalues of B are the square roots of the

eigenvalues of CT

2

(�) and the angle can be chosen such that the real parts dominate the

absolute values of the imaginary parts. 2

Remark: Condition (6.43) if ful�lled for all su�ciently large �.

Example 6.45 For A

12

from (6.15) the eigenvalues of (I �

�

DD)

�1

are

0:999 � 0:0315i; 0:781 � 0:0246i:

76

For this example the matrix square root of CT

2

(�) will exist and be real for any �

CT

2

(�) �

�

�+ 1

2

�

2

I � �

0

B

B

@

0:707 0:147 �0:122 �0:144

0 0:998 0 0:998

4:88 � 10

�2

�2:48 � 10

�2

0:854 2:41 � 10

�2

0 �9:98 � 10

�4

0 0:999

1

C

C

A

Lemma 6.41 has shown that there exists a matrix square root of CT

2

(�) if � is suitably

chosen. Therefore we have explicit solutions of the algebraic Riccati{equation from (6.13).

The next theorem will summarize the results.

Theorem 6.46 Let A;S

J

2 GL (n;F), let A = S

J

� L

�

M �M

�

L. Assume that

�

D from

Lemma 6.19 is nonsingular and

�

MS

�1

J

L = O;

�

LS

�1

J

M = O. If � satis�es (6.43), then the

Riccati equation N(S

�1

c

� �I)

�

N = O from (6.39) has extremal solutions

X

�

(�) = T

1

(�) �C

�1

B(6.47)

with B from (6.44) and X = N

�

N .

Proof:

This is just a summary of the previous results. 2

In this section we have shown that solutions of the algebraic Riccati{equation exist if �

is suitably chosen and the additional requirement

�

LS

�1

J

M = O,

�

MS

�1

J

L = O is ful�lled.

In practice the explicit solution will be too expensive to compute since it requires the

computation of a matrix square root of CT

2

(�). In the next section we will show that the

computation of a matrix square root can be avoided.

6.5 Approximate Solution T

1

(�)

The theory so far is only suitable for the existence of solutions of the Riccati{equation

N(S

�1

c

� �I)

�

N � (X � T

1

(�))C(X � T

1

(�)) � T

2

(�)

!

= O. For the exact solution of

(C(X � T

1

(�))

2

� CT

2

(�)=O one has to compute the square root of CT

2

, which will be

very expensive. So we have have to approximate the theoretical solution. In practice we

cannot solve the Riccati{equation exactly, since X is only allowed to be block diagonal.

In this section we will show that for su�ciently large �, X = T

1

(�) from (6.37) is almost a

solution of N(S

�1

c

�

��1

2

I)

�

N = O, i.e. for this choice of X we will have S

�1

c

=

��1

2

(I +E),

where E is a perturbation matrix of small norm. The advantage of this result is that T

1

(�)

is much easier to compute than the exact solution, since it does not require the matrix

square root of CT

2

(�).

For this we will show that for su�ciently large �, T

1

(�); T

2

(�) are close to be a multiple

of C

�1

.

77

Lemma 6.48 Using the assumptions and notation of Lemma 6.36 we assume that

�

D is

nonsingular (then by Lemma 6.41, I�

�

DD is nonsingular). Let 0 < � < 1 be �xed. If � > 1

is chosen such that

(�+ 1)

2

> 4�k(I �

�

DD)

�1

k=�;(6.49)

then T

1

(�); T

2

(�) satisfy

T

1

(�) =

� + 1

2

C

�1

(I � E

1

); T

2

(�) =

�

� + 1

2

�

2

C

�1

(I � E

2

);(6.50)

where kE

1

k; kE

2

k 6 �.

Proof:

By de�nition we have that T

2

(�) =

�

�+1

2

�

2

C

�1

� �

�

D

�1

=

�

�+1

2

�

2

C

�1

�

I �

4�

(�+1)

2

(I �

�

DD)

�1

�

. We set E

2

=

4�

(�+1)

2

(I �

�

DD)

�1

. Using (6.49)

we obtain kE

2

k 6 �. Analogously we can show that T

1

(�) =

�+1

2

C

�1

(I �E

1

) for a matrix

E

1

with norm less than or equal to �. 2

Using Lemma 6.48 we will now show that X = T

1

(�) almost solves the equation N(S

�1

c

�

��1

2

I)

�

N. More precisely we will obtain S

�1

c

=

��1

2

(I + E) for a small perturbation E.

Theorem 6.51 We use the assumptions and notation of Lemma 6.36. Assume that

�

D

is nonsingular and that � is chosen such that �̂ =

��1

2

> 1 satis�es (6.49).

If k

2

�+1

CX � Ik 6 " < 1, then we obtain for X = N;

�

N = I

S

�1

c

=

�� 1

2

(I + E)(6.52)

and E satis�es

kEk 6 2"+

�"+ �

2

=4 + 3=4�

1� "

:(6.53)

Particularly for X = T

1

(�), E satis�es

kEk 6

�

1� �

(6.54)

Proof:

By (6.39) and Lemma 6.48 we have for X = N;

�

N = I

(S

�1

c

�

�� 1

2

I) = (CX)

�1

CN(S

�1

c

� �̂I)

�

N

= (CX)

�1

�

(CX � CT

1

(�̂))

2

� CT

2

(�̂)

�

=

(�̂+ 1)

2

4

(CX)

�1

�

(

2

�̂+ 1

CX � I + E

1

)

2

� I + E

2

�

=

(�+ 1)

2

16

(CX)

�1

�

(

4

�+ 1

CX � I + E

1

)

2

� I + E

2

�

78

We set

2

�+1

CX = I + E

x

and obtain

(S

�1

c

�

� � 1

2

I) =

�+ 1

8

(I + E

x

)

�1

�

(I + 2E

x

+ E

1

)

2

� I + E

2

�

=

�+ 1

8

�

4E

x

+ (I + E

x

)

�1

(4E

x

E

1

+ 4E

1

E

x

+ E

2

1

+ 2E

1

+ E

2

)

�

=:

�� 1

2

E:

From

��1

2

> 1 it follows that

kEk 6

�+ 1

4(� � 1)

�

4"+

8�"+ �

2

+ 3�

1� "

�

6 2" +

4�"+ �

2

=2 + 3=2�

1 � "

:

Particularly for X = T

1

(�) we obtain more precisely

(S

�1

c

�

� � 1

2

I) =

�� 1

2

(CT

1

(�))

�1

C

�

D

�1

=:

�� 1

2

E:

Here we have

kEk 6

2

(�̂+ 1)(1 � �)

�(�̂+ 1)

2

4�̂

6

�

1� �

:

2

Example 6.55 For the model matrix A

n

from (6.15) and n = 12; p = 3 it su�ces if �

satis�es the inequality

(�+ 1)

2

4�

> 1:62=�;

since the smallest singular value of I �

�

DD will be � 6:19 � 10

�1

. For � we prescribe the

values 1=4; 1=8. In this case we obtain � > 27:8; 53:7 and

T

1

(27:8) �

0

B

B

@

19:2 �2:92 2:88 5:76

0 �13:4 0 14:4

�2:88 �5:76 39:3 �6:72 � 10

3

0 �14:4 0 �1:34 � 10

4

1

C

C

A

; T

1

(53:7) �

0

B

B

@

37:3 �5:54 5:47 10:9

0 �26:4 0 27:3

�5:47 �10:9 76:8 �1:32 � 10

4

0 �27:3 0 �2:63 � 10

4

1

C

C

A

:

Essentially T

1

(53:7) � 2T

1

(27:8). For S

�1

c

we obtain in this case

S

c

(T

1

(27:8))

�1

� 13:4(I �

0

B

B

@

�0:0521 �0:0104 0:00379 0:0115

0 �1:6 � 10

�5

0 0:08

�0:00784 0:00157 �0:064 0:00260

0 �0:0694 0 �0:149

1

C

C

A

| {z }

E(T

1

(27:8))

);

S

c

(T

1

(53:7))

�1

� 26:4(I �

0

B

B

@

�0:0268 0:00536 0:00189 0:00570

0 �2:47 � 10

�6

0 0:0393

�0:00394 0:000787 �0:0319 0:00126

0 �0:0366 0 �0:0758

1

C

C

A

| {z }

E(T

1

(53:7))

):

The relative error has essentially been reduced by a factor 2, since kE(T

1

(27:8))k

2

6 0:181,

kE(T

1

(53:7))k

2

6 0:0918. This shows that T

1

(�) is almost a solution of S

�1

c

!

=

��1

2

I.

79

By Theorem 6.51 the problem of �nding X has been reduced to approximating T

1

(�)

or

�+1

2

C

�1

by an appropriate nonsingular block diagonal matrix X. So far it is an open

problem which choice of a block diagonal matrix should be used. By Theorem 6.51 to

minimize the norm k

2

�+1

CX � Ik is one theoretical possibility. But in practice we can

access only C

�1

explicitly. Even if C is available a block diagonal solution which minimizes

k

2

�+1

CX � Ik is known only for a few norms. And also in this case X may be singular.

In principle we could choose X as the block diagonal part of T

1

(�) or

�+1

2

C

�1

. But this

requires that the diagonal blocks of T

1

(�),

�+1

2

C

�1

respectively, are nonsingular. But we

do not necessarily have this property. In Section 3 we have at least presented a su�cient

criterion to ensure that the diagonal blocks of C, C

�1

are nonsingular.

6.6 Optimal Choice of Modi�cations in the Symmet-

ric Positive De�nite Case

The problem of improving the properties of the coupling system S

c

has been traced back to

�nding approximate solutions of an algebraic Riccati equation. We have shown in Theorem

6.51, thatX = T

1

(�) and

�+1

2

C

�1

almost solve the algebraic Riccati equation S

�1

c

��I

!

= O.

In practice this approximate solution still has to be replaced by a block diagonal matrix.

Under relatively general conditions it is hard to discuss the quality of an approximate block

diagonal choice X. The situation is di�erent, when we consider symmetric positive de�nite

matrices. Again we will concentrate on the case where the block graph of A is 2{cyclic. For

this case it has been shown in [30] that the optimal block diagonal preconditioning matrix

will be given by the block diagonal part S

J

of A itself. Here we examine modi�ed block

diagonal splittings and the related matrix S = LXL

�

+MXM

�

need not necessarily give

an optimal preconditioner for the initial matrix A. The reason is that in general S

�1

A will

have 1 as an eigenvalue, while for the coupling system this is typically not the case.

Example 6.56 As symmetric positive de�nite model matrix we will take

A

n

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0:732 �1 �1 0

O

�1 3 0 �1

�1 0 4 �1

.

.

.

0 �1 �1 4

.

.

.

.

.

.

�1 0

0 �1

O

�1 0 4 �1

0 �1 �1 4

1

C

C

C

C

C

C

C

C

C

C

C

C

A

2 M(n� n;R)

n = 12 and p = 3 will be our most frequent choice, i.e., S

J

will be the block diagonal part

of A with blocks of size 4� 4.

Assume that A is positive de�nite. The problem of �nding optimal modi�cations has al-

ready been studied in [11] for block tridiagonal matrices. Here we will use a di�erent

80

approach.

Corresponding to Lemma 5.17 we assume that A

q;r

is factorized as �A

q;r

= F

fq;rg

q

G

fq;rg

r

for all q < r and set

A

fq;rg

qq

�A

qr

�A

rq

A

fq;rg

rr

!

:=

F

fq;rg

q

(G

fq;rg

r

)

�

!

�

(F

fq;rg

q

)

�

G

fq;rg

r

�

:(6.57)

In this case we obtain

�

M =M

�

;

�

L = L

�

and it is only natural also to require

�

N := N

�

in

(6.6). Thus we have

A = S

J

� LM

�

�ML

�

= (S

J

+ LXL

�

+MX

�1

M

�

)

| {z }

S

� (LN +MN

��

)

| {z }

F

(N

�

L

�

+N

�1

M

�

)

| {z }

F

�

:(6.58)

So S will be symmetric positive de�nite and the coupling system

S

c

= I � (LN +MN

��

)

�

S

�1

(LN +MN

��

)(6.59)

is also positive de�nite in this case.

In the sequel we will assume that

�

D = L

�

S

�1

J

L is nonsingular. In the symmetric positive

de�nite case we can �nd simpler conditions which ensure the nonsingularity of

�

D and as

well the nonsingularity of C. Lemma 6.31 can be simpli�ed to the following corollary.

Corollary 6.60 Let A 2 GL (n;F) with partitioning from (5.1). Let A = S

J

� LM

�

�

ML

�

be the standard block Jacobi splitting from (5.14). Assume that A is block 2{cyclic,i.e.,

there exists s such that any pair fq; rg 2 I can satisfy q 6 s < r. Assume that in (6.57) the

factorization at least F

fq;rg

q

has full rank. Suppose that for all q = 1; : : : ; s, A

q;r

\A

q;r

0

= ;

for any fq; rg 6= fq; r

0

g 2 I, where A

q;r

;A

q;r

0

are taken from (6.27). Then L has full rank

and

�

D;C from Lemma 6.19 are symmetric positive de�nite.

By Corollary 6.60 we essentially have a purely graph theoretical criterion to guarantee the

positive de�niteness of

�

D;C.

In the positive de�nite case we will try to minimize N(S

�1

c

��I)N

�

= (X � T

1

(�))C(X �

T

1

(�) � T

2

(�) from (6.39) with T

1

(�); T

2

(�) from (6.37),(6.38) in the sense of quadratic

forms, i.e., we will consider the problem

I 6 S

c

6 �I;(6.61)

or equivalently

1

�

I 6 S

�1

c

6

1

I;(6.62)

for 0 <
 6 � < 1 such that

�

!

= min. To solve this problem we will follow the arguments

used in [32],[33].

We set

R(Z;�) = ZCZ � T

2

(�); where Z = X � T

1

(�):(6.63)

So the problem has been reduced to �nding symmetric (Hermitian) solutions of algebraic

Riccati inequalities. We state this result as a Lemma.

81

Lemma 6.64 Using the notation of Lemma 6.19 and (6.63),we assume that

�

D is nonsin-

gular (in this case C is nonsingular). Then the problem of �nding a symmetric (Hermitian)

positive X = NN

�

such that

S

c

6 �I;

is equivalent to �nding a symmetric (Hermitian) solution Z of the Riccati inequality

R(Z;

1

�

) > O; Z = X � T

1

(�)(6.65)

such that X > O.

The problem of �nding a symmetric (Hermitian) positive X = NN

�

such that

S

c

>
I;

is equivalent to �nding a symmetric (Hermitian) solution Z of the Riccati inequality

R(Z;

1

) 6 O; Z = X � T

1

(�):(6.66)

such that X > O.

The relations between T

1

(�) and T

2

(�) from (6.37),(6.38) are described in the following

lemma.

Lemma 6.67 Assume that

�

D from Lemma 6.19 is nonsingular. Let

�

D = KK

�

; W =

K

�

DK and assume that �;� satisfy sharply

�I 6 (I �W)

�1

6 �I:(6.68)

Then � > 1 and for � > 1 the following inequalities hold:

T

2

(�) 6 O() (�+ 1)

2

6 4��:(6.69)

T

2

(�) > O() (� + 1)

2

> 4��:(6.70)

In this case we have

�� 1

2

C

�1

> T

1

(�) >

�

2

� 1

4�

C

�1

> O:(6.71)

Proof:

�

D is assumed to be nonsingular. By Corollary 6.24 this implies that C is nonsingular and

positive de�nite. From this it follows that K

�

C

�1

K = K

�

�

D

�1

K �K

�

DK = I �W > O.

Since W > O we have � > 1.

Let � be an eigenvalue of (I �W)

�1

. Then the eigenvalues of K

�

T

2

(�)K are

�

�� 1

2

�

2

I �

�

� + 1

2

�

2

�

1 �

1

�

�

= ��+

(� + 1)

2

4�

:

82

It immediately follows that

T

2

(�) 6 O() (�+ 1)

2

6 4��; T

2

(�) > O() (�+ 1)

2

> 4��:

From T

2

(�) > O it follows that

T

1

(�) >

�� 1

2

C

�1

�

1

�

�

� � 1

2

�

2

C

�1

=

�

2

� 1

4�

C

�1

which shows the inequality in the middle of (6.71), while the left and the right inequalities

of (6.71) are clear. 2

The positive semide�niteness of T

1

(�) and T

2

(�) can be seen as a special case of Lemma

6.41 where we have shown that for su�ciently large � the eigenvalues of CT

1

(�) and CT

2

(�)

are in the right half plane. Here we have in addition C is positive de�nite.

By Lemma 6.67 we have to compute solutions of Riccati inequalities, provided they exist.

For R(Z;�) > O it is clear that we always have solutions, while for R(Z;�) 6 O we have to

require that T

2

(�) > O. The following Lemma determines sets of symmetric (Hermitian)

solutions of both Riccati inequalities.

Lemma 6.72 Using the notation of Lemma 6.67 we assume that C is factorized as

C = PP

�

and that �;�

1

; �

2

> 1. If (�+1)

2

> 4��, then the Riccati equation R(Z;�) = O

has two extremal solutions Z

�

(�),

Z

�

(�) = �P

��

(P

�

T

2

(�)P)

1=2

P

�1

:(6.73)

Any symmetric (Hermitian) Z satisfying

Z 6 Z

�

(�) _ Z

+

(�) 6 Z:(6.74)

solves the Riccati inequality

R(Z;�) > O:

The Riccati inequality

R(Z;�) 6 O

has the set of symmetric (Hermitian) solutions Z satisfying

Z

�

(�) 6 Z 6 Z

+

(�):(6.75)

If (� + 1)

2

< 4��, then the Riccati inequality

R(Z;�) 6 O

has no symmetric (Hermitian) solution Z.

If (�+1)

2

6 4��, then any symmetric (Hermitian) Z is a solution of the Riccati inequality

R(Z;�) > O:

83

Proof:

(6.73) is just the special case of symmetric positive de�nite matrices in Theorem 6.46.

(6.74) and (6.75) follow immediately from (6.73).

The Riccati inequality O 6 ZCZ 6 T

2

(�) can have solutions only if T

2

(�) is positive

semide�nite. By Lemma 6.67 this is only possible if (�+ 1)

2

> 4��.

For (� + 1)

2

6 4�� the matrix T

2

(�) is negative semide�nite, so R(Z;�) > O is always

true. 2

From Lemma 6.72 we can derive solutions X of problem (6.61),(6.62).

Theorem 6.76 Using the notation of Lemma 6.67 we assume that C is factorized as

C = PP

�

and �;�

1

; �

2

> 1. If (� + 1)

2

> 4��, then the Riccati equation

S

c

=

1

�

I

has two extremal symmetric (Hermitian) positive de�nite solutions X

�

(�);X

+

(�), de�ned

by

X

�

(�) = T

1

(�)� P

��

(P

�

T

2

(�)P)

1=2

P

�1

:(6.77)

They satisfy

X

+

(�

1

) > X

+

(�

2

)

X

�

(�

1

) < X

�

(�

2

)

�

; for any �

1

> �

2

; such that (�

2

+ 1)

2

> 4�

2

�;(6.78)

X

�

(�

1

) < X

+

(�

2

); for any �

1

; �

2

such that (�

1

+ 1)

2

> 4�

1

�; (�

2

+ 1)

2

> 4�

2

�:(6.79)

Let 1 > � >
 and assume that � satis�es (1+

1

�

)

2

>

4

�

�. Then any symmetric (Hermitian)

positive de�nite X satisfying

O < X 6 X

�

(

1

�

) _ X

+

(

1

�

) 6 X(6.80)

solves the Riccati inequality

S

c

6 �I:

The Riccati inequality

S

c

(X) >
I

has the nonempty set of symmetric (Hermitian) positive de�nite solutions X, de�ned by

X

�

(

1

) 6 X 6 X

+

(

1

)(6.81)

Any symmetric (Hermitian) positive de�nite solutions X satisfying

X

�

(

1

) 6 X 6 X

�

(

1

�

) _ X

+

(

1

�

) 6 X 6 X

+

(

1

)(6.82)

solves the combined Riccati inequality

I 6 S

c

(X) 6 �I:

84

S

c

is a multiple of the Identity, if
 = � is chosen.

If (1 +

1

)

2

<

4

�, then the Riccati inequality

S

c

>
I

has no symmetric (Hermitian) positive de�nite solution X.

If (1 +

1

�

)

2

6

4

�

�, then any symmetric (Hermitian) positive de�nite X satis�es the Riccati

inequality

S

c

6 �I:

Proof:

From Lemma 6.67 and Lemma 6.72 we already know, thatX

�

(�) are the extremal solutions

of the Riccati equation S

c

(X) =

1

�

I. We still have to show that both solutions are positive

de�nite and that inequalities (6.78), (6.79) hold. By Lemma 6.67 it is clear, that at least

X

+

(�) > O.

X

�

(�) > O

() P

�

T

1

(�)P > (P

�

T

2

(�)P)

1=2

() T

1

(�)CT

1

(�) > T

2

(�)

()

�

��1

2

C

�1

�D

�

C

�

��1

2

C

�1

�D

�

> T

2

(�)

() T

2

(�) +D +DCD > T

2

(�)

() D +DCD > O:

Next we will show (6.78). Since X

�

(�) can be uniformly transformed to diagonal form

by any orthogonal matrix which consists of an eigenvector basis of W , inequalities (6.78)

are essential diagonal problems, i.e., scalar problems. For this purpose consider w 2 [0; 1),

de�ne x

�

(�) = (� � 1) � (� + 1)w �

p

(1 �w)((� � 1)

2

� (�+ 1)

2

w). It su�ces to show

that the derivatives satisfy x

0

+

(�) > 0; x

0

�

(�) < 0. It is easy to verify that

x

0

�

(�) = �

s

1� w

(� � 1)

2

� (� + 1)

2

w

x

�

(�):

But we already know that x

�

(�) is always positive, since X

�

(�) is positive de�nite.

Next we show (6.79). If �

1

< �

2

, then X

�

(�

1

) < X

+

(�

1

) < X

+

(�

2

). if �

1

> �

2

, then

X

�

(�

1

) < X

�

(�

2

) < X

+

(�

2

).

The remaining assertions follow immediately from Lemma 6.72 and inequalities

(6.78),(6.79). 2

Example 6.83 Consider A

12

from (6.56) for p = 3. For the matrix W we obtain � �

1:0036;� � 4:878 � 10

2

. By Theorem 6.76 we will always have

S

c

>
I =)
 6 5:12 � 10

�4

I:

This bound is prescribed by the problem and independent on the choice of X . By Theorem

6.76 this lower bound cannot be improved whatever the choice of X will be. Even the exact

85

solution of the Riccati equation must satisfy this bound. Thus this bound is sharp. For the

other inequality we will always have

S

c

6 0:681I:

This bound can be improved. 0:681 will be an upper bound for any choice of X. By Theorem

6.76 we cannot do worse. For the exact solution this upper bound can be moved to the lower

bound 5:12 � 10

�4

. If we choose X = I, then we will have

4:05 � 10

�4

I 6 S

c

6 0:678I:

As expected the lower bound must be less than 5:12 � 10

�4

. Likewise the upper bound has to

be less than 0:681, but unfortunately it is pretty close to it for this choice of X. This yields

a large condition number of 1674. This will be unsatisfactory for the solution of systems

with S

c

.

Theorem 6.76 requires the computation of the square root (P

�

T

2

(�)P)

1=2

from (6.73). Since

this is very expensive one would like to omit this square root. By Theorem 6.51 we already

know that X = T

1

(�) almost solves the problem. But T

1

(�) still has to be replaced by

a block diagonal matrix. Typically a block diagonal approximation X of T

1

(�) will be

described in quadratic forms by an inequality of the form

�X 6 T

1

(�) 6 �X:

Note that the almost best block diagonal approximation of T

1

(�) with respect to the ratio

�=� is the block diagonal part of T

1

(�) itself (see e.g. [21]).

More sensibly adapted to the situation here is the inequality

T

1

(�

�

) 6 X 6 T

1

(�

�

);(6.84)

for suitable �

�

; �

�

. The following Corollary shows how this a�ects the properties of S

c

.

Corollary 6.85 Using the notation of Theorem 6.76 we assume that �

�

> �

�

are positive

constants such that (6.84) is ful�lled. Then S

c

satis�es

S

c

6

2

�

�

+ 1

I:(6.86)

If in addition

�

�

�1

�

�

+1

�

�

�1

�

�

+1

> 1 �

1

�

, then

2

�

�

+ �

�

I 6 S

c

:(6.87)

Proof:

First we will show (6.86). X � T

1

(

�

�

+1

2

) >

�

�

�1

4

C

�1

> O. From this it follows that

N(S

�1

c

�

�

�

+ 1

2

I)N

�

>

�

�

�

� 1

4

�

2

C

�1

� T

2

(

�

�

+ 1

2

) =

�

�

+ 1

2

D > O:

86

Next we will show (6.87). We have

�

�

��

�

4

C

�1

> X � T

1

(

�

�

+�

�

4

) >

�

�

��

�

4

C

�1

. From this it

follows that

N(S

�1

c

�

�

�

+ �

�

2

I)N

�

6

�

�

�

� �

�

4

�

2

C

�1

� T

2

(

�

�

+ �

�

2

)

6 �

(�

�

� 1)(�

�

� 1)

4

C

�1

+

�

�

+ �

�

2

D

= �

(�

�

� 1)(�

�

� 1)

4

�

D

�1

+

(�

�

+ 1)(�

�

+ 1)

4

D

6 O:

2

Remark: For the special case �

�

= �

�

�

1

we obtain
I 6 S

c

6

2

1+

I, where 0 <
 < 1

and typically
 � 1. So omitting the square root part of the solution is not critical, T

1

(

1

)

is almost optimal with respect to these inequalities.

By Corollary 6.85 it is advisable to scale X such that �

�

�

1

or a little bit less than 1.

We cannot improve the condition number of S

c

by this scaling, but we can avoid that the

eigenvalues are too much scaled in the direction of 0.

Example 6.88 Consider A

12

from (6.56) for p = 3. For X = T

1

(�) we will get

5:12 � 10

�4

I 6 S

c

6 1:02 � 10

�3

I:

The upper bound is less than twice as much as the lower bound. Thus T

1

(�) is almost

optimal. If we choose X as the block diagonal part of T

1

(�), then we get

5:5 � 10

�5

I 6 S

c

6 1:94 � 10

�3

I:

The resulting condition number will be 35:3. This is many times better than for the choice

X = I, where we had a condition number of 1674. If we scale X such that �

�

� 1=4, then

we obtain

3:16 � 10

�4

I 6 S

c

6 1:29 � 10

�2

I:

This is slightly worse, but both bounds are approximately 10 times larger.

In this section we have discussed the expression R(X) from (6.12) for the positive de�nite

case and derived approximate solutions in the sense of quadratic forms. Moreover we have

shown the sharpness of the results and how approximate solutions a�ect the resulting

coupling system. It remains to summarize the results in an algorithm.

6.7 Algorithm

To apply the theory presented in Section 1{6 we will present an abstract algorithm. The

algorithm essentially consists of computing T

1

(�). By Theorem 6.51, T

1

(�) is an almost

87

optimal solution for the Riccati{equation (6.39) for nonsingular C from Lemma 6.19 and

in Section 3 we have given su�cient conditions to achieve the nonsingularity for C. For

simplicity we restrict ourselves to classes of matrices which ful�l the assumptions of Corol-

lary 6.35.

One way to approximate T

1

(�) by X could be to choose X as block diagonal part of T

1

(�).

To choose the block diagonal part of T

1

(�) will most likely not be the best choice in the

unsymmetric case.

Algorithm 6.89 (Compute Approximate Block Diagonal Solution)

For any fq; rg 2 I with q 6 s < r assume that A

qr

; A

rq

are factorized with respect

to (6.28) and (6.29).

Perform an LU decomposition of A

11

; : : : ; A

pp

.

De�ne for q = 1; : : : ; p, F

q

; G

q

by

F

q

=

�

� � �F

fq;rg

q

� � �

�

r: fq;rg2I

; G

q

=

2

6

6

4

.

.

.

G

fq;rg

q

.

.

.

3

7

7

5

r: fq;rg2I

:

Using the LU{decomposition of A

ii

compute

�

D;D by

�

D = diag (G

1

A

�1

11

F

1

; : : : ; G

s

A

�1

ss

F

s

); D = diag (G

s+1

A

�1

s+1;s+1

F

s+1

; : : : ; G

p

A

�1

pp

F

p

):

Compute an estimate � for 1=�

min

(I �

�

DD) and choose � such that

(�+ 1)

2

> 4��:

De�ne the block diagonal matrix X = diag

�

X

i;i

�

i2I

by X

i;i

= T

1

(�)

i;i

.

Perform an LU decomposition N

i;i

�

�

N

i;i

= X

i;i

of X

i;i

.

Note that in the symmetric positive de�nite case we can replace the LU decomposition by

the Cholesky decomposition.

The bottle neck in this algorithm is the computation of � which may become relatively

expensive. There are several ways to compute an estimate, see e.g. [41],p.351�. The main

problem will be that one would not like to solve systems with I �

�

DD, since this will be

as expensive as the solution with of systems with the coupling systems S

c

. An additional

problem is, that

�

D and D are distributed over the processors when the method is imple-

mented on a parallel computer. From this point of view the inverse iteration[41],p.383� is

not suitable. Essentially we can only perform matrix{vector multiplications with

�

D and

D. To get an estimate for � one can use Lanczos' method [67]. The problem in using Lanc-

zos' method will be that the convergence of the approximate eigenvalues obtained from

the Lanczos method may be slow. In this case the estimate for � can be too small. The

situation could be more improved using implicitly restarted Lanczos methods [81],[19],[56].

It has been observed that for implicitly restarted Lanczos methods the convergence of the

extremal eigenvalues will be typically faster than for the normal Lanczos process.

88

In addition we will discuss a heuristic variant of Algorithm 6.89, which will not need �. A

simple observation can help to have an estimate for �. Under the assumptions of Lemma

6.48 we have

T

1

(�) =

� + 1

2

C

�1

(I �E

1

) ; kE

1

k 6 � < 1:

From this it follows that

kT

1

(�)

�1

k 6

2

(� + 1)(1� �)

(I �

�

DD)

�1

 �

D

6

� + 1

2�

�

1 � �

 �

D

:

If in (6.49) � is chosen such that

(�+ 1)

2

4�

= k(I �

�

DD)

�1

k=�;

then we also have a lower bound for kT

1

(�)

�1

k.

k(I�

�

DD)

�1

k = kC

�

D

�1

k =

� + 1

2

kT

1

(�)

�1

(I�E

1

)

�

D

�1

k 6

(�+ 1)(1 � �)

2

T

1

(�)

�1

�

D

�1

:

=)

T

1

(�)

�1

>

�+ 1

2�

�

1� �

1

 �

D

�1

:

For large � and su�cient small � we can assume that

�+1

2�

�

1��

6 1 or at least

�+1

2�

�

1��

� 1.

Typically k

�

Dk > 1 and k

�

D

�1

k � 1. Unless k

�

Dk 6 1, any su�cient large � which ensures

that

T

1

(�)

�1

6 1

should be satisfactory.

If � is large, then by (6.50) we have T

1

(�) �

�+1

2

C

�1

=

�+1

2

(

�

D

�1

� D). To have an

approximate block diagonal solution X we suggest to set

X = � blockdiag(

�

D

�1

�D);

where � is chosen such that kX

�1

k 6 minf1; k

�

Dkg. This choice of X will be compared in

the numerical examples with X from Algorithm 6.89.

89

Algorithm 6.90 (Heuristic Block Diagonal Solution)

For any fq; rg 2 I with q 6 s < r assume that A

qr

; A

rq

are factorized with respect

to (6.28) and (6.29).

Perform an LU decomposition of A

11

; : : : ; A

pp

.

De�ne for q = 1; : : : ; p, F

q

; G

q

by

F

q

=

�

� � �F

fq;rg

q

� � �

�

r: fq;rg2I

; G

q

=

2

6

6

4

.

.

.

G

fq;rg

q

.

.

.

3

7

7

5

r: fq;rg2I

:

Using the LU{decomposition of A

ii

compute

�

D;D by

�

D = diag (G

1

A

�1

11

F

1

; : : : ; G

s

A

�1

ss

F

s

); D = diag (G

s+1

A

�1

s+1;s+1

F

s+1

; : : : ; G

p

A

�1

pp

F

p

):

De�ne the block diagonal matrix X = diag

�

X

i;i

�

i2I

by X

i;i

=

�

�

D

�1

�D

�

i;i

.

Compute an estimate � for 1=kX

�1

k and set X = �X.

Perform an LU decomposition N

i;i

�

�

N

i;i

= X

i;i

of X

i;i

.

Remark: Common packages for LU decompositions like LINPACK or LAPACK provide

estimates for the norm of the inverse when performing the LU decomposition with an

additional overhead, which only is in the magnitude of solving one system with the factors

from the LU decomposition.

For the positive de�nite case we can replace the LU decomposition everywhere by the

Cholesky decomposition, since C

�1

=

�

D

�1

�D is positive de�nite.

To take the block diagonal part of C

�1

or the block diagonal part of T

1

(�) in Algorithm

6.89,6.90 will most likely not be the best choice in the unsymmetric case. Other choices

may be better. In order to improve this choice we will introduce an additional scaling.

Since N �

�

N should approximate T

1

(�) (

�+1

2

C

�1

respectively) we should ensure to have

N

�1

T

1

(�)

�

N

�1

close to the identity. We can try decrease the norm of the o�{diagonal part

of this matrix by an additional balancing. In theory, by Theorem 6.51 it su�ces to reduce

2

�+1

CX � I in a norm. In practice we can at most reduce

�+1

2

X

�1

C

�1

� I in some norm.

Now any decomposition N

�

N = X can be changed to (NE)(E

�1

�

N) without changing

X. What we can do is to construct E in order to reduce kE

�1
�+1

2

N

�1

C

�1

�

N

�1

E � Ik or

kE

�1

N

�1

T

1

(�)

�

N

�1

E � Ik. To reduce the norm by similarity transformation see [66],[68].

The main idea behind balancing is to successively transform a matrix by equivalence trans-

formation such that locally the row sum and column sum of the absolute values of a given

matrix will be the same. This is done successively starting from the �rst row/column to

the last row column.

Summary

In this chapter we have discussed modi�cations for block Jacobi splittings to improve the

properties of the coupling system. It has turned out that under the relatively general condi-

tion

�

MS

�1

J

L = O;

�

LS

�1

J

M = O in Lemma 6.36 and an additional nonsingularity condition

90

on S

J

, we can rewrite the modi�ed coupling system as a linear quadratic expression of the

form (X +D) + (X +D)C(X +D). This has lead to �nding solutions of algebraic Riccati

equations. The condition

�

MS

�1

J

L = O;

�

LS

�1

J

M = O is ful�lled at least by the class of

block 2{cyclic matrices. The information about the relabelling of the diagonal blocks to

obtain

�

MS

�1

J

L = O;

�

LS

�1

J

M = O can be read as part of a preprocessing step.

For the case that C is nonsingular it has been shown that solutions of the Riccati equation

exist.

An exact solution requires the computation of a matrix square root. We have derived an

approximate solution for the Riccati equation which is close to the exact solution without

having to use of the matrix square root. These approximate solutions still have to be re-

placed by block diagonal matrices.

For the symmetric positive de�nite case we have shown sharper results. They show that the

smallest eigenvalue of S

c

has a lower bound which cannot be improved even for the exact

solution. The matrix T

1

(�) is almost optimal with respect to the condition number of S

c

.

Moreover to choose X as the block diagonal part of T

1

(�) is almost the best approximation

among all block diagonal matrices.

The following problems are still open.

First it is still an open problem how the theory can be extended if the condition

�

MS

�1

J

L =

O;

�

LS

�1

J

M = O is not ful�lled.

More critical is the question how this theory can be generalized to the case when S

J

is

singular. In principle we can express S

J

in terms of S = S

J

+LX

0

�

L+MX

�1

0

�

M for a given

choice of X

0

. The initial choice of X

0

should ensure that at least S is nonsingular. S is the

Schur{complement of the matrix

0

@

S

J

�L �M

�

L X

�1

0

O

�

M O X

0

1

A

and the matrices [S

J

;�L;�M] as well as

�

S

T

J

;

�

L

T

;

�

M

T

�

have full rank, since A is nonsin-

gular and A satis�es

A = [S

J

;�L;�M]

2

4

I

�

L

�

M

3

5

= [I;�L;�M]

2

4

S

J

�

L

�

M

3

5

:

In [32],[33] it has been shown that under these conditions there exist matrices X =

�

X

11

X

12

X

21

X

22

�

which minimize

k

0

@

S

J

�L �M

�

L X

11

X

12

�

M X

21

X

22

1

A

k

2

or k

0

@

S

J

�L �M

�

L X

11

X

12

�

M X

21

X

22

1

A

�1

k

2

:

This shows that computing a well{conditioned S = S

J

+LX

0

�

L+MX

�1

0

�

M is closely related

to the completion problem [32],[33]. In this case the theory has to be adapted.

Another problem in general is the nonsingularity requirement for C =

�

LA

�1

L;

�

D =

91

�

LS

�1

J

L. For this it is only necessary but not su�cient to have full rank matrices L;

�

L. For

some classes of matrices we have shown that this is already su�cient, but in general it will

be necessary to compute the left and right null space of

�

D.

It is also open, if the nice relations between the left/right null space of C and

�

D in Corollary

6.24 have an analogy if S

J

is singular.

Finally it is open how we have to replace the approximate solution T

1

(�) by an appropriate

block diagonal matrix X in Algorithm 6.89. To choose the block diagonal part of T

1

(�)

will most likely not be the best choice in the unsymmetric case.

We have introduced modi�ed block diagonal splittings and discussed modi�cations which

can be read as some kind of algebraic boundary conditions. The manipulations discussed in

Chapter 5 and Chapter 6 on block diagonal Splittings can be summarized in the following

table.

'

&

$

%

Minimal

Rank

'

&

$

%

Preserve

Structures

'

&

$

%

Algebraic

Boundary

Conditions

'

&

$

%

Block

Diagonal

Splitting

Modi�ed Block Diagonal Splitting

'

&

$

%

- �

?

From our list of questions on page 10 we now have to establish a parallel model in order

to give an answer to question 4 on page 10.

92

Chapter 7

Parallel Treatment of the Coupling

System

In this chapter we will discuss the treatment of the Sherman{Morrison{Woodbury formula

(1.4) on a parallel architecture. Here we will only consider the case of block diagonal

splittings that have been discussed in Chapter 5 and 6. To do this let us assume that we

have p processors each of them having its own memory. The communication should be

done by message passing.

A distribution of a matrix A over the processors will be de�ned. We will brie
y comment

on how this model of distribution can be a�ected by preprocessing, that is a reordering of

the initial system before its distribution is �xed.

According to the distribution of A we will examine the representation of the coupling

system S

c

from (1.4) and its related distribution over the processors.

To have a better understanding about the coupling system S

c

we will examine the corre-

sponding block graph and give two ways to derive the block graph of S

c

from the block

graph of A.

The distribution of S

c

and its representation involve a natural overlapping distribution

of vectors which are related to the coupling system. The concept of adding type vectors

and overlapping type vectors which is well{known in �nite element methods for partial

di�erential equations [55],[45],[46],[6] can be transferred to the situation here.

We will comment on the consequences of the representation of S

c

for solving systems with

S

c

.

7.1 Distribution of the System and Preprocessing

For the whole chapter we will assume the following distribution of a given matrix A. Let

A 2 GL (n;F), p some positive number counting the number of processors. Analogous to

93

Chapter 5 we will assume that A is partitioned as

A =

0

B

@

A

11

� � � A

1p

.

.

.

.

.

.

A

p1

� � � A

pp

1

C

A

(7.1)

with square diagonal blocks of size n

1

; : : : ; n

p

. We will assume that processor q, q = 1; : : : ; p

can directly access the blocks A

q;r

; A

r;q

, for all r = 1; : : : ; p. From this it follows that for

any q 6= r A

q;r

is available for precisely two processors.

Example 7.2 Let p = 4 and

A =

0

B

B

@

A

11

A

12

O O

A

21

A

22

A

23

O

O A

32

A

33

A

34

O O A

43

A

34

1

C

C

A

:

We get the following (overlapping) distribution of A with respect to the processors.

1 2 3 4

A

11

A

12

A

21

A

12

A

21

A

22

A

23

A

32

A

23

A

32

A

33

A

34

A

43

A

34

A

43

A

34

For sparse matrices the overhead of storing A

qr

; q 6= r simultaneously on two di�erent

processors seems to be acceptable. One could try to reduce the number of o�-diagonal

blocks A

q;r

by reordering the rows and columns of A in the form P

T

AP by a permutation

matrix P . This problem can be described in graph theoretical terms by the undirected

graph de�ned as follows.

De�nition 7.3 Let A 2 GL (n;F) as in (7.1).

Then the undirected scalar graph G

s

(A) = (V

s

(A); E

s

(A)) � (V

s

; E

s

) of A is de�ned by

V

s

= f1; : : : ; ng; E

s

= ffi; jg : i 6= j; a

ij

6= 0g.

The undirected block graph G

b

(A) = (V

b

(A); E

b

(A)) � (V

b

; E

b

) of A is de�ned by V

b

=

f1; : : : ; pg; E

b

= ffq; rg : q 6= r;A

qr

6= Og.

The elements of V are called vertices and the elements of E are called edges.

For strategies of permutingA by renumbering the nodes of V

s

we refer to [52], [17], [34], [70],

[80]. This preprocessing part is assumed to be done a priori and we will not discuss this in

detail here. Denote by V

1

; : : : ;V

p

the sets corresponding to the diagonal blocks A

11

; : : : ; A

pp

of the permuted matrix P

T

AP . At least the following aspects should be handled by the

preprocessing step.

1. The number of edges E

s

\ (V

q

� V

r

), q 6= r; q; r = 1; : : : ; p should be as small as

possible.

94

2. #E

b

should be as small as possible.

3. G

b

should be constructed with respect to the underlying processor topology, that is

the physical communication network between the processors.

Of course, not all of these criteria can be satis�ed simultaneously. The �rst criterion is

suitable to decrease the rank of the remaining part and therefore the size of the coupling

system. The second criterion will have in
uence on the block graph of the coupling system

(see Section 3 for details) and its �ll{in. Many nonempty sets E

s

\ (V

q

� V

r

) of small size

may reduce the size of the coupling system but will require additional communication.

In principle communication has to be performed between all processors p; q such that

fq; rg 2 G

b

, which can be seen in Section 4. So a fewer number of elements in nonempty

sets E

s

\(V

q

�V

r

) 6= ; of larger size might be more useful than several sets E

s

\(V

q

�V

r

) 6= ;

of small size. Finally the third criterion is necessary to adapt the algebraic problem to the

underlying processor system.

The distribution of A over the processors will induce a special overlapping distribution for

the coupling system S

c

. This will be investigated in the next section.

7.2 Representation of S

c

Based on the distribution of A introduced in Section 1 we will examine the representation

of the related coupling system S

c

from (1.4) and the corresponding distribution over the

processors.

Analogous to Chapter 5 we denote by

I := ffq; rg : q 6= r; A

q;r

6= O or A

r;q

6= Og(7.4)

and assume that the indices of I are taken in some �xed order i

1

; : : : ; i

s

.

For any i = fq; rg 2 I we assume that A

qr

; A

rq

are factored as

�A

qr

= F

i

q

G

i

r

;�A

rq

= F

i

r

G

i

q

;(7.5)

with matrices F

i

q

; (G

i

q

)

T

2 M(n

q

� n

i

;F); G

i

r

; (F

i

r

)

T

2 M(n

i

� n

r

;F) for some positive

number n

i

. We de�ne

n

c

=

X

i2I

n

i

:(7.6)

Choices of this factorization have already been discussed in Chapter 5. For simplicity we

assume that this factorization has been performed in parallel a priori on processor r; q

simultaneously.

The ordering i

1

; : : : ; i

s

of the elements in I and the corresponding sizes n

i

1

; : : : ; n

i

s

induce a

block partitioning for vectors in F

n

c

and matrices in M (n�n

c

;F); M(n

c

�n;F). Partition

the identity matrix I

n

c

of size n

c

� n

c

columnwise as

I

n

c

=

�

E

i

1

; : : : ; E

i

s

�

;(7.7)

95

where E

i

l

denotes n

i

l

unit vectors one after another. This notation has already been intro-

duced in (5.5){(5.10).

We de�ne F;G analogous to (5.13) by

F =

X

i=fq;rg2I

(E

q

F

i

q

+ E

r

F

i

r

)(E

i

)

T

; G =

X

i=fq;rg2I

E

i

(G

i

q

E

T

q

+G

i

r

E

T

r

)(7.8)

and the block diagonal matrix S = diag (S

11

; : : : ; S

pp

) by

S

qq

= A

qq

+

X

i=fq;rg2I

F

i

q

G

i

q

; q = 1; : : : ; p:(7.9)

This de�nition corresponds to the de�nition of S in (5.15). Here we will assume that S is

invertible.

S

qq

can be computed in parallel since F

i

q

; G

i

q

are available on processor q.

From this de�nition we obtain a splitting

A = S � FG:(7.10)

For an example of this splitting we refer to Example 5.16.

The corresponding coupling system for the Sherman{Morrison{Woodbury formula (1.4)

will be

S

c

= I �GS

�1

F:(7.11)

The de�nition of F;G induces a block partitioning for S

c

= (S

i;j

c

)

i;j2I

with blocks S

i;j

c

of

size n

i

� n

j

. Analogous to Chapter 5 we will superpose indices for matrices and vectors

which correspond in their size and partitioning to S

c

. These indices are always elements of

I.

The distribution of the blocks of A induces in a natural way a distribution for the coupling

system S

c

.

Lemma 7.12 Let S

c

= (S

i;j

c

)

i;j2I

= I � GS

�1

F 2 GL (n

c

;F). With respect to the

partitioning from (7.7), I�S

c

can be written as sum of p elementary matricesM

1

; : : : ;M

p

,

S

c

= I �

p

X

q=1

M

q

;(7.13)

where each M

q

= (M

i;j

q

)

i;j2I

has the following properties:

M

q

=

X

i;j2I: q2i\j

E

i

(G

i

q

S

�1

qq

F

j

q

)(E

j

)

T

:(7.14)

M

q

is available on processor q without communication.

M

i;j

q

= O, if q 62 i \ j.

If M

i;j

q

6= O and M

i;j

r

6= O for q 6= r, then i = j = fq; rg, i.e., two di�erent elementary

matrices M

q

;M

r

overlap at most in one diagonal block, provided that fq; rg 2 I.

96

Proof:

We can write the coupling system S

c

as

S

c

= I �GS

�1

F

= I �

p

X

q=1

GE

q

S

�1

qq

E

T

q

F

= I �

p

X

q=1

(

X

i�fr;qg2I

E

i

G

i

q

)S

�1

qq

(

X

j�fs;qg2I

F

j

q

(E

j

)

T

)

= I �

p

X

q=1

X

i�fr;qg;j�fs;qg2I

E

i

(G

i

q

S

�1

qq

F

j

q

)(E

j

)

T

= I �

p

X

q=1

X

i;j2I: q2i\j

E

i

(G

i

q

S

�1

qq

F

j

q

)(E

j

)

T

= I �

p

X

q=1

M

q

:

Thus I � S

c

can be written as sum of p elementary matricesM

q

; q = 1; : : : ; p.

M

q

is obviously computable on processor q without communication, since S

qq

; F

i

q

; G

j

q

are

stored on processor q.

By the de�nition of M

q

it follows immediately that M

q

can have nonzero blocks only in

those positions M

i;j

q

; i; j 2 I, where i and j both contain q.

Consider q 6= r; 1 6 q; r 6 p. M

q

can have non trivial blocks only in positions M

i;j

q

, if

q 2 i \ j. Analogously M

r

can have non trivial blocks only in positions M

i;j

r

, if r 2 i \ j.

To have a common block M

i;j

q

;M

i;j

r

, we need fq; rg � i \ j. But this is only possible if

i = j = fq; rg 2 I. 2

Remark: By Lemma 7.12 we get nonzero blocks of S

c

(at most) for all nonempty inter-

sections fq; rg \ fs; tg, fq; rg; fs; tg 2 I.

Example 7.15 Let p = 6 and let the set I = ff1; 2g; f2; 3g; f4; 5g; f5; 6g; f1; 4g;

f2; 5g; f3; 6gg be given. According to Lemma 7.12, I�S

c

is a sum of 6 matricesM

1

; : : : ;M

6

,

each of them present on the corresponding processor without communication. We use for

each M

q

a di�erent symbol in the following way:

M

1

M

2

M

3

M

4

M

5

M

6

+ � 2
 3 ?

97

Then the distribution of the blocks of S

c

can be described by the following pattern:

1 2 4 5 1 2 3

2 3 5 6 4 5 6

1; 2 +� � + �

2; 3 � �2 � 2

4; 5
3 3
 3

5; 6 3 3? 3 ?

1; 4 +
 +

2; 5 � � 3 3 �3

3; 6 2 ? 2?

The picture illustrates that only the diagonal blocks can overlap. Two di�erent elementary

matrices M

q

;M

r

overlap precisely in one diagonal block, if fq; rg 2 I. Otherwise they do

not overlap.

Lemma 7.12 and Example 7.15 show that M

1

; : : : ;M

p

have several blocks which are zero.

Moreover, by Lemma 7.12 we can �x those blocks which are possibly nonzero, i.e. we can

reduce any M

q

to its nontrivial part. This will be done in the next corollary.

Corollary 7.16 Using the notation of Lemma 7.12 we de�ne for any q = 1; : : : ; p the

matrix K

q

by

K

q

=

�

� � �E

fq;rg

� � �

�

r:fq;rg2I

;(7.17)

where E

fq;rg

corresponds to the partitioning of the identity matrix in (7.7). Set

^

M

q

=

K

T

q

M

q

K

q

.

Then M

q

= K

q

^

M

q

K

T

q

and

^

M

q

equals

^

M

q

= (M

i;j

q

)

i;j2I: q2i\j

. In addition we have

P

p

q=1

K

q

K

T

q

= 2I.

Proof:

From Lemma 7.12 it immediately follows that M

q

only has nonzero blocks M

i;j

q

for

q 2 i \ j. By de�nition, the block columns of K

q

are the corresponding block columns and

so K

T

q

M

q

K

q

is just the reduction of M

q

to those blocks which satisfy q 2 i \ j. For the

sum

P

p

q=1

K

q

K

T

q

we note that any block unit vector E

i

= E

fq;rg

will appear precisely

twice. Once as block column of K

q

and once as block column of K

r

. From this it follows

that

P

p

q=1

K

q

K

T

q

= 2

P

i2I

E

i

(E

i

)

T

= 2I. 2

Example 7.18 We continue Example 7.15. By Corollary 7.16 we obtain K

1

=

�

E

f1;2g

; E

f1;4g

�

, K

2

=

�

E

f1;2g

; E

f2;3g

; E

f2;5g

�

, K

3

=

�

E

f2;3g

; E

f3;6g

�

, K

4

=

�

E

f4;5g

; E

f1;4g

�

,

K

5

=

�

E

f4;5g

; E

f5;6g

; E

f2;5g

�

,K

6

=

�

E

f5;6g

; E

f3;6g

�

. The pattern in Example 7.15 has already

illustrated that M

1

; : : : ;M

q

only have blocks in those positions associated with K

1

; : : : ;K

6

.

In this section we have shown that the distribution of A over the processors has lead to

an interesting representation of S

c

as sum of p elementary matrices. As Lemma 7.12 has

already shown, the block graph of S

c

is not arbitrary. In the next section we will derive

the block graph of S

c

from the block graph of A.

98

7.3 Deriving the Block Graph of S

c

In this section we will derive the block graph of S

c

from the block graph of A.

Example 7.19 Assume that the scalar graph G

s

(A) = (V

s

; E

s

) of A can be represented

by the following rectangular mesh, where the vertices in V

s

are on the crossings and the

edges of E

s

are the lines between the crossings.

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

Consider the scalar graph G

s

(A) of A. Next we will assume that the set of vertices V

s

is

written as disjoint union of p nonempty subsets, V

s

= V

1

_

[� � �

_

[V

p

. These p subsets induce

subgraphs or subdomains (V

q

; E

qq

), where E

qq

= E

s

\ (V

q

� V

q

). Beside these edge sets

E

11

; : : : ; E

pp

we have for all q 6= r E

qr

= E

s

\ ((V

q

�V

r

)[(V

r

�V

q

)). Then E

s

can be written

as disjoint union of all E

qr

.

Since we have assumed that A has already a given block partitioning the sets V

1

; : : : ;V

p

will be the numbers f1; : : : ; n

1

g; fn

1

+1; : : : ; n

1

+ n

2

g; : : : ; f

P

p�1

i=q

n

q

+1; : : : ;

P

p

i=q

n

q

g, We

set V

b

= f1; : : : ; pg and the corresponding edge set E

b

can be obtained from the scalar edge

sets by E

b

= ffq; rg : q 6= r; E

qr

6= ;g. This gives us precisely the block graph of A with

respect to the given partitioning (7.1).

Example 7.20 We consider Example 7.19 and assume that the nodes of V

1

; : : : ;V

6

can

be characterized by the following 6 overlayed rectangles.

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

1 2 3

4

5 6

99

Now the block graph can be obtained by considering only the rectangles as nodes. An edge

in the block graph exists, if there exists a scalar edge between di�erent rectangles.

1 2 3

4

5 6

Using the de�nition of a block graph of A we can see that

I = E

b

;(7.21)

i.e., the labels for the blocks of S

c

are the edges of the block graph of A. Consequently the

number of diagonal blocks #I in S

c

is precisely the number of edges in the block graph of

A.

We can obtain a �rst abstract description of the block graph of S

c

in graph theoretical

terms.

Lemma 7.22 Consider A 2 GL (n;F) with the block partitioning from (7.1) and the

splitting A = S � FG from (7.10),where S should be nonsingular. Set P

b

(A) the set of all

paths in G

b

(A) of length 2, i.e.,

P

b

(A) := f ffq; rg; fs; tgg : fq; rg; fs; tg 2 E

b

(A); #(fq; rg \ fs; tg) = 1g:(7.23)

Let S

c

= I �GS

�1

F and consider for S

c

the induced block partitioning from (7.7).

Then the block graph of S

c

can be obtained from the block graph of A in the following way

(by using the elements of E

b

(A) as labels instead of 1; : : : ;#E

b

(A)):

V

b

(S

c

) = E

b

(A); E

b

(S

c

) � P

b

(A):(7.24)

Proof:

From Lemma 7.12 we know that S

c

= I �

P

p

q=1

M

q

. For any matrix M

q

, an o�-diagonal

block M

i;j

q

can be di�erent from O, only if i \ j = fqg.

For q 6= r,M

q

;M

r

do not have any common o�{diagonal block. It follows that up to a sign

the o�-diagonal blocks of S

c

are those of M

1

; : : : ;M

p

. Consequently M

i;j

q

6= O or M

j;i

q

6= O

for i 6= j can at most occur if i \ j = fqg. So the o�-diagonal blocks of S

c

are essentially

characterized by

p

[

q=1

ffi; jg : i; j 2 I; i \ j = fqgg =

p

[

q=1

ffi; jg : i; j 2 E

b

(A); i \ j = fqgg:

100

This is obviously P

b

(A). 2

Remark: Typically we have E

b

(S

c

) = P

b

(A). The reason that in (7.24) only E

b

(S

c

) � P

b

(A)

is asserted, is that there are a few exceptions where E

b

(S

c

) 6= P

b

(A) can occur. Consider

i = fq; rg; j = fr; sg 2 I with q < r < s and the block entries S

i;j

c

= �G

fq;rg

r

S

�1

rr

F

fr;sg

r

,

S

j;i

c

= �G

fr;sg

r

S

�1

rr

F

fq;rg

r

of S

c

. If A

qr

6= O and A

rs

6= O, then we have G

fq;rg

r

6= O and

F

fr;sg

r

6= O. So we can expect that S

i;j

c

6= O. Obviously one can construct counterexamples

where G

fq;rg

r

6= O, S

�1

rr

6= O, F

fr;sg

r

6= O but G

fq;rg

r

S

�1

rr

F

fr;sg

r

= O. Analogously one can

proceed for S

j;i

c

. Another exception is, when A

qr

6= O, A

rs

= O, A

rq

= O and A

sr

6= O.

In this case the undirected block graph of A contains the edges fq; rg; fr; sg but S

i;j

c

=

O; S

i;j

c

= O. To describe this e�ect one has to consider the directed graph of A instead of

the undirected graph of A. In fact, A

qr

6= O, A

rs

= O, A

rq

= O and A

sr

6= O means that

there exists neither the path f(q; r); (r; s)g nor the path f(s; r); (r; q)g.

z z z- �

q r s

The block graph of S

c

is well{known in graph theory [13], p.11 as the `edge graph' with

respect to the block graph of A.

Example 7.25 We consider Example 7.20. Here the edges are E

b

(A) =

ff1; 2g; f2; 3g; f4; 5g; f5; 6g; f1; 4g; f2; 5g; f3; 6gg. E

b

(A) is identical to I and can also be

identi�ed with V

b

(S

c

) using the elements of E

b

(A) as labels instead of 1; 2; : : : ; 7. It easy to

see that I here is identical with I in Example 7.15.

From E

b

(A) we get the following P

p

(A):

P

b

(A) = f ff1; 2g; f1; 4gg; ff1; 2g; f2; 3gg; ff1; 2g; f2; 5gg; ff2; 3g; f2; 5gg; ff2; 3g; f3; 6gg;

ff4; 5g; f1; 4gg; ff4; 5g; f2; 5gg; ff4; 5g; f5; 6gg; ff5; 6g; f2; 5gg; ff5; 6g; f3; 6gg g.

w w

w w

w w w

f1,2g f2,3g

f4,5g f5,6g

f1,4g f2,5g f3,6g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

Beside this formal graph theoretic derivation of the block graph of S

c

from the block graph

A there exits another constructive derivation using elimination graphs for LU decomposi-

tion [27],pp.93�. Essentially we can derive the graph of S

c

from the fact that S

c

is de�ned

as the Schur{complement of the matrix

�

S F

G I

�

:(7.26)

101

De�nition 7.27 Let B = (B

ij

)

i;j=1;:::;m

; 1 6 q 6 m . If G

b

(B) = (V

b

(B); E

b

(B)) is the

block graph of B, then the elimination block graph G

b

(B=B

qq

) = (V

b

(B=B

qq

); E

b

(B=B

qq

))

of B with respect to B

qq

is de�ned by

V

b

(B=B

qq

) = V

b

(B) n fqg, E

b

(B=B

qq

) = (E

b

(B) \ (V

b

(B=B

qq

)� V

b

(B=B

qq

))) [A

b

(B=B

qq

),

where A

b

(B=B

qq

) = ffr; sg : fr; qg; fs; qg 2 E

b

(B)g.

The elimination graph can be read as follows. From the initial graph we remove the node q

and the corresponding edges fq; rg for all r. The remaining graph will get additional edges

fr; sg for all former adjacent vertices r; s of q. Adjacent vertices of q are those vertices r

for which an edge fq; rg exists in the old graph.

The main reason for the introduction of elimination graphs is its close relation to the block

graph of the Schur{complement

Lemma 7.28 Let B = (B

ij

)

i;j=1;:::;m

; 1 6 q 6 m and assume that B

qq

is nonsingular.

Set C = (B

r;s

)

r;s=1;:::q�1;q+1;:::m

� (B

r;q

)

r=1;:::q�1;q+1;:::m

B

�1

qq

(B

q;s

)

s=1;:::q�1;q+1;:::m

, which is the

Schur{complement of B with respect to B

qq

.

Then for the block graph G

b

(C) = (V

b

(C); E

b

(C)) we have:

V

b

(C) = V

b

(B=B

qq

); E

b

(C) � E

b

(B=B

qq

):(7.29)

Proof:

This can be obtained from the de�nition of C: It is clear that V

b

(C) = V

b

(B=B

qq

).

Compared with E

b

((B

r;s

)

r;s=1;:::q�1;q+1;:::m

) = E

b

(B) \ (V

b

(B=B

qq

) � V

b

(B=B

qq

)) the

block graph of C can have additional edges fr; sg only if C = B

r;q

B

�1

qq

B

q;s

6= O or

C = B

s;q

B

�1

qq

B

q;r

6= O. But this is possible only if the edges fr; qg; fq; rg exist in the block

graph of A, i.e. fr; sg 2 A

b

(B=B

qq

). 2

The close relation between LU decomposition and graphs is well{known in literature [40]

and has been used for several algorithms, e.g. the minimum degree algorithm, see e.g.

[40],[18].

By Lemma 7.28 we have a constructive algorithm to obtain the block graph of S

c

. First

of all we de�ne the undirected block graph G

b

= (V

b

; E

b

) of the augmented matrix from

(7.26) by

V

b

= V

b

(A) [E

b

(A); E

b

= f fq; fq; rgg : fq; rg 2 E

b

(A)g:(7.30)

It easy to see that this de�nition exactly gives the block graph of the augmented matrix

from (7.26) in the sense of de�nition 7.3 up to the use of the edges of E

b

(A) as labels for

the additional vertices in V

b

.

From the de�nition of V

b

; E

b

it immediately follows that the block graph of the augmented

matrix can be obtained from the block graph of A replacing all edges fq; rg by a vertex

labelled as fq; rg and the two corresponding new edges fq; fq; rgg; fq; fq; sgg

Example 7.31 We consider example 7.20. According to (7.30) the block graph of the

augmented matrix (7.26) looks as follows.

102

1 2 3

4

5 6

w w

w w

w w w

f1,2g f2,3g

f4,5g f5,6g

f1,4g f2,5g f3,6g

One can see, how the new labels f1; 2g; f2; 3g; f4; 5g; f5; 6g; f1; 4g; f2; 5g; f3; 6gg are just

placed as vertices on the previous corresponding edges in the block graph of A.

Now the block graph of S

c

can be constructed from the block graph G

b

of the augmented

matrix building the elimination graph with respect to the S

11

; : : : ; S

pp

one after another.

Since S is block diagonal, there is no di�erence in the order of eliminating the vertices

1; 2; : : : ; p.

Example 7.32 We continue Example 7.31 and start eliminating the vertices correspond-

ing to the rectangles. First of all, node 1 is removed and its adjacent vertices labelled as

f1; 2g; f1; 4g are connected.

2 3

4

5 6

w w

w w

w w w

f1,2g f2,3g

f4,5g f5,6g

f1,4g f2,5g f3,6g

�

�

�

�

Next we take node 2.

3

4

5 6

w w

w w

w w w

f1,2g f2,3g

f4,5g f5,6g

f1,4g f2,5g f3,6g

�

�

�

�

�

�

�

�

@

@

@

@

We continue this procedure and �nally get the following graph:

103

w w

w w

w w w

f1,2g f2,3g

f4,5g f5,6g

f1,4g f2,5g f3,6g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

In this section we presented two ways of deriving the block graph of S

c

from the block

graph of A. The investigation of S

c

, especially its representation and its block graphs has

provided the basis for the following discussion on how the coupling system S

c

can be treated

in parallel computations.

7.4 Parallel Treatment of S

c

In this section we will discuss how the preception of the representation of S

c

in Lemma

7.12 and the relations to the block graph of A from Section 3 can be exploited to get a

convenient concept for the parallel treatment of S

c

.

From Corollary 7.16 we have got a representation of S

c

as

S

c

= I �

p

X

q=1

K

q

^

M

q

K

T

q

;

where each

^

M

q

is available on processor q. K

q

has been de�ned in (7.17) by K

q

=

(� � � E

i

� � �)

i2I: i=fq;rg

. Note that q is �xed in the de�nition of K

q

. We set

K = (K

1

; : : : ;K

p

) :(7.33)

K

1

; : : : ;K

p

have an interesting property. As shown in Corollary 7.16, any block unit vector

E

i

= E

fq;rg

from (7.7) appears as block column in K

q

and K

r

. This induces a natural

overlapping distribution for vectors x = (x

i

)

i2I

2 F

n

c

. In the sequel we will introduce two

type of vectors called overlapping type vectors and adding type vectors. The idea of such

kind of vectors in the use for parallel computations can be traced back to [55] and has

been used in several implementations of �nite element methods in parallel computations

[45],[46],[6]. In [6] the two type of vectors are referred as consistent and inconsistent vectors.

De�nition 7.34 Let X 2 M(n

c

�s;R) for some number s > 0. Then X 2 M(2n

c

�s;R)

de�ned by

X := K

T

X(7.35)

is called the overlapping representation of X. Any X 2 M(2n

c

� s;R) satisfying

KX = X(7.36)

is called an adding representation of X.

104

Of course this abstract de�nition needs some more detailed explanation. In order to avoid

confusion about the notation of overlapping and adding type vectors and matrices we like

to point out that an overlapping representation is overlined, otherwise it is underlined.

Before we will examine De�nition 7.34 and its consequences for the use in parallel compu-

tations, we will state some very interesting results related to the use of overlapping type

vectors and adding type vectors. Essentially Theorem 7.37 says that we can express all

elementary vector operations and matrix{vector operations in terms of overlapping type

vectors and adding type vectors. A closer look from the point of parallel computation will

be done afterwards.

Theorem 7.37 Let X;Y 2 M(n

c

� s;R) for some number s > 0 and let X;Y 2

M(2n

c

�s;R) be corresponding overlapping and adding representations. Using the notation

of Lemma 7.12 and Corollary 7.16 the following assertions hold.

X =

1

2

X(7.38)

is an adding representation of X.

Y = K

T

KY(7.39)

is the overlapping representation of Y . Let

R = Y

T

X;(7.40)

then R = Y

T

X. De�ne Y by

Y =

1

2

X � diag

�

^

M

q

�

q=1;:::;p

X;(7.41)

then Y is an adding representation of Y = S

c

X.

Proof:

If X = K

T

X, then by Corollary 7.16 we have K

1

2

X =

1

2

KK

T

X = X, which implies

(7.38).

Y = K

T

KY = K

T

Y , since Y is an adding type representation of Y . From this (7.38)

follows.

If KY = Y , then Y

T

X = Y

T

K

T

X = Y

T

X .

Finally, by Corollary 7.16 we have

S

c

= I �

p

X

q=1

K

q

^

M

q

K

T

q

= I �K diag (

^

M

q

)

q=1;:::;p

K

T

= K

�

1

2

I � diag (

^

M

q

)

q=1;:::;p

�

K

T

:

Then Y = S

c

X becomes Y = K

�

1

2

I � diag (

^

M

q

)

q=1;:::;p

�

X = KY , which shows that Y is

an adding representation of Y . 2

This nice result itself is useless as long as we do not know, which advantages we will have

in parallel computations when using these kind of representations.

105

We will now have a closer look at the de�nition of overlapping/adding type representations

and their meaning. For simplicity let s = 1. The case s > 1 can be traced back to s = 1

by considering any column separately.

Any x 2 F

n

c

has a natural partitioning x = (x

i

)

i2I

taken with respect to (7.7). Since the

overlapping representation is de�ned by K

T

x we obtain the vector

x =

0

B

@

K

T

1

x

.

.

.

K

T

p

x

1

C

A

:(7.42)

Since K

q

= (� � � E

i

� � �)

i2I: i=fq;rg

, each K

T

q

x will consist of (x

fq;rg

)

r: fq;rg2I

, where q is �xed.

From this it follows that any x

fq;rg

will appear twice in x, one time as part of K

T

q

x and

another time as part of K

T

r

x. In the sequel we will assume that K

T

q

x is stored on processor

q, q = 1; : : : ; p. We will give an example.

Example 7.43 We continue Examples 7.15,7.18. Any x 2 F

n

c

has a natural partitioning

as x = (x

i

)

i2I

. The relation between x and x is illustrated in the following table.

x x

processor

1 2 3 4 5 6

K

T

1

x K

T

2

x K

T

3

x K

T

4

x K

T

5

x K

T

6

x

x

f1;2g

x

f1;2g

x

f1;2g

x

f2;3g

x

f2;3g

x

f2;3g

x

f4;5g

x

f4;5g

x

f4;5g

x

f5;6g

x

f5;6g

x

f6;5g

x

f1;4g

x

f1;4g

x

f1;4g

x

f2;5g

x

f2;5g

x

f2;5g

x

f3;6g

x

f3;6g

x

f3;6g

In order to distinguish between the duplicate copies of x

fq;rg

in x at two di�erent positions,

we denote the two copies of x

fq;rg

by x

(q;r)

and x

(r;q)

. This is important, since the two copies

of x

fq;rg

are assumed to be stored on di�erent processors! For any q = 1; : : : ; p we set

�x

(q;r)

= �x

(r;q)

:= x

fq;rg

:(7.44)

Note that fq; rg = fr; qg but (q; r) 6= (r; q). Then we have

K

T

q

x = (�x

(q;r)

)

r: fq;rg2I

; x =

0

B

@

(�x

(1;r)

)

r:f1;rg2I

.

.

.

(�x

(p;r)

)

r:fp;rg2I

1

C

A

:(7.45)

The assumption that K

T

q

x should be stored on processor q now reads as x

(q;r)

is stored on

processor q.

106

We now examine adding type vectors. If x 2 F

2n

c

is an adding type vector, then the

equation Kx = x induces a partitioning for x. At the �rst place we have K = (K

1

; : : : ;K

p

)

and secondly any K

q

can be re�ned as K

q

=

�

� � �E

fq;rg

� � �

�

r:fq;rg2I

.

The partitioning of x can be done analogously to the partitioning of x, i.e. we have

x = (x

(q;r)

)

fq;rg2I

:(7.46)

Kx = x now reads as

x =

p

X

q=1

�

� � �E

fq;rg

� � �

�

r: fq;rg2I

0

B

@

.

.

.

x

(q;r)

.

.

.

1

C

A

r: fq;rg2I

:(7.47)

The main reason for the introduction of overlapping and adding type vectors is its con-

venience in the parallel treatment of S

c

. We will show this for the following subroutines

which have been mentioned in Theorem 7.37. For these subroutines we will assume that any

overlapping and adding representations X = (X

(q;r)

)

fq;rg2I

, Y = (Y

(q;r)

)

fq;rg2I

of matrices

X;Y 2 M(n

c

� s;R) will have their blocks X

(q;r)

;X

(q;r)

stored on processor q.

We can omit a subroutine for (7.38) since the implementation is trivial. For this reason

we start with (7.39). From (7.47) it follows that for any fq; rg 2 I we have X

fq;rg

=

X

(q;r)

+X

(r;q)

.

Algorithm 7.48 (adding type ! overlapping type from (7.39))

FOR any fq; rg 2 I:

local data exchange X

(q;r)

 ! X

(r;q)

between processor q; r.

FOR all q 2 f1; : : : ; pg:

X

(q;r)

:= X

(q;r)

+X

(r;q)

, for any r such that fq; rg 2 I.

The local data exchange only a�ects those pairs q; r of processors such that there is an

edge in the block graph of A between q; r. We will illustrate this by an example.

Example 7.49 Consider the block graph from (7.20), which also corresponds to Example

7.43. The data exchange is illustrated in the following picture.

1 2 3

4

5 6

- -

� �

- -

� �

6

?

6

?

6

?

X

(1;2)

X

(2;1)

X

(2;3)

X

(3;2)

X

(4;5)

X

(5;4)

X

(5;6)

X

(6;5)

X

(4;1)

X

(1;4)

X

(5;2)

X

(2;5)

X

(6;3)

X

(3;6)

107

Next we will discuss the realization of (7.40). R = Y

T

X can be written as sum R =

P

p

q=1

R

q

, where any R

q

satis�es R

q

=

P

r: fq;rg2I

(Y

(q;r)

)

T

X

(q;r)

.

Algorithm 7.50 (scalar product from (7.40))

FOR all q 2 f1; : : : ; pg:

R

q

=

P

r:fq;rg2I

(Y

(q;r)

)

T

X

(q;r)

Compute global sum R =

P

p

q=1

R

q

by data exchange of over all processors.

In many realizations of a global sum like R =

P

p

q=1

R

q

the data exchange and the compu-

tation of the sum are combined. We illustrate this by continuing Example 7.49

Example 7.51 Consider Example 7.49. Suppose that R

1

; : : : ; R

6

have already been com-

puted. To compute the sum over all processors we can proceed as follows.

1 2 3

4

5 6

-

�

-

�

6

?

R

1

R

2

R

4

R

5

R

6

R

3

The computed partial sum we will denote by R

1;2

; R

4;5

and R

3;6

. The computation of R can

be continued as follows.

1 2 3

4

5 6

-

�

-

�

6

?

R

1;2

R

3;6

R

4;5

R

3;6

R

4;5

R

1;2

As last step we get

1 2 3

4

5 6

-

�

-

�

6

?

R

4;5

R

3;6

R

1;2

R

3;6

R

4;5

R

1;2

The example shows that the computation of a global sum extremely depends on the un-

derlying processor topology, that is the network of data channels between the processors.

108

Of course both types of communication, local data exchange and global data exchange

are dependent on the parallel machine which is used. In addition the local data exchange

depends on the preprocessing part which permutes the initial matrix before a system is

solved, since one may obtain di�erent connectivity properties for the block graph of A for

two di�erent permutations.

As a last step of realization we consider the matrix{vector product from (7.41). The nice

result is, that there is no communication necessary, but one starts with the overlapping

representation and ends up with an adding representation.

Algorithm 7.52 (matrix{vector product from (7.41))

FOR all q 2 f1; : : : ; pg:

(Y

(q;r)

)

r:fq;rg2I

=

^

M

q

(X

(q;r)

)

r: fq;rg2I

Y

(q;r)

=

1

2

X

(q;r)

� Y

(q;r)

, for any r such that fq; rg 2 I.

In this section we have introduced a convenient way to treat S

c

in parallel computations

based on adding type and overlapping type vectors. This concept allows an easy realization

of elementary vector operations and matrix{vector operations. Next we will discuss the

consequences of this concept for direct and iterative methods applied to S

c

.

7.5 Direct Solution of S

c

x = b

The direct solution of a system S

c

x = b requires the explicit generation of S

c

and this

means that the matrices

^

M

1

; : : : ;

^

M

p

from Corollary 7.16 have to be computed explicitly.

Although this can be performed in parallel without any communication this might be ex-

pensive, if some n

i

; i 2 I are not small, since for any q = 1; : : : ; p processor q has to solve

P

i2I: q2i

n

i

systems with S

qq

.

After the generation of

^

M

1

; : : : ;

^

M

p

a block LU{decomposition of S

c

still has several prob-

lems. First of all the matrix S

c

is distributed over the processors which means, that the

decomposition will be a strongly sequential process. As long as we do not have a stability

criterion like positive de�niteness, diagonal dominance or the M -matrix property it may

happen that we have to do pivoting, which will be rather complicated with respect to the

distribution of S

c

over the processors. Even if a stability criterion exists, it may happen

that one produces �ll{in, which requires additional administrational work. A special class

where a direct solution method is feasible is the class of acyclic matrices, where �ll{in can

be avoided, if a stability criterion exists.

De�nition 7.53 Let B = (B

ij

)

i;j=1;:::;m

2 M(n � n;F) and let G

b

= (V

b

; E

b

) its block

graph.

A sequence of k > 1 piecewise disjoint edges fq

1

; q

2

g; fq

2

; q

3

g; : : : ; fq

k

; q

1

g is called

cycle in G

b

.

G

b

is called acyclic, if it does not contain any cycle.

109

G

b

is called a chain, if there exist piecewise disjoint fq

1

; q

2

g; fq

2

; q

3

g; : : : ; fq

m�1

; q

m

g such

that E

b

� ffq

1

; q

2

g; fq

2

; q

3

g; : : : ; fq

m�1

; q

m

gg.

Lemma 7.54 Let B = (B

ij

)

i;j=1;:::;m

2 M(n�n;F). Assume that its block graph is acyclic

and that for any permutation matrix P which leaves the blocks B

ij

invariant, P

T

BP has a

block LU{decomposition. Then there exists permutation matrix Q such that Q

T

AQ = LU

is a block LU{decomposition of A and the block graph of L;U is included in the block graph

of A.

Proof:

See e.g. [31]. 2

If a stability criterion exists for S

c

and if the block graph of S

c

is acyclic, then we can

order the blocks of S

c

such that we do not produce �ll{in. Unfortunately the requirement

`acyclic' for the block graph of S

c

is very restrictive. Essentially the only possibility for S

c

to have an acyclic block graph is the case when S

c

is already block tridiagonal.

Lemma 7.55 Assume that the block graph of S

c

is acyclic and that E

b

(S

c

) = P

b

(A) in

(7.24), i.e., the block graph of S

c

can be derived as in Section 3 and does not have less

edges. Then the block graphs of S

c

; A are contained in chains.

Proof:

For the block graph of S

c

we use the same labels for the vertices as in Lemma 7.22. Assume

that the block graph of S

c

is acyclic but not contained in a chain. Then there exists at

least one vertex i 2 V

b

(S

c

), which has more than two adjacent vertices, i.e., there exist at

least three piecewise di�erent vertices j;k; l 2 V

b

(S

c

) n fig, each of them labelled as set

with two elements, which are adjacent vertices of i. From the special structure of the block

graph of S

c

described in Lemma 7.22 it follows that we must have nonempty intersections

i \ j; i \ k; i \ l. But these three intersections cannot be piecewise disjoint, since i has

only two elements. From this it follows, that at least two of the three vertices j;k; l, say

j;k must have a common intersection with i. Since j 6= k, it follows that j \ k = fqg,

for some q. For the special block graph of S

c

, the edge fj;kg must also belong to E

b

(S

c

),

since E

b

(S

c

) = P

b

(A). So E

b

(S

c

) contains the edges fi; jg; fi;kg; fj;kg. This is a cycle and

therefore a contradiction to our assumption, that the block graph of S

c

is acyclic.

So the block graph of S

c

is a contained in a chain, i.e., V

b

(S

c

) = fi

1

; : : : ; i

s

g; E

b

(S

c

) �

ffi

1

; i

2

g; fi

2

; i

3

g; : : : ; fi

s�1

; i

s

gg, where any i

k

\ i

k+1

contains one element. But then

i

1

; : : : ; i

s

can be written as fq

1

; q

2

g; fq

2

; q

3

g; : : : ; fq

s

; q

s+1

g, which means that the block

graph of A is also a contained in a chain, since i

1

; : : : ; i

s

are piecewise disjoint. 2

This somehow strange result is illustrated in the following �gure, which makes the result

more transparent. At least one of the dashed lines must also exist in the picture.

110

v

v v

v

�

�

�

�

�

@

@

@

@

@

�

�

�

�

�

�

A

A

A

A

A

A

fi; jg

fi; kg fj; lg

fi;mg; fj;mg

So the case, where A is block tridiagonal is essentially the only case, where the block graph

of S

c

is acyclic. This case has already been treated in [59].

One way to handle the stability problem as well as the problem with the �ll{in in parallel

is to collect all M

1

; : : : ;M

p

on one processor or on all processors. Then the problem has

been reduced to a usual sequential problem. The disadvantage is of course, that this step

requires global communication and unless all M

1

; : : : ;M

p

are small, a lot of data have to

be exchanged. Nevertheless, for small M

1

; : : : ;M

p

this strategy is feasible and simpli�es

the problem extremely.

7.6 Iterative Solution of S

c

x = b

For the iterative solution of S

c

x = b, more precisely for the use of Krylov{subspace based

methods[74] to solve S

c

x = b, one only needs elementary operations, like matrix{vector

multiplication, scalar products and operations of the form �x+y, where � 2 R, x; y 2 R

n

c

.

Up to the operation �x + y the other two operations were already discussed in Theorem

7.37.

Unfortunately the number of iterations may be huge if the condition number of the eigen-

vector matrix of S

c

is big, or if the eigenvalue distribution is bad[50].

To improve the properties of S

c

one usually constructs preconditioners, i.e., nonsingular

matrices

^

S

c

, such that

^

S

�1

c

S

c

has improved properties, but

^

S

c

should be relatively cheap

to compute and systems of the form

^

S

c

y = c should be easy to solve.

The distribution of S

c

over the processors and parallel computation aggravate the con-

struction of

^

S

c

.

The idea behind the nested Divide & Conquer strategy is to give an additional way of

improving the properties of S

c

. It is a compromise between a direct solution and an iterative

solution of S

c

, i.e., the given coupling system is divided into a small part which is directly

solved and a remaining reduced coupling system, which still has to be solved. However in

principle the nested divide & conquer could be combined with the use of a preconditioner.

The only thing which changes is that the updates using orthogonal transformations have to

be taken with respect to the preconditioned coupling system instead of the initial coupling

system. The problem is how to get a preconditioner for the coupling system and how to

parallelize this preconditioner. Even if S

c

is explicitly computed any preconditioner for S

c

has to take care of the natural distribution of S

c

over the processors. By Corollary 7.16

111

S

c

has a natural representation S

c

= I �

P

p

q=1

K

q

^

M

q

K

T

q

, where any K

q

is describes the

blocks of S

c

which are located on processor q. A preconditioner which is in natural way

adapted to the memory distribution could have the form

P

p

q=1

K

q

Z

q

K

T

q

since applying

this matrix is analogous to applying S

c

. In the positive de�nite case one could choose

P

p

q=1

K

q

(K

T

q

S

c

K

q

)

�1

K

T

q

. A general construction of preconditioners of this form will be

discussed in future work.

Summary

In this chapter we have discussed the parallel treatment of nested divide & conquer meth-

ods. Especially the related coupling system S

c

and its representation were of special interest.

It has been shown that the coupling system can be written as a sum of p elementary ma-

trices, which overlap only in their block diagonal positions. Each elemental matrix can be

generated independently on each processor.

Closely connected to the elementary matrix representation of S

c

is its block graph. We

have discussed two ways to derive the block graph of S

c

from the block graph of the initial

system A. First the block graph of S

c

is the so{called edge graph with respect to the block

graph of A giving a �rst derivation of the block graph in terms of graph theory. Second we

have presented a constructive way using the block elimination graph of a suitably extended

system.

The special structure of S

c

has turned out to give a convenient parallel treatment using

two kind of vectors, overlapping type vectors and adding type vectors. This can be seen as

algebraic analogy to techniques which are already used in the parallel treatment of �nite

element methods for several years. Here analogous results between the relations of over-

lapping type vectors and adding type vectors and the coupling system could be shown.

For the direct solution we have shown that the most common case of systems where no

�ll{in is produced during the LU{decomposition, namely the acyclic case, coincides already

with the block tridiagonal case. For the iterative solution the nested divide & conquer is a

compromise between a direct solution and an iterative solution of S

c

.

The coupling system and the topics which we have discussed in this chapter can be sum-

marized in the following picture.

'

&

$

%

Initial

coupling system

'

&

$

%

block

graph

'

&

$

%

distri-

bution

'

&

$

%

Use of overlap./

adding type

vectors

?

In the next chapter we will generalize this parallel concept to the nested divide & conquer

method.

112

Chapter 8

Parallel Treatment of Nested Divide

& Conquer Methods

In this chapter we will discuss the parallel treatment of the nested application of the

Sherman{Morrison{Woodbury formula (1.4) from Chapter 3. The concept of parallelization

for the initial coupling system from Chapter 7 will be adapted to the nested sequence of

coupling systems which is invoked by the nested divide & conquer process.

Again the concept of adding type vectors and overlapping type vectors will be useful to

overcome problems which may be caused by using several steps of the nested Sherman{

Morrison{Woodbury formula.

8.1 Overview

The aspects which have been discussed in Chapter 7, essentially concentrate on the parallel

treatment of S

c

. When using the nested divide & conquer approach from Chapter 3, the

initial coupling system S

c

will be replaced by a sequence of coupling systems S

c;k

. In

addition the block diagonal matrix S is replaced by a sequence of matrices S

k

, which are

typically no longer block diagonal but di�er from S up to a low rank matrix. The parallel

treatment of this sequence is much more complicated than the initial case, where no nested

strategy is applied.

The main idea which we are now going to present is to use the fact that implicitly an

LU decomposition is performed on the initial coupling system S

c

. Using this fact the

sequence of nested coupling systems can be traced back to the initial coupling system with

additional low rank updates and pre- and post multiplication with suitable matrices. Of

great importance for the parallel realization will be the collection of low rank updates

in order to keep the data exchange small. These arguments can be used as well for the

representation of S

�1

k

.

Based on the Nested Divide & Conquer theory in Chapter 3, we now describe its parallel

realization. For this we recall the construction of nested splittings in (3.4){(3.8). For a

given initial splitting A = S � FG from (7.10) the nested strategy can be described as

113

follows: We consider numbers 0 < s

0

; : : : ; s

m�1

with

P

m�1

k=0

s

k

< n

c

. Furthermore we set

r

0

= n

c

, r

k+1

= r

k

� s

k

; k = 0; : : : ;m� 1. Using these settings we have considered for any

k = 0; : : : ;m� 1 orthogonal matrices U

k

2 GL (r

k

;F) partitioned as U

k

=

h

~

U

k

;

^

U

k

i

, where

~

U

k

2 M(r

k

� s

k

;R),

^

U

k

2 M(r

k

� r

k+1

;R). The numbers s

0

; : : : ; s

m�1

are assumed to be

small compared with n

c

.

By the aid of these matrices the nested sequence of splittings is de�ned by S

0

:= S;F

0

:=

F;G

0

:= G and for k = 0; : : : ;m� 1 :

h

~

F

k

; F

k+1

i

:= F

k

U

k

;

h

~

G

k

G

k+1

i

:= U

T

k

G

k

;

S

k+1

:= S

k

�

~

F

k

~

G

k

:

(8.1)

Since S

k+1

= S

k

�

~

F

k

~

G

k

, k = 0; : : : ;m�1 and A = S

k

�F

k

G

k

, k = 0; : : : ;m we can express

S

�1

k+1

; A

�1

using the Sherman{Morrison{Woodbury formula (1.4).

=)

�

S

�1

k+1

= S

�1

k

+ S

�1

k

~

F

k

~

S

�1

c;k

~

G

k

S

�1

k

;

A

�1

= S

�1

k+1

+ S

�1

k+1

F

k+1

S

�1

c;k+1

G

k+1

S

�1

k+1

:

(8.2)

Here we have set

~

S

c;k

:= I �

~

G

k

S

�1

k

~

F

k

; S

c;k+1

:= I �G

k+1

S

�1

k+1

F

k+1

:(8.3)

In (3.13) we have introduced in addition

Y

k

=

^

U

0

(� � �

^

U

k�2

(

^

U

k�1

~

U

k

) � � �):(8.4)

Using Y

k

we can rewrite

~

F

k

as

~

F

k

= FY

k

. A further matrix E

k

= S

�1

k

~

F

k

has been de�ned

in order to simplify the use of S

�1

k

~

F

k

for

~

S

c;k

and S

�1

k+1

. Once E

k

has been computed we

obtain

~

S

c;k

= I �

~

G

k

E

k

; S

�1

k+1

= (I + E

k

~

S

�1

c;k

~

G

k

)S

�1

k

:(8.5)

This has lead to product representation

S

�1

k+1

= (I + E

k

~

S

�1

c;k

~

G

k

) � � � (I + E

0

~

S

�1

c;0

~

G

0

)S

�1

;(8.6)

as it was shown in (3.11).

In this nested de�nition we have assumed that all S

k

are nonsingular. In this case the

corresponding coupling systems are nonsingular, too.

For the practical implementation of course not all matrices have to be computed explicitly.

Since in addition we would like to implement this method on a parallel machine we have

to look closer at this sequence of matrices.

Applying S

�1

k+1

to a vector b means that we have to solve a system Sx = b followed by

several low rank updates. From the product representation of S

�1

k+1

in (8.6) it follows that

114

we have to compute k + 1 scalar products and vector updates of the form �x + y one

after another. Since the vector and the matrix are assumed to be distributed over the

processors, this will require k+1 steps of global communication. The solution process will

be illustrated in the following tabular.

Step Operation Communication

b = S

�1

b |

0 b = b+ E

0

~

S

�1

c;0

~

G

0

b global. comm. for R =

~

G

0

b

1 b = b+ E

1

~

S

�1

c;1

~

G

1

b global. comm. for R =

~

G

1

b

.

.

.

k b = b+ E

k

~

S

�1

c;k

~

G

k

b global. comm. for R =

~

G

k

b

The situation will be quite similar for S

c;k+1

, since S

�1

k+1

is part of it. When using House-

holder re
ectors for the orthogonal matrices U

k

the same problem will occur.

For this reason, we will discuss the following topics:

� The general treatment of a product of low rank modi�cation matrices I � V B

�1

W

in parallel computations.

� The treatment of U

0

; : : : ; U

m�1

, especially the way to handle a product of Householder

re
ectors and how Householder re
ectors can be used in combination with vectors of

adding type and overlapping type from Chapter 7.

� The parallel treatment of S

c;k+1

from (8.3).

� The realization of the product representation of S

�1

k+1

from (8.6).

The templates used for the parallel solution of S

c;m

x = b are summarized in the following

table.

Algorithm Purpose Subject

8.10 Compute Householder re
ector of distributed vector

8.15 Form product of Householder re
ectors Householder

8.16 re
ectors

8.17

Apply Householder re
ectors

8.20 Matrix{vector product S

c;m

x

8.23 Update vectors B

m�1;0

; : : : ; B

m�1;m�2

from LU{

decomposition of S

c

8.25 Form product of Householder re
ectors, version adapted

for the use with nested divide & conquer

Handle

S

c;m

8.26 New low rank update from step m� 1! m

8.27 Parallel nested divide & conquer, application of the tem-

plates to treat S

c;m

x = b in parallel

8.29 Multiplication with �rst m columns from the product of

Householder re
ectors Handle

8.30 Multiplication with �rst m columns from the product of

Householder re
ectors

S

�1

m

8.31 Solve a system S

m

x = b in parallel

115

8.2 Treatment of Products of Low Rank Modi�ca-

tions

As a �rst step to get a sensible parallel realization of nested splittings obtained by the

divide & conquer approach from Chapter 3, we will discuss how a product of the form

(I � V

1

B

�1

1

W

1

) � � � (I � V

k

B

�1

k

W

k

)

can be modi�ed in order to be e�ective in parallel computations. A product of this form

occurs twice when applying the nested Sherman{Morrison{Woodbury formula from (1.4).

At the �rst place it appears in the product representation of S

�1

k+1

in (8.6) and secondly

the product of orthogonal matrices U

0

; : : : ; U

m�1

will be of this form when using their

Householder representation.

The product (I�V

1

B

�1

1

W

1

) � � � (I�V

k

B

�1

k

W

k

) itself applied to a vector x requires k scalar

products like R

k

= W

k

x and additional updates like x� V

k

B

�1

k

R

k

. For vectors which are

distributed over the processors any scalar product will require global communication as we

have already discussed in Algorithm 7.50. For practical purposes, communication depends

not strongly linear on the length of the data, but it depends on one hand on a �xed latency

time which is needed to set up communication and on the other hand it depends on the

length of the data. For small number of data the second part is almost neglectible. Thus it

is typically many times cheaper to exchange a block of data in one step than to exchange

one value several times.

Example 8.7 (Computation Time for Low Rank Updates) We will illustrate this

by a practicle example. We compare for rank 1 updates of size n � n, where n = 1000,

the time which is requested by a product of say l rank 1 updates compared with the time

which is needed by a rank l update. The computations were carried out on a PARSYTEC

GCPP-128. This is a MIMD parallel computer with a distributed memory architecture.

For the numerical experiments we used p = 4 processors. For the size l of the rank we

used l = 5; 10; : : : ; 50. In the following picture we compared the total time as well as the

maximum time for arithmetic operations for both variants. To have reliable results, the

operations were carried out 10000 times and the average was taken over the computational

time.

We can see in the following picture that for the product of l rank 1 updates as well as

for the rank l update the maximum number of arithmetic time is almost the same and it

grows linearly with the rank, which is expected. A great di�erence is the total time, or more

precisely the communication time. For the rank l update the communication time is almost

constant, while for the product of l rank 1 updates the communication times grows rapidly.

Even for small l, e.g. l = 10 the communication for the product of rank 1 updates is more

than three times as much as the time for the arithmetic operations.

116

5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

rank l

time

[s]

total time for l

rank 1 updates(�)

total time for 1

rank l update(�)

arithm. time for l

rank 1 updates (��)

arithm. time for 1

rank l update(���)

The situation becomes more dramatic, if we increase the size of the problem, e.g. n =

4000, p = 16. For larger number of processors, the time which is needed for the global

communication will increase while the arithmetic time will be almost the same as before.

5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

rank l

time

[s]

total time for l

rank 1 updates(�)

total time for 1

rank l update(�)

arithm. time for l

rank 1 updates (��)

arithm. time for 1

rank l update(���)

The example illustrates that handling of a product of low rank updates is a serious problem,

if the data tra�c should not overlay the computation.

This observation is the background for the following lemma, which describes how a product

of low rank modi�cations can be collected to one matrix.

Lemma 8.8 Consider for l = 1; : : : ; k, V

l

;W

T

l

2 M(n� n

l

;F), B

l

2 GL (n

l

;F). Then

(I � V

1

B

�1

1

W

1

) � � � (I � V

k

B

�1

k

W

k

) = I � V B

�1

W;

117

where

V = [V

1

; : : : ; V

k

]; B =

0

B

B

B

@

B

1

W

1

V

2

� � � W

1

V

k

.

.

.

.

.

.

.

.

.

.

.

.

W

k�1

V

k

O B

k

1

C

C

C

A

; W =

2

6

4

W

1

.

.

.

W

k

3

7

5

:

Proof:

This follows immediately by induction on k. 2

Applying Lemma 8.8 to a product of low rank modi�cations (I � V

1

B

�1

1

W

1

) � � � (I �

V

k

B

�1

k

W

k

) requires the additional computation of W

i

V

l

. This will be an additional over-

head. But if some columns of this product are explicitly needed, then this overhead will be

compensated by the fact that we can easily compute a column of I � V B

�1

W .

(I � V B

�1

W)e

k

= e

k

� V B

�1

w

k

:

Here e

k

should denote the k{th unit vector and w

k

denotes column k of W .

8.3 Handling a Product of Householder Re
ectors

Now we will discuss the treatment of U

0

; : : : ; U

m�1

or more precisely the treatment of the

product

Q

k

:= U

0

�

I O

O U

1

�

� � �

�

I O

O U

k

�

:(8.9)

For the realization we have to perform several multiplications with U

0

; : : : ; U

k

. We will

assume, that all U

0

; : : : ; U

k

are represented by a product of Householder re
ectors[41], i.e.

products of matrices of the form

I � �vv

T

; v 2 R

n

:

Before we discuss this in detail we give an algorithm which solves the problem

(I � �vv

T

)u = �e

k

for a given vector u 2 R

n

in overlapping representation u. Here e

k

denotes the k{th unit

vector. Since I��vv

T

is assumed to be orthogonal, � is unique up to a sign. Following [41],

p.196, we can adapt the computation to the parallel case. This problem has been studied

in [76],[77]. Here we will concentrate on the adaption to the use of adding type vectors and

overlapping type vectors.

118

Algorithm 8.10 (Compute Householder re
ector)

FOR all q 2 f1; : : : ; pg.

Compute local scalar product of � = u

T

u:

u

q

:=

1

2

u

q

. �

q

= u

T

q

u

q

.

Get component k of distributed stored vector u:

IF u

q

contains the k{th component of u, then let �

q

be this element.

ELSE �

q

= 0.

Compute global sum [�; �] =

P

p

q=1

[�

q

; �

q

] by data exchange of over all processors.

� =

p

�; � =

1

2

�.

Compute Householder parameters:

IF � 6= 0, � = � + � sgn �, v = u=�, � = �j�j=�.

IF v

q

contains the k{th component of v then set this component to 1.

We can immediately apply Lemma 8.8 to a product of Householder re
ectors (I �

�

0

v

0

v

T

0

) � � � (I � �

s

v

s

v

T

s

). This requires the additional computation of v

T

i

v

l

. This will be

an additional overhead. In our case we will see that these products have to be performed

in any case, even if we keep the re
ectors in factored form. The reason for this is the fact

that we need some columns of the product Q

k

of re
ectors explicitly. Y

k

de�ned in (8.4) is

essentially k{th column of Q

k

, if s

0

= s

1

= � � � = s

k

. Whenever we increase the number of

Householder re
ectors from k to k +1, we have to compute v

T

0

v

k+1

; : : : ; v

T

k

v

k+1

. Again the

communication can be done in one step exchanging k values.

For the parallel treatment of S

c

we will see that multiplications with one or a block of

Householder transformations can be easily performed based on adding type vectors and

overlapping type vectors.

Lemma 8.11 Let x; y 2 R

n

c

and denote by x; y 2 R

2n

c

corresponding overlapping and

adding representations. Let V;W 2 M(n

c

� k;R); T 2 GL (k;R) and denote by V ;W 2

M((2n

c

)� k;R) corresponding overlapping representations of V;W . Then

(I �

1

2

V T

�1

W

T

)x(8.12)

is the overlapping representation of (I � V T

�1

W

T

)x,

(I �

1

2

V T

�1

W

T

)y(8.13)

is an adding representation of (I � V T

�1

W

T

)y.

Proof:

For (8.12) we have to show that (I �

1

2

V T

�1

W

T

)x = K

T

(I � V T

�1

W

T

)x. But

K

T

(I � V T

�1

W

T

)x = x�K

T

V T

�1

W

T

KK

T

2

x = x�

1

2

V T

�1

W

T

x.

For (8.13) we have to show that K(I �

1

2

V T

�1

W

T

)y = (I � V T

�1

W

T

)y. In this case we

have K(I �

1

2

V T

�1

W

T

)y = y �

1

2

KK

T

V T

�1

W

T

Ky = y � V T

�1

W

T

y. 2

119

If we have collected a product of Householder matrices to one matrix according to Lemma

8.8, then by Lemma 8.11 we need the overlapping representation of this matrix in order to

apply it to both kind of vectors, adding type vectors and overlapping type vectors. This

will be the case for Householder re
ectors.

Analogously to Theorem 7.37 and the related Algorithms 7.48, 7.50,7.52 we will formu-

late subroutines to compute the collected Householder representations and to apply the

collected product to a vector. For these subroutines we will assume that v

0

; : : : ; v

s

; v

s+1

are given by their overlapping representations. Any overlapping and adding representation

x = (x

(q;r)

)

fq;rg2I

, y = (y

(q;r)

)

fq;rg2I

will have its blocks x

(q;r)

; x

(q;r)

stored on processor q.

We start with the collection of Householder re
ectors from Lemma 8.8. According to

Lemma 8.8 suppose that (I � �

0

v

0

v

T

0

) � � � (I � �

s

v

s

v

T

s

) have already been collected to one

matrix

(I � �

0

v

0

v

T

0

) � � � (I � �

s

v

s

v

T

s

) = I � V

s

T

�1

s

V

T

s

;

where

V

s

= [v

0

; : : : ; v

s

] ; T

s

= (T

ij

)

i;j=0;:::;s

=

0

B

B

B

B

@

1

�

0

v

T

0

v

1

� � � v

T

0

v

s

.

.

.

.

.

.

.

.

.

.

.

.

v

T

s�1

v

s

O

1

�

s

1

C

C

C

C

A

:(8.14)

Then the product (I � �

0

v

0

v

T

0

) � � � (I � �

s

v

s

v

T

s

)(I � �

s+1

v

s+1

v

T

s+1

) = I � V

s+1

T

�1

s+1

V

T

s+1

can

be computed by the following algorithm.

Algorithm 8.15 (Product of Householder re
ectors from Lemma 8.8)

Let V � V

s

; v � v

s+1

and compute R = v

T

V by calling Algorithm 7.50 with

X = V and Y =

1

2

v.

) [T

s+1;1

; : : : ; T

s+1;s

] = R; T

s+1;s+1

= 1=�

s+1

.

If the product of Householder re
ectors is given by I � V

s

T

�1

s

V

T

s

then the following algo-

rithms compute 	 = (I � V

s

T

�1

s

V

T

s

)� for � 2 M(n

c

;�s;R). In order to get no con
ict in

the use of X;Y in Algorithm 7.50, the matrices here are called � and 	. The �rst algorithm

is used for overlapping type vectors and the second one is used for adding type vectors. In

practice, the algorithms coincide, i.e., one can apply any of the two Algorithms 8.16,8.17

to both kind of vectors.

Algorithm 8.16 (Apply Householder re
ectors from Lemma 8.11)

Let V � V

s

; T � T

s

and compute R = �

T

V by calling Algorithm 7.50 with

X = V and Y =

1

2

�.

Solve T

^

R = R simultaneously on all processors.

FOR all q 2 f1; : : : ; pg:

	

(q;r)

= �

(q;r)

� V

(q;r)

^

R for any r such fq; rg 2 I.

120

Algorithm 8.17 (Apply Householder re
ectors from Lemma 8.11)

Let V � V

s

; T � T

s

and compute R = �

T

V by calling Algorithm 7.50 with

X = V and Y = �.

Solve T

^

R = R simultaneously on all processors.

FOR all q 2 f1; : : : ; pg:

	

(q;r)

= �

(q;r)

�

1

2

V

(q;r)

^

R for any r such fq; rg 2 I.

8.4 Parallel Treatment of S

c;m

After the parallel treatment of Householder re
ectors we will discuss the way how the

coupling system S

c;m

from (8.3) which is generated by the nested divide & conquer approach

from Chapter 3 can be treated in parallel computations. For m = 0 this was already the

topic of Chapter 7. When introducing low rank updates the remaining coupling system

S

c

� S

c;0

will be replaced by its Schur{complement, after an equivalence transformation

with U

0

. This has been shown in Lemma 3.18. This gives a way to treat the coupling system

S

c;m

from (3.7), which is involved by the nested divide & conquer process, in parallel. From

Lemma 3.18 it follows that we can write for k = 0; : : : ;m� 1,

~

S

c;k

as

~

S

c;k

=

~

U

T

k

^

U

T

k�1

� � �

^

U

T

0

S

c

^

U

0

� � �

^

U

k�1

~

U

k

�

k�1

X

l=0

~

B

kl

~

S

�1

c;l

~

B

lk

(8.18)

and S

c;m

as

S

c;m

=

^

U

T

m�1

� � �

^

U

T

0

S

c

^

U

0

� � �

^

U

m�1

�

m�1

X

l=0

B

ml

~

S

�1

c;l

B

lm

:(8.19)

Before we will describe the matrices

~

B

kl

; B

lm

let us assume for a moment that these matrices

are available. Essentially (8.19) says that we have to apply the product of Householder

re
ectors and its transpose to S

c

followed by m additional low rank modi�cation to obtain

S

c;m

. We can state an algorithm for a multiplication y = S

c;m

x. For this algorithm, we

assume that B

ml

; B

lm

are given by their adding representation,

~

S

c;l

should be globally

available. The vector x is assumed to be given by its overlapping representation analogously

to the standard case when y = S

c

x is computed. Since the size of S

c;m

is less than the size

of S

c

we assume that x; y are extended by n

c

� r

m

leading zeros.

121

Algorithm 8.20 (Matrix{Vector Product S

c;m

x)

Let B � [B

m�1;0

; : : : ; B

m;m�1

], B

0

�

2

6

4

B

0;m�1

.

.

.

B

m�1;m

3

7

5

,

~

S

c

� diag (

~

S

c;0

; : : : ;

~

S

c;m�1

),

Apply Algorithm 8.16 with � = x and result 	.

FOR all q 2 f1; : : : ; pg.

Compute local scalar product of R = x

T

B:

R

q

= B

T

q

x

q

.

Compute global sum R =

p

P

q=1

R

q

by data exchange of over all processors.

This sum can be build simultaneously with the global sum in Algorithm 8.16.

FOR all q 2 f1; : : : ; pg.

y

(q;r)

= B

(q;r)

~

S

�1

c

R for any r such fq; rg 2 I.

Apply Algorithm 7.52 with X := 	 and result Y .

Apply Algorithm 8.17 with � = Y and result 	.

FOR all q 2 f1; : : : ; pg.

y

(q;r)

= y

(q;r)

+	

(q;r)

for any r such fq; rg 2 I.

We have seen that the introduction of B

lm

; B

ml

only requires two steps of global commu-

nication, while the usual application of S

c;m

= I � G

m

S

�1

m

F requires 3 � (m� 1) steps of

global communication,m� 1 steps for S

�1

m

and twice application of Householder re
ectors

requires 2(m � 1) steps of global communication. For the collected Householder product

the usual application of S

c;m

would still require m+ 1 steps of global communication.

We now study the matrices

~

B

kl

and B

lm

. Following (3.22),

~

B

kl

and

~

B

lk

, 0 6 l < k < m,

are de�ned by

~

B

kl

=

~

U

T

k

^

U

T

k�1

� � �

^

U

T

l

S

c;l

~

U

l

;

~

B

lk

=

~

U

T

l

S

c;l

^

U

T

l

� � �

^

U

k�1

~

U

k

:(8.21)

According to (3.23) B

mk

and B

km

, k = 0; : : : ;m� 1 satisfy

B

mk

=

^

U

T

m�1

� � �

^

U

T

k

S

c;k

~

U

k

; B

km

=

~

U

T

k

S

c;k

^

U

T

k

� � �

^

U

m�1

:(8.22)

The de�nition of

~

B

kl

;

~

B

lk

,B

mk

and B

km

can be mademore transparent, when these matrices

are successively generated and updated. We will show this by the following (sequential)

scheme.

m = 1: Set B

1;0

=

^

U

T

0

S

c;0

~

U

0

, B

0;1

=

~

U

T

0

S

c;0

^

U

0

,

~

S

c;0

=

~

U

T

0

S

c

~

U

0

.

m > 1: Assume that for all k = 0; : : : ;m� 2, B

m�1;k

and B

k;m�1

, have been computed.

FOR k = 0; : : : ;m� 2:

�

~

B

m�1;k

B

m;k

�

:=

�

~

U

T

m�1

^

U

T

m�1

�

B

m�1;k

;

h

~

B

k;m�1

; B

k;m

i

:= B

k;m�1

h

~

U

m�1

;

^

U

m�1

i

.

B

m;m�1

=

^

U

T

m�1

S

c;m�1

~

U

m�1

; B

m�1;m

=

~

U

T

m�1

S

c;m�1

^

U

m�1

.

~

S

c;m�1

=

~

U

T

m�1

S

c;m�1

~

U

m�1

.

This scheme shows that in any step fromm�1 to m the old matricesB

k;m�1

; B

m�1;k

will be

updated by a Householder transformation to become

~

B

m�1;k

; B

m;k

and

~

B

k;m�1

; B

k;m

. Then

122

new matrices B

m;m�1

; B

m�1;m

are generated. Of course for the use in parallel computations

the computation of B

m;m�1

; B

m�1;m

has to make use of the representation of S

c;m�1

from

(8.19) with m replaced by m � 1. In this case the computation of B

m;m�1

and B

m�1;m

changes to the following sequence.

Y

m�1

:=

^

U

0

� � �

^

U

m�2

~

U

m�1

.

B

m;m�1

:=

^

U

T

m�1

^

U

T

m�2

� � �

^

U

T

0

S

c

Y

m�1

�

P

m�2

l=0

B

m;l

~

S

�1

c;l

~

B

l;m�1

.

B

m�1;m

:= Y

T

m�1

S

c

^

U

0

� � �

^

U

m�2

^

U

m�1

�

P

m�2

l=0

~

B

m�1;l

~

S

�1

c;l

B

l;m

.

~

S

c;m�1

:= Y

T

m�1

S

c

Y

m�1

�

P

m�2

l=0

~

B

m�1;l

~

S

�1

c;l

~

B

l;m�1

.

For a sensible use of

~

B

kl

;

~

B

lk

, B

mk

and B

km

we will now present a concept. These additional

low rank modi�cations have to be sensibly handled in order to avoid too much additional

communication. The concept can be divided into three parts. The �rst part will be a

strategy for the distribution of

~

B

kl

;

~

B

lk

, B

mk

and B

km

. The second part will be a analogous

strategy for the distribution of V

s

from (8.14). Finally the third part will consider the

computation of B

m�1;m

; B

m;m�1

and

~

S

c;m�1

.

To present the �rst part we set

B

m

=

0

B

B

B

B

B

B

@

~

S

c;0

~

B

0;1

� � �

~

B

m�1;0

B

0;m

~

B

1;0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

~

B

m�2;m�1

B

m�2;m

~

B

m�1;0

� � �

~

B

m�1;m�2

~

S

c;m�1

B

m�1;m

B

m;0

� � � B

m;m�2

B

m;m�1

S

c;m

1

C

C

C

C

C

C

A

:

The idea is now to keep some part of B

m

, namely the upper left part with

~

S

c;k

;

~

B

kl

;

~

B

lk

on all processors. Since s

0

; : : : ; s

m�1

are small compared with n

c

, this requires not too

much storage and overhead. The part with B

lm

; B

ml

will be held as adding type vectors,

distributed over the processors. Finally S

c;m

will stay in its factored form as in (8.19). We

give a sketch of the memory distribution for B

m

and B

m+1

for the case s

0

= � � � = s

m

= 1:

m

�

n

c

�m

8

>

>

<

>

>

:

m

z }| {

n

c

�m

z }| {

globally distrib. distrib.

available add. type add. type

distrib.

add. type

distrib.

S

c;m

add. type

| {z }

B

m

m+1

8

>

>

<

>

>

:

n

c

�m�1

�

m+1

z }| {

n

c

�m�1

z }| {

globally globally distrib.

available available add. type

globally globally distrib.

available available add. type

distrib. distrib.

add. type add. type

S

c;m+1

| {z }

B

m+1

In order to provide this memory distribution we will give an algorithm which

computes

�

~

B

m�1;0

� � �

~

B

m�1;m�2

B

m;0

� � � B

m;m�2

�

from B

m�1;0

; : : : ; B

m�1;m�2

and which makes

~

B

m�1;0

; : : : ;

~

B

m�1;m�2

globally available. For the algorithm we assume that

B

m�1;0

; : : : ; B

m�1;m�2

are expanded by m� 2 leading zeros and that B

m�1;0

; : : : ; B

m�1;m�2

123

are given by their adding representations. We assume that U

m�1

is given by its Householder

representation = I � �

m�1

v

m�1

v

T

m�1

, computed by Algorithm 8.10.

Algorithm 8.23 (Update B

m�1;0

; : : : ; B

m�1;m�2

)

Let B � [B

m�1;0

; : : : ; B

m�1;m�2

], v � v

m�1

, � � �

m�1

.

FOR all q 2 f1; : : : ; pg.

Compute local scalar product of R = v

T

B:

R

q

= v

T

q

B.

Get row m� 1 of distributed stored matrix B:

IF B

q

contains the (m� 1): row of B, then let Z

q

be this row.

ELSE Z

q

= 0.

Compute global sum [R;Z] =

p

P

q=1

[R

q

; Z

q

] by data exchange of over all processors.

~

B = Z � �R.

FOR all q 2 f1; : : : ; pg.

B

q

= B

q

�

1

2

v

q

R.

IF B

q

contains the (m� 1): row of B, then set this row to 0.

)

h

~

B

m�1;0

; : : : ;

~

B

m�1;m�2

i

=

~

B; [B

m;0

; : : : ; B

m;m�2

] = B.

For the second part we note that in order compute B

m;m�1

; B

m�1;m

and

~

S

c;m�1

we have to

compute Y

m�1

=

^

U

0

� � �

^

U

m�2

~

U

m�1

from (8.3). The computation of Y

m�1

no longer requires

the expensive successive application of elementary Householder re
ectors. If the product

of Householder re
ectors has been collected, then Y

m�1

corresponds to s

m�1

columns of

Q

m�1

. For simplicity of representation we will again assume that s

0

= � � � = s

m

= 1. Then

Y

m�1

will be column m of Q

m�1

. Let V

m�1

= (v

lk

)

l=1;:::;n

c

;k=0;:::;m�1

, then

Y

m�1

= Q

m�1

e

m

= e

m

� V

m�1

T

�1

m�1

(v

mk

)

T

k=0;:::;m�1

:(8.24)

For this operation no additional scalar product is necessary, but we should ensure that

(v

mk

)

k=0;:::;m�1

is available on all processors. To ensure this we have to proceed for

T

m�1

; V

m�1

analogously to B

m

. Set

N

m

=

0

B

B

B

B

B

B

B

B

B

B

@

T

0;0

T

0;1

� � � T

0;m

v

1;0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T

m�1;m

v

m;0

� � � v

m;m�1

T

m;m

v

m+1;0

� � � � � � v

m+1;m

.

.

.

.

.

.

v

n

c

;0

� � � � � � v

n

c

;m

1

C

C

C

C

C

C

C

C

C

C

A

:

Note that by construction of Householder re
ectors in Algorithm 8.10, V

m

is a lower tri-

angular matrix with unit diagonal. For N

m

and N

m+1

we will construct a similar memory

124

distribution as for B

m

; B

m+1

:

m

�

n

c

�m

8

>

>

<

>

>

:

m

z }| {

globally

available

distrib.

overl. type

distrib.

overl. type

| {z }

N

m

m+1

8

>

>

>

<

>

>

>

:

n

c

�m�1

�

m+1

z }| {

globally globally

available available

globally globally

available available

distrib. distrib.

overl. type overl. type

| {z }

N

m+1

In order to make (v

mk

)

k=0;:::;m�1

globally available we can slightly modify Algorithm 8.15.

Algorithm 8.25 (Product of Householder Re
ectors)

Let V � V

m�1

; v � v

m

.

FOR all q 2 f1; : : : ; pg.

Compute local scalar product of R = v

T

V :

v

q

:=

1

2

v

q

, R

q

= v

T

q

V

q

.

Get row m of distributed stored matrix V :

IF V

q

contains the m{th row of V , then let Z

q

be this row.

ELSE Z

q

= 0.

Compute global sum [R;Z] =

p

P

q=1

[R

q

; Z

q

] by data exchange of over all processors.

) [v

m;0

; : : : ; v

m;m�1

] =

1

2

Z; [T

0;m

; : : : ; T

m�1;m

] = R; T

m;m

= 1=�

m

.

Finally as third part we will discuss the computation of B

m;m�1

; B

m�1;m

and

~

S

c;m�1

using

the special distribution of

~

B

lk

;

~

B

kl

, B

m;k

; B

k;m

and V

m�1

. Recall that

Y

m�1

=

^

U

0

� � �

^

U

m�2

~

U

m�1

;

B

m;m�1

=

^

U

T

m�1

^

U

T

m�2

� � �

^

U

T

0

S

c

Y

m�1

�

m�2

X

l=0

B

m;l

~

S

�1

c;l

~

B

l;m�1

;

B

m�1;m

= Y

T

m�1

S

c

^

U

0

� � �

^

U

m�2

^

U

m�1

�

m�2

X

l=0

~

B

m�1;l

~

S

�1

c;l

B

l;m

;

~

S

c;m�1

= Y

T

m�1

S

c

Y

m�1

�

m�2

X

l=0

~

B

m�1;l

~

S

�1

c;l

~

B

l;m�1

:

For the computation of these values we can formulate the following algorithm.

125

Algorithm 8.26 (New Low Rank Update)

Let y � Y

m�1

; v � (v

m;0

; : : : ; v

m;m�1

)

T

; T

m�1

� T; V � V

m�1

; B � B

m;m�1

; B

0

�

B

m�1;m

;

~

S

c

�

~

S

c;m�1

.

Computation of y:

FOR all q 2 f1; : : : ; pg:

Solve Tz = v, y = 0.

If y

q

contains the m{th component of y, then set this component to 1.

y

q

:= y

q

� V

q

z.

Computation of B;B

0

;

~

S

c

:

Perform c = S

c

y; d

T

= y

T

S

c

applying Algorithm 7.52 with X = y; y

T

.

Compute R = y

T

c using Algorithm 7.50 with X = y, Y = c.

Multiply c; d by the product of Householder re
ectors applying Algorithm 8.17 with

X = [c; d] and denote the result again by [c; d].

The global sum in Algorithm 7.50 and Algorithm 8.17 can be carried out simultaneously.

Update

~

S

c

; B;B

0

:

a =

h

~

S

�1

c;0

~

B

0;m�1

; : : : ;

~

S

�1

c;m�2

~

B

m�2;m�1

i

T

, b =

h

~

B

m�1;0

~

S

�1

c;0

; : : : ;

~

B

m�1;m�2

~

S

�1

c;m�2

i

T

.

~

S

c

= R�

h

~

B

m�1;0

; : : : ;

~

B

m�1;m�2

i

a

B = c� [B

m;0

; : : : ; B

m;m�2

] a, B

0

= (d�

h

~

B

T

0;m�1

; : : : ;

~

B

T

m�2;m�2

i

b)

T

.

Set the entry m� 1 of B;B

0

to 0.

To end up with a parallel version of the nested divide & conquer algorithm (3.15),(3.12)

we obtain the following algorithm, which summarizes the previous steps.

Algorithm 8.27 (Parallel nested D & C) Consider a modi�ed block Jacobi{splitting

from (7.10). Assume that A

qr

; F

fq;rg

q

; G

fq;rg

q

; F

fq;rg

r

; G

fq;rg

r

are stored on processor q and r

at the same time, q; r = 1; : : : ; p.

FOR m = 0; 1; 2; : : :

Consider u �

~

U

m

2 R

n

c

n f0g and assume that the �rst m rows of u are zero and

that u is given by its overlapping representation.

Step 1. Compute the Householder representation H = I � �vv

T

of u applying

Algorithm 8.10.

Step 2. Compute column m of T

m

and make v

m;0

; : : : ; v

m;m

globally available

using Algorithm 8.25.

Step 3. Update [B

m;0

; : : : ; B

m�1;m�2

],

�

B

T

0;m

; : : : ; B

T

m�2;m�1

�

and make

h

~

B

m�1;0

; : : : ;

~

B

m�1;m�2

i

,

h

~

B

0;m�1

; : : : ;

~

B

T

m�2;m�1

i

globally available by

calling Algorithm 8.23.

The global sum in Step 2 and 3 can be performed simultaneously.

Step 4. Compute B

m�1;m

; B

m;m�1

;

~

S

c;m�1

and make

~

S

c;m�1

globally available using

Algorithm 8.26.

126

Algorithm 8.27 provides the matrices

~

B

kl

;

~

B

lk

, B

lm

; B

ml

and

~

S

c;l

for the matrix{vector

multiplication with S

c;m

in Algorithm 8.20. This shows that the parallel treatment of S

c;m

can be traced back to the parallel treatment of the initial coupling system S

c

by using

collected products of low rank modi�cations. Once the collected products are used for the

product of Householder re
ectors and once they are used for the low rank updates of the

coupling system.

8.5 Parallel Application of S

�1

m

As a consequence of the representation of S

c;m

in Section 4 we can easily solve a system

with S

m

. Again we will assume for simplicity that s

0

= � � � = s

m

= 1. Let

~

Q

m�1

=

Q

m�1

[e

1

; : : : ; e

m

], then

S

�1

m

= (S � F

~

Q

m�1

~

Q

T

m�1

G)

�1

= S

�1

+ S

�1

F

~

Q

m�1

(

~

Q

T

m�1

S

c

~

Q

m�1

)

�1

~

Q

T

m�1

GS

�1

:(8.28)

But for

~

Q

T

m�1

S

c

~

Q

m�1

we obtain the LU decomposition by taking the upper leftm�m part

of L;D;R from Lemma 3.18, which consist of the matrices

~

B

kl

;

~

B

lk

and

~

S

c;l

, 0 6 l < k < m.

But this part is globally available. We denote these matrices by

~

L

m�1

;

~

D

m�1

;

~

R

m�1

, i.e.,

~

Q

T

m�1

S

c

~

Q

m�1

=

~

L

m�1

~

D

m�1

~

R

m�1

:

Since the �rst m�m part of V

m�1

is also available on all processors,

~

Q

m�1

can be directly

accessed. We denote this upper m�m part of V

m�1

by

~

V

m�1

. In this case we have

~

Q

m�1

= [e

1

; : : : ; e

m

]� V

m�1

T

�1

m�1

~

V

T

m�1

The application of

~

Q

m�1

;

~

Q

T

m�1

will be done in the following two algorithms. For the mul-

tiplication with

~

Q

m�1

we will end up with an overlapping type vector, while for

~

Q

T

m�1

we

assume that the right hand side is given by an adding type vector.

Algorithm 8.29 (Multiplication with

~

Q

m�1

)

Let

~

V �

~

V

m�1

; V � V

m�1

; T � T

m�1

and compute X =

~

Q

m�1

Z.

FOR l = 0; : : : ;m� 1

IF X

q

contains the (l + 1): component of X then set this component to

the (l + 1): component of Z.

ELSE Set component l + 1 of X

q

to 0.

FOR all q 2 f1; : : : ; pg

X

(q;r)

= X

(q;r)

� V

(q;r)

(T

�1

(

~

V

T

Z)) for any r such that fq; rg 2 I.

=) X is given by its overlapping representation.

127

Algorithm 8.30 (Multiplication with

~

Q

T

m�1

)

Let

~

V �

~

V

m�1

; V � V

m�1

; T � T

m�1

and compute Z =

~

Q

T

m�1

X.

FOR l = 0; : : : ;m� 1

IF X

q

contains the (l + 1): component of X then let Z

lq

be this component.

ELSE Set component l + 1 of X

q

to 0.

FOR all q 2 f1; : : : ; pg

R

q

= V

T

q

X

q

Compute [R;Z] =

P

p

q=1

[R

q

; Z

0;q

; : : : ; Z

m�1;q

] by exchange of over all processors.

Z = Z �

~

V T

�T

R.

This simpli�es the application of S

�1

m

, since only the application of

~

Q

T

m�1

requires one step

of global communication.

We assume that b = (b

q

)

q=1;:::;p

2 R

n

is distributed such that b

q

lies on processor q. The

solution of S

�1

m

b will be denoted by x = (x

q

)

q=1;:::;p

.

Algorithm 8.31 (Solving a system S

m

x = b in parallel)

Compute X = GS

�1

b:

FOR all q 2 f1; : : : ; pg

X

(q;r)

= G

fq;rg

q

S

�1

qq

b

q

, for any r such that fq; rg 2 i.

=) X is given by an adding representation.

Compute Z =

~

Q

T

m�1

X applying Algorithm 8.30.

Solve

~

L

m�1

~

D

m�1

~

R

m�1

e = Z.

Compute X =

~

Q

T

m�1

e applying Algorithm 8.29 with Z := e and result X.

Final update x = S

�1

(b+ FX):

FOR all q 2 f1; : : : ; pg

x

q

= S

�1

qq

�

b

q

+

P

r: fq;rg2I

F

fq;rg

q

X

(q;r)

�

.

In contrast to Algorithm 3.15,3.12 we do not need any more the matrix E

k

= S

�1

k

~

F

k

from (8.1). Instead we have introduced the matrices

~

B

kl

;

~

B

lk

; B

lm

; B

ml

which have several

advantages in the parallel realization of the nested divide & conquer method. In addition

B

lm

; B

ml

typically need much less storage than E

k

, since they are only of the same order

as the coupling system.

So far we have not discussed the choice of

~

U

k

. For the positive de�nite case we have by

Lemma 3.31, that skillful linear combinations of eigenvectors are optimal with respect to

the condition number of the remaining system. We can compute approximate eigenvectors

using Lanczos' method[67]. For the unsymmetric case it is still open, which orthogonal

transformation should be used. On one hand an orthogonal transformation which corre-

sponds to an invariant subspace may be useful in combination with a preconditioner, but

on the other hand this may be hard to obtain. Another way can be to take

~

U

k

from the

Hermitian part or skew{Hermitian of S

c;k

in order to modify the �eld of values.

If

~

U

k

is taken from the Arnoldi process, then the computation of B

m;m�1

in (8.22) can be

128

simpli�ed since B

m;m�1

=

^

U

T

m�1

S

c;m�1

~

U

m�1

. The Arnoldi process [41],pp.501{502, gener-

ates a sequence of the following form.

S

c;m�1

V

t

= V

t+1

^

H

t

where V

t

= [v

1

; : : : ; v

t

] ; V

t+1

= [V

t

; v

t+1

] and V

t+1

satis�es V

T

t+1

V

t+1

= I.

^

H

t

=

�

H

t

0 � � � 0 h

t+1;t

�

;

where H

t

is an upper Hessenberg matrix. In this case

~

U

m�1

will have the form

~

U

m�1

= V

t

~

V .

From this it follows that

B

m;m�1

=

^

U

T

m�1

S

c;m�1

V

t

~

V =

^

U

T

m�1

(V

t+1

^

H

t

~

V):

But V

t+1

^

H

t

~

V is typically much easier to compute that S

c;m�1

~

U

m�1

which shows that the

computation of B

m;m�1

can be essentially simpli�ed.

Unless S

c;m�1

is symmetric,B

m�1;m

still has to be computed using (8.22). In the symmetric

case only B

l;m�1

with l > m is necessary for symmetry reasons.

Summary

The parallel realization of nested divide & conquer methods has been discussed in detail.

For the update matrix

~

U

k

its Householder representation has been used. Since the successive

use of Householder re
ectors involves several steps of communication, the re
ectors have

been collected in a single matrix reducing the data tra�c to only one communication step

each time when they are applied. The same collected representation has been made for

S

�1

k

and S

c;k

. To get this, additional matrices have been introduced which can be seen

as part of the nested LU{decomposition of S

c

. Their generation and the way one has

to work with these matrices has been described in Algorithm 8.27. The algorithm has

taken care of reducing communication time by collecting operations which can be done

simultaneously and performing the communication afterwards. The introduction of the

additional matrices has turned out to simplify the use of nested divide & conquer methods

in parallel computations.

The parallel realization of nested divide & conquer methods can be summarized in the

following table.

129

'

&

$

%

Initial

coupling system

�

�

�

@

@

@

Nested Divide & Conquer

'

&

$

%

'

&

$

%

partial generation

of the LU

decomposition

of the

coupling system

'

&

$

%

collected product

of low rank

modi�cations

�

�

�

�

Use of overlapping/adding type vectors

'

&

$

%

Initial coupling system

+ additional low rank updates

?

?

6

130

Chapter 9

Numerical Results

In this chapter we will illustrate the theory that has been presented for several numerical

examples.

We will start with the symmetric positive de�nite case. In this case we will �rst examine

the modi�ed block Jacobi splittings from Chapter 6. Then we will present numerical results

for the corresponding parallel realization.

As third part we will discuss some unsymmetric examples. For these examples we will also

examine the modi�ed block Jacobi splittings from Chapter 6. In addition we will illustrate

how the nested Divide & Conquer strategy can be applied in these examples.

The programs that have been used are on a
oppy disk, which has been added to this

paper.

9.1 Numerical Examples on Modi�ed Block Jacobi

Splittings

To show the improvements of the coupling system S

c

when using modi�ed block Jacobi

splittings from Chapter 6 we will examine several examples. We will compare the unmod-

i�ed block Jacobi splitting from De�nition 5.2 with the modi�ed block Jacobi splitting

constructed by Algorithm 6.89 and the modi�ed splitting obtained by Algorithm 6.90,

that is the approach which does not require the parameter � from (6.49).

The case when C from Lemma 6.19 is singular will be illustrated for an example.

We denote by �

2

(B) = �

max

(B)=�

min

(B) the condition number of B. For S

�1

J

A this will

be the condition number of S

�1=2

J

AS

�1=2

J

, where S

J

is the block diagonal part of A. S

c;opt

will be the coupling system with respect to the optimal block diagonal modi�cation from

Algorithm 6.89. S

c;fo

will be the coupling system from Algorithm 6.90.

In all these examples we will compare the block Jacobi method with Algorithm 6.89 and

Algorithm 6.90 for various numbers p of blocks, p = 2; 4; 8; 16; : : :. The relation between p

and the size n of the system together with the size of the blocks will restrict the freedom in

131

choosing p. In many examples the maximumnumber p of blocks will be 6 8. Therefore the

requirement to have a small coupling system compared with the size of the initial system is

not ful�lled and the computation time in calculating the modi�ed block diagonal splitting

will be expensive. However these examples can be used to illustrate the improvement of

the coupling system.

The computation were carried out using MATLAB [60]. For the computation of the

parameter � in Algorithm 6.89 we used MATLAB 's `eig' function.

Note that by computing

�

D;D from Lemma 6.19 and X we get an explicit representation

of S

c

in (6.9). This will reduce the number of
ops when applying a matrix{vector

multiplication S

c

� x, e.g. using the cg{method.

For any example we will compare the following four topics.

1. the condition number �

2

of S

�1

J

A with those of S

c;opt

; S

c;fo

.

2. the number of iterations needed by the CG{method

3. the number of sequential
oating point operations(
ops) for the LU{decomposition

versus the
ops required for the generation of X in Algorithm 6.90.

4. the number of
ops for the iterative solution process for the block Jacobi method

versus the number of
ops required by Algorithm 6.90.

As stopping criterion for the solution process we will use kr

k

k 6

p

eps kr

0

k, where r

k

is

the residual in step k. Here eps � 2:2204 � 10

�16

. The iterative solution is performed ten

times for random right hand sides and �nally the average is taken. As initial guess we will

choose x

0

= 0.

We will consider several examples from the Harwell{Boeing sparse matrix collection [28].

The test matrices can be accessed via anonymous ftp from ftp.orion.cerfacs.fr.

Example 9.1

The matrix LANPRO/NOS1 is symmetric

positive de�nite, its size is n = 237 and it is

block tridiagonal with all blocks of size 3 � 3.

Its pattern is illustrated in the picture on the

right hand side. We will apply the three meth-

ods to this this matrix for various number of

blocks p = 2; 4; 8; 16; 32.

0 50 100 150 200

0

50

100

150

200

nz = 1017

132

The condition number of the preconditioned matrix is given in the following table.

Condition Number

�

2

n p 2 4 8 16 32

�

2

(S

�1

J

A) 1:4�10

5

3:4�10

6

6:4�10

6

1:2�10

7

2:2�10

7

�

2

(S

c;opt

) 1:3�10

0

4:3�10

1

7:4�10

2

1:3�10

4

4:2�10

5

�

2

(S

c;fo

) 4:0�10

0

6:2�10

1

1:1�10

3

1:8�10

4

3:4�10

5

From the comparison of the condition numbers we expect a remarkable di�erence in the

number of iterations for the CG{method, at least for smaller numbers p.

Number of Iteration Steps

it. n p 2 4 8 16 32

S

�1

J

A 9 29 80 171 324

S

c;opt

4 10 24 53 200

S

c;fo

4 10 24 56 188

In spite of a large condition number the number of iterations is relatively small. This is

probably related to the low rank property here. For S

�1

J

A the rank rank of the remaining

matrix will be 6(p� 1) and the size of S

c

will be 3(p� 1). Again the condition number and

the number of iterations for Algorithm 6.89,Algorithm 6.90 are quite close to each other.

At last we will compare the number of
ops . We will split this into two parts. The �rst

part will be the number of
ops for the Cholesky decomposition compared with the number

of
ops for the generation of X from Algorithm 6.90. The second part will be the number

of
ops for the solution process.

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8 16 32

Cholesky decomposition S

J

3:8�10

3

3:6�10

3

3:4�10

3

2:2�10

3

1:7�10

3

Alg. 6.90 S

c;fo

7:8�10

3

1:2�10

4

2:5�10

4

6:9�10

4

2:5�10

5

ops for the Solution Process

ops n p 2 4 8 16 32

S

�1

J

A 7:4�10

4

2:4�10

5

6:4�10

5

1:3�10

6

2:3�10

6

S

c;fo

1:2�10

4

1:5�10

4

3:4�10

4

1:3�10

5

9:2�10

5

Total Amount in
ops

ops n p 2 4 8 16 32

S

�1

J

A 7:8�10

4

2:4�10

5

6:5�10

5

1:3�10

6

2:3�10

6

S

c;fo

2:0�10

4

2:7�10

4

6:0�10

4

2:0�10

5

1:2�10

6

133

As expected, the generation of X will be more expensive than the pure Cholesky decomposi-

tion. But the additional number of
ops is moderate since only 6 right hand sides have to

be solved with S

J

in Algorithm 6.90. As side e�ect of the generation of X, S

c

is explicitly

computed and thus a step of the solution process for S

c

will need much less
ops than the

corresponding solution process for the block Jacobi method. This compensates the more ex-

pensive generation of X. In addition the number of iterations has been signi�cantly reduced

when the CG method is applied to S

c;fo

.

Example 9.2

The matrix LANPRO/NOS2 is symmetric

positive de�nite, its size is n = 957 and it is

block tridiagonal with all blocks of size 3 � 3.

We will examine this matrix for various num-

ber of blocks p = 2; 4; 8; 16; 32; 64.

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 4137

The condition number of the preconditioned matrix is given in the following table.

Condition Number

�

2

n p 2 4 8 16 32 64

�

2

(S

�1

J

A) 8:4�10

6

8:1�10

8

1:6�10

9

3:1�10

9

5:9�10

9

1:1�10

10

�

2

(S

c;opt

) 1:3�10

0

4:1�10

1

6:4�10

2

1:0�10

4

1:7�10

5

3:3�10

6

�

2

(S

c;fo

) 4:0�10

0

7:2�10

1

1:2�10

3

2:0�10

4

3:2�10

5

2:8�10

6

Like in Example 9.1 the condition number is clearly improved by Algorithm 6.89 and Al-

gorithm 6.90. Next we compare the number of iteration steps in the cg{method.

Number of Iteration Steps

p 2 4 8 16 32 64

S

�1

J

A 11 38 111 359 1018 2271

S

c;opt

4 10 24 54 161 527

S

c;fo

4 10 25 63 194 501

Due to the low rank property the big condition number does not a�ect the problem for small

p. But for larger p the number of iterations increases drastically. For Algorithm 6.89,6.90

134

this e�ect is not so critical as for the block Jacobi method. But for larger numbers of p the

improvement is weaker.

Again we will compare the number of
ops for the Cholesky decomposition versus the gen-

eration of X and for the iterative solution process.

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8 16 32 64

Cholesky decomposition S

J

1:6�10

4

1:6�10

4

1:6�10

4

1:5�10

4

1:4�10

4

9:1�10

3

Alg. 6.90 S

c;fo

3:0�10

4

3:9�10

4

5:7�10

4

1:0�10

5

2:8�10

5

9:7�10

5

ops for the Solution Process

ops n p 2 4 8 16 32 64

S

�1

J

A 3:7�10

5

1:3�10

6

3:8�10

6

1:2�10

7

3:3�10

7

6:8�10

7

S

c;fo

4:7�10

4

5:1�10

4

7:1�10

4

1:8�10

5

9:9�10

5

5:9�10

6

Total Amount in
ops

ops n p 2 4 8 16 32 64

S

�1

J

A 3:9�10

5

1:3�10

6

3:8�10

6

1:2�10

7

3:3�10

7

6:8�10

7

S

c;fo

7:7�10

4

9:0�10

4

1:3�10

5

2:8�10

5

1:3�10

6

6:9�10

6

Algorithm 6.90 needs signi�cantly less
ops than the block Jacobi method. The fact that the

system is very ill{conditioned extremely a�ects the block Jacobi method, while the in
uence

of the huge condition number is much less for Algorithm 6.89,6.90. Like in Example 9.1

the additional amount for generating X is quite moderate, since for the computation of

�

D;D 6 right hand sides have to be solved. This is neglectible compared with the number of

iterations for the solution process.

Example 9.3

The matrix BCSSTRUC1/BCSSTK03 is

symmetric positive de�nite, its size is n = 112

and it is block tridiagonal with all blocks of size

4. Its pattern is illustrated in the picture on the

right hand side. We will examine this matrix for

various number of blocks p = 2; 4; 8.

0 20 40 60 80 100

0

20

40

60

80

100

nz = 640

The condition number of the preconditioned matrix is given in the following table.

135

Condition Number

�

2

n p 2 4 8

�

2

(S

�1

J

A) 1:8�10

4

5:2�10

4

2:0�10

5

�

2

(S

c;opt

) 1:3�10

0

1:8�10

0

2:9�10

1

�

2

(S

c;fo

) 1:2�10

0

1:8�10

0

2:3�10

1

The condition number of the coupling systems S

c;opt

; S

c;fo

is extremely improved compared

with the condition number of S

�1

J

A. Thus we expect a remarkable di�erence in the number

of iteration for the CG{method.

Number of Iteration Steps

it. n p 2 4 8

S

�1

J

A 8 22 53

S

c;opt

4 9 23

S

c;fo

4 9 20

Although the condition number has been signi�cantly improved by Algorithm 6.89,6.90, the

number of iterations of the block Jacobi method is moderate. Here again the low rank will

reduce the number iteration steps. At last we will compare the number of
ops .

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8

Cholesky decomposition S

J

2:1�10

3

1:8�10

3

1:2�10

3

Alg. 6.90 S

c;fo

5:7�10

3

1:2�10

4

3:3�10

4

ops for the Solution Process

ops n p 2 4 8

S

�1

J

A 3:6�10

4

9:4�10

4

2:1�10

5

S

c;fo

6:8�10

3

1:1�10

4

3:0�10

4

Total amount in
ops

ops n p 2 4 8

S

�1

J

A 3:8�10

4

9:5�10

4

2:1�10

5

S

c;fo

1:2�10

4

2:3�10

4

6:3�10

4

The more expensive generation of X in Algorithm 6.90 compared with the Cholesky decom-

position for the block Jacobi method will be equalized by the iterative solution process. The

overhead for generating X is moderate (8 right hand sides) while the number of iterations

will be clearly reduced.

136

Example 9.4

The matrix BCSSTRUC1/BCSSTK09 is

symmetric positive de�nite, its size is n = 1083

and it is block tridiagonal with blocks of size

57 � 57. Its pattern is illustrated in the picture

on the right hand side. We will examine this

matrix for various number of blocks p = 2; 4; 8.

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 18437

The condition number of the preconditioned matrix is given in the following table.

Condition Number

�

2

n p 2 4 8

�

2

(S

�1

J

A) 3:2�10

3

6:6�10

3

1:3�10

4

�

2

(S

c;opt

) 1:3�10

0

3:8�10

1

1:3�10

3

�

2

(S

c;fo

) 1:1�10

0

3:1�10

1

1:1�10

3

From the comparison of the condition numbers we expect a clear improvement in the number

of iteration for the CG{method at least for p = 2 and p = 4. In fact this will be the case

as the following table will show.

Number of Iteration Steps

it. n p 2 4 8

S

�1

J

A 50 113 172

S

c;opt

6 22 118

S

c;fo

5 21 102

Again we will compare the number of
ops .

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8

Cholesky decomposition S

J

1:7�10

6

7:1�10

5

1:8�10

5

Alg. 6.90 S

c;fo

9:1�10

6

2:5�10

7

7:7�10

7

137

ops for the Solution Process

ops n p 2 4 8

S

�1

J

A 1:0�10

7

1:7�10

7

1:8�10

7

S

c;fo

5:7�10

5

2:1�10

6

2:1�10

7

Total amount in
ops

ops n p 2 4 8

S

�1

J

A 1:2�10

7

1:8�10

7

1:8�10

7

S

c;fo

9:7�10

6

2:7�10

7

9:8�10

7

The fact that the size of the o�{diagonal blocks is 57 means that Algorithm 6.90 has to

spend a large amount of computational cost into the generation of D;

�

D and

�

D

�1

(114 right

hand sides). On the other hand the size of S

c

will be 396 for p = 8. Compared with the size

n = 1083 of the initial system S

c

cannot be called small. In addition the improvement in the

condition number is for p = 8 not so great. So the number of iterations for the CG{method

is not essentially reduced for p = 8. Here the block Jacobi method will need less
ops than

Algorithm 6.90.

Example 9.5

The matrix BCSSTRUC2/BCSSTK16 is

symmetric positive de�nite, its size is n = 4884

and it is block tridiagonal with blocks of size

6 138 � 138. Its pattern is illustrated in the

picture on the right hand side. We will exam-

ine this matrix for various number of blocks

p = 2; 4; 8; 16.

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nz = 290378

The condition number of the preconditioned matrix is given in the following table.

Condition Number

�

2

n p 2 4 8 16

�

2

(S

�1

J

A) 1:4�10

2

2:3�10

2

4:6�10

2

9:9�10

2

�

2

(S

c;opt

) 1:3�10

0

1:8�10

0

6:6�10

0

4:6�10

1

�

2

(S

c;fo

) 1:0�10

0

1:8�10

0

6:6�10

0

4:8�10

1

The small condition numbers of S

c;opt

; S

c;fo

ensure a small steps of iteration for the CG{

method. We may expect an improvement in the number of iterations which is partially

con�rmed by the numerical observations.

138

Number of Iteration Steps

it. n p 2 4 8 16

S

�1

J

A 19 26 34 47

S

c;opt

7 9 21 53

S

c;fo

5 9 20 54

Although the system obtained by Algorithm 6.90,6.89 is better conditioned than the initial

matrix, preconditioned by the block diagonal matrix S

J

, the number of cg{iterations for

this preconditioned system is small. Here we cannot expect an improvement neither in the

number of iterations nor in the total amount of computational work.

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8 16

Cholesky decomposition S

J

2:3�10

8

1:4�10

8

4:6�10

7

1:2�10

7

Alg. 6.90 S

c;fo

3:8�10

8

4:6�10

8

8:7�10

8

2:5�10

9

ops for the Solution Process

ops n p 2 4 8 16

S

�1

J

A 7:7�10

7

8:8�10

7

7:8�10

7

7:2�10

7

S

c;fo

9:6�10

6

1:1�10

7

2:3�10

7

1:1�10

8

Total amount in
ops

ops n p 2 4 8 16

S

�1

J

A 3:1�10

8

2:2�10

8

1:2�10

8

8:4�10

7

S

c;fo

3:9�10

8

4:7�10

8

9:0�10

8

2:6�10

9

Algorithm 6.90 cannot compete in this case, although the condition number is approximately

10

2

less than for the block Jacobi method. The condition number itself only gives few infor-

mation about the eigenvalue distribution of the corresponding matrix. But the eigenvalue

distribution will be more important for the solution process than the condition number. This

may be the reason for the few steps of iteration for the block Jacobi method.

139

Example 9.6

The matrix BCSSTRUC3/BCSSTK20 is

symmetric positive de�nite, its size is n = 485

and it is block tridiagonal with blocks of size 6

15�15. Its pattern is illustrated in the picture on

the right hand side. We will examine this matrix

for various number of blocks p = 2; 4; 8; 16.

0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

nz = 3135

The condition number of the preconditioned matrix is given in the following table.

Condition Number

�

2

n p 2 4 8 16

�

2

(S

�1

J

A) 1:8�10

8

9:4�10

8

5:3�10

10

1:2�10

11

�

2

(S

c;opt

) 1:3�10

0

1:8�10

2

6:0�10

3

3:1�10

5

�

2

(S

c;fo

) 1:0�10

0

1:2�10

2

4:6�10

3

1:2�10

5

Algorithm 6.90 and Algorithm 6.89 show a drastic improvement for the condition number

of S

c;opt

; S

c;fo

compared with S

�1

J

A. From this we expect that the number of iterations for

the CG-method is signi�cantly reduced by Algorithm 6.90 and Algorithm 6.89.

Number of Iteration Steps

it. n p 2 4 8 16

S

�1

J

A 44 122 390 997

S

c;opt

6 27 63 266

S

c;fo

5 25 63 291

As expected the number of iterations for S

c;opt

; S

c;fo

is much less than for the block Jacobi

method. At last we will compare the number of
ops .

ops for Cholesky Decomposition Versus the Generation of X

ops n p 2 4 8 16

Cholesky decomposition S

J

1:5�10

4

1:2�10

4

9:2�10

3

7:5�10

3

Alg. 6.90 S

c;fo

9:2�10

4

1:3�10

5

3:0�10

5

9:0�10

5

140

ops for the Solution Process

ops n p 2 4 8 16

S

�1

J

A 9:4�10

5

2:5�10

6

7:7�10

6

1:9�10

7

S

c;fo

3:8�10

4

9:3�10

4

2:8�10

5

2:0�10

6

Total amount in
ops

ops n p 2 4 8 16

S

�1

J

A 9:6�10

5

2:5�10

6

7:7�10

6

1:9�10

7

S

c;fo

1:3�10

5

2:3�10

5

5:7�10

5

2:9�10

6

The generation of X in Algorithm 6.90 requires the additional solution of up to 30 right

hand sides with S

J

in order to compute

�

D;D and the size of S

c

will be approximately

15; 45; 105; 225 for p = 2; 4; 8; 16 which is at least small for p 6 8 compared with the total

size n = 485 of the system. But on the other hand this additional amount of work will

be equalized by the iterative solution process. In addition the system preconditioned by the

block-Jacobi method is still ill{conditioned while the improvement for S

c

ends up in much

smaller number of iterations.

Example 9.7

As �nal example for the use of modi�ed block Jacobi splittings we discuss the case when the

matrix C from Lemma 6.19 in Chapter 6 is singular. Throughout Chapter 6 we considered

only the case when C is nonsingular. The nonsingularity of C has played an important

role in deriving explicit solution for the Riccati equation (6.12). Here we will show for

an example that the singular case is more technical but in principle it can also be treated

similarly to the nonsingular case.

Consider the matrix

A

n

=

0

B

B

B

@

T �I

�I T �I

.

.

.

.

.

.

.

.

.

�I T

1

C

C

C

A

2 R

n;n

; where T =

0

B

B

B

@

4 �1

�1 4 �1

.

.

.

.

.

.

.

.

.

�1 4

1

C

C

C

A

2 R

N;N

; n = N

2

:

This matrix has already been discussed in Example 6.3, 2.15. A arises from the discretiza-

tion of the problem

��u = f in [0; 1]

2

u = g on @[0; 1]

2

using �ve point star di�erence discretization [48]. Its graph can read as a checker board

having the crossings as nodes. Assume that its graph is partitioned into 4 parts checker

board{wise.

141

1 2

3 4

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

Each part should correspond to a diagonal block of A after a permutation P

T

AP with a

suitable permutation matrix P . This case is of special interest, since assumption (6.32) of

Lemma 6.31 is violated and C will be singular in this case. By taking the blocks in the order

1; 4; 2; 3 we obtain the following system. Set m = n=4;K = N=2.

A

n

7!

0

B

B

@

A

m

O �E �F

O A

m

�F

T

�E

T

�E

T

�F A

m

O

�F

T

�E O A

m

1

C

C

A

;

E; F are de�ned by

E = I

K

 (e

K

e

T

1

); F = (e

K

e

T

1

)
 I

K

:

Here
 denotes the Kronecker product (see e.g. [3], p.149). Here L from (5.12) will corre-

spond to the nonzero columns of

0

B

B

@

E F

F

T

E

T

O � � � � � � O

O � � � � � � O

1

C

C

A

:

Denote the set of nonzero columns of this matrix by i

1

; : : : ; i

s

. The indices are illustrated

by big bullets in the picture below.

1 2

3 4

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

u u u u u uu

u

u

u

u

u

x

x

u u u u u u

u

u

u

u

u

u

142

The indices i

1

; : : : ; i

s

can be grouped together into four sets corresponding to the four pairs

f1; 2g; f2; 3g; f4; 2g; f4; 3g which will form the set I from (5.5) for the block partitioning of

the coupling system. These are the following entries. For the connection between subdomain

1 and 2 we have

K;N +K; 2N +K; : : : ; (K � 1)N +K

for the connection between subdomain 1 and 3 we have

(K � 1)N + 1; (K � 1)N + 2; (K � 1)N + 3; : : : ; (K � 1)N +K

for the connection between subdomain 3 and 4 we have

KN +K + 1; (K + 1)N +K + 1; (K + 2)N +K + 1; : : : ; (N � 1)N +K + 1

and �nally we have the entries

KN +K + 1;KN +K + 2;KN +K + 3; : : : ; (K + 1)N

for the connection between subdomain 2 and 4.

Here the indices with label (K � 1)N + K and KN + K + 1 appear twice. From this it

follows that L is rank de�cient. The rank will be 2(N � 1) instead of 2N , but it is easy to

calculate a full rank decomposition of L. For this we only have to annihilate the duplicate

entries.

�

1 1

�

1

p

2

1

p

2

1

p

2

�

1

p

2

!

=

� p

2 0

�

:

We obtain a decomposition L = [L

1

;O]

h

U

T

1

U

T

2

i

where U

2

has size N � 2. Up to additional

zeros, U

2

will correspond to

0

B

B

B

@

1

p

2

0

�

1

p

2

0

0

1

p

2

0 �

1

p

2

1

C

C

C

A

:

The theory of Chapter 6 is based on the splitting A = S

J

� LM �M

�

L

�

. By setting M

1

=

U

�

1

M we obtain A = S

J

�L

1

M

1

�M

�

1

L

�

1

with a full rank matrix L

1

! So in principle we can

apply the theory from Chapter 6 for the problem, where L;M are replaced by L

1

;M

1

. In this

case T

1

(�) =

��1

2

C

�1

1

�D

1

and

�+1

2

C

�1

1

will be almost optimal. Here

�

D

1

= L

T

1

S

�1

J

L

1

;D

1

=

M

T

1

S

�1

J

M

1

and C

1

= L

T

1

A

�1

L

1

= D

�1

1

� D

1

denote the reduced problems. After X

1

is

chosen as approximation to T

1

(�) the modi�ed S is de�ned in (6.8) by S = S

J

+L

1

X

1

L

�

1

+

M

1

X

�1

1

M

�

1

. Typically this matrix is no longer block diagonal even if X

1

is block diagonal.

To get a block diagonal matrix S we have to use a block diagonal matrix X = NN

�

and S =

S

J

+LXL

�

+MX

�1

M

�

for the original unreduced problem. But these matrices have larger

size. A natural choice will be to approximate U

1

T

1

(�)U

T

1

+ U

2

U

T

2

or

�+1

2

U

1

C

�1

1

U

T

1

+ U

2

U

T

2

by a block diagonal matrix X.

In order to re
ect the rank de�ciency of L by this choice we can utilize the nested divide &

conquer method from Chapter 3. By the nested divide & conquer method from Chapter 3

we replace the initial given splitting A = S�FF

T

by a new splitting A = S

1

�F

1

F

T

1

where

143

S

1

; F

1

are obtained from S;F in the following way. If V =

h

~

V ;

^

V

i

is orthogonal, then we

have

A = S � FF

T

= (S � F

~

V

~

V

T

F

T

)

| {z }

S

1

� F

^

V

|{z}

F

1

^

V

T

F

T

| {z }

F

T

1

:

By Lemma 3.18 the corresponding new coupling system S

c;1

can be obtained from S

c

by

taking the Schur{complement of V

T

S

c

V . In terms of the inverses we have that S

�1

c;1

=

^

V

T

S

�1

c

^

V . On the other hand, by (6.21) we have for the initial problem NS

�1

c

N

�

= (X +

D)C(X+D)+(X+D). The reduced problem will be (X

1

+D

1

)C

1

(X

1

+D

1

)+(X

1

+D

1

). But

this matrix coincides with U

�

1

NS

�1

c

N

�

U

1

. From this it follows that V has to be chosen such

that the columns of

^

V span the same space as the columns of N

�

U

1

, i.e., the columns of

~

V

have to span the same space as the columns of N

�1

U

2

.

~

V can be computed by performing

a QR decomposition,[41],pp.211�, of N

�1

~

U .

In our example the additional amount consists of computing an initial rank 2 update after

X has been chosen. In other words, in the singular case we can proceed analogously to the

nonsingular case if this modi�cation is followed by a well{chosen initial low rank update.

The arguments used here can be used as well when dividing the graph into more than four

parts. To illustrate the di�erence between the initial coupling system S

c

and the coupling

system obtained by the additional low rank update we will compare their condition numbers

for p = 4; 16; 64 and N = 32; 64; 128 for X obtained by Algorithm 6.89, 6.90.

Condition Number �

2

(S

c;opt

)

without low rank update

p nN 32 64 128

4 5:3�10

1

8:7�10

1

1:5�10

2

16 | 1:7�10

2

2:7�10

2

64 | | 6:5�10

2

after low rank update

p nN 32 64 128

4 1:2�10

1

2:0�10

1

3:5�10

1

16 | 3:9�10

1

6:3�10

1

64 | | 1:5�10

2

For S

c;fo

we obtain condition numbers which are relatively close to those of S

c;opt

Condition Number �

2

(S

c;fo

)

without low rank update

p nN 32 64 128

4 4:2�10

1

9:5�10

1

2:2�10

2

16 | 1:3�10

2

2:9�10

2

64 | | 5:0�10

2

after low rank update

p nN 32 64 128

4 1:1�10

1

1:4�10

1

1:8�10

1

16 | 3:4�10

1

4:2�10

1

64 | | 1:3�10

2

The reduction in the condition number results in a small number of iterations for the cg{

method for Algorithm 6.89,6.90. We compare the number of iterations with that of the

corresponding block Jacobi method. for p = 4; N = 32, p = 16; N = 64 and p = 64; N =

128.

144

Number of Iteration Steps

S

�1

J

A

p nN 32 64 128

4 20 25 30

16 | 35 42

64 | | 58

S

c;opt

p nN 32 64 128

4 10 12 14

16 | 19 21

64 | | 32

S

c;fo

p nN 32 64 128

4 11 12 12

16 | 20 21

64 | | 33

Although an improvement in the number of iterations for the cg{method has been made in

this example, the additional overhead in computing D;

�

D;

�

D

�1

cannot be equalized by the

smaller number of iterations. E.g. for p = 64; N = 128 up to 64 right hand sides have to

be computed.

Summary

The use of modi�ed block Jacobi splittings has turned out to e�ectively improve the con-

dition number of the underlying coupling system. In some examples the condition number

was extremely improved. The disadvantage so far is that the generation of X requires the

solution of several right hand sides with the block diagonal part of A. If e.g. the initial

matrix A is block tridiagonal with all blocks of size m, then 2m system with the block

diagonal matrix S

J

have to be solved. If the cg{method with block Jacobi preconditioning

does not exceed 2m steps, the generation of X will be more expensive in any case. However

for ill{conditioned systems or larger number p of blocks this will be typically the case. In

this case the generation of X will not consume most of the computing time. As additional

advantage of the computation of X we will have an explicit representation of the coupling

system which reduces the computation time for a matrix vector multiplication with the

coupling system as well the computation time for a direct solution of the coupling system.

In this case the a larger number of iterations to solve the coupling system is less critical.

This is not a problem of the symmetric case and will also occur in the general case.

If the system is not well{conditioned the use of modi�ed block Jacobi splittings can ex-

tremely improve the properties and thus the computational costs for the cg method may be

reduced not only with respect to the matrix{vector multiplication but also for the number

of iteration steps.

The problem which is open in general is that this theory can only be applied to block 2{

cyclic matrices. But in practice we would like to reorder the given matrix by a preprocessing

step. This reordering should reduce the size of the coupling system and in general the

reordered matrix will not be block 2{cyclic. This reduces the application of modi�ed block

Jacobi splittings and the theory has to be adapted for the non block 2{cyclic case. The

case when the matrix C from Lemma 6.19 in Chapter 6 is singular has not been discussed

in detail in Chapter 6 but by Example 9.7 we have illustrated how the theory can be

generalized to this case by allowing slightly more than a block diagonal splitting.

An important observation that has been made among the numerical examples is that

Algorithm 6.89 and Algorithm 6.90 behave quite similar for both, the resulting condition

145

number and the number of iteration steps. From this point of view the main bottle neck

of Algorithm 6.89, namely the computation of the parameter � in Algorithm 6.90 can be

replaced by the heuristic approach from Algorithm 6.90.

So far we have only compared the sequential
op count. For a parallel implementation one

has to take care of the additional communication costs. The generation of

�

D;D has the

advantage, that the their computation can be done without communication, since several

systems have to be solved with a block diagonal matrix. To perform the di�erence

�

D

�1

�D

one step of local data exchange is necessary and for the scaling of X one global step of

communication has to be done. In contrast to this in an iterative process local and global

communication have to be done in any step. So we may have a better improvement than

in the MATLAB computations.

9.2 Parallel Numerical Results for the Positive De�-

nite Case

In this section we compare for several examples the cg{method, preconditioned by the

block Jacobi method with the nested Divide & Conquer method. For all these examples we

used the partitioning obtained by METIS [52]. For the updates we use the Lanczos Process

[67],[41], pp.475� for S

c;k

with selective reorthogonalization [51],[69],[41],pp.489{489. We

can easily derive the cg{method from the Lanczos process (see e.g. [41], pp.494{497,523{

524) and �nd during the Lanczos process an approximative ~x

k

to the problem S

c;k

x

k

= b

k

.

In practice we used the Lanczos process for up to 50 steps. An update is made when the

criterion for the orthogonality between the Lanczos vectors signals a loss of orthogonality.

From the eigenvalues that have been delivered by the Lanczos process we used all extremal

eigenvalues until the smallest remaining eigenvalue was greater than 10

�2

times than the

largest remaining eigenvalue. If there are no eigenvalues satisfying this criterion, then the

Lanczos process is continued.

A practical problem which arises when applying the nested divide & conquer process is

that for a larger number of iterations it might be useful to generate the coupling system

S

c

. This occurs for example for larger numbers p of processors. The coupling system is

distributed over the processors and any processor will have to compute 2n

c

=p right hand

sides in the average, where n

c

is the size of the coupling system. So a natural strategy to

compute S

c

which is also a compromise between a direct and an iterative solution will be

to compute the parts of the coupling system if the number of iterations will be more than

2n

c

=p. To have a simple heuristical criterion for this we will check after a while, namely

after the �rst update or after n

c

=p iteration steps in any further step the residual of the

computed solution ~x

k

. A �rst criterion obtained by the Lanczos process can be obtained

from the condition number. The well{known bound [41],p.525 on the norm of the residual

is

kr

l

k

A

6 2

�
p

�+ 1

p

�� 1

�

l

kr

0

k

A

:

Here the norm is the energy norm kxk

A

=

p

x

�

Ax and � is the condition number of A. In

146

practice the number l of steps which is needed to to have the residual less than a given

tolerance times the initial residual is overestimated by this inequality. We use an additional

heuristic. If l steps of the iterative method have been performed we will check how long the

iterative process will take, provided that the decreasing of the residual will not be worse

in the next l steps than in the �rst l steps. This will give us an estimate for the number

of iterations for the iterative process. The disadvantage will be of course if the iterative

process will converge in step l + 1 then the computation of the parts of S

c

was in vain.

But for larger numbers of p (e.g.16,32,64) this additional overhead will be moderate. As a

consequence we have by (7.13) and Corollary 7.16 a representation of S

c

in the form

S

c

= I �

p

X

q=1

K

q

^

M

q

K

T

q

;

where any

^

M

q

is precisely the part of S

c

which is stored on processor q. A simple precon-

ditioner which we can immediately get from this representation is

p

X

q=1

K

q

(K

T

q

S

c

K

q

)

�1

K

T

q

;

By the de�nition of K

q

in Corollary 7.16 this will be a simple overlapping block diagonal

preconditioner. When having a preconditioner we can construct our low rank updates with

respect to the preconditioned system instead of the original system, i.e., we use the Lanczos

process for the preconditioned coupling system instead of the original coupling system.

By using the nested application of the Sherman{Morrison{Woodbury formula we obtain

in principle the solution of Ax = b, when the small coupling system S

c;k

has been solved.

In practice the solution obtained by the divide & conquer approach can be perturbed

solving the small coupling system. For this reason the method is embedded into an outer

cg{iteration. I.e., by k steps of the nested divide & conquer method we obtain in theory

A

�1

= S

�1

k

+ S

�1

k

F

k

S

�1

c;k

G

k

S

�1

k

:

We use the numerically computed

~

A

�1

as preconditioner for A in the outer cg{iteration.

As stopping criterion for the combined update and iteration we used kr

k

k

2

6

p

eps kr

0

k

2

,

where r

k

denotes the residual.

The parallel computations were performed on Parsytec GCPP parallel computer. This

parallel computer is MIMD computer with distributed memory. Communication is done

by message passing using the communication library of [44]. For the diagonal blocks a sparse

Cholesky decomposition from SPARSPAK [40] was taken. For the o�{diagonal blocks a

sparse LU decomposition from MA28 [27] was used. The Cholesky decomposition of the

small coupling systems was done using LAPACK[1]. For elementary vector operations the

BLAS library[23] was used.

147

Example 9.8

Consider the matrix LANPRO/NOS2 from Example 9.2. Since this matrix is quite small

(n = 957) for parallel computations, we extend this matrix. The matrix has the form

0

B

B

B

@

C B O

B

T

C B

.

.

.

.

.

.

.

.

.

O B

T

C

1

C

C

C

A

:

We extend this matrix by taking the corresponding block tridiagonal matrix with size 8 �

n; 16 � n and 32 � n, i.e., essentially the matrix is taken up to 32 times. We �rst examine

the block Jacobi method for this matrix.

Time [sec] needed for Cholesky decomposition of S

J

size(A) n p 2 4 8 16 32 64

8 � n 1:08 0:27 0:09 0:03

16 � n 4:45 0:50 0:28 0:09 0:04

32 � n 17:42 4:45 1:13 0:28 0:09 0:06

When increasing the number of processors the time required by the Cholesky decomposition

decreases approximately quadratically. More important is the time and the number of it-

erations for the iterative solution process. The results are very disappointing. The number

of iterations drastically increases with the number of processors which makes the iterative

method no longer applicable to this problem.

Number of iterations needed for the cg{method

size(A) n p 2 4 8 16 32 64

8 � n 13 30 133 397

16 � n 25 57 207 614 2423

32 � n 19 44 179 652 3369 13973

Obviously the time for the iterative process will become huge as well when increasing the

number of processors.

Time [sec] needed for the iterative solution process

size(A) n p 2 4 8 16 32 64

8 � n 0:39 0:51 1:65 4:61

16 � n 1:51 1:86 4:48 9:43 38:75

32 � n 2:17 2:71 6:78 15:62 63:80 385:41

As a consequence of the huge number of iterations the total amount will be essentially

dominated by the iterative part for larger p.

148

Total amount [sec]

size(A) n p 2 4 8 16 32 64

8 � n 1:47 0:78 1:74 4:64

16 � n 5:96 2:36 4:76 9:52 38:79

32 � n 19:59 7:16 7:91 15:90 63:89 385:47

The iterative part consumes for p > 4 most time for the solution process. For p > 4 the

extremal number of solution steps makes an iterative solution impossible.

Next we study the nested divide & conquer method applied to this problem. Like for the

block Jacobi method we start with the time needed for the Cholesky decomposition. We

expect that there is no essential di�erence which is con�rmed by the numerical results.

Time [sec] for the Cholesky decomposition

size(A) n p 2 4 8 16 32 64

8 � n 1:11 0:28 0:10 0:05

16 � n 4:34 0:52 0:29 0:12 0:07

32 � n 17:92 4:34 1:11 0:32 0:13 0:16

Next we examine the number of iterations needed by the nested divide & conquer method

applied to this problem. In this example the coupling system was generated after 3 steps

except for p = 2. The reason is that the coupling system is quite small and on any processor

not more than a 6� 6 part of S

c

is stored.

Number of steps for combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 7 15 34 60

16 � n 7 15 35 60 106

32 � n 9 19 45 66 137 227

Compared with the standard block Jacobi method the number of steps has been extremely

reduced. During the iteration the size of S

c

has been successively reduced. We give the size

of the initial S

c

and the �nal S

c

in the next table.

Size of the coupling system, initially 7! �nally

size(A) n p 2 4 8 16 32 64

8 � n 2 7! 1 5 7! 2 12 7! 9 25 7! 23

16 � n 2 7! 1 5 7! 3 12 7! 7 25 7! 21 52 7! 47

32 � n 2 7! 1 5 7! 3 12 7! 7 25 7! 17 52 7! 44 106 7! 95

Beside the lower number of iteration steps and the reduction of S

c

we are interested in the

computational costs.

149

Time [sec] needed for the combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 0:23 0:24 0:44 0:84

16 � n 0:43 0:36 0:54 1:09 2:21

32 � n 1:13 0:78 0:90 1:40 3:25 7:47

Note that this time table gives the time, which includes arithmetic and communication

costs. For larger p the computational costs are still dominated by the communication part,

although the updates have been collected to keep the data tra�c small. This can be seen,

when we examine the arithmetic part of the computation.

Maximal arithmetic time [sec] for the combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 0:21 0:14 0:11 0:12

16 � n 0:41 0:27 0:17 0:15 0:27

32 � n 1:08 0:66 0:46 0:28 0:36 0:86

This is not only a problem for the nested divide & conquer process. The same problem also

occurs for the block Jacobi method.

Altogether we have the following total amount for the nested divide & conquer process.

Total amount [sec]

p 2 4 8 16 32 64

8 � n 1:34 0:52 0:54 0:89

16 � n 4:77 0:88 0:83 1:21 2:28

32 � n 19:05 5:12 2:01 1:72 3:38 7:63

What we can see in this example which is really ill{conditioned is that not only the number

of iterations for the nested divide & conquer is much less than for the standard block Jacobi

but that in addition several updates were necessary to adapt the process to the problem. The

improvement made by the nested divide & conquer method is not only due to the additional

preconditioner for S

c

which one can see when only taking the preconditioned coupling system

with no later update. Here the number of iterations also becomes huge for larger p and even

worse, in several cases the iterative process did not converge!

Number of steps for iterative process

size(A) n p 2 4 8 16 32 64

8 � n 7 19 31 4017

16 � n 7 19 36 1 1

32 � n 9 24 132 1 1 1

150

In those cases where the iterative process did not converge, the residual was decreasing for

a while and then increasing again and �nally the process diverged.

Time for the iterative process

size(A) n p 2 4 8 16 32 64

8 � n 0:23 0:16 0:26 27:64

16 � n 0:43 0:25 0:29 1 1

32 � n 1:13 0:55 0:89 1 1 1

Beside the smaller number of iteration steps the nested divide & conquer process has another

advantage. The number of iterations and thus the computing time for solving a further right

hand side will be much less than for the �rst system. We will show this in the following

tables.

Number of steps for a further right hand side

size(A) n p 2 4 8 16 32 64

8 � n 6 7 25 37

16 � n 6 9 18 38 55

32 � n 8 12 23 34 52 91

Time [sec] needed for a second right hand side

size(A) n p 2 4 8 16 32 64

8 � n 0:22 0:16 0:38 0:65

16 � n 0:42 0:27 0:33 0:82 1:42

32 � n 1:12 0:63 0:60 0:80 1:49 3:41

The problem that the communication part overlays the arithmetic part will occur for a

further right hand side again.

In this example the nested divide & conquer has turned out to be a quite useful method to

overcome problems when the system is really ill{conditioned and an iterative process like

the block Jacobi will not converge. Of course for extremal cases like this we cannot always

expect that by increasing the number of processors we will need less time since the number

of iterations may rapidly increase. More important is the observation that in this example

the iterative process has been stabilized using the nested divide & conquer method leading

to a moderate number of iterations as well as to a reduction of the system. The initial block

diagonal matrix will be successively adapted to the problem using low rank modi�cations.

The fact that the computational costs increase for larger p may be related to the fact that the

coupling system is extremely small and that the communication is quite expensive. On any

processor not more then a 6� 6 block of the coupling system is stored. Thus the numerical

costs will be very small compared with communication costs. Nevertheless up to p = 16 we

could reduce the total amount and in contrast to the block Jacobi method the computational

costs for p = 32; 64 is still moderate. Another point which is not satisfactory so far is the

151

local data exchange. Currently a general purpose routine based on the graph of the initial

system is used. What is missing so far is a communication routine which adapts the local

data exchange required by the block graph of the initial system to the physical communication

network.

Example 9.9

The example that we will discuss is closely connected to the matrix LANPRO/NOS1 in

Example (9.1). Since the size of this example (n = 237) is much too small to use it in

parallel computations we will use the matrix A = I
 T + T
 I, where T denotes the

matrix from (9.1). The resulting matrix has size n = 56169.

We will examine the parallel block Jacobi method and the nested divide & conquer method

for p = 2; 4; : : : ; 64.

We start with the block Jacobi method.

Time [sec] for Cholesky decomposition of S

J

p 2 4 8 16 32 64

52:57 16:43 6:53 2:57 0:89 0:35

The time needed for the Cholesky decomposition decreases by a factor between 2 and 3 when

increasing the number of processors. For larger p the time and the number of iterations

needed for the iterative process comes more and more into account and will dominate the

total amount. Unfortunately the number of iteration steps is huge.

Number of iterations needed by the cg{method

p 2 4 8 16 32 64

43 842 2041 2577 3000 3436

Consequently the time will be high as well.

Time [sec] needed for the iterative solution process for S

�1

J

A

p 2 4 8 16 32 64

38:60 331:57 414:38 252:03 158:86 134:18

Already for p > 2 the iterative solution process dominates the total costs.

Total time [sec]

p 2 4 8 16 32 64

91:17 348:00 420:91 254:60 159:75 134:53

152

Here for p = 2 the least time is needed. One important reason for this e�ect is that

the coupling system S

c

will rapidly increase in its size as the number of processors in-

creases. In other words for the block Jacobi method the rank of S

J

� A is rapidly increas-

ing. The rank will be typically 2 times more then the size of the coupling system for the

nested divide & conquer process. The size of S

c

for the minimal rank approach will be

84; 448; 1099; 1892; 3216; 5058 for p = 2; 4; 8; ::: and thus the rank of S

J

�A will be approx-

imately twice as much. This is a speci�c property of this matrix and clearly this will also

a�ect the nested divide & conquer method.

It is clear that the time required for the Cholesky decomposition will be almost the same for

the nested divide & conquer method as for the block Jacobi method.

Time [sec] for the Cholesky decomposition

p 2 4 8 16 32 64

51:28 19:26 7:41 2:67 1:09 0:49

More important is the number of iterations and the time needed for the iterative process.

Here up to the case p = 2 the coupling system was generated during the iteration (for p = 4

after the second update in step 100 and for p > 4 after the �rst update in step 50). The

updates were then performed with respect to the preconditioned system.

Number of iterations needed for the combined update and iteration

p 2 4 8 16 32 64

46 121 124 206 397 529

The number of iterations for the nested divide & conquer is already much less than for the

block Jacobi method. During the nested divide & conquer process the coupling system has

been reduced in its size.

Size of the coupling system, initially 7! �nally

p 2 4 8 16 32 64

84 7!83 448 7!443 1099 7!1093 1892 7!1884 3216 7!3198 5058 7!5025

The fewer number of iterations will also reduce the time for the solution process.

Time [sec] needed for the combined update and iteration

p 2 4 8 16 32 64

51:96 156:25 76:93 50:62 46:77 39:45

Like in Example 9.8 the arithmetic part will be much less for larger p. Here the situation

is not so drastical as in Example 9.8.

153

Maximal arithmetic time [sec] for the combined update and iteration

p 2 4 8 16 32 64

51:88 154:60 75:30 46:55 36:10 18:46

Finally we have the following total amount.

Total amount [sec]

p 2 4 8 16 32 64

103:24 175:51 84:34 53:29 47:86 39:94

We see that the nested divide & conquer will need much less iterations and much less

time than the block Jacobi method. Again the fewer number of iterations is not only a

consequence of the additional use of a preconditioner for the coupling system, which can be

seen when we omit later updates.

Number of iterations without later updates

p 2 4 8 16 32 64

46 121 129 238 458 859

Time [sec] needed for the iteration without later updates

p 2 4 8 16 32 64

51:94 157:01 76:74 53:31 49:04 53:37

Again the solution of a further right hand side is quite cheap when using the nested divide

& conquer method.

Number of steps for a further right hand side

p 2 4 8 16 32 64

44 21 54 89 114 130

Time [sec] needed for a second right hand side

p 2 4 8 16 32 64

50:90 4:35 5:99 10:79 11:81 10:84

One problem which aggravates the parallel solution of this system is the fact that with

increasing number of processors the coupling rapidly grows. This is a problem for any

method working with low rank splittings. This is the reason why still for p = 8 the method

is only slightly faster than for p = 2. In addition the size of the distributed parts is strongly

varying especially for p = 4. In this case two processors had a part of the coupling system

154

which has a size larger than 320 while the other ones had parts of S

c

in the order of

100. This e�ect also occurs for p = 8; 16 but there the di�erent sizes of the parts of S

c

are not so strongly varying as for p = 4. For p = 64 the coupling system already has

size larger than 5000 while the whole system has a size of n = 56169. In addition it is

ill{conditioned which is stated by the enormous number of iterations needed by the block

Jacobi method. Consequently the improvement in the computational time will not be so

strong when increasing the number of processors. With respect to this speci�c problems

the improvement which is made using the nested divide & conquer approach is still quite

acceptable.

Example 9.10

We consider the matrix BCSSTRUC1/BCSSTK09 from Example 9.4. Analogously to

Example 9.8 we extend the matrix by essentially taking the matrix 8; 16 and 32 times.

We start this example by examining the block Jacobi method for this problem.

Time [sec] for Cholesky decomposition

size(A) n p 2 4 8 16 32 64

8 � n 6:46 2:86 0:90 0:29

16 � n 10:62 5:91 2:69 1:00 0:29

32 � n 32:21 14:41 6:35 3:23 1:09 0:33

For larger p the number of iterations for the cg{method will consume most of the compu-

tational costs since the number of iterations will increase.

Number of iterations needed for the cg{method

size(A) n p 2 4 8 16 32 64

8 � n 62 133 224 448

16 � n 58 136 246 322 514

32 � n 52 128 209 228 256 478

Since the number of iterations will increase the time will at least increase in those cases

where the number of iterations drastically increases from p to 2p.

Time [sec] needed for the iterative solution process

size(A) n p 2 4 8 16 32 64

8 � n 10:29 10:66 8:43 9:83

16 � n 17:74 21:86 20:37 13:34 13:62

32 � n 38:68 45:10 35:69 20:44 12:22 16:56

155

Total amount [sec]

size(A) n p 2 4 8 16 32 64

8 � n 16:75 13:52 9:33 10:12

16 � n 28:36 27:77 23:06 14:34 13:91

32 � n 70:89 59:51 42:04 23:67 13:31 16:89

For the total amount increasing the number of processors will make the block Jacobi faster

up to the last but one processor that has been taken here. But �nally for 8 � n,p = 16 and

for 32 � n,p = 64 the number of iterations will increase too much.

Next we study the nested divide & conquer method applied to this problem. Like for the

block Jacobi method we start with the time needed for the Cholesky decomposition which

will be almost the same as for the block Jacobi method

Time [sec] for the Cholesky decomposition

size(A) n p 2 4 8 16 32 64

8 � n 5:19 2:58 1:06 0:37

16 � n 11:43 5:66 2:83 1:16 0:40

32 � n 36:03 10:23 7:02 2:89 1:13 0:46

Next we examine the number of iterations needed by the nested divide & conquer method

applied to this problem. Here after the �rst update (for p = 2 after 33-36 steps, in the other

cases after 50 steps) the coupling system is generated and the update is made with respect

to the preconditioned system.

Number of steps for combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 39 54 63 124

16 � n 36 53 58 64 206

32 � n 36 51 56 58 64 241

Due to the generation of the parts of S

c

the improvement in the number of iterations is

partially weakened.

Time [sec] needed for the combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 13:74 10:71 5:39 4:46

16 � n 26:88 23:13 12:48 5:58 8:89

32 � n 70:45 44:64 28:01 12:48 5:75 12:37

The pure arithmetic part of the computation will be much less for larger p.

156

Maximal time [sec] needed for arithmetic part

size(A) n p 2 4 8 16 32 64

8 � n 13:66 10:35 4:92 2:61

16 � n 26:81 22:00 11:70 4:80 3:80

32 � n 70:38 43:95 26:45 11:87 4:84 5:02

Here the increasing time for larger p obviously is related to the increasing amount for the

communication. As mentioned in Example 9.8, one problem is the current realization of

the local data exchange, which is not yet satisfactory. Like in Example 9.8 this problem

also occurs for the block Jacobi method.

During the iteration the size of S

c

has been successively reduced. We give the size of the

initial S

c

and the �nal S

c

in the next table.

Size of the coupling system, initially 7! �nally

size(A) n p 2 4 8 16 32 64

8 � n 72 7! 72 191 7! 190 472 7! 469 987 7! 978

16 � n 66 7! 66 198 7! 196 482 7! 479 996 7! 993 2078 7! 2066

32 � n 66 7! 66 192 7! 192 461 7! 456 958 7! 955 1946 7! 1943 4224 7! 4209

Up to the �nal number p of processors that have been used the reduction of S

c

is quite

small. For the �nal number p of processors that have been used the number of iterations is

larger and consequently S

c

will be more reduced in its size. To summarize the nested divide

& conquer we have the following total amount.

Total amount [sec]

p 2 4 8 16 32 64

8 � n 18:93 13:29 6:45 4:83

16 � n 38:31 28:79 15:30 6:74 9:29

32 � n 106:48 54:87 35:03 15:37 6:88 12:83

Up to the case p = 2 where the heuristic for the generation of S

c

has slowed down the

nested divide & conquer strategy the total amount for the nested divide & conquer is less

than for the block Jacobi method and the reduction of S

c

is moderate except for the case of

the �nally used p, but there the number of iterations also clearly increases.

Here only slight reductions were necessary and this is the reason why without using updates

the time does not essentially di�er from nested divide & conquer process. In fact for 16 �n,

p = 32 and 32 � n, p = 64 it needs slightly less iterations.

Number of steps for the iteration with no further updates

size(A) n p 2 4 8 16 32 64

8 � n 39 54 63 146

16 � n 36 54 58 64 197

32 � n 36 51 56 58 64 233

157

Time [sec] needed for the iteration with no further updates

size(A) n p 2 4 8 16 32 64

8 � n 13:74 10:61 5:36 4:81

16 � n 26:88 22:62 12:47 5:58 7:70

32 � n 70:41 44:67 28:07 12:49 5:74 10:53

The situation drastically changes when we replace the initial matrix A by a shifted matrix

A� �I. The �rst 10 digits of � coincide with those of the smallest eigenvalue of A. Again

we will examine both methods for the shifted matrix which has the same eigenvectors and

distribution over the processors as the original system.

For the block Jacobi the number of iterations and the computational costs will increase too

much for a sensible application to this problem.

Number of iterations needed for the cg{method

size(A) n p 2 4 8 16 32 64

8 � n 265 643 1407 1800

16 � n 238 696 1428 3335 4149

32 � n 139 446 1094 2290 4753 9112

The drastical increase in the number of iterations will be re
ected in the computational

time leading to a long time the more we increase the number of processors.

Time [sec] needed for the iterative solution process

size(A) n p 2 4 8 16 32 64

8 � n 44:27 51:68 53:26 39:60

16 � n 73:39 112:00 118:62 138:39 113:80

32 � n 103:62 157:34 187:19 205:55 222:91 316:66

Of course the nested divide & conquer will also be a�ected by this ill{conditioned matrix.

But the impact of this ill{conditioned matrix is much weaker.

Number of steps for combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 42 66 96 194

16 � n 40 61 90 122 365

32 � n 39 61 92 113 162 603

158

Time [sec] needed for the combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 14:67 11:60 6:26 6:72

16 � n 28:82 23:82 13:49 7:39 16:24

32 � n 75:39 46:63 29:53 14:25 9:60 34:47

Here the communication overlays the arithmetic part much more than in the unshifted case,

which can be seen, when considering only the maximal arithmetic costs.

Maximal arithmetic time [sec] for the combined update and iteration

size(A) n p 2 4 8 16 32 64

8 � n 14:56 11:10 5:32 3:41

16 � n 28:73 22:55 12:27 5:41 6:28

32 � n 75:30 45:83 27:48 12:60 5:85 12:32

In contrast to the unshifted matrix now S

c

is much more reduced in its size.

Size of the coupling system, initially 7! �nally

size(A) n p 2 4 8 16 32 64

8 � n 72 7! 71 191 7! 186 472 7! 465 987 7! 977

16 � n 66 7! 65 198 7! 194 482 7! 475 996 7! 990 2078 7! 2058

32 � n 66 7! 65 192 7! 188 461 7! 455 958 7! 950 1946 7! 1941 4224 7! 4182

The reduction in the total amount compared with the block Jacobi is not only a consequence

of the additional preconditioner, which can be seen when we do no further updates. Here

for 16 �n and p = 32 as well as for 32 �n and p = 64 the iteration did not converge. In both

cases the residual was decreasing for a while and then stagnating. A similar e�ect occurs

for 32 � n and p = 16. Here the iteration was stagnating for a long time and then slowly

converging. This is the reason for the enormous time and number of steps in this case.

Number of steps for the iteration with no further updates

size(A) n p 2 4 8 16 32 64

8 � n 41 117 102 515

16 � n 36 85 111 358 1

32 � n 39 87 155 14722 205 1

Time [sec] needed for the iteration with no further updates

size(A) n p 2 4 8 16 32 64

8 � n 14:01 11:84 6:31 14:88

16 � n 28:84 23:26 13:84 13:38 1

32 � n 71:84 45:48 30:59 377:29 10:82 1

159

What we can see is that in this example which is really ill{conditioned not only the number

of iterations for the nested divide & conquer is much less than for the standard block Ja-

cobi but that in addition several updates were necessary to adapt the process to the problem.

Here the nested divide & conquer process will also slow down for the last p that has been

used but the number of iterations is still much below the size of S

c

and in any case S

c

has

been successively reduced.

When solving systems with further right hand sides this will lead to a few number of itera-

tions.

Number of steps for a further right hand side

size(A) n p 2 4 8 16 32 64

8 � n 6 11 26 71

16 � n 6 9 20 53 117

32 � n 6 9 25 45 78 129

Time [sec] needed for a further right hand side

size(A) n p 2 4 8 16 32 64

8 � n 1:57 0:95 0:92 2:31

16 � n 3:27 1:79 1:24 1:83 5:39

32 � n 8:40 3:21 2:49 2:07 3:26 8:47

Again the communication part will overlay the arithmetic part for larger p.

In this example the nested divide & conquer process has turned out to be competitive to the

block Jacobi method for the unshifted initial matrix and it has been extremely superior for

the ill{conditioned shifted matrix. While the block Jacobi will no longer be applicable to this

problem the nested divide & conquer will be much less a�ected by the bad condition of A. But

for the shifted matrix more updates are necessary and a bigger part of S

c

is directly solved

by the reduction. Of course the nested divide & conquer will also slow down for the �nal p

that has been used, but in this case the system is much more reduced leading more and more

to a direct solution of S

c

. While for the unshifted matrix the nested divide & conquer will

almost coincide with the version with no further updates, the situation drastically changes

for the shifted matrix, where without using updates the convergence extremely slows down

or will not converge at all.

Summary

The use of the nested divide & conquer method has turned out to be a useful method

to overcome problems which occur when an iterative method will need a large number

of iterations. We have illustrated for the positive de�nite case how this method can be

e�ciently implemented on a parallel computer. When the cg{method with block Jacobi

preconditioning slows down and becomes useless for parallel computations the concept of

making a compromise between an iterative and direct solution will be clearly superior.

We have illustrated that this is not only the fact that for larger number of iterations the

160

coupling system is build and an additional preconditioner is available but in addition the

nested divide & conquer strategy will generate more and more updates the longer the

iteration takes generating adaptively a preconditioner for the initial system and reducing

the coupling system at the same time. And while without using the updates in theses cases

the iterative process slows down or does not converge any more we have at least a reduction

in the size of the coupling system and the numerical experiments have shown that in this

case the nested divide & conquer will need much less iterations. An additional e�ect when

using the nested divide & conquer is that solving further right hand sides will be much

cheaper than for the �rst right hand side, since due to the updates the number of iterations

will become smaller and smaller.

What we not necessarily get by this approach is a scale{up when using this method as black

box solver. The problem is that the nested divide & conquer still needs the eigenvector

information from the (preconditioned) coupling system. In theory it is possible to use

larger number of updates in any step than in our numerical experiments but this would

typically slow down the iterative process, since the updates do not contain more essential

information for the iterative process but require more computational costs, more storage

and more communication.

9.3 Some Unsymmetric Examples

We will now examine some unsymmetric examples. In contrast to the symmetric case here

we can only work with numerical observations, since the approximation properties of the

modi�ed block Jacobi splitting fromChapter 6 have not been discussed. In addition we have

to restrict ourselves to examples with nonsingular block diagonal part, but this reduces the

freedom of examples that can be examined.

We will compare Algorithm 6.89,6.90 with the simple modi�ed block Jacobi splitting where

only X = I is used. In addition we will compare these methods with the unmodi�ed block

Jacobi splitting. Like in the symmetric case the relation between the number of blocks p

and the size n of the system together with the size of the blocks will restrict the freedom

in choosing p. In order to investigate whether we can make an improvement when using

modi�ed block Jacobi splittings we will examine the following topics.

1. the condition number �

2

of S

c;J

, S

c;mod

; S

c;fm

, S

c;I

. Here S

c;J

is the coupling system

when using the Sherman{Morrison{Woodbury formula for the block Jacobi splitting.

By Corollary 2.6 we have AS

�1

J

F = FS

c;J

where F denotes the matrix which has

unit vectors as columns with respect to the nonzero rows of W = S�A, i.e., we have

W = F (F

T

W). The reason for using S

c;J

instead of AS

�1

J

is that its size is many

times smaller than that of AS

�1

J

and this simpli�es estimating the condition number

of S

c;J

. S

c;mod

denotes the coupling system of Algorithm 6.89, S

c;fm

is the coupling

system obtained by Algorithm 6.90. Finally S

c;I

denotes the coupling systems of the

modi�ed block Jacobi-splitting for X = I. For estimating the condition numbers we

used MATLAB 's `condest' function.

161

2. the eigenvalue distribution of these matrices.

3. the number of sequential
oating point operations(
ops) for the LU{decomposition

versus the
ops required by the generation of X in Algorithm 6.90.

4. the number of
ops for the iterative solution process for the block Jacobi method

versus the number of
ops required by Algorithm 6.90 and for S

c;I

when using the

GMRES [75] method.

To examine the condition number of the coupling system will be important when applying

a direct solution method to S

c

as well as for the iterative solution of S

c

. For the iter-

ative solution of S

c

using GMRES a moderate condition number allows the use of the

modi�ed Gram{Schmidt process [41], pp.218 for the reorthogonalization during the GM-

RES iteration [71], while otherwise reorthogonalization using Householder transformation

[41],pp.211� is preferred.

Of course a small condition number and an improved eigenvalue distribution may have

nothing to do with a small number of iterations in general [42]. We will apply the full

GMRES method using Householder reorthogonalization to the block Jacobi method as

well to S

c;I

; S

c;mod

; S

c;fm

.

As stopping criterion for the solution process we will use kr

k

k

2

6

p

eps kr

0

k

2

, where r

k

is

the residual in step k. Here eps � 2:2204 � 10

�16

. The iterative solution is performed ten

times for random right hand sides and �nally the average is taken. As initial guess we will

choose x

0

= 0.

Again the computations were carried out using MATLAB [60]. For the computation of

the parameter � in Algorithm 6.89 we used MATLAB 's `eig' function.

Note that by computing

�

D;D from Lemma 6.19 and X we get an explicit representation

of S

c

in (6.9). This will reduce the number of
ops when applying the GMRES{method to

S

c

.

In practice the GMRES method is only used for a limited number, say k, of steps. Then

the iteration is restarted with the computed solution. The reason for using restarts usually

is memory requirement as well computational costs. For detail we refer to [74]. For our

problem here the memory requirement is not so critical, since the iteration is only performed

for the coupling system, which is typically much smaller than the initial matrix. In practice

it may happen that when using a restarted version of the GMRES method the number

of iteration steps can drastically increase. Clearly increasing the number of GMRES steps

may reduce this danger. But in practice we do not know if increasing k will e�ectively

reduce the computational costs and in addition we do not know how large k has to be

chosen. This is the point where we can introduce the nested divide & conquer process.

The nested divide & conquer method has been constructed to make a compromise between

a direct solution of S

c

and an iterative solution for S

c

. Unfortunately the problem is that

in general it is not known what orthogonal transformations should be used for the update

procedure. In the symmetric positive de�nite case we have shown in Theorem 3.31 that

skillful linear combinations of eigenvectors of S

c

are optimal in the sense of quadratic forms.

What one can do in the general case is to use some of the approximate eigenvectors from

162

the underlying Arnoldi process to generate updates. Strategies concerning approximate

eigenvectors have been used in several papers, see e.g. [62], [53], [73]. In [53] the initial

system has been preconditioned by a product of rank 1 transformations. The transforma-

tions are based on eigenvalue translations. The idea in [53] was to transform the spread

eigenvalues into a vicinity of 1. Spread eigenvalues are eigenvalues which are far away from

the remaining eigenvalues.

In [62] eigenvectors corresponding with small modulus have been used to �ll up the Krylov

space over which the residual is minimized. In [62] it has been shown that approximate

eigenvectors of eigenvalues with small modulus will have an essential in
uence on the

convergence even if the these approximate eigenvectors are not quite exact.

Here we will give a simple heuristic for the choice of updates. Note that it is not our

aim to present an optimal strategy but to illustrate that updates can be used to make a

compromise between a direct and iterative solution of S

c

. There may exist several strategies

which are better. In contrast to [62], [53], [73] we will use this heuristic to perform an update

and to explicitly reduce the size of the coupling system and successively modify the initial

splitting. Even if the update strategy will not improve the iterative process we will �nally

end in a direct method.

The heuristic to create the update is described as follows. Using the GMRES method for

a matrix A we obtain the equation

AQ

k

= Q

k+1

^

H

k

;

where Q

l

= [q

1

; : : : ; q

l

], l = k; k + 1 consists of mutually orthogonal column vectors and a

(k + 1) � k upper Hessenberg matrix

^

H

k

=

0

B

B

B

B

B

@

h

11

� � � � � � h

1k

h

21

h

22

.

.

.

.

.

.

.

.

.

.

.

.

h

k;k�1

h

kk

0 h

k+1;k

1

C

C

C

C

C

A

=

�

H

k

0 � � � 0 h

k+1;k

�

In [62] it is suggested to use the generalized eigenvalue problem

H

T

x =

1

�

H

T

Hx(9.11)

for the computation of eigenvalues close to zero. The author points out that this general-

ized eigenvalue problem is well suited to �nd eigenvalues of A close to zero. Here we will

use this eigenvalue problem to de�ne a simple heuristic update strategy. First of all we will

determine isolated eigenvalues. These are all eigenvalues of (9.11) whose distance to the

remaining eigenvalue is larger than the average. All eigenvalues of (9.11) can be located

in a rectangle. Next we will de�ne from these isolated eigenvalues those ones as spread

eigenvalues which do not lie in a rectangle of half length and half width of the original

rectangle. Finally all eigenvalues which have modulus less than a given tolerance (here

10

�2

) times the remaining ones are selected as small eigenvalues in modulus.

By this heuristic we select spread eigenvalues and small eigenvalues from the spectrum of

163

(9.11) to construct a low rank update. As update we choose the corresponding approx-

imate invariant subspace which is spanned by the corresponding eigenvectors. I.e. If V

denotes the eigenvector matrix of (9.11) corresponding to our selected eigenvalues, then

a QR-decomposition of Q

k

V gives us our update. Clearly this is only a heuristic. In [62]

eigenvectors have been used to augment the corresponding Krylov subspace, in [53] spread

eigenvalues have been translated using pole placement.

In contrast to these methods here we take out spread and small eigenvalues only from

the small coupling system. By explicitly reducing the coupling system of small size the

initial system will be adaptively modi�ed by a low rank leading to an successively adapted

preconditioner.

We will examine the examples for a restart k = 30.

Firstly we will consider some examples from the Harwell{Boeing sparse matrix collection

[28]. The test matrices can be accessed via anonymous ftp from ftp.orion.cerfacs.fr.

Example 9.12

The matrix PORES/PORES3 has size is n =

532 and it is block tridiagonal with blocks of size

6 12�12. In this representation the matrix has

been reordered using MATLAB 's `symrcm'

function which implements the reverse Cuthill{

McKee ordering. Its pattern is illustrated in the

picture on the right hand side. We will exam-

ine this matrix for various number of blocks

p = 2; 4; 8; 16.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2802

First of all we will compare the condition numbers of S

c;J

; S

c;I

; S

c;mod

and S

c;fm

.

Condition Number

�

2

n p 2 4 8 16

�

2

(S

c;I

) 1:3�10

3

8:1�10

3

1:8�10

6

1:8�10

7

�

2

(S

c;mod

) 1:8�10

0

4:1�10

1

2:6�10

2

1:0�10

4

�

2

(S

c;fm

) 1:0�10

0

4:1�10

1

2:6�10

2

1:0�10

4

�

2

(S

c;J

) 4:6�10

2

1:4�10

4

2:3�10

4

4:9�10

4

The improvement in the condition number that has been made using S

c;mod

; S

c;fm

instead of

S

c;I

is quite large. The extremely improved condition number will be useful for an iterative

solution of S

c

as well as for a direct solution of S

c

. Clearly a small condition number will

not at all be su�cient to ensure that an unsymmetric iteration like GMRES will lead to a

164

small number of iterations, but an ill{conditioned system will be typically much worse.

Next we will compare the eigenvalue distribution for p = 4; 16. The matrices are multiplied

by a scalar such that the smallest eigenvalue in modulus has absolute value 1.

−2500 −2000 −1500 −1000 −500 0

−1000

−500

0

500

1000

Eigenvalues of S

c;I

� 3:7 � 10

8

; p = 4

−5 −4 −3 −2 −1 0

x 10
6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
6

Eigenvalues of S

c;I

� 1:3 � 10

9

; p = 16

0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

Eigenvalues of S

c;mod

� 1:8 � 10

9

; p = 4

0 1000 2000 3000 4000

−1500

−1000

−500

0

500

1000

1500

Eigenvalues of S

c;mod

� 5:7 � 10

11

; p = 16

0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6

Eigenvalues of S

c;fm

� 1:9 � 10

9

; p = 4

0 1000 2000 3000 4000

−1500

−1000

−500

0

500

1000

1500

Eigenvalues of S

c;fm

� 5:7 � 10

11

; p = 16

The eigenvalues of S

c;I

are widely distributed for p = 4 and even worse for p = 16. Already

for p = 4 the largest eigenvalue in modulus has a modulus of more than 2500 while for

S

c;mod

, S

c;fm

the largest eigenvalue in modulus is approximately 14. For p = 16 the situation

is even worse. The largest eigenvalue of S

c;I

in modulus has a real part of approximately

5 � 10

6

while for S

c;mod

; S

c;fm

this is approximately 5000. Clearly we cannot expect that the

165

improvement on the coupling system is for p = 16 as well as for p = 4 since by construction

of X from Algorithm 6.89, 6.90 X is only allowed to be block diagonal. The eigenvalue

distribution of S

c;mod

and S

c;fm

are quite close to each other. This was also observed in the

other numerical examples.

Next we will examine the number of iterations using the full GMRES method. The iteration

for S

c;I

,S

c;mod

and S

c;fm

will be compared with the GMRES method using S

J

as precondi-

tioner for A.

Number of Iteration Steps of full GMRES

it. n p 2 4 8 16

S

c;I

13 58 99 199

S

c;mod

6 17 31 107

S

c;fm

4 16 31 107

S

�1

J

A 15 36 63 120

The number of iteration steps has been e�ectively reduced using the modi�ed coupling sys-

tems S

c;fm

; S

c;mod

. The reduction in the number of iterations has the disadvantage that the

computation of X has to be taken into account. For this reason we will compare the number

of
ops (for S

c;mod

we will skip the number of
ops , since the calculation of the optimal

parameter � will be typically quite expensive).

ops for LU Decomposition Versus the Generation of X

ops n p 2 4 8 16

LU decomposition S;X = I 3:8�10

5

3:4�10

5

3:0�10

5

2:2�10

5

Alg. 6.90 S

c;fm

5:7�10

5

8:2�10

5

1:1�10

6

1:4�10

6

LU decomposition S

J

3:7�10

5

3:2�10

5

2:7�10

5

1:6�10

5

Of course the computation of X will be much more expensive than a pure LU decomposition,

since for the generation of X a block diagonal system with up to 24 right hand sides has to

be solved.

ops for the Solution Process

ops n p 2 4 8 16

S

c;I

3:0�10

5

1:0�10

6

3:1�10

6

1:5�10

7

S

c;fm

2:1�10

5

3:0�10

5

6:6�10

5

5:6�10

6

S

�1

J

A 9:8�10

5

3:8�10

6

1:0�10

7

3:1�10

7

Total amount in
ops

ops n p 2 4 8 16

S

c;I

6:7�10

5

1:4�10

6

3:4�10

6

1:5�10

7

S

c;fm

7:8�10

5

1:1�10

6

1:8�10

6

6:9�10

6

S

�1

J

A 1:3�10

6

4:1�10

6

1:0�10

7

3:1�10

7

166

Here the modi�ed block Jacobi splitting has turned out to be more suitable than just choosing

X = I. When only choosing X = I in this example the related coupling system becomes

ill{conditioned which causes problem for the direct solution of systems with S

c

as well for

an iterative solution. The expensive generation of X consumes much of the improvement

on S

c

.

Beside the full GMRES as iterative method one typically uses a restarted GMRES as iter-

ative process. Here we will use 30 GMRES steps before a restart is performed. Clearly this

is interesting in this example for p = 8; 16 while for p = 2; 4 the number of iterations for

S

c;fm

and S

�1

J

A is small. Especially the nested divide & conquer strategy can be combined

with this method. For the case X = I, Algorithm 6.90 and the system preconditioned by

the block Jacobi matrix S

J

we will examine the restarted GMRES combined with low rank

updates. Note that the standard block Jacobi splitting also �ts into the class of low rank

splittings, but the rank will not be locally minimized. The corresponding coupling system

will be denoted by S

c;J

.

Without our low rank update strategy we obtain the following number of iterations. For the

case when the number of iterations exceeds the size of the initial system we do not continue

the process anymore.

Number of Iteration Steps of GMRES(30)

it. n p 2 4 8 16

S

c;I

13 301 > n > n

S

c;fm

4 16 30 > n

S

c;J

15 61 > n > n

Here none of the methods is satisfactory. Even the iteration for S

c;fm

which required the

least number of iterations for the full GMRES will need more than n iterations if only 30

steps of GMRES are used.

The situation changes in combination with the nested divide & conquer method. Here we

need the following number of steps.

Number of Iteration Steps of GMRES(30) combined with nested d& c

it. n p 2 4 8 16

S

c;I

13 87 241 391

S

c;fm

4 13 23 98

S

c;J

15 49 121 211

Of course the number of iterations will still be larger than those of the full GMRES. But

at least the number of iterations will no longer exceed the size of the system. During the

nested divide & conquer process the coupling system has been successively reduced in its

size. In the following table the initial and the �nal size of S

c

are given.

167

Size of the coupling system, initially 7! �nally

it. n p 2 4 8 16

S

c;I

12 7! 12 38 7! 26 79 7! 49 161 7! 89

S

c;fm

12 7! 11 38 7! 37 79 7! 75 161 7! 144

S

c;J

24 7! 24 76 7! 69 156 7! 140 323 7! 288

As expected, for S

c;I

several steps of updates are necessary but this matrix is ill{conditioned,

while for the other two coupling systems the heuristic for updating S

c

gives a much more

moderate reduction.

The successive reduction of S

c

will adaptively replace the initial block diagonal matrix by a

block diagonal plus an additional low rank modi�cation. This will have the side e�ect that

solving system with further right hand sides will require less iterations than the �rst right

hand side. To see this we apply all algorithms to a further right hand side.

Second right hand side of GMRES(30) combined with nested d& c

it. n p 2 4 8 16

S

c;I

13 48 91 91

S

c;fm

4 13 19 44

S

c;J

15 23 59 91

Finally we will compare the
opswhen using the nested divide & conquer for one right

hand side.

ops for the Solution Process of GMRES(30)

ops n p 2 4 8 16

S

c;I

3:0�10

5

8:9�10

6

| |

S

c;fm

2:1�10

5

3:0�10

5

6:4�10

5

|

S

c;J

3:4�10

5

1:9�10

6

| |

ops for the Solution Process of GMRES(30) combined with nested d& c

ops n p 2 4 8 16

S

c;I

3:0�10

5

9:1�10

6

3:3�10

7

9:2�10

7

S

c;fm

2:1�10

5

3:9�10

5

1:5�10

6

1:4�10

7

S

c;J

3:4�10

5

4:6�10

6

1:7�10

7

5:7�10

7

Since the iteration steps for the GMRES(30) exceeds several times the size of the system,

we can only partially compare it with the use of the nested divide & conquer strategy.

Much more important here is the observation that using the nested divide & conquer strategy

the iterative process becomes more and more a direct process the longer the number of

iterations will be, since the size of the coupling system will be reduced. Compared with the

168

GMRES(30) which does not use updates, the combination with the nested divide & conquer

ensures that the process will terminate after a moderate number of steps. Note that in this

example we have n = 532 and without the updates the iterative process for p = 16 will take

more than n steps for all three coupling systems!

Example 9.13

The matrix WATT/WATT1 has size is n =

1856 and it is block tridiagonal with blocks of

size 6 64 � 64. Its pattern is illustrated in the

picture on the right hand side. We will examine

this matrix for various number of blocks p =

2; 4; 8.

0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 11360

First of all we will compare the condition numbers of S

c;J

; S

c;I

; S

c;mod

and S

c;fm

.

Condition Number

�

2

n p 2 4 8

�

2

(S

c;I

) 4:1�10

7

3:9�10

8

2:6�10

9

�

2

(S

c;mod

) 2:1�10

0

4:7�10

1

1:8�10

2

�

2

(S

c;fm

) 1:0�10

0

4:5�10

1

1:8�10

2

�

2

(S

c;J

) 7:0�10

1

1:3�10

2

2:5�10

2

The improvement of the condition number of S

c;mod

; S

c;fm

compared with that of S

c;I

is

remarkable. Algorithm 6.89 as well as Algorithm 6.90 extremely improve the condition

number. Next we will compare the eigenvalue distribution for p = 4; 8. The matrices a

multiplied by a scalar such that the smallest eigenvalue in modulus has absolute value 1.

−2 0 2 4 6 8 10 12

x 10
4

−6

−4

−2

0

2

4

6

x 10
4

Eigenvalues of S

c;I

� 4:3 � 10

2

; p = 4

0 0.5 1 1.5 2 2.5

x 10
6

−1

−0.5

0

0.5

1

x 10
6

Eigenvalues of S

c;I

� 4:3 � 10

3

; p = 8

169

−1 0 1 2 3 4 5 6

−2

−1

0

1

2

Eigenvalues of S

c;mod

� 2:3 � 10

7

; p = 4

0 5 10 15 20 25 30

−10

−5

0

5

10

Eigenvalues of S

c;mod

� 3:8 � 10

7

; p = 8

−1 0 1 2 3 4 5 6

−2

−1

0

1

2

Eigenvalues of S

c;fm

� 2:1 � 10

5

; p = 4

0 5 10 15 20 25 30

−10

−5

0

5

10

Eigenvalues of S

c;fm

� 1:9 � 10

5

; p = 8

Already for p = 4 the eigenvalues of S

c;I

are widely distributed (watch the scaling!). They

are from �3 � 10

4

to 1:3 � 10

5

, while there are still eigenvalues with modulus 1 which are

quite small in modulus compared with the extremal eigenvalues. For S

c;mod

the eigenvalues

relatively close to each other and no large gap is seen. The situation will be analogous for

p = 8, but for both coupling systems the gaps increase. Again the eigenvalues of S

c;mod

,

S

c;fm

are quite close to each other.

Next we will examine the number of iterations using the GMRES method. The iteration for

S

c;I

,S

c;mod

and S

c;fm

will be compared with the GMRES method applied to the preconditioned

system S

�1

J

Ax = S

�1

J

b.

Number of Iteration Steps

it. n p 2 4 8

S

c;I

65 190 403

S

c;mod

8 15 30

S

c;fm

5 13 30

S

�1

J

A 40 70 88

Here the number of steps has been drastically reduced compared with the choice X = I. And

also the GMRES with block Jacobi preconditioning needs more steps.

Finally we will compare the number of
ops .

170

ops for LU Decomposition Versus the Generation of X

ops n p 2 4 8

LU decomposition S;X = I 2:8�10

7

2:5�10

7

1:8�10

7

Alg. 6.90 S

c;fm

5:2�10

7

7:8�10

7

1:1�10

8

LU decomposition S

J

2:8�10

7

2:5�10

7

1:9�10

7

ops for the Solution Process

ops n p 2 4 8

S

c;I

2:2�10

7

8:7�10

7

3:4�10

8

S

c;fm

1:7�10

6

3:0�10

6

1:0�10

7

S

�1

J

A 3:0�10

7

6:4�10

7

8:4�10

7

Total amount in
ops

ops n p 2 4 8

S

c;I

5:1�10

7

1:1�10

7

3:6�10

8

S

c;fm

5:3�10

7

8:1�10

7

1:2�10

8

S

�1

J

A 5:8�10

7

8:8�10

7

1:0�10

8

For the generation of X in Algorithm 6.90 here up to 128 right hand sides have to be solved

with S

J

which makes the generation of X quite expensive. But without modifying the block

diagonal part of S the condition number and the number of iterations grow drastically. At

the end the improvement in the condition already is worth enough to use the modi�ed block

Jacobi splitting instead of just using X = I.

Next we will use the GMRES(30) method instead of the full GMRES method. The number

of iterations will then grow drastically but again the nested divide & conquer method can

be used to reduce the number of iterations as well as the size of the coupling system.

Number of Iteration Steps of GMRES(30)

it. n p 2 4 8

S

c;I

> n > n > n

S

c;fm

5 14 30

S

c;J

31 61 91

For S

c;fm

we need not apply the nested divide & conquer process since the number of

iterations is still under the limit 30.

Applying the nested divide & conquer method to S

c;I

and S

c;J

will reduce the number of

iterations and the coupling systems will be successively reduced.

171

Number of Iteration Steps of GMRES(30) combined with nested d& c

it. n p 2 4 8

S

c;I

72 252 691

S

c;J

31 61 91

Here for S

c;I

the number of iterations is still pretty large, but without using the updates we

have more than n = 1856 iteration steps. For S

c;J

the reduction in the number of iterations

is not so high, but the number of iterations is already moderate without using the nested

divide & conquer process. The reduction of the size of the coupling system is given in the

following table.

Size of the coupling system, initially 7! �nally

it. n p 2 4 8

S

c;I

64 7! 12 192 7! 13 447 7! 84

S

c;J

128 7! 128 384 7! 383 893 7! 890

Here we can see that S

c;I

is extremely reduced in its size while S

c;J

is only slightly changed.

But for S

c;I

this is not surprising, since its condition number is very high (up to 10

9

) and

already the full GMRES needed almost as many iterations as the size of the system.

Again the number of iterations for a further right hand side will be reduced as side e�ect

of the nested process.

Second right hand side of GMRES(30) combined with nested d& c

it. n p 2 4 8

S

c;I

13 14 61

S

c;J

31 61 61

For S

c;I

the number of steps for the second right hand side is extremely less than for the

�rst right hand side, but note that the coupling system has also been extremely reduced such

that we only have a small coupling system at the end. In addition the enormous reduction

of S

c;I

means that multiplying with the remaining S

c;I

will be quite expensive. For S

c;J

the

number of iterations for the second right hand side is only slightly less than for the �rst

one. But here the reduction as well as the number of iterations is quite moderate and the

nested divide & conquer process need not essentially reduce the coupling system S

c;J

.

At last we we will show the
ops for the nested divide & conquer method for the �rst right

hand side.

ops for the Solution Process of GMRES(30)

ops n p 2 4 8

S

c;I

| | |

S

c;J

1:1�10

7

2:5�10

7

4:1�10

7

172

ops for the Solution Process of GMRES(30) combined with nested d& c

ops n p 2 4 8

S

c;I

5:2�10

7

2:6�10

8

1:2�10

9

S

c;J

1:1�10

7

2:9�10

7

5:1�10

7

Of course the nested divide & conquer will become expensive for S

c;I

but without using the

updates the process needs more than 1856 steps and will be much more expensive. For S

c;J

the same number of
ops is needed but in this case the nested divide & conquer process will

only slightly change S

c;J

At last we will examine a more realistic example from
uid dynamics.

Example 9.14 We will consider a realistic problem. The Generalized

Stokes Problem(see e.g. [38]) in two dimensions is the following partial di�eren-

tial equation

�

1

Re

�u+ (au)

x

+ (bu)

y

+ p

x

= 0

�

1

Re

�v + (av)

x

+ (bv)

y

+ p

y

= 0

u

x

+ v

y

= 0

(9.15)

where u; v; p are the desired functions depending on x and y, Re is the Reynolds number.

As model domain we consider the backward facing step problem [61]. The domain can be

described as follows.

6

?

h = 1

6

?

H = 1:5

-�

L = 22

-�

l = 3

On the left end of the domain we prescribe a parabolic in
ow with maximum 1 and on the

right end of the domain we prescribe a parabolic out
ow with maximum 2=3.

As Reynolds numbers we will take 100; 300 and 1000. For a; b we take for simplicity

a = 1; b = 0:

The discretization is done by the �nite volume approach together with a
ux{di�erence

splitting method [22]. It has been shown in [64] that the matrices arising from this dis-

cretization are generalized M{matrices.

The domain is discretized as follows.

173

6

?

3M

-�

22N

-�

3N

The numbers M;N determine the number of cells in horizontal and vertical direction and

the size of the corresponding matrix. As the picture shows the grid has been graded with

respect to lower left corner of the large domain. This is done in order to be closer to the

physical problem. A very simple strategy was used for the cell partitioning, i.e., the size any

cell is linearly increasing with the distance from lower left corner of the large domain.

The matrix, a generalized M{matrix, arising from this problem can be partitioned into

blocks of size 3� 3 such that any block is a symmetric 3� 3 matrix. Moreover the diagonal

blocks are positive de�nite and the o�{diagonal blocks are negative de�nite. In order to

split the initial matrix A = S �W we adapt the initial modi�ed block Jacobi splitting as

follows. Without modi�cations W

J

from the standard block Jacobi splitting would consist

of matrices of the form

�

O C

D O

�

;

where C and D are symmetric positive semide�nite matrices. In this case there exists G

such that [C;D] = [G�

C

G

T

; G�

D

G

T

] and �

C

;�

D

are positive de�nite diagonal matrices.

As modi�ed S we use the block diagonal matrix such that W has locally the form

G�

1=2

C

G�

1=2

D

!

�

�

1=2

D

G

T

�

1=2

C

G

T

�

:

The reason for this choice is that the modi�cations made for S give symmetric positive

de�nite diagonal blocks and inherit the given initial symmetry structure.

We will examine this problem for the values

M 4 5 8

N 2 3 4

p 4 8 16

The size of the system will approximately increase by 2 if p increases by 2. In fact we have

for the size n of the system

p 4 8 16

n 1476 2754 5868

First of all we will compare the condition numbers of the related coupling systems.

174

Condition Number, Re = 100

�

2

n p 4 8 16

�

2

(S

c;I

) 1:0�10

3

9:1�10

4

1:3�10

5

�

2

(S

c;mod

) 4:0�10

3

1:4�10

5

2:8�10

6

�

2

(S

c;fm

) 8:2�10

3

2:9�10

5

2:9�10

6

�

2

(S

c;J

) 1:7�10

3

4:4�10

3

1:3�10

4

Condition Number, Re = 300

�

2

n p 4 8 16

�

2

(S

c;I

) 9:6�10

2

2:4�10

3

1:8�10

4

�

2

(S

c;mod

) 2:8�10

2

4:8�10

3

5:4�10

4

�

2

(S

c;fm

) 2:9�10

2

6:6�10

3

4:4�10

4

�

2

(S

c;J

) 1:8�10

3

4:1�10

3

4:3�10

2

Condition Number, Re = 1000

�

2

n p 4 8 16

�

2

(S

c;I

) 8:3�10

2

3:1�10

3

1:4�10

4

�

2

(S

c;mod

) 2:2�10

3

5:9�10

3

2:8�10

4

�

2

(S

c;fm

) 2:2�10

3

7:0�10

3

2:8�10

4

�

2

(S

c;J

) 1:3�10

3

4:4�10

3

1:9�10

2

For this example the condition number of S

c;mod

, S

c;fm

was not improved when using the

modi�ed block Jacobi splitting. It was often worse then for the simple choice X = I, but

not much worse. It is clear that from the construction of X we do not have any guarantee

that we will get an improvement in the condition number.

For the special case that a = 1; b = 0 and Re = 100; 300; 1000 we will compare the eigen-

values of S

c;I

with those of S

c;mod

and S

c;fm

. First we will consider the case Re = 100 and

compare the eigenvalue distribution of S

c;I

with that of S

c;mod

.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

1

1.5

Eigenvalues of S

c;I

� 2:7; p = 4

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues of S

c;mod

� 9:8; p = 4

175

0 10 20 30 40 50 60

−20

−10

0

10

20

Eigenvalues of S

c;I

� 4:4 � 10

1

; p = 16

−40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

Eigenvalues of S

c;mod

� 5:5 � 10

3

; p = 16

For p = 4 the eigenvalues of S

c;mod

are extremely clustered compared with those of S

c;I

.

For p = 16 the eigenvalues are still more clustered for S

c;mod

but additional spread eigen-

values are coming in (note that the eigenvalue plots have di�erent scaling!). For S

c;fm

the

eigenvalue distribution is quite analogous to that of S

c;mod

. We illustrate this for p = 16.

−40 −20 0 20 40 60

−40

−30

−20

−10

0

10

20

30

40

Eigenvalues of S

c;fm

� 5:0 � 10

3

; p = 4

An analogous e�ect was observed for Re = 300; 1000. For this reason we will skip the

eigenvalue plots of S

c;fm

.

Next we will consider the case Re = 300.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

Eigenvalues of S

c;I

� 2:1; p = 4

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues of S

c;mod

� 8:3; p = 4

176

0 2 4 6 8 10 12 14

−6

−4

−2

0

2

4

6

Eigenvalues of S

c;I

� 9:9; p = 16

0 2 4 6 8

−3

−2

−1

0

1

2

3

Eigenvalues of S

c;mod

� 3:4 � 10

1

; p = 16

Here for p = 4 the eigenvalues of S

c;I

are more clustered than for Re = 100 but for S

c;mod

the eigenvalues are even more clustered. For both matrices the eigenvalues are much more

clustered when Re = 300 than for Re = 100. Here extremal spread eigenvalues like for

Re = 100 do not occur for S

c;mod

. The clustering of the eigenvalues is still better for S

c;mod

than for S

c;I

.

At last we will consider the case Re = 1000.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

Eigenvalues of S

c;I

� 2:1; p = 4

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Eigenvalues of S

c;mod

� 7:8; p = 4

0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

Eigenvalues of S

c;I

� 5:6; p = 16

−1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

Eigenvalues of S

c;mod

� 2:4 � 10

1

; p = 16

Here we observe that the eigenvalues of S

c;I

and S

c;mod

are more clustered than for Re = 300

and in this case the improvement using S

c:mod

is less than for Re = 300.

177

Beside the condition number which is unfortunately not improved for this problem we will

examine the GMRES method applied to S

�1

J

A, S

c;I

S

c;mod

and S

c;fm

.

Number of GMRES Steps, Re = 100

p 4 8 16

S

c;I

20 41 90

S

c;mod

11 22 53

S

c;fm

11 22 53

S

�1

J

A 16 27 51

The number of iterations for all four algorithms is quite moderate. Compared with S

c;I

, we

observe that S

c;mod

,S

c;fm

will need much less iteration steps. The situation for all algorithms

will become better when increasing the Reynolds number.

Number of GMRES Steps, Re = 300

p 4 8 16

S

c;I

19 33 65

S

c;mod

11 22 46

S

c;fm

11 22 46

S

�1

J

A 15 27 47

Number of GMRES Steps, Re = 1000

p 4 8 16

S

c;I

20 33 57

S

c;mod

12 22 45

S

c;fm

12 23 45

S

�1

J

A 15 26 46

The improvement made by using the modi�ed block Jacobi{Splitting is quite small since the

number of iterations for all methods is very moderate.

Note that here we used full GMRES. In practice one typically uses a restarted GMRES, i.e.

after k steps of the iteration one stops and begins the iteration again. Now we will examine

for p = 16 how the number of iterations will change when using the GMRES method with

30 steps. In addition we will combine the restarted GMRES method with the nested divide

& conquer method. In order to be able to compare the GMRES(30) with and without using

low rank updates we will apply for the block Jacobi method the GMRES iteration to the

related coupling system S

c;J

. Since S

c;fm

and S

c;mod

show a similar behaviour we will not

examine S

c;mod

in the next computations.

First we will compare the number of iterations when not using the nested divide & conquer.

178

Number of Iteration Steps of GMRES(30), p = 16

it. nRe 100 300 1000

S

c;I

> n 121 91

S

c;fm

241 61 61

S

c;J

121 91 61

When replacing the full GMRES by the GMRES(30) method for the coupling system the

number of iterations increases drastically particularly for Re = 100. For Re = 300; 1000

the situation is better. For S

c;I

we do not have convergence after n steps. The situation is

better for S

c;fm

; S

c;J

but still unsatisfactory.

The situation changes in combination with the nested divide & conquer method. Here we

need the following number of steps.

Number of Iteration Steps of GMRES(30) combined with nested d& c, p = 16

it. nRe 100 300 1000

S

c;I

181 91 60

S

c;fm

118 59 53

S

c;J

91 90 61

Here the number of iterations for Re = 100 has been signi�cantly reduced. For Re =

300; 1000 the di�erence is less strong but here the GMRES(30) is much more moderate.

For S

c;I

and Re = 100 we did not have convergence after n steps but this has drastically

changed now.

During the nested divide & conquer process the coupling system has been successively re-

duced in its size.

Size of the coupling system, initially 7! �nally

it. nRe 7! 100 300 1000

S

c;I

1041 7! 1019 1035 1027

S

c;fm

1041 7! 1026 1035 1031

S

c;J

2082 7! 2066 2072 2078

For S

c;I

, Re = 100 the reduction is bigger than in all other cases but here the problem

of convergence was most critical without using the nested divide & conquer. For the other

cases only a small reduction has been done and except for the case Re = 100 for S

c;fm

the

reduction in the number of iterations is small as well.

Finally we will compare the
opswhen using the nested divide & conquer for one right

hand side.

179

ops for the Solution Process of GMRES(30)

ops nRe 100 300 1000

S

c;I

| 1:7�10

8

1:3�10

8

S

c;fm

2:1�10

8

5:0�10

7

5:0�10

7

S

c;J

1:3�10

8

9:6�10

7

6:3�10

7

ops for the Solution Process of GMRES(30) combined with nested d& c, p = 16

ops nRe 100 300 1000

S

c;I

3:8�10

8

1:6�10

8

1:2�10

8

S

c;fm

1:4�10

8

6:2�10

7

6:3�10

7

S

c;J

1:6�10

8

1:4�10

8

7:8�10

7

For those cases where the GMRES(30) without using the nested divide & conquer method

has lead to a larger number of iterations the nested divide & conquer could e�ectively

reduce the number of iterations as well as the computational time. For those cases where

the number of iteration steps was already quite moderate without using the nested divide &

conquer the number of iterations was only slightly reduced but the computational costs even

increase slightly. The problem for the heuristic that we have used is that it does not give

a guarantee that the number of iterations will be reduced and the additional computational

work can not always equalize the additional work. But more important is the fact that

for large number of iterations we could reduce the number of iterations as well as the

computational costs and in addition the size of the system that has to be solved has been

reduced.

Summary

We have illustrated for some examples the use of modi�ed block Jacobi splittings as well

as the application of the nested divide & conquer method. Modi�ed block Jacobi splittings

in general were used to improve the properties of the coupling system. In Example 9.12

and 9.13 an improvement in the condition number and the eigenvalue distribution has been

observed. However in Example 9.14 there was no improvement in the condition number. The

condition number of the coupling system using the block diagonal part of the approximate

solution X of the algebraic Riccati equation from Chapter 6 has partially lead to worse

condition number. The problem in general is that choosing the block diagonal part of X

will be most likely not the best choice and so far there is no theory which block diagonal

approximation of X should be chosen. Thus an improvement of the condition number

cannot be expected in general. But what has been observed is that the eigenvalue clustering

of the coupling system has been improved. In Example 9.14 this e�ect is not as strong as

in the other examples. One problem in general concerning modi�ed block Jacobi splittings

is that we have required the nonsingularity of the block diagonal part of the initial matrix.

This currently reduces the applicability of modi�ed block Jacobi splittings and future

investigations have to discuss the case when the block diagonal part of A is singular. A

general problem in the practical realization of modi�ed block Jacobi splittings is that

180

the computation of the approximate solution X of the algebraic Riccati equation requires

the solution of several right hand sides with a block diagonal matrix. If e.g. A is block

tridiagonal with all blocks of size m �m, then 2m systems with a block diagonal matrix

have to be solved. This make the generation of X expensive if an iterative method is used

and if this iterative method only needs a moderate number of steps, i.e. less than 2m

steps. Of course in general the number of iterations may become arbitrary many. In this

case we can exploit the fact that computing X will also give us the opportunity to have

an explicit representation of the coupling system. For a direct solution as well as for an

iterative solution of the coupling system this will essentially reduce the costs of the solution

process. For an iterative solution much of the time consumed by the generation of X can

be equalized by the cheaper matrix vector multiplication.

Here we have only compared the sequential
op count. When being implemented on a

parallel machine one has to take into account that additional communication has to be

done. Here the generation of

�

D;D has the advantage, that the their computation can be

done without communication. This aspect is analogous to the symmetric case, where we

have already discussed the problem.

Modi�ed block Jacobi splittings as well as the unmodi�ed block Jacobi splitting form the

basis for the nested divide & conquer process. If the (modi�ed) splitting exists then the

nested divide & conquer method is applicable. The nested divide & conquer process has

been applied to all examples using a simple heuristic for constructing updates. This strategy

here has been constructed using the GMRES method and the eigenvalue information which

is produced by this algorithm. The strategy essentially tries to �nd spread eigenvalues and

eigenvalues of small modulus. In contrast to other strategies like [73],[53],[62] here we have

used the corresponding approximate invariant subspace to reduce the size of the coupling

system. Like other strategies there is no guarantee that the iterative process will converge

faster when using this update strategy. But here we have always reduced the size of the

coupling system which will �nally lead to direct method even if the iterative process would

fail. This semi{direct approach makes the nested divide & conquer process applicable to a

large class of problems. The problem which is open in general is how the updates should

be chosen. To use this simple heuristical strategy by detecting spread eigenvalues and

eigenvalues of small modulus will be most likely not the best strategy. But in any case this

strategy will tend more and more to a direct method the longer the iteration will take.

181

Conclusions

We have developped an algebraic strategy of domain decomposition for large sparse linear

systems, which is based on the low rank modi�cation formula of Sherman, Morrison and

Woodbury. The advantage of this approach is its high
exibility, since only low rank split-

tings of the form A = S �W with W of small rank are required. From the point of view

of parallel computations we need to specify the low rank splitting and here we have used

block diagonal splittings. In general we need a block diagonal splitting with a nonsingular

block diagonal matrix S such that S and much more the related coupling system is not

ill{conditioned.

To get a block diagonal matrix an algorithm that partitions the matrix with respect to

the underlying graph has to be used. In principle this algorithm has to partition the graph

such that as few edges as possible have to be taken out to get the block diagonal part of A.

If a block diagonal matrix is obtained by this partitioning, then we can modify the block

diagonal matrix with respect to certain aspects. For certain classes of matrices, symmetric

positive de�nite matrices,M{matrices we can modify the block diagonal part in order to

inherit structures for the block diagonal part S as well as for the coupling system. Beside

this modi�cations we can locally minimize the rank of the remaining matrix. Here there

are still restrictions in the general case. So far we still need the nonsingularity of the block

diagonal part of A, i.e. we need that it is not ill{conditioned. In addition we have as re-

quirement, that the block graph has to be block 2{cyclic. The modi�cations then can be

traced back to the solution of an algebraic Riccati{equation and under relatively general

assumptions explicit solution exist. For practical purposes and the application to the initial

block diagonal matrix these solutions have to be approximated by a matrix which is itself

block diagonal. So far it is open which block diagonal matrix has to be taken and taking

the block diagonal part of the solution is most likely not the best choice in the general

case. In contrast to this in the symmetric positive de�nite case we have derived bounds on

the optimality of this modi�cations.

Based on the given splitting we apply the Sherman{Morrison{Woodbury formula to solve

the problem in parallel. The main problem is to solve the coupling system of small size

which is involved by this formula. To make a compromise between a direct and an it-

erative solution of the coupling system, the Sherman{Morrison{Woodbury formula has

been successively applied in order to reduce the size of the coupling system and thus

to reduce the rank of the remaining matrix. By this nested application the initial split-

ting has been adaptively modi�ed by low rank updates. The nested application of the

Sherman{Morrison{Woodbury formula can be read as performing an LU decomposition of

a suitably extended system and likewise the remaining coupling system which is generated

by the nested divide & conquer strategy can be obtained from an LU decomposition of

the initial coupling system after a suitable pre{ and post multiplication. From this obser-

vation close connections to algebraic multigrid methods could be derived and results have

been transferred to the nested divide & conquer strategy. Here we have used orthogonal

transformations and for the symmetric positive de�nite case optimal transformations in

the sense of quadratic forms have been derived. In the general case it is still open which

kind of transformation has to be chosen. In any case a reduction of the coupling system

182

can be achieved and even if an iterative method would fail we reduce the coupling system

by this approach.

For this algebraic concept a parallel realization has been developped. Here the block graph

of the block diagonal splitting induces a natural distribution of initial system and also for

the related coupling system. We have transferred the use of so{called adding type vectors

and overlapping type vectors to our algebraic problem which has lead to nice treatment of

the coupling system in parallel. To generalize this parallel realization to the nested use of

the Sherman{Morrison{Woodbury formula, we have presented a strategy that collects the

low rank updates to one matrix in order to keep the data tra�c small. Here the fact that

implicitly an LU decomposition of the coupling system is made has been turned out to be

quite useful.

In the numerical experiments we have compared the modi�ed block diagonal splittings with

the unmodi�ed splittings.While in the positive de�nite case an e�ective improvement of the

condition number has been illustrated, this is not necessarily true in the general case. What

has been observed in the general case is an improvement in the eigenvalue distribution.

Here the gap in the choice of the block diagonal matrix from the Riccati{equation has to be

closed. We have observed that in several cases the iterative process (CG,GMRES) will be

accelerated by this choice but there also exist counter examples. For the application of the

nested divide & conquer strategy we have used a heuristical approach in the unsymmetric

case to de�ne an orthogonal transformation which is based on the eigenvalue information

of the underlying Arnoldi process in the GMRES method. By choosing updates with re-

spect to this heuristic we cannot necessarily reduce the number of iterations in general, but

in any case the size of the coupling system will be reduced and �nally the nested divide

& conquer strategy becomes more and more a direct method. In the symmetric positive

de�nite case we have illustrated how the nested divide & conquer process can be used on

a parallel computer and in the numerical examples the nested divide & conquer strategy

has turned out as compromise between a direct and iterative solution that can overcome

problems with the iterative process especially when the system is ill{conditioned and the

iterative process will extremely slow down or does not converge at all. An additional nice

aspect in using the nested divide & conquer process is that solving further right hand sides

will be much cheaper than the �rst right hand side.

What we cannot handle by this algebraic concept so far is the application of general

matrices with possibly singular block diagonal part. The problem that has to be solved is

that the block diagonal matrix S must be nonsingular and moreover it must not be too

ill{conditioned. At the same time we need that the remaining part W = S � A has low

rank. Adaptions in this direction still have to be done. By the nested divide & conquer

method we cannot ensure scalability, since on one hand information from the underlying

eigenvalue process is needed and on the other hand too many low rank updates may still

slow down this approach.

183

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A.

Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen:

LAPACK Users' Guide, Second Edition. SIAM Philadelphia, 1995.

[2] O. Axelsson: A Survey of Preconditioned Iterative Methods for Linear Systems

of Algebraic Equations. BIT, 25 (1985), pp.166{187.

[3] O. Axelsson: Iterative Solution Methods. Cambridge University Press, 1993.

[4] O. Axelsson, G. Lindskog: On the Eigenvalue Distribution of a Class of Pre-

conditioned Methods. Numer. Math., 48 (1986),pp.479{498.

[5] O. Axelsson, G. Lindskog: On the Rate of Convergence of the Preconditioned

Conjugated Gradients Method. Numer. Math., 48 (1986),pp.499{523.

[6] P. Bastian: Parallele adaptive Mehrgitterverfahren. B.G. Teubner Stuttgart,

1996.

[7] L. Becks, D. Rogowski: Konvergenzanalyse und Implementierung eines alge-

braischen Mehrgitterverfahrens zur L�osung linearer Gleichungssysteme. Diplo-

marbeit, Universit�at Bielefeld, 1990.

[8] A. Berman, R.J. Plemmons: Nonnegative Matrices in the Mathematical Sci-

ences. Classics in Applied Mathematics, SIAM, Philadelphia, 1994.

[9] P.E. Bj�rstad, O.B. Widlund: Iterative Methods for the Solution of Elliptic

Problems on Regions Partitioned into Substructures. SIAM J. Numer. Anal.,

23 (1986), pp.1097{1120.

[10] M. Bollh�ofer: Algebraic Domain Decomposition. Preprint SPC 95 11, TU

Chemnitz-Zwickau, March 1995.

[11] M. Bollh�ofer, C. He, and V. Mehrmann: Modi�ed Block Jacobi Precondition-

ers for the Conjugate Gradient Method. Part I: The Positive De�nite Case.

Preprint SPC 95 7, TU Chemnitz-Zwickau, January 1995.

[12] S. Bondeli: Parallele Algorithmen zur L�osung tridiagonaler Gleichungssysteme.

Dissertationsschrift, ETH Z�urich, 1991.

184

[13] J. A. Bondy, and U. S. R. Murty: Graph Theory with Applications. The

MacMillan Press Ltd, 1976.

[14] D. Braess: Finite Elemente. Springer-Verlag, 1992.

[15] J.H. Bramble, J.E. Pasciak, A.H. Schatz: The Construction of Preconditioners

for Elliptic Problems by Substructuring I. Math. Comp., 47 (1986), pp.103{134.

[16] A. Brandt: Algebraic Multigrid Theory: the Symmetric Case. Appl. Math.

Comp., 19 (1986), pp.23{65.

[17] C.W. Brand, S. Petrova: Preconditioned Iterations to Calculate Extreme Eigen-

values. Technical Report, Montanuniversi�at Leoben, Inst. f. Angew. Mathem.,

1993.

[18] W. Bunse, A. Bunse{Gerstner: Numerische lineare Algebra. Teubner,

Stuttgart, 1985.

[19] D. Calvetti, L. Reichel, and D.C. Sorensen. An implicitly restarted Lanczos

method for large symmetric eigenvalue problems. Electr. trans. Num. Anal., 2

(1994), pp. 1{21.

[20] W. Dahmen, L. Elsner: Hierarchical Iteration. Lecture Notes on Numerical

Fluid Dynamics, Hackbusch (ed.), Vieweg, 1988.

[21] J. Demmel: The condition number of equivalence transformations that block

diagonalize matrix pencils. In B. Kagstr�om and A. Ruhe, eds., Matrix Pencils,

pp. 2-16, Berlin, FRG, 1982. Springer Verlag. Lecture Notes in Mathematics

973.

[22] E. Dick, J. Linden: A multigrid
ux{di�erence splitting method for steady

incompressible Navier{Stokes equations. Proc. of the GAMM Conference on

Numerical Methods in Fluid Mechanics, Delft, 1989.

[23] J.J. Dongarra, C.B. Moler, J.R. Bunch, G.W.Stewart: LINPACK Users' Guide.

SIAM Philadelphia, 1979.

[24] M. Dryja: A Capacitance Matrix Method for Dirichlet Problem on Polygonial

Region. Numer. Math., 39 (1982), pp.51{64.

[25] M. Dryja, O.B. Widlund: Some Domain Decomposition Algorithms for Elliptic

Problems. Iterative Methods for Large Linear Systems, L. Hayes, D. Kincaid

(eds.), Academic Press, Orlando, Florida, 1989.

[26] M. Dryja, O.B. Widlund: Towards a Uni�ed Theory of Domain Decomposition

Algorithms for Elliptic Problems. Third International Symposium on Domain

Decomposition Methods for Partial Di�erential Equations, T. Chan, R. Glowin-

ski, J. P�eriaux, O. Widlund (eds.), SIAM, Philadelphia, 1990.

[27] I.S. Du�, A.M. Erisman, J.K. Reid: Direct Methods for Sparse Matrices. Ox-

ford University Press, 1986.

185

[28] I.S. Du�, R.G. Grimes, and J.G. Lewis: Sparse matrix test problems. ACM

Trans. Math. Software 15 (1989), pp. 1{14.

[29] M. Eiermann: Semi{Iterative Methods. Proceeding of the LSSC-course, FSP{

Mathematisierung, Universit�at Bielefeld, 1992.

[30] S.C. Eisenstat, J.W. Lewis, and J.W. Schultz: Optimal block diagonal scaling

of block 2{cyclic matrices. Lin. Alg. Appl. 44 (1982), pp. 181{186.

[31] L. Elsner, V. Mehrmann: Convergence of block iterative methods for linear

systems arising in the numerical treatment of Euler equations. Numerische

Mathematik 59 (1991), pp.541{559.

[32] L. Elsner, C. He, and V. Mehrmann: Minimization the Condition Number of a

Positive De�nite Matrix by Completion. Numer. Math. 69 (1994), pp.17{24.

[33] L. Elsner, C. He, and V. Mehrmann: Minimization of the Norm, the Norm of

the Inverse and the Condition Number of a Matrix by Completion. Numer.

Lin. Alg. w. Appl. Vol. 2(2), (1995), pp.155{171.

[34] J. Falkner, F. Rendl, H. Wolkowicz: A Computational Study of Graph Parti-

tioning. Technical Report, University of Waterloo, 1993.

[35] D.G. Feingold, R.S. Varga: Block diagonally dominant matrices and general-

ization of the Gershgorin circle theorem. Paci�c J. Math., 12 (1962), pp.1241{

1250.

[36] M. Fiedler: Algebraic Connectivity of Graphs. Czech. Math. J. 23 (1973), pp.

298{305.

[37] R.W. Freund, G.H. Golub, N.M. Nachtigal: Iterative Solution of Linear Sys-

tems. Acta Numerica (1992), pp. 1{44.

[38] C. Frohn-Schauf: Flux-Splitting Methoden und Mehrgitterverfahren f�ur hyper-

bolische Systeme mit Beispielen aus der Str�omungsmechanik. Dissertation,

Universit�at D�usseldorf, 1992.

[39] J. Fuhrmann: Zur Verwendung von Mehrgitterverfahren bei der numerischen

Behandlung elliptischer partieller Di�erentialgleichungen zweiter Ordnung mit

variablen Koe�zienten. Dissertationsschrift, TU Chemnitz{Zwickau, 1994.

[40] A. George, J. Liu: Computer Solution of Sparse Positive De�nite Systems.

Prentice{Hall, Englewood Cli�s, New Jersey, 1981.

[41] G.H. Golub, C.F. Van Loan: Matrix Computations, second. ed. The Johns

Hopkins University Press, 1989.

[42] A. Greenbaum, V. Ptak, and Z. Strakos: Any Nonincreasing Convergence Curve

is Possible for GMRES. SIAM J. Matrix Anal. Appl., 17 (1996), pp. 465-469.

186

[43] M. Griebel: Multilevelmethoden als Iterationsverfahren �uber Erzeugendensys-

temen. Teubner Stuttgart, 1994.

[44] G. Haase, T. Hommel, A. Meyer, and M. Pester: Bibliotheken zur Entwicklung

paralleler Algorithmen. Preprint SPC 95 20, TU Chemnitz-Zwickau, March

1995.

[45] G. Haase, U. Langer, and A. Meyer: The Approximate Dirichlet Domain De-

composition Method. Part I: An Algebraic Approach. Computing 47 (1991),

pp.137{151.

[46] G. Haase, U. Langer, and A. Meyer: The Approximate Dirichlet Domain De-

composition Method. Part II: Application to 2nd{order Elliptic B.V.P.s. Com-

puting 47 (1991), pp.153{167.

[47] W. Hackbusch: Multigrid Methods and Applications. Springer,

Berlin,Heidelberg, 1985.

[48] W. Hackbusch: Theorie und Numerik elliptischer Di�erentialgleichungen.

Teubner, Stuttgart, 1986.

[49] W. Hackbusch: Iterative L�osung gro�er schwachbesetzter Gleichungssysteme.

Teubner, Stuttgart, 1991.

[50] M. Hochbruck, C. Lubich: Error Analysis of Krylov Methods in a Nutshell.

Preprint Mathematisches Institut, Universit�at T�ubingen, August 1995, revised

Feb 1996, to appear in SIAM J. Sci. Comput.

[51] W. Kahan, and B.N. Parlett: An Analysis of Lanczos Algorithms for Symmetric

Matrices. ERL-M467, University of Califronia, Berkely, 1974.

[52] G. Karypis, V. Kumar: A fast and high quality multilevel scheme for partition-

ing irregular graphs. Technical Report 95{035. Dept. of Computer Science,

University of Minnesota, 1995.

[53] S.A. Kharchenko, and A. Yu. Yeremin: Eigenvalue Translation Based Precon-

ditioners for the GMRES(k) Method. Numerical Linear Algebra with Appilca-

tions, Vol. 2(1),(1995), pp.51{77.

[54] P. Lancaster, L. Rodman: The Algebraic Riccati Equation. Oxford University

Press, Oxford, 1995.

[55] K.H. Law: A parallel �nite element solution method. Computer and Structures,

23(6), (1989), pp.845{858.

[56] R.B. Lehoucq: Analysis and Implementation of an Implicitly Restarted Itera-

tion. PhD thesis, Rice University, Houston, Texas, May 1995.

[57] L. Mans�eld: On the Conjugate Gradient Solution of the Schur{Complement

System Obtained from Domain Decomposition. SIAM J. Numer. Anal.,

27(6),(1990), pp.1612{1620.

187

[58] V. Mehrmann: The Autonomous Linear Quadratic Control Problem. Springer,

1991.

[59] V. Mehrmann: Divide & Conquer Methods for Block Tridiagonal Systems.

Parallel Computing 19 (1993), pp. 257{279.

[60] C. Moler: MATLAB User's Guide. Technical Report CS81-1, Dept. of Com-

puter Science, University of New Mexico, Albuquerque, 1980.

[61] K. Morgan, J. Periaux, and F. Thomas: Analysis of Laminar Flow over a

Backward Facing Step. Notes on Numerical Fluid Mechanincs, Vol.9, Vieweg

Verlag, Braunschweig, 1984.

[62] R. B. Morgan: A Restarted GMRES Method Augmented With Eigenvectors.

SIAM J. Matrix Anal. Appl. 16(4),(1995), pp. 1154{1171.

[63] R. Nabben: On a new class of matrices which arise in the numerical solution

of Euler equations. Num. Math., 63 (1992), pp. 411{431 .

[64] R. Nabben: A new application for generalizedM{matrices. Numerical Linear

Algebra (Kent, OH, 1992), pp.179{192, de Gruyter, Berlin, 1993.

[65] S.V. Nepomnyashchikh: Domain Decomposition and Schwarz Methods in a

Subspace for the Approximate Solution of Elliptic Boundary Value Problems

(russ.). PhD thesis, Novosibirsk 1986.

[66] E.E. Osborne: On Pre{Conditioning of Matrices. Jour. ACM 7 (1960), pp.

338{345.

[67] B. N. Parlett: The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood

Cli�s, N.J., 1980.

[68] B.N. Parlett and, C. Reinsch: Balancing a Matrix for Calculation of Eigenvalues

and Eigenvectors. Numer. Math. 13 (1969), pp.293{304.

[69] B. N. Parlett, and D.S. Scott: The Lanczos Algorithm with Selective Reorthog-

onalization. Math Comp. 33(1979), pp.217-238.

[70] F. Rendl, H. Wolkowicz: A Projection Technique for Partitioning the Nodes of

a Graph. Technical Report, University of Waterloo, 1990.

[71] M. Rozl�ozn��k: Numerical Stability of the GMRES Method. PhD Thesis, In-

stitute of Computer Science, Acadamy of Sciences of the Czech Republic, April

1997.

[72] J.W. Ruge, K. St�uben: Algebraic Multigrid. Multigrid Methods, McCormick

(ed.), SIAM Philadelphia, 1987.

[73] Y. Saad: Projection and de
ation methods for partial pole assignment in linear

state feedback. IEEE Trans. Automat. Contr. 33(3), (1988), pp.290-297.

188

[74] Y. Saad: Iterative Methods for Sparse Linear Systems. PWS Publishing Com-

pany, 1996.

[75] Y. Saad, and M. Schultz: GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Computing 7(1986),

pp.856{869.

[76] R. Schreiber, B.N. Parlett: Block re
ectors: Theory and Computation. SIAM

J. Numer. Anal. 25(1987), pp.189{205.

[77] R. Schreiber, C.F. Van Loan: A Storage E�cientWY Representation for Prod-

ucts of Householder Transformations. SIAM J. Sci and Stat. Comp. 10 (1989),

pp. 52{57.

[78] H.A. Schwarz: GesammelteMathematische Abhandlungen. Vierteljahresschrift

der Naturforschenden Gesellschaft in Z�urich, 15 (1870),pp.272{286.

[79] H.R. Schwarz: Methode der �niten Elemente. Teubner, Stuttgart, 1991.

[80] H.D. Simon: Partitioning of Unstructured Problems for Parallel Processing.

Computing Systems in Engineering, 2 (1991), pp.135{148.

[81] D.C. Sorensen: Implicit application of polynomial �lters in a k{step Arnoldi

method. SIAM J. Matrix Anal. Appl., 13 (1992), pp.357{385.

[82] R.S. Varga: Matrix Iterative Analysis. Prentice Hall, Englewood{Cli�s, N.J.,

1962.

[83] O.B. Widlund: Iterative Substructuring Methods: Algorithms and Theory for

Elliptic Problems in the Plane. First International Symposium on Domain

Decomposition Methods for Partial Di�erential Equations. R. Glowinski, G.

Golub, G. Meurant, J. P�eriaux (eds.), SIAM, Philadelphia, 1988.

[84] O.B. Widlund: Optimal Iterative Re�nement Methods. Domain Decomposi-

tion Methods, Proceedings Jan. 1988, Los Angeles. Chan{Glowinsky{Periaux{

Widlund (ed.), SIAM, Philadelphia 1989, pp.114{125.

[85] J. Xu: Iterative Methods by Space Decomposition and Subspace Correction.

SIAM Review 34 (1992), pp.581{613.

189

Summary of the Thesis

We have developped an algebraic strategy of domain decomposition for large sparse linear

systems, which is based on the low rank modi�cation formula of Sherman, Morrison and

Woodbury. The algebraic concept is based on three columns. First the nested use of the

Sherman{Morrison{Woodbury formula which is applicable to any low rank splitting. The

second one is the use of modi�ed block Jacobi splittings and the factorization of the low

rank part. And �nally the third column is the parallel realization of the nested divide &

conquer method applied to a block diagonal splitting.

As �rst column we have presented a nested divide & conquer strategy which consists of

successively replacing the initial matrix S by S plus an additional low rank modi�cation.

By this strategy we have adaptively constructed a preconditioner of the form S plus low

rank which ensures that even if an iterative method for S

c

would fail we would reduce

the coupling system in its size and in this case we �nally end up in a direct method. By

Theorem 4.23 the nested application of the Sherman{Morrison{Woodbury formula can be

interpreted as implicitly performing an LU{decomposition of a suitably extended system

and likewise we have an LU decomposition of S

c

after a suitable a priori transformation.

Optimal orthogonal transformations have been derived in Theorem 3.31 for the symmetric

positive case. We have demonstrated close connections to algebraic multigrid methods. In

Corollary 4.30 results for the symmetric positive de�nite case which have been designed for

substructuring methods, have been applied for algebraic domain decomposition methods.

Especially block diagonal matrices were of interest due to their easy realization on par-

allel architectures. We have discussed a way to factorize the low rank part of the block

diagonal splitting and for some classes of matrices we have discussed structure preserv-

ing modi�cations of the block diagonal part. More complicated modi�cations that can be

read as some kind of algebraic boundary conditions have been introduced. We have shown

that this problem can be traced back to �nding approximate solutions of algebraic Riccati

equations. For the general case there are still many questions open concerning the choice of

algebraic boundary conditions while in the symmetric case we have discussed in Theorem

6.76 the optimality of the choice of algebraic boundary conditions in the sense of quadratic

forms.

The third column of algebraic domain decomposition concept is its parallel realization.

So{called adding type vectors and overlapping type vectors which are well{known in do-

main decomposition methods have been transferred to this algebraic method of domain

decomposition in Theorem 7.37. To adapt the parallel treatment to the use of the nested

Sherman{Morrison{Woodbury formula we have presented a concept that accumulates the

low rank modi�cations to one block of data in order to reduce the data tra�c.

The theory has been illustrated in several examples to con�rm with the theoretical results

and how especially a parallel realization behaves.

190

Erkl�arung

Hiermit erkl�are ich, da� ich die vorliegende Dissertation selbst�andig verfa�t habe und keine

anderen als die angegebenen Quellen und Hilfsmittel benutzt worden sind.

Chemnitz, den 26.11.1997, Matthias Bollh�ofer

Thesen

zur Dissertation

Algebraic Domain Decomposition

zur Erlangung des akademischen Grades eines \Dr. rer. nat."

an der Technischen Universit�at Chemnitz

Fakult�at f�ur Mathematik

vorgelegt von Dipl.{Math. Matthias Bollh�ofer

1. Mit der Entwicklung von Parallelrechnern sind in den letzten Jahren eine Reihe

von Techniken und Ans�atze [5] entwickelt worden, um gro�e Systeme Ax = b mit

schwachbesetzter regul�arer n� n Matrix A auf Parallelrechnern numerisch zu l�osen.

Ein Ansatz beruht auf der Verwendung der Sherman{Morrison{Woodbury Formel

zur Invertierung von Matrizen bei Modi�kationen von niedrigem Rang. Ist etwa A =

S �W = S � FG, S regul�ar, W = FG von niedrigem Rang, so gilt

(S � FG)

�1

= S

�1

+ S

�1

F (I �GS

�1

F

| {z }

S

c

)

�1

GS

�1

:(9.16)

Bei der parallelen Behandlung kann insbesondere S der blockdiagonale Anteil oder ein

leicht modi�zierter blockdiagonaler Anteil von A sein, gegebenfalls nach vorheriger

Neuanordnung der Koe�zienten von A. Bei gro�en schwachbesetzten Systemen hat

die Restmatrix W dann niedrigen Rang. Parallele Verfahren dieser Art sind z.B. in

[1],[9] f�ur blocktridiagonale Matrizen diskutiert worden.

2. Das Hauptproblem bei (9.16) ist die Behandlung des Kopplungssystems S

c

auf einem

Parallelrechner. Hier tritt das Problem auf, da� S

c

zun�achst nur implizit gegeben

ist und die Verteilung des Kopplungssystems �uber die Prozessoren die Behand-

lung dieses Systems erschwert. Eine M�oglichkeit w�are nat�urlich dieses System di-

rekt zu l�osen [1],[9]. Dieses ist, bedingt durch die Verteilung des Systems �uber die

Prozessoren, jedoch ein sequentieller Prozess. Alternativ w�are eine iterative L�osung

m�oglich, wie etwa [6], pp.516�, [11], [4]. Problem bei Iterationsverfahren ist jedoch

die Abh�angigkeit der Iterationszahl von der speziellen Matrix [6], p.523, [3], [12]. In

der Regel l�a�t sich dies durch den Einsatz von Vorkonditionierern [10] abmildern, das

grunds�atzliche Problem aber bleibt. Die parallele Verteilung des Kopplungssystems

reduziert jedoch die M�oglichkeiten des e�zienten Einsatzes von Vorkonditionierern.

3. In der vorliegenden Dissertation wird zur numerischen L�osung gro�er schwachbe-

setzter linearer Gleichungssysteme auf Parallelrechnern ein Konzept der algebrais-

chen Gebietszerlegung diskutiert, welches im Grundsatz auf der Verwendung der

Formel (9.16) basiert.

�

Ahnlich den numerischen Methoden bei der Gebietszerlegung

in der Behandlung partieller Di�erentialgleichungen wird die Systemmatrix �uber die

Prozessoren mit lokalem Speicher verteilt und der Datenaustausch �ndet �uber ein

I

zugeh�origes Kommunikationsnetzwerk statt. F�ur (9.16) werden blockdiagonale Ma-

trizen und modi�zierte blockdiagonale Matrizen behandelt. Zur L�osung des Kop-

plungssystems S

c

wird mit der geschachtelten Verwendung von (9.16) ein Kompromi�

zwischen einem direkten und iterativen Verfahren behandelt. Techniken wie etwa die

Verwendung addierender und �uberlappender Vektoren [8],[7], die unter anderem bei

Gebietszerlegungsmethoden zur parallelen numerischen Behandlung partieller Dif-

ferentialgleichungen zum Einsatz kommen, k�onnen hierbei auf den algebraischen Fall

�ubertragen werden.

4. Im ersten Teil der Arbeit wird mit der geschachtelten Verwendung der Formel (9.16)

ein Ansatz behandelt, der einen Kompromi� zwischen direkter und iterativer L�osung

von S

c

darstellt. Diese geschachtelte Divide & Conquer Strategie erlaubt es einer-

seits, den Rang der Restmatrix W zu reduzieren. Andererseits f�uhrt das sukzessive

Ersetzen der Matrix S durch eine Matrix

~

S, welche sich von S nur durch eine Matrix

von niedrigem Rang unterscheidet, adaptiv zu einer Vorkonditionierungsmatrix f�ur

das Ausgangssystem. Hierdurch wird sukzessiv ein neues Kopplungssystem erzeugt,

welches in seiner Dimension entsprechend reduziert worden ist. Dieser Ansatz kon-

nte implizit auf eine LU{Zerlegung eines geeignet erweiterten Systems zur�uckgef�uhrt

worden. Entsprechend ist das aus der Divide & Conquer Strategie entstehende neue

Kopplungssystem das Schur{Komplement des urspr�unglichen Kopplungssystems S

c

nach einer zuvor durchgef�uhrten Vorabtransformation.

5. Zur geschachtelten Anwendung von (9.16) l�a�t sich die Reduktion des Kopplungssys-

tems und damit die adaptive Anpassung der Matrix S im Prinzip auf das jew-

eilige Iterationsverfahren abstimmen. F�ur den Fall symmetrisch positiv de�niter Ma-

trizen konnten optimale orthogonale Transformationen im Sinne quadratischer For-

men hergeleitet werden. Im allgemeinen Fall ist die richtige Wahl der orthogonalen

Tranformation noch o�en. Hier mu� man sich bisher mit Heuristiken begn�ugen. Da

hier gleichzeitig die Dimension der Restmatrix reduziert wird, hat man aber auch

f�ur den Fall, da� das iterative Verfahren versagt, das System in seiner Dimension

sukzessive reduziert und erh�alt dann ein direktes Verfahren.

6. Die geschachtelte Verwendung von (9.16) l�a�t sich formal als algebraisches Mehr-

gitterverfahren [2] interpretieren. Da sich der behandelte Ansatz als LU{Zerlegung

f�ur ein geeignet erweitertes System interpretieren l�a�t, k�onnen Ergebnisse f�ur un-

vollst�andige Dreieckszerlegungen [7] auf den Fall der geschachtelten Divide & Con-

quer Strategie �ubertragen werden.

7. Zur Anwendung der geschachtelten Divide & Conquer Strategie lassen sich Zerlegun-

gen der Ausgangsmatrix in einen blockdiagonalen Anteil und eine Restmatrix von

niedrigem Rang gut einsetzen. Hier konnte gezeigt werden, da� sich durch geeignete

Modi�kationen des blockdiagonalen Anteils Strukturen der Ausgangsmatrix, wie etwa

Symmetrie und M{Matrixeigenschaft auf den blockdiagonalen Anteil wie auch das

Kopplungssystem �ubertragen. Weiter l�a�t sich die Restmatrix der Zerlegung auf eine

sehr einfache Weise faktorisieren. Dadurch sind auf einfache Weise die Voraussetzun-

gen f�ur den Einsatz von (9.16) erm�oglicht.

II

8. Beim Einsatz blockdiagonaler Zerlegungen lassen sich Modi�kationen des blockdi-

agonalen Anteils durchf�uhren, welche darauf abzielen, die Eigenschaften des Kop-

plungssystems zu verbessern. Diese Modi�kationen, eine Art algebraischer Randbe-

dingung f�ur die Diagonalbl�ocke, k�onnen auf approximative blockdiagonale L�osungen

von Riccatigleichungen zur�uckgef�uhrt werden. W�ahrend hier im allgemeinen noch

gek�art werden mu�, welche blockdiagonalen L�osungen am besten geeignet sind, die

L�osung der Riccatigleichung zu approximieren, konnte im symmetrischen Fall sogar

die Optimalit�at im Sinne quadratischer Formen nachgewiesen werden.

9. Die Verwendung blockdiagonaler Zerlegungen f�uhrt auf eine nat�urliche parallele

Verteilung der Matrix und insbesondere des Kopplungssystemes S

c

aus (9.16), welches

eine

�

Ubertragung des Konzeptes addierender und �uberlappender Vektoren [8],[7] aus

den Gebietszerlegungsmethoden partieller Di�erentialgleichungen auf den algebrais-

chen Fall erm�oglicht. Somit steht ein leichter Zugang zur parallelen Behandlung von

S

c

zur Verf�ugung.

10. Die parallele Behandlung des Kopplungssystems f�ur den Fall der geschachtelten Di-

vide & Conquer Strategie l�a�t sich durch B�undeln der einzelnen Aufdatierungen

zu einem einzigen Block verallgemeinern. Hierdurch l�a�t sich einerseits der paral-

lele Einsatz der geschachtelten Divide & Conquer Strategie auf die urspr�ungliche

Ausgangsmatrix und ihr Kopplungssystem zur�uckf�uhren. Andererseits bewirkt die

B�undelung der hierbei auftretenden Modi�kationen vom niedrigen Rang eine Reduk-

tion der Kommunikationsschritte.

III

Bibliography

[1] S. Bondeli: Parallele Algorithmen zur L�osung tridiagonaler Gleichungssysteme.

Dissertationsschrift, ETH Z�urich, 1991.

[2] W. Dahmen, L. Elsner: Hierarchical Iteration. Lecture Notes on Numerical

Fluid Dynamics, Hackbusch (ed.), Vieweg, 1988.

[3] Michael Eiermann: Fields of Values and Iterative Methods. Lin. Alg. and its

Appl. 180 (1993), pp.167{197.

[4] R.W. Freund, G.H. Golub, N.M. Nachtigal: Iterative Solution of Linear Sys-

tems. Acta Numerica (1992), pp. 1{44.

[5] K.A. Gallivan, M. T. Heath, E. Ng, J.M. Ortega, B.W. Peyton, R.J. Plem-

mons, C. H. Romine, A.S. Sameh, R.G. Voigt: Parallel Algorithms for Matrix

Computations. SIAM Philadelphia, 1990.

[6] G.H. Golub, C.F. Van Loan: Matrix Computations, second. ed. The Johns

Hopkins University Press, 1989.

[7] G. Haase, U. Langer, and A. Meyer: The Approximate Dirichlet Domain De-

composition Method. Part I: An Algebraic Approach. Computing 47 (1991),

pp.137{151.

[8] K.H. Law: A parallel �nite element solution method. Computer and Structures,

23(6), (1989), pp.845{858.

[9] V. Mehrmann: Divide & Conquer Methods for Block Tridiagonal Systems.

Parallel Computing 19 (1993), pp. 257{279.

[10] Y. Saad: Krylov subspace methods on supercomputers. SIAM J. Sci. Stat.

Comput. 10 (1989), pp.1200-1232.

[11] Y. Saad, and M. Schultz: GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Computing 7(1986),

pp.856{869.

[12] L. N. Trefethen: Pseudospectra of matrices. In: D. F. Gri�ths and G. A.

Watson, Numerical Analysis 1991, Longman Sci. Tech. Publ., 1992, pp.234{

266.

IV

Lebenslauf

Matthias Bollh�ofer

Kanzlerstr. 42

09112 Chemnitz

Geboren am 14.05.1966 in Herford.

Staatsangeh�origkeit deutsch.

Familienstand verheiratet, ein Kind.

Von August 1972 bis Juli 1976 Besuch der Grundschule am Elkenbreder Weg in Bad Salz-

u
en.

Von September 1976 bis Mai 1985 Besuch des Gymnasiums Hermannstra�e bzw. nach

dessen Umzug Gymnasium im Schulzentrum Aspe in Bad Salzu
en. Abschlu� Abitur.

Von Oktober 1985 bis M�arz 1992 Studium Mathematik mit Nebenfach Informatik an der

Fakult�at f�ur Mathematik der Universit�at Bielefeld. Abschlu� Diplom.

Von April 1992 bis M�arz 1993 Promotionsstudium an der Fakult�at f�ur Mathematik der

Universit�at Bielefeld.

Von April 1989 bis September 1991 sowie Oktober 1992 bis M�arz 1993 regelm�a�ige Tu-

torent�atigkeit an der Fakult�at f�ur Mathematik der Universit�at Bielefeld. Von April 1992

bis Juli 1992 Lehrbeauftragter an der Fachhochschule Bielefeld.

Seit April 1993 wissenschaftlicher Mitarbeiter am Fachbereich bzw. an der Fakult�at f�ur

Mathematik der Technischen Universit�at Chemnitz. Von 1993 bis 1995 Mitarbeit in der

Forschergruppe `Scienti�c Parallel Computing' an der TU Chemnitz{Zwickau. Seit 1996

Mitarbeit im Teilprojekt `Algebraische Zerlegungsmethoden' im Rahmen des Sonder-

forschungsbereiches 393 `Numerische Simulation auf massiv parallelen Rechnern' an der

TU Chemnitz.

