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Referat. In der Arbeit wird ein algebraischer Ansatz zur numerischen Losung grofler
schwachbesetzter Systeme auf Parallelrechnern diskutiert. Hierbei sollen Techniken aus
den Gebietszerlegungsmethoden in der numerischen Behandlung partieller Differentialgle-
ichungen auf den rein algebraischen Fall iibertragen werden.

Ausgangspunkt dieser Untersuchungen ist die Sherman—Morrison—-Woodbury Formel zur
Invertierung von Matrizen bei Modifikationen von niedrigem Rang.
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Hauptproblem bei der praktischen Anwendung dieser Formel ist die Losung eines kleindi-
mensionierten Kopplungssystemes 5., welches in der Formel auftritt.

Zur numerischen Losung dieses Kopplungssystems wird ein Konzept eingefiihrt, welches
einen Kompromifl zwischen einer iterativen und einer direkten Losung von S. darstellt.
Dies geschieht durch geschachtelte Anwendung der Sherman—Morrison—Woodbury Formel.
Das fihrt zu einer Reduktion des Ranges der Restmatrix W in der Anfangszerlegung und
somit zur adaptiven Konstruktion eines Vorkonditionieres durch Modifikation der Matrix
S. Auf diese Weise sollen die Vorzige eines iterativen Verfahrens, wie etwa leichte Im-
plementation auf Parallelrechnern, mit der Gewissheit eines direkten Verfahrens, namlich
nach einer bestimmten Anzahl Schritte das System gelost zu haben, kombiniert werden.
Es wird der Zusammenhang zu algebraischen Mehrgitterverfahren demonstriert.

Zur parallelen Behandlung werden Zerlegungen mit blockdiagonalen Matrizen S betrachtet.
Hier werden fur symmetrische Matrizen und M-Matrizen strukturerhaltende Modifikatio-
nen der blockdiagonalen Matrix untersucht. Daruber hinaus werden weitergehende Mod-
ifikationen untersucht, welche die Eigenschaften des Kopplungssystem verbessern sollen.
Dieser Ansatz wird auf approximative Losungen von algebraischen Riccatigleichungen
zuriickgefiihrt.

Zur parallelen Realisierung wird das Konzept addierender und tuberlappender Vektoren,
bekannt aus den Gebietszerlegungsmethoden fiur partielle Differentialgleichungen auf den
algebraischen Fall iibertragen. Zur parallelen Behandlung der geschachtelten Anwendung
der Sherman—Morrison—Woodbury Formel werden Strategien zur Bundelung der einzelnen
Aufdatierungen verfolgt zwecks Reduktion der Kommunikation. Dadurch 1ait sich das re-
sultierende Kopplungssystem auf die Behandlung des urspringlichen Kopplungssytems mit
zusatzlichen Modifikationen von niedrigem Rang zurtckfihren.

Schlagworter. Sherman—Morrison-Woodbury Formel, Gebietszerlegungsmethoden, al-
gebraische Mehrgitterverfahren, blockdiagonale Zerlegungen, grofle schwachbesetzte Sys-
teme, parallele Algorithmen, iterative Losungsverfahren, direkte Losungsverfahren, adap-
tive Vorkonditionierer.
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Notation

Unless we need explicitly R or C, we will use the symbol F, which may be replaced by
both, R or C, i.e. F € {R, C}.

We use the * to denote the adjoint operation with respect to a given inner product (e, e).
If nothing different is mentioned, we assume that the inner product is the standard inner

product. In this case, * is either the transposing operation ? for the real case or the

conjugate transposition operator 7 for the complex case.
For any pair A, B of n x n symmetric (Hermitian) matrices we define

A < B <= B — A positive semidefinite.
For any pair A, B of n x n real matrices we define
A=< B:<:>a¢]‘ <b¢]‘, forall 7,5 =1,...,n.

A< B:i<=a; <by, foralle,j=1,...,n.
Analogously >, - are defined.

Some further notation:

M (m x n,F) m X n matrices with entries in F
GL (n,F) nonsingular n X n matrices
1,1, Identity matrix of order n
diag(ai1, ..., ann) diagonal matrix with diagonal entries ayy, ..., au,
diagA (@11, ..., anpn), vector containing the diagonal entries of A
<aij> entries of the m x n matrix A

i=1,....m,7=1,...,n
<a£f)> entries of the m x n matrix Ay

i=1,....m,7=1,....,n
| Al SUP, 20 HIIAQIEIHP’ induced p—norm

Zllp
| All 7 > lars|?, Frobenius norm of A
r,s=1

cond,(A) |All, ]A™Y|,, condition number of A, if A is nonsingular
A(A) {A € C: det(A — M) =0}, set of all eigenvalues of A
D(z,r) {w e C:|z—w| <r}, open disc with center z and radius r in C
C(9) space of continuous functions defined on
#S number of elements in the set S

Real z real part of the complex number z
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Introduction

In this thesis we will present an algebraic method for the parallel solution of large sparse
linear systems. The method is based on the Divide & Conquer approach [12], [59] and
uses the Sherman—Morrison—-Woodbury formula for low rank modifications. In contrast to
domain decomposition methods in the numerical treatment of partial differential equations
our method will be an exclusively algebraic domain decomposition method and therefore
it can be applied to a large class of problems. The concept of domain decomposition
methods for partial differential equations and the techniques for developping parallel
algorithms using domain decomposition are transferred to an algebraic method. The
method involves the solution of a coupling system of small size, which is involved by
applying the Sherman—Morrison—-Woodbury formula to a low rank splitting. Most work 1is
spent in how this coupling system can be solved and moreover how to do this in parallel
computations. Since it may happen that the coupling system is ill-conditioned, most
interest will concentrate on the properties of the coupling system and how to improve
the properties. The main idea of improving the properties of the coupling system and
the underlying solution process consists of adaptively constructing a preconditioner and
reducing the rank of the corresponding coupling system at the same time. Even if an
iterative solution process would fail the reduction of the rank will stay and in this case
the reduction of the rank will finally lead to a direct method. Of course a purely algebraic
method will never be able to compete with a method which has been adapted to a
specific related problem. But it may be applied to a wide class of problems by making
a compromise between direct and iterative methods. The concept itself invokes several
questions and not all of them can be answered in this thesis. Although several parts of
this concept can be applied to general systems, here most work is spend in the symmetric
positive definite case. For general systems many questions are still open.

For the strategy which will be the topic of this thesis we will give a short overview.

To apply the Sherman—Morrison—Woodbury formula we need a given low rank splitting.
Thus we will concentrate on splittings with block diagonal matrices when applying the
Sherman—Morrison—-Woodbury formula. For this we need a preprocessing process, that
suitably partitions the initial system. This step will be assumed to be done a priori. Based
on this assumption, we will modify the diagonal blocks with respect to certain aspects.
One aspect will be preserving given structures like positive definiteness and M-matrix
property for the block diagonal matrix itself and especially for the coupling system. A
further aspect will be a local minimization of the rank of the remaining matrix in order
to keep the coupling system small. Beside these modifications we need to modify the
diagonal blocks to improve the properties of the initial splitting and the underlying coupling
system for the case when the block diagonal part of the initial matrix is ill-conditioned
or singular. Analogous to partial differential equations we will discuss modifications of the
diagonal blocks which one can view as some kind of algebraic boundary conditions subject
to maintain the minimal rank property. So far we still need that the block diagonal part
of the initial system is nonsingular. In future works we have to generalize this kind of



algebraic boundary conditions.

The coupling system which is obtained by the Sherman—Morrison—-Woodbury formula, has
to be solved. Circumstances like the distribution of the coupling system over the processors
in parallel computations aggravate the solution process. Thus we need a concept for the
solution of the coupling system which combines the advantages of an iterative solution
process with the certainty of a direct solution process. To do this a nested divide & conquer
strategy will be introduced. This strategy is a compromise between a direct solution and
an iterative solution of the coupling system. The main idea is to solve some part of the
coupling system directly and to obtain a new reduced remaining coupling system. To split
the coupling system into a small part and a remaining part, orthogonal transformations
are used. While in the symmetric case we can determine orthogonal transformations which
optimally reduce the coupling system in the sense of quadratic forms in general it is open
which orthogonal transformation will be most suitable. For the nested divide & conquer
strategy close relations to algebraic multigrid methods will be shown.

For the parallel realization of this method we need a parallel model for the treatment of
the initial coupling system from the Sherman—Morrison—Woodbury formula and moreover
for the nested application of this formula in the divide & conquer process. We will present
a parallel concept which discusses the parallel use of the Sherman—Morrison—Woodbury
formula. By transferring the idea of adding type vectors and overlapping type vectors,
which has already been used in domain decomposition methods, we will get a convenient
way to treat the coupling system in parallel. This idea can be generalized to the case when
the nested divide & conquer process is used. In addition it will be shown how the nested
divide & conquer method can be treated in parallel without having too much data traffic.

The complete concept can be summarized in the following table.
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In Chapter 1 we will recall methods of domain decomposition for partial differential equa-
tions. Especially substructuring methods are shortly discussed. Analogous to domain de-
composition methods we will introduce two variants of algebraic domain decomposition
based on low rank modification formulas for a given splitting A = 5 — W, where W has
low rank. It will be shown that in theory both methods are equivalent.

In Chapter 2 the properties of the coupling system will be discussed. It will be shown, that
the coupling system can be interpreted as the restriction of AS™! to a special invariant
subspace. Analogous to Schur—complements for substructuring methods, we will show that
structures like symmetry, positive definiteness, the M—Matrix property, the symmetric
M—Matrix property are inherited by the coupling system if the initial splitting is suitably
modified.

In Chapter 3 we will introduce a nested divide & conquer strategy to improve the properties
of the coupling system. This will be an alternative to the usual way which consists in
constructing preconditioners. The nested use of low rank modification formula will result
in a nested sequence of splittings and consequently a sequence of coupling systems. It will
turn out that the related coupling systems can be viewed as diagonal blocks of a block LU-
decomposition of the initial coupling system after a suitable pre— and post multiplication.

In Chapter 4 we will point out the close relations to algebraic multigrid methods. It will
be shown that algebraic domain decomposition can be interpreted as Schur—complement
approach with respect to a suitably extended system. Therefore results from substructuring
methods are applicable. A further interpretation as subspace correction method will be
pointed out and results from algebraic multigrid methods [72] can be applied.

The relation between the nested use of the low rank modification formulas and algebraic
multigrid can be summarized in the following table.

Nested Divide & Conquer (low rank modifications)

Sherman-Morrison-Woodbury Left Tnverse Approach

Formula
Schur-Complement Subspace Correction
Methods Methods

Block ILU Decomposmlo) Algebraic Subspace Correction

(in the sense of Axelsson

(in the sense of Ruge, Stiiben)
Dahmen, Elsner

Algebraic Multigrid

In Chapter 5 we will discuss block Jacobi splittings and moreover modified block Jacobi

Vil



splittings. The latter are studied more precisely to construct a factorization of the remaining
low rank part. Modifications of the diagonal blocks are applied to inherit structures.

In Chapter 6 we will focus on modifications of block Jacobi-like splittings subject to
minimize the rank and to improve the properties of the coupling system. It will be shown
that this problem can be traced back to the solution of algebraic Riccati—equations. It
will be shown that under relatively general assumptions the Riccati—equation will have
explicit solutions. Detailed discussion is carried out for the case that the quadratic part of
the algebraic Riccati—expression is nonsingular. For certain classes of matrices it will be
shown that this is a realistic assumption. For the special case of symmetric positive definite
matrices optimality will be discussed.

In Chapter 7 parallel aspects will be discussed for the coupling system obtained by the
Sherman—Morrison—Woodbury formula based on modified block Jacobi splittings.

It will be shown that the coupling system has a natural distribution over the proces-
sors. This kind of distribution allows the use of so—called overlapping type vectors and
adding type vectors for the parallel treatment of the initial coupling system. Consequently
a convenient parallel treatment of the initial coupling system analogous to the numerical
treatment of partial differential equations will be possible. The block graph of the initial
coupling system and two ways to derive it from the block graph of the initial system will
be discussed.

In Chapter 8 parallel aspects are generalized to nested divide & conquer methods based
on modified block Jacobi splittings.

For this we use that implicitly a special block LU-decomposition of the coupling system
is carried out. Techniques for reducing the data traffic will be discussed which are based
on collecting products of low rank modifications to one matrix. Using these techniques the
treatment of the coupling system arising from the nested divide & conquer approach can
be traced back to the initial coupling system using additional low rank updates.

Nested Divide & Conquer

Initial

coupling system

partial generation
of the LU collected product

block distri-

bution

decomposition of low rank
of the modifications

coupling system

Use of overlap./ I
adding type

vectors @se of overlapping/adding type Vectors>
\won ) |

Initial coupling system

+ additional low rank updates

In Chapter 9 the theory is illustrated for several numerical examples.
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Chapter 1

General Approach

1.1 Domain Decomposition Methods in the Numeri-
cal Treatment of Partial Differential Equations

We begin with the description of domain decomposition methods in the numerical treat-
ment of partial differential equations. Consider a linear operator £ from some vector space
U into another vector space V. Here U,V are assumed to be suitable subspaces of C(Q),
where ) is a domain in R¢. We denote by I' = 91 the boundary of the domain Q. Let B be
a linear operator from space U‘F into a space W C C(I'). We consider the following linear

problem: Let f € Vg € W. Find u € U such that

Ly = finQ,
Bu = gonl.

In the following we will assume that u is uniquely determined by these equations. In
the numerical treatment of these equations the continuous domain ) is replaced by a
finite union of polygonal domains Q" = Uier T!, where h is some discretization parameter
corresponding to the largest diameter of 7,i € I. I is replaced by I'" = 90", where
[ = Uses 3? is defined with respect to Q". {S? :J € J} is the set of edges corresponding
to those T which intersect with 9Q*. The spaces U,V are replaced by some appropriate

K3

finite dimensional subspaces U", V", Typically U" Vh‘Th are subspaces of the space of

‘Tih7
polynomials of degree k on T/ for some small fixed k, e.g. & = 1. Analogously Wh‘ p 18
a subspace of the space of polynomials of degree k on s”. Since U V" W" are finite
dimensional, we can find some basis for each space. In addition each basis function u; in
U should have a local support, i.e., suppu; C T, U ... UT;, where [ is fixed, | < #1

and w;(x) = 0 if & supp u;,. We can thus replace the continuous problem by a discrete
problem: Let f € V* g € W". Find u € U” such that

L'v = fin QP
B = gonl",



where £", B" are some discrete approximations to £,B. Again we will assume that wu is
uniquely determined by these equations. For simplicity let dim " = n,dim V" = m and
dimW" = n — m. Since we have a representation v = Y.© zu;, f = S0 b, g =
E?:_lm c;w; for base uq, ..., u, of U, vy,. .. v, of VP and wy, ..., w,_p, of W", where each
u; has a local support, we can reformulate this problem in terms of coordinates as

e (£)-()

where ,Chu]‘ == E;ﬁ;l lijvi, Bhu]‘ == EZ;T bk]‘wk.

For the coeflicients [;;, by; we will assume that [;; = 0 implies that supp u; Nsupp u; has zero
d-dimensional measure and by; = 0 implies that supp w,,4+4Nsupp u; has zero d-dimensional
measure. This is a typical property of problems arising from partial differential equations.
By theses assumptions we obtain a nonsingular sparse matrix A. Moreover, the sparsity
pattern is essentially determined from the discretization of the domain and the choice of
the local support for the basis functions. Since A is nonsingular, it follows that B must
have full rank. Thus we can find n — m linear independent columns in B. Without loss of
generality we can assume that the last n —m columns are linear independent. We partition

L =(L;Lir),B = (BryBr)and z = <§;> such that Br is nonsingular. Then we can

reduce the system
Ly Lir xr\ (b
BFJ BF T o &

<LI — LI,rBr_lBF,I> zr=b— LirBrle,
K d
which is the Schur—complement of A with respect to Br. We set K = LI—LLFBI?IBFJ, d=

b— LrrBy'e. Usually one is not interested in @, so that it suffices to solve the last system.
Note that the Schur-complement K differs from L; at most in those entries k;;, where

to

supp u; and supp u; have a nontrivial intersection with (J,_ .., . suppug, which is the
common support of those basis functions which correspond to Br. This can be seen by an
argument from graph theory [27].

In general there are two approaches of domain decomposition methods to problems of this
type.

1.1.1 Substructuring Methods

The first class of techniques are called substructuring methods. For such methods Q" is
subdivided into subdomains Q7. .., Q]fj which are simply connected with respect to Q" and
Qfﬂﬂ? has zero d-dimensional measure if 1 # j. On each subdomain one has to consider the
corresponding smaller dimensional problem. But usually the problem is no longer uniquely
determined due to the additional boundary between neighbouring subdomains. For any

(r) (r)

r=1,...,pwedenote by u; ’, ..., u,; ’ those basis functions which have a nontrivial support

in O r = 1,...,p. On each subdomain we consider the corresponding problem: Find



u € span{u({), cee ug;)} such that

L' = fin QP
B'u = gonI"Non,
C'u = 0on dQ"\T"

The additional boundary condition C"u = 0 has been added to the problem in order to
obtain a unique solution. The number of equations, which have to be added is just the
number of basis functions in {u(lr), ey ug;)} whose support is not covered by Q. For those
basis functions, which have a support in more than a single subdomain, we have to consider
an additional coupling system. For the discrete system Kz; = d this means, that we have

up to a permutation P

K1 Ky pta
K=P , o Pr,
Kpp Kp pt1
Kppin o0 Kppip Kppipn
where each K;;, ¢+ = 1,...,p corresponds to the discrete problem for the basis functions

with support covered by Q%. Together with the additional boundary conditions of the form
<C(21,m 015217P+1> <u> = 0 we obtain subproblems of the form

P v
K K pt1 u d;
( 01521,2' 01521494—1 ) <U> N <0> '
Applying the Schur—-complement gives
Kisu = <K“» . KLPHC;QIM_IC;QLZ.) w=d;

From this it follows that we have to solve a system with K instead of K, where K is defined

K -1
) Rk , C;?Lp-H Cygi)l,l O
K:=K— - " 0
Apptl (p) (p)
O O O Cottp Cop O

For problems which ensure that each principal submatrix is nonsingular like pos-
itive definite matrices, M-matrices or diagonal dominant matrices we can choose

<Cz£217i7 015217P+1> = (O, I). In this case we obviously have K = K. Otherwise A dif-
fers from K" by a low rank modification. The rank is related to the basis functions with
support in more than a single subdomain. A system with A can be solved using the Schur—

complement approach, i.e., using the following factorization for K

I Koy I RilKy
o 1 1.7 ?
&1 I ~ 1 [pr I [pr Apm-l-l
KppiaKyyw 0 Kppiphs 1 Cpti1pt1 1



where Chi1 pr1 = Cppipt1 — 2y [x’pH,Z»[{’gl[x},pH denotes the Schur-complement. Unless
K = K one has to solve an additional coupling system in order to obtain the solution of
Kz =d. For the solution of systems by the Schur—-Complement approach most interest is
focussed on solving the Schur-Complement system C,4q ,41, since usually €41 p41 is not
computed explicitly. For this purpose Krylov subspace based methods [41] are used, which
only need matrix vector multiplications. In order to accelerate the iteration process pre-
conditioners are constructed for €41 y41. For the case of elliptic boundary value problems
efficient preconditioners have been developed in [9], [24],[15]. Another way to solve the sys-
tem Kx; = d is to use an approximate factorization for [{’7 i.e. a factorization where each
]g’gl is replaced by a suitable approximation. This incomplete factorization can be used as
preconditioner for K. Again it is necessary to solve an approximate Schur—complement in
each step, where one can use the preconditioners just mentioned. Such methods have been

proposed by [45], [46].

1.1.2 Overlapping Domain Decomposition Methods

A second class of domain decomposition methods is given by overlapping or additive
Schwarz methods. For these methods the domain (Q is again replaced by Q. which is
a union of "coarse” polygons T#. But this time each polygon T# is refined into a union of

smaller polygons TZ»};, j=1,...,1;. The initial decomposition of Qf is given by the coarse

polygons TH. Then each subdomain T is enlarged by some neighbouring polygons T,fj

K3 K3

resulting in a subdomain TZH A basis u”, ... u" with local support of the refined domain

can be constructed with respect to the polygons Tf; and an additional basis uff,... ulf

with local support can be constructed for the coarse space Q. By construction we have
span {ull ... ull} C span {ul,... u!}. The main difference to substructuring methods is
that here the subdomains TZH have to be sufficiently large in order to ensure that for any
u, there exists at least one subdomain TZH such that suppu, C TZH For any r we denote

(r) (r)

by uy’,...,u;’ the basis functions, which have support in TTH For each subdomain TTH
one has to consider the corresponding subproblem. Find u € span{u({), cees ug)} such that
L'y = fin T,
B"w = gonI"noT",
C'v = 0on 97"\ T"
In addition one may consider the coarse problem. Find u € span{uf’,... u!} such that

LTy = fin QF,

By = gonTI¥.

We can write the reduced matrix K as

K=P [(1(;) [(1(;) PT
R g0

A\T
K5,



(r)

where P, is a permutation matrix and K}’ corresponds to the subproblem for those basis
functions which have support in T2, Analogous to substructuring methods we can rewrite

the subproblems on Tf[ in the form
o (r A(r A(r L
EDu= KD - kY0l i =d,

where <Cz(;), CQ(;)> corresponds to the additional boundary condition C"u = 0. Again [§71(;)
(r)

differs from K}’ only by a low rank modification, which is related to the basis functions
with support in more than one subdomain. By the choice of T/ we can already build a

complete approximate solution to Ka; = d from these subproblems.
For the coarse problem we can find a matrix G such that (u{l, . ,ufj) = (u?, cees uh> G.

The corresponding linear operator is given by

P -(r)y—1
5 - K;y) Q)
K=GG"KG)'G"+ ) P, (i rr.
48 ( 48 ) + g O O r
This matrix is used as preconditioner for K in Krylov subspace based methods. It has

been shown in [25], [26] that for elliptic boundary value problems with shape regular finite
Amax(K 1K)
> Amin(K—1K)

provided that the overlap size of Tf[ with respect to T is bounded from below by fixed
fraction of H. If the expression G(GT KG)™1GT is omitted, then Amax(K 2 K) grows at least

Amin (K—1K)
as fast as 1/H?, which has been shown in [83].

element discretization has a condition number independent on A, H and p,

1.2 Algebraic Domain Decomposition

Consider a large sparse nonsingular matrix A € GL (n,F) as it occurs in the numerical
treatment of partial differential equations (see e.g. [48]). Typically the sparsity can be char-
acterized as follows: In each row there are only a small number of nonzero entries and the
pattern of the matrix is almost symmetric. The matrix can be permuted by a symmetric
permutation into a form which is almost block tridiagonal or block cyclic with blocks of
moderate size. Although we do not need this property explicitly, the method will be de-
signed for such matrices.

Now we will discuss algebraic domain decomposition, which is based on a low rank mod-
ification formula. For an algebraic method the linear system is the only information we
have. For domain decomposition methods arising from partial differential the decompo-
sition is constructed by geometric aspects. Here the domain decomposition will be done
partitioning the vector of unknowns according to some strategy which should be related

to the undirected graph of A, where the graph G(A) = (V,€) of A is defined as follows:
V={1,....n}, E={(1,j) €V xV:a;; #0or aj; # 0}

For strategies of permuting A by renumbering the nodes of V we refer to [52], [17], [34],
[70], [80]. This preprocessing part is assumed to be done a priori.



We wish to solve the linear system

(1.1) Ax = b,

where x,b € F", on a parallel computer. This is done by splitting the matrix A into a sum

of two matrices S € GL (n,F),W € M (n x n,F), such that
(1.2) A=5-W,

where S is nonsingular, the solution of a linear system for S can be “easily” done in parallel
and W is a matrix of low rank. The most common choice for S will be a block diagonal
matrix with as many diagonal blocks as processors. But so far we will not fix this explicitly.
For W we assume more precisely, that W is a product of matrices W = FX '@, where

F,G" € M(n xr,F),X € GL(r,F) with suitable r € N, r < n.

Example 1.3 Consider a block tridiagonal matriz A € GL(n,R), where

A Aig
Agq Asp Ags

Am—l,m—Q Am—l,m—l Am—l,m

Am,m—l Am,m

and the A; ;s are matrices of suitable size. Assume that each principal submatrix is invert-
ible. (This condition is fulfilled for example if A is strictly diagonal dominant, symmetric
positive definite or an M—Matriz). Split A into a block diagonal matriz S with p diago-
nal blocks and remaining W, where for suitable my,...,my,—1 € {1,...,m — 1}, mg :=
0,m, :=m
St
S =
Spp

and for g =1,...,p the diagonal blocks of S are

Am]—1+17m]—1+1 Am]—1+17m]—1+2
g — Am]—1+27m]—1+1 Am]—1+27m]—1+2 Am]—1+27m]—1+3
J . .

Amj,mj—l Am],mj

and W =5 — A is of low rank. This splitting is illustrated in the figure below:

* * * *
* * * * * *
* * * * * *
* * * * * *
* * * = * * - *
* * * * * *
* * * * * *
* * * * * *
* * * *
A = w




If A arises from the numerical treatment of partial differential equations, then the block
diagonal part S can be interpreted as domain decomposition of the problem. W corresponds
to the connections between neighbouring domains.

Set F' = (Eml, Emivis Enyy Byt oy By Emp_rl—l); where the identity matriz I is par-
titioned in block columns analogous to the block structure of A, i.e., [ = (Ey, Es,..., Ey).
Then W may be written in the following way:

0 ‘ _Am17m1+1
_Aml—l—l,ml ‘ 0

0 ‘ _Amp—17mp—1+1

_Amp—1+17mp—1 ‘ 0

G =W,
— W = FG=F(WF”"),

Obviously F has full rank and its number of columns is for (p < m) much less than n.
Here we have chosen X = 1.

We may solve a linear system of this form (1.2) using the Sherman—Morrison—-Woodbury
formula [41], p.51:

(14) A '=(S—FX'G)™ =8+ S'FST'GS™, where 5. = X — GS™'F.

S. is called the coupling system. We note that if S and X are nonsingular, then S, is
nonsingular if and only if A is nonsingular.
We get the following abstract algorithm:

Algorithm 1.5
Let A € GL(n,F) be split as A= S — FX™'G,
where S € GL(n,F), F,GT € M(n xr,F), X € GL(r,F).

Solve Sv» = b

p =Gy

Solve 5.6 = p, where S. = X — GS™'F
u:=Fo

Solve Sy =u

=4y

—x=A""b

In general, we may choose X = [ in our factorization, but there may still be difficulties in
the practical implementation of this algorithm.
First of all, we have to solve a system with S. If we use a direct method, like LU or



QR decompositions [41],pp.92ff, pp.211ff, we need most of the computing time for the
decomposition, while solving several systems with S is not so expensive. For the coupling
system we have to decide, whether we want to use a direct or iterative method. At least
if we use an iterative method we should ensure, that we only have to apply matrix vector
operations, because the explicit computation of S. may be expensive. For a direct method
in general, we have to compute S™'F explicitly and then to use a method which requires
explicit knowledge of S.. Such an approach was performed for block tridiagonal matrices
in [12], [59]. In addition, in [59] the rank of F' has been chosen as small as possible, to
decrease the computational effort. For matrices arising from the numerical treatment of
partial differential equations such a strategy corresponds to a special choice of boundary
conditions on each subdomain.

1.3 An Equivalent Approach for the Use of Low Rank
Modifications

In this section we will derive an equivalent way to write the inverse of a matrix A subject
to low rank modifications. This formula will later be used to get another interpretation of
using low rank modifications.

For this we have to assume that X = [ in our low rank splitting (1.4), i.e.

(1.6) A=S-FG,

where S € GL (n,F), F,GT € M(n x r,F) and at least I must have full rank.
In this case there exists H € M (r x n,F) such that

(1.7) HF =1,
and we obtain
(1.8) GS—! :H(I—AS_I), S.=1—GS™'F=HAST'F =:T..

T. is also called a coupling system. Thus we can write the inverse of A slightly different

than in the previous section as
(1.9) At =S 4 ST EPTVH(T — ASTY).

It is easy to verify by straightforward computation that this formula is equivalent to the
Sherman—Morrison—-Woodbury formula (1.4) from the previous section, provided that F
has full rank. Moreover, in this case the coupling systems T, S. are identical.

Example 1.10 Consider the matrixz from Example 1.5. In this case we can choose H = F*.



1.4 Approximate Inverses

In this section we consider the case, when in formula (1.4),(1.9) the exact inverse S is

replaced by an appropriate approximation S™!. We state the result as a lemma:

Lemma 1.11
Let A € GL(n,F) be split as A = 5 — F'G, where S € GL(n,F), F.GT € M(n xr,F).
Consider an S € GL (n,F) such that A — (S — S) is still nonsingular. Then

(1.12) S48 S TGS = [A— (S = )Y

where gc — [ —GS™1F.
Assume that rank F' =1 and let H € M (r x n,F) such that HF = I. Then

(1.13) STUL STUFT H(I - ASTY = [A— (I — FH)(S — §)]™!
where T. = HAS™'F.
Proof:

(1.12) follows directly from applying the Sherman-Morrison-Woodbury formula (1.4) to
A=S5-FIG.

If we apply (1.9) toA:A—([—FH)(S—SNY)zg—F(G+H(§—S)),Weget

ATl = STy STURP(HASTYF)TYH(T — ASTY
14 STUR(HASTVE)TVH(T — ASTY).

|
e

We have that

HA = H(S—F(G+ H(S - 5)))
HS —G—H(S-S)

= HS-G
= H(S-FG)
— HA.

From this it follows that o .
HAS 'F = HAS™'F

and
H(I —AS™") = H—HAS™!
— H— HAS™!
= H(I—AS™.



Remark:
We note that (1.12) can be used to define linear iteration schemes for solving systems with
A. Especially (1.13) is of interest, since

(I —[A—(I—FH)S—5)A)
(1.14) = (I—S8'FT."HA)(I — 57 A), where T, = HAS™'F.

This means, if we use (1.13) for linear iteration schemes, then the corresponding iteration
operator decouples into a product of two iteration operators.
Note that one can use analogous arguments if G has full rank instead of F'.

Summary

Analogous to domain decomposition methods we have introduced an algebraic way
of domain decomposition, where the decomposition is done with respect to low rank
modifications. Both approaches involve the solution of a small coupling system.

The Sherman—Morrison—Woodbury formula (1.4) will play a central role in our forthcoming
investigations while the equivalent approach (1.9) will give another interpretation of using
low rank modifications. The formula as it stands now may cause problems in its practical
application.

For the concept of algebraic domain decomposition problems may be the following ones.

1. What general properties of the coupling system .S. can be shown and can we suitably
modify the initial splitting A = S — W to improve the properties of 5.7

2. Can we modify the initial splitting such that the coupling system inherits structures
of the initial system like symmetry, positive definiteness, M-matrix property?

3. Iterative methods applied to the coupling system and especially Krylov subspace
methods may fail when being applied to S. while direct methods require explicit
knowledge of S.. And even if S, is explicitly available, a direct solution typically will
be aggravated by the distribution over the processors. Can we find a compromise
between both approaches? L.e., if we need more and more iterations then more and
more of the coupling system should already be directly solved leading finally to a
direct solution of S..

4. Since we are interested in parallel computations we will restrict ourselves to modi-
fied block diagonal splittings. When adaptively generating parts of S. this must be
carefully handled in parallel. The question will be how this can be done.

We will try to give an answer to these questions in the following chapters.

The algebraic properties of the coupling system will be discussed in the next chapter.
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Chapter 2

Algebraic Properties of the Coupling
System

In this chapter we will discuss properties of the system matrix S, of the coupling system
from (1.4).

The coupling system S. plays a central role in the use of the Sherman—Morrison—Woodbury
formula (1.4). We will illustrate how the application of formula (1.4) is connected to the
invariant subspace of AS™! spanned by the columns of F. To do this we will apply the
formula to a given right hand side b:

zg := S7'b. Thus we can compute the residual r = b — Azg = b — AS™'6 = F(GS™'D).
Here we have used the relation A = 5 — FG from (1.6). After we he have computed z¢ the
residual r lies in the subspace spanned by the columns of F'. Since F' has low rank we are
able to compute the desired solution z of Az = b by solving a system of small size. But
the system of small size is S. since we have (AS™')F = F' S.. If F has full rank, then S. is
precisely the restriction of AS™! to the invariant subspace of AS™! formed by the columns
of F'. This indicates the close relation between S, and AS™!.

We will discuss general properties of S. and more special properties for some classes of
matrices, namely symmetric matrices, symmetric positive definite matrices, M-matrices.
Note that for substructuring methods in the numerical treatment of partial differential
equations most work is spent on the solution of the Schur—complement. A well-known
advantage of the Schur—complement is that it inherits several structures from the initial
system like symmetry, positive definiteness, diagonal dominance or the M—matrix property.
However, for the coupling system S, of an algebraic domain decomposition we will show
in this chapter, that we have to construct the splitting and the factorization W = FX '
carefully to obtain analogous results. For this we have to examine the properties of the
coupling system and its relation to the splitting A =5 — W.

2.1 General Properties

Lemma 2.1 Let A, B € M(n x r,C). Assume that n > r.

11



(i) There exist nonsingular matrices Y1,Yz € GL (n,C) such that

-1 * _ J O * -1 J O
1/1 AB 1/1 - ( O Nl 9 1/2B A1/2 - O N2 9

are both in Jordan canonical form and Ny and Ny are nilpotent. If s,t are the smallest
numbers such that N¥ = O, N} = O, then |s —t] < 1.

(i) If A has full rank, then there exists a nonsingular matriz Y € GL (n,C) such that

1 oy [ BTA %
Y (AB)Y—< 0 O)’

where the first v columns of Y are those of A.

Proof:

For the first assertion we make a full rank decomposition of A:
A= FG",

where F' € M(n x [,F), G € M(r x [,F), [ = rank A. If A has already full rank, then we
choose F'= A, G = I. We can always find H € M (n x (n —{),F) in such a way that

Y, = (F,H)

is nonsingular. Then we partition

From this it follows, that

Y/l—lAB*Y/l _

(G"B*F,G*B"H)
G*B*F G*B*H
(2.2) = o o )

*

Analogously we find a nonsingular Y; = <K*> such that

~ ~ G*B*F O
* -1 _
23 vy = ({000
We can transform G*B*[I" to Jordan canonical form:
* % _ J O -1
(2.4) GBF—Z<0N>Z,

12



where N is the nilpotent part. We set

J 10 e s 71 O
i=Y Z_Z<O O>Z G v - K*B*F7 J_IO>Z‘1 AL
O 1 N O O
and obtain
J|1O O J1O O
(2.5) YI_IAB*Yl = O N « , YQB*AYQ_1 = O N O
O/0 O Ol x O

From (2.5) we see, that AB* and B*A have the same Jordan blocks with respect to the
nonzero eigenvalues. If o is the smallest integer such that N7 = O then

N O\ N o« \7H
(T0) =o(00) =0

which implies assertion (i).
Assertion (ii) follows from (2.2) in the case, when A has full rank. O

As a direct consequence of this lemma we get

Corollary 2.6 Let A, S € GL(n,F), A=S— FG, where F,GT € M (n x r,F), r <n.
Set S.:=1—GS™'F.

(i) There exist Y1,Y, € GL (n,C) such that

-1 a-1 ~(J O _1 _(J O
1/1 S Ai/l = ( O Jl y 1/2 501/2 — O J2 9

are both in Jordan canonical form and Jy and Jy have only ones on the main diagonal.
If s,t are the smallest numbers such that (J;—1)°* = O, (J2—1)" = O, then |s—1] < 1.

(it) If F' has full rank, then there exists Y € GL (n,C) such that
S. ok
-1 “\y _ c
s = (50,
where the first v columns of Y are those of F'.

Remark: This corollary shows, that the spectra of AS™ and S. are almost the same.
Moreover they have almost the same Jordan canonical form. If also F' has full rank, then
S. is the restriction of AS™! to the invariant subspace spanned by the columns of F' and
several structures are inherited by S.. E.g. we have a one to one correspondence between
eigenvectors x of S, and eigenvectors F'a of AS™!.

One reason for the use of low rank modifications is their applicability in Krylov—subspace
based methods as cg-like or semi-iterative methods [37]. For these methods the degree
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of the minimum polynomial of a matrix [3],p.47{l gives a theoretical upper bound for the
number of iteration steps (See e.g. [3], pp.517-518). From Corollary 2.6 it follows that the
minimum polynomial of S™'A is essentially given by the minimum polynomial of S.. By
Corollary 2.6 we have an interpretation of our coupling system S. from (1.4). After at least
one step of the iteration with 1 —S71 A, i.e. for a given residual r = b— Az the approximate
solution z is replaced x — S7!r, the new residual is in a suitable small subspace, which
ensures that cg—like and semi—iterative methods in exact arithmetic terminate after at most

rank W + 1 steps, where W = FX!(G.

2.2 Properties of the Coupling System in the Sym-
metric Positive Definite Case

For the class of symmetric, positive definite matrices we will now examine, how this
property can be inherited by the coupling system. Naturally this is closely connected to
the factorization of W = F'G in the splitting A = S — W. Even if A,S are symmetric,
the factorization W = F'G need not to be of the form W = F I, since in general W is
not necessarily positive semidefinite. If for example, S is a block diagonal part of A, then
typically W is indefinite. However we will show that under some full rank assumptions
for F, G the coupling system is still positive definite and self adjoint with respect to a
suitably chosen inner product.

Consider a symmetric (Hermitian) matrix A with respect to the standard inner product
(e,0), and split A as A =5 — W, where S is symmetric (Hermitian). We are interested in
the properties of the coupling system S, obtained as in (1.4).

Lemma 2.7 Let A,S € GL(n,F), A = A", S = 5, A =5~ FG, where F,GT ¢
M(n xrF). S.:=1—GS™F.

(i) If S is positive definite and if F' has full rank, then S. is self-adjoint with respect to
(F*S™'Fe,e).

(it) If A is positive definite and if F' has full rank, then S, is self-adjoint with respect to
(F*A7'Fe.e).

(tii) If both matrices, S and A are positive definite and if F' has full rank, then S. is
positive definite.

Proof:

From Corollary 2.6 we know that S, has essentially the same spectrum as S7'A and AS™!.
If A and S are positive definite, then AS~" is similar to S~/245~'/? and S. must already
have positive eigenvalues. So the third statement is a consequence of (i) and (ii).

We note, that F'S, = AS™'F and S7'G' = GA™LS.
(F*ST'FSw,w) = (F*STPAS™ o, w)
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= (S7'Fv, AST'Fw)
(ST Fv, FSaw)
= (F*S7'Fv, Saw).

So S, is self-adjoint with respect to (F*S~!Fe,e) which implies the first statement. The
proof of assertion 2 is analogous. O

Another way to preserve the positive definiteness consists in modifying the given initial
splitting A =S5 — W to A = S — W such that in addition W is positive semidefinite. In
principle this is always possible since S=A+ W, i.e., we have to add a suitable positive
semidefinite matrix I to A in order to obtain S, which is then symmetric positive definite
likewise. For W one has to perform a symmetric factorization of the form W =FX~1F~
The corresponding coupling system X — F*S71F is obviously symmetric. So the main
question will be, when will the coupling system be also positive definite. We will show this
under more general assumptions, which do not require the positive definiteness of A, 5.

Lemma 2.8 Let A,S € GL(n,F), A= A4*5 =5 A=S5—FX'F*, where F €
M(n xrF), X € GL(T F), . S.i=X — F*S7YF. Then

X = s
S 0 . A O
0 S, an 0 X

have the same inertia.

Proof:
Using the symmetric Schur—complement of the matrix
S F
v=(r %)
we obtain
M= I O S O I S7'F
TSt T O X —F*S7'F O I
and

M= I FX™! S—FX'F* O 1 0]
~\ 0 1 O X X'k 1)

As a direct consequence of Sylvester’s law of inertia [41], p.416, we get that

S 0 1 S_FX-'F* 0
O X — F*S'F an o) X

have the same inertia. O

Corollary 2.9 Let A,S € GL(n,F), A = A*S = 5% A=5—0cFF* where I' €
M(n xr,F), c € R and set S, : =1 — cF*S™'F.
If A and S have the same inertia, then S, is positive definite.
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This corollary simplifies the proof of Theorem 1 in [59].

As direct consequence of Corollary 2.6 and Lemma 2.8 we see that a linear system with
S. is at least as well conditioned as a linear system with S™'A. More precisely, both
systems have (nearly) the same distribution of eigenvalues. This is an important fact for
preconditioned conjugate gradient methods.

Example 2.10 Consider following matriz T and a block diagonal matriz S':

1 -1 1 —1‘

-1 2 -1 -1 2

0
0
T — S = ‘ =W=5-A=

0
0
-1 2 -1 2 -1 1

1
0
-1 2 -1 2 0

0
0
In order to apply Corollary 2.9 we have to modify W such that the modified W becomes
either positive semidefinite or negative semidefinite. One choice could be

00 1—1‘

0 11 1 3
W= 1o | ="~ 3 —1
0 0 1 2

The modified S will be nonsingular since we have added something nonnegative to the
diagonal entries. In principle one could also make W negative semidefinite by inserting —1
instead of 1. But in this case the modified S will become singular.

2.3 Properties of S. in the M—Matrix Case

Similar to the symmetric positive definite case, we will examine for the case of M—matrices
which properties have to be required for the splitting A = 5 — W and the factorization
W = FG in order to preserve the M—matrix property for the coupling system.

Definition 2.11 A € GL(n,R) is said to be inverse nonnegative, if its inverse is
element-wise nonnegative.

A is said to be an M—Matriz, if it is inverse nonnegative and its off-diagonal elements are
nonposilive.

One important equivalent criterion for M—Matrices is given by the following lemma:

Lemma 2.12 Let A € GL(n,R) such that a;; <0 for any ¢ # 3, i,7 =1,...,n. Then
A is an M—Matriz if and only if there exvists ¢ € R™, ¢ > 0 such that Ac > 0.

Proof:
See [8], pp.132ff O
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Analogous to the positive definite case, where we required a positive semidefinite W, here
we will require an element-wise nonnegative W.

Lemma 2.13  Let A, S € GL(n,R) where A is inverse nonnegative, A = 5 — F@,
where F,GT € M(n x r,R). S. := [ — GS™LF. Assume that both matrices F and G are

nonnegative or nonpositive. Then

(i) S. is inverse nonnegative.

(it) If in addition, the off-diagonal entries of S are nonpositive, then A,S and S, are
M—-Matrices.

Proof:
We note that
(2.14) STV =T+GAF,

which can be verified by straightforward computation. From this and the assumptions, (i)
follows immediately.

For (ii) we note that if the off-diagonal of S are nonpositive then this also holds for
the off-diagonal entries of A. Thus A is an M-Matrix. By Lemma 2.12 we obtain that
S = A+ FG is an M—Matrix. Finally it follows that the off-diagonal entries of S. have to
be nonpositive, since S™1 > O. This completes the proof. O

The assumptions of Lemma 2.13 imply that W = FG > O. If we obtain W > O from the
splitting A = S — W, then there exists an obvious way to factorize W, if W is sparse. Let
i1,-..,1, denote the nonzero rows of W, then W can be factorized as W = [e;,, ..., €] W,
where e; denotes the —th unit vector and W denotes the nonzero rows of W.

In general, S. need not be an M—Matrix if F' or G do not satisfy the sign condition of the
lemma.

Example 2.15 Consider the matriz

T -1
-1 T -1
A= N ,
-1 T -1
-1 T
where all blocks of A have size m x m
4 -1
-1 4 -1
T = -
-1 4 -1
-1 4
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This matriz arises from the so—called five point star discretization of Poisson’s differential
equation on a rectangle (see [49]). We split A similar to a block Jacobi like splitting: For
suitable my,...,my_y €{1,...,m—1}:

S
(2.15) S =
Sp
and for g =1,...,p the diagonal blocks of S are:
T -1
- T -1
(2.16) St = ;
- T -1
o
17=2,...,p—1:
T—1] —1
-1 T -1
(2.17) S; = )
- T -1
o
—f
-1 T -1
(2.18) Sp = S
- T -1
-1 T
and W =5 — A equals
0
-1 1
I |-
W =
-1 1
I |-
0

W has many columns and rows, which are zero. Thus W = VWVT for a suitable block
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diagonal matriz W :

I v

v

We can write W as W = —FFT, where

-1
I

We choose ' = VI and GT = —VE. Then S, = [ — GS™'F = I + FTVISTWE. We
will show, that S. has a block orientated sign pattern, i.e., the diagonal blocks of S. are
nonnegative and the off-diagonal blocks are nonpositive. We can derive this by a symbolic
notation, where we set a @ for an nonnegative block and a & for a nonpositive block in F
and V*STYV. We note that S~ is nonnegative, because S is still an M ~Matriz. Therefore
V*S=IV s a block diagonal matriz with nonnegative blocks:

S
G D
G D
G D
G D
G D
G D
S
Obviously F has the following sign pattern:
S)
S
S)
S
S)
S
S)
S
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Thus FTVTS=YWE has the following sign pattern:
© o

© D O
© D O
o D

As S, = I+ FTVTS=YWF, this shows, that S, has the suitable sign pattern for M—Matrices
if and only if all T'’s are of order one. So in general, S. can not be an M—Matriz, but it is
still symmetric positive definite (Corollary 2.9).

Example 2.16 Consider again the model problem:

S
S —
Sp
and for g =1,...,p choose the diagonal blocks of S as follows:
T -1
- T -1
Sl — t. c. 9
-1 T -1
o
17=2,...,p—1:
—f
-1 T -1
S]‘ = . ”
- T -1
o
o
-1 T -1
S, = L
- 7T -1
- T
In this case we have that W = S — A has the form
0
I
I
W =
I
I
0
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As above, W can be factored as W = VIWVT,
I\
I +
7 I\ 1
11 I
! |1
I &

v

We can write W as W = FFT, where

Choosing F' = VE and GT = VE we obtain S, = [ — GS™'F = [ — FTYTS-1y .
Applying Corollary 2.9 and Lemma 2.13 we get that S, is symmetric, positive definite and
an M-Matriz, i.e., S. s a Stieltjes matriz.

Next we use a well-known result for inverse positive matrices and regular splittings (see

[18], pp.118ff).

Definition 2.17 Let A € GL(n,R) be split as A = S — W. Such a splitting is called
weak regular, if S € GL (n,R) is inverse nonnegative and S™'*W is nonnegative.

The splitting is called regular, if S € GL (n,R) is inverse positive and W is nonnegative.
For z€ C, r 20, we denote by D(z,r) :={w € C: |z —w| < r} the open disc with center
z and radius r in the complex plane and by D(z,r) := {w € C: |z — w| < r} its closure.
Denote by A(A) the set of eigenvalues of A and by p(A) the largest eigenvalue of A in
modulus.

Lemma 2.18 Let A € GL(n,R) be inverse nonnegative and consider a weak regular

splitting A = S — W, where W = FG, F,G € M(n x r,R). Set S. =1 — Gs™'F. Then
p(A™W)

L+ p(A=TW)

(ii) A(S.) C D(1,p(I —S~tA)) C D(1,1).

(iii) min)|)\| =1—p(I—S"tA), p(S.)<1+p(I—S1tA).

AEA(S.

(i) p(I — S7'A) = <1
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Proof:

For the first assertion see [18], p.119.

By Corollary 2.6 assertion (ii) is a direct consequences of the first one.

The third assertion follows from assertion (ii) and the well-known Perron—Frobenius
theory [82] for nonnegative matrices. 0

We also note a well-known result, see [49],p.158 for inverse nonnegative matrices and the
relations between the spectral radii of two regular splittings:

Lemma 2.19 Let A € GL(n,R) be inverse nonnegative and consider two regular split-
tings, A =51 — Wy = 5y — Wy, Assume that Wy < Wy (component-wise). Then

p(1 = S7HA) < p(I = 5;71A) < 1.
If in addition A7 is element-wise positive and W, < Ws, then

p(I— STYA) < p(I — S;1A) < 1.

As a consequence of these two Lemmata, we see, that under the assumptions of Lemmata
2.18 and 2.19 with Wy, = F\Gy, W, = F,G, the related coupling systems S, = [ —
G151_1F1, Sy =1 — GQSQ_IFQ have the property, that the eigenvalues of 5. are enclosed
in a smaller disc. This means, the smaller the matrix W in the splitting A = 5 — W, the
smaller the disc is in which the eigenvalues are included.

2.4 Properties of S. in the Symmetric M/—Matrix Case

At last we consider the case of symmetric positive definite M—Matrices, i.e. Stieltjes—
Matrices, and discuss the question whether we are able to preserve the M—Matrix property
and the positive definiteness for the coupling system at same time.

Lemma 2.20 Let A € GL(n,R) be a symmetric M—Matriz. Assume that A is split as
A=S5—W. Then the following are equivalent:

(i) S is a symmetric M—Matriz and W symmetric and nonnegative;
(ii) sy > ay for all i and 0 > s;; = sj; > a;; for all v # 5.
Proof:
(i) = (ii) is trivial.
If the inequalities of (ii) hold, then it follows immediately by element-wise comparison,

that S and W have the correct sign pattern. Applying Lemma 2.12 we obtain that S is an
M-Matrix. O
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In the next theorem we will show that a splitting quite similar to the one in Lemma 2.20 can
be modified by some changes in the diagonal entries to a splitting which gives in addition
a coupling system which is also a symmetric M—Matrix.

Theorem 2.21 Let A € GL(n,R) be a symmetric M—Matriz. Assume that A is split
as A =S — W such that s;; = a;; for all 1 and 0 > s;; = s;; = a;j for all 1 # j. Define
Si= 8+ diag (32, wijy .-y D wej). Then A= S —W where S is a symmetric M-Matriz

and W is nonnegative. In addition W can be factorized as

W= Z (Vi lete) Hywneite )T = [ gle +e), ] [ Joglen+e), -]

where the ey, ..., e, are the unit vectors and the matriz F = [ S (e F €j), ] con-
tains all columns \/w;;(e; + €;) for i < j,w;; > 0 in a suitable order. The coupling system

S, =1—FTS7'F is also a symmetric M—Matrix.

Proof:
It follows directly from Lemma 2.20 that Sis a symmetric M-Matrix and that W is
nonnegative. W can be disassembled as a sum of essential 2 x 2 matrices

R Wis  Wais T
W = Z [62'76]‘] ( w” w” ) [62'76]‘]
. 17 L7

. Wi, Wiy
By construction ( / /

) has rank 1 and a factoriztion
wij wij

() = (1) v

The resulting factorization has all properties to ensure that 5. is both, M-Matrix and
symmetric positive definite. a

Remark:

o [t follows immediately from Theorem 2.21 that the order of S. is equal to the number
of nonzero entries in W above the diagonal, while the rank of F'is less than or equal
to the number of nonzero rows/columns in W. So in general one can not expect that

F' has full rank.

e By Lemma 2.18 we know that the eigenvalues of S™'A and 571 A lie in the interval
(0,2). According to Lemma 2.19 the consequence in the change of the diagonal entries
is that the largest eigenvalue of S=1A is now less than or equal to 1, because W is
positive semidefinite. The smallest eigenvalue of the S=14 is less than or equal to
the smallest eigenvalue of S™'A. This may not be a disadvantage for the use of S
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as preconditioner to A in the cg-method. It has been shown in [4],[5] that if the
spectrum of S~! A satisfies

A(S7YA) C [a,b] U {1},

where 0 < a < b < 1, then the number of iterations of the cg—method needed to
obtain ||z — 2™ y12 < eljz — 2@ 4172 is at most

k= [%\/311&— + 2].

This gives a better bound than the conventional estimate [41], p.525

T2 2
k_[ﬁ\/glng—l—ﬂ_[?/condz(S A= 417,

In other words: Instead of the condition number % the ratio s of the largest eigenvalue
b less than 1 and the smallest eigenvalue a determines the convergence speed of the
cg—method.

Summary

In this chapter we have shown that the coupling system S. can be interpreted as the
restriction of the preconditioned matrix AS™! to a special invariant subspace. Several
algebraic properties can be obtained from this fact. For two special classes of matrices we
have also discussed how the structures of the initial system can be inherited by the coupling
system.

From our list of questions on Page 10 we have partially given an answer to the first and
the second question.

Solving a linear system with the matrix 5. can still be difficult, if the coupling system
is ill-conditioned even if the coupling systems inherits structures of the initial system.
For Schur—-complement methods a better conditioned system is constructed by the use
of suitable preconditioners. Typically the construction of preconditioners requires either
information about the underlying problem or an explicit representation of the given matrix.
For the coupling system from the Divide & Conquer approach an ill-conditioned system
can be viewed as consequence of an unsatisfactory splitting. This means, that instead of
constructing preconditioners for the coupling system we can construct a more suitable
splitting A = S — W in order to improve the properties of the coupling system. The
question is, how we have to modify a given splitting A = 5 — W to obtain a more suitable
splitting A = S — W. This will be the topic of the next chapter.
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Chapter 3

Nested Divide & Conquer

In this chapter we will discuss the nested use of the Sherman—Morrison—-Woodbury formula
(1.4) for divide & conquer methods. The reason for the nested use is, that the coupling
system arising from the splitting A = S — FG by the divide & conquer approach can
be ill-conditioned or for practical purposes the order of the coupling system may still be
too large. The nested use of the Sherman—Morrison-Woodbury formula deals with both
problems.

3.1 Motivation

We will first give a motivation on the nested use of the Sherman—Morrison—Woodbury for-
mula. The idea is to adaptively construct a nested sequence of splittings S = So, S1,..., 5,
where the rank of the remaining matrix is reduced at each step. As motivation we will only
consider one step of this nested construction. Assume that we have a splitting

A:S—FGESO—F()G(),

where A,S, € GL(n,F), Fo,GI € M(n x r,F). Now it may happen that Sy is ill-
conditioned or even worse Sy may be well-conditioned but the corresponding coupling
system S.o = I — GSy ' Fy may be ill-conditioned. On one hand, if we would like to apply
a method of Krylov—subspace type [37] to S. o, this may lead to slow convergence or even no
convergence at all. On the other hand a direct solution of S, ¢ is sensitive to perturbations.
Above all this is advisable only if the size r of S, is small. So it may be useful to replace
Sp by a more suitable approximation, which can still be easily solved on a parallel machine.
A natural choice can be Sy = Sy — FyGlo, where Fo, GT € M (nxs,F), s<r,eg s=1.
Solving a system with Sy is almost as easy as with Sy if we just apply the Sherman—
Morrison-Woodbury formula to S;. Once we have computed the resulting small s x s
coupling system 5}70 =1- GOSO_IFO, we can solve this small system directly.

STt = Sgt 4 Sy FeS e GoSy !
We will illustrate this by an example.
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Example 3.1 Let n = 30 and consider matrices A and S, where

-1 3 =2 An/?) 0
-1 3 =2 0 EE

Using MATLAB [60] we find that the condition number of A is very large, condy(A) ~
3.9-10' (for arbitrary n it will be ~ 2"). The condition number of S will be approxvimately
cond 5(S) & 2-10* which is much better than the condition number of A. But the condition
number of S, is worse, condy(S.) ~ 1.2-107. By Theorem 2.6 the matriz AS™! is closely
connected to S,, cond y( AS™!) ~ 5.7-107 which is of the same magnitude as the condition
number of S.. Consider now the following two choices of rank 1 updates.

F=F(1000),G=(1000)C,

T
- L1 ~ L1
F:F<E X 00>7G=<% X oo)a
We set S =58 —FG,S =S8 —FG. In order to solve one system with S or S we can apply
the Sherman—Morrison formula (1.4). To do this we have to solve systems with F,F as
right hand sides, i.e. . .

B SP, = SF,
By setting S. =1 —GE, S, =1 — GE we obtain

It turns out that solving a system with S, S is only slightly more expensive than solving
a system with S, after E, E have been computed. The interesting question is, whether we
did improve the properties of S~ AS™', S~ AS~! by this rank 1 update or not. One can
verify that

cond 2(5_1) ‘ COHdQ(AS_l) H cond 5(S571) ‘ cond 5(AS™1)
22-100 | 48-100 | 3.1-100 | 9.4-10*

26



We see that the condition number of S is almost the same as that of S, while the condition
number of S is closer to that of A. From this point of view S seems to be a better choice
than S, but anyway we only have to solve a system with S while the remaining part is done
by a rank 1 update. So the increase in the condition number of S is not so critical. From the
practical point of view it is much more interesting how the preconditioned systems AS™
and AS™' behave. Here the condition number of AS™' does not essentially differ from that
of AS™' while the condition number of AS™' has been extremely reduced.

Example 3.1 shows that when replacing the initial matrix So by a low rank modification
S1 = Sp — FoGy only slightly more work is necessary to solve a system with S; than to
solve a system with Sy. In this case we obtain

A — So - F()Go — Sl - FlGl,

where S, = Sy — Fy(iy and Fo, (o have small rank.

The question is, in which way we should choose Fy, (iy. A natural criterion will be, that the
resulting system splitting A = S; — FiGy, where Fi,GT € M (n x (r — s),F) should have
a smaller rank if we replace Sy by Si. By again using the Sherman—Morrison—Woodbury

formula (1.4) for A = S; — Fi(Gy we obtain
A ! S —|—S 1F15 Glsll, Wlth Scl—[ G15 1F1

and the size of S, ; has just been reduced by s compared with the initial coupling system

Sc = Sqo.

Example 3.2 In Example 3.1 our choices of I',G and F,G will have a resulting splitting
A = 51 — F1G1 with matrices F1Gy of rank 3. For F G this is trivial by taking the last
three rows/columns of F,G as Fy, Gy and for F,G use

1/VZ 00 1/VZ 0 0\
_ —1/vV/2 0 0 | -1/v2 00
Fo=1F 0o 10 |"GT o 10|

0 01 0 01

Another criterion for the choice of Fy, Gy should be of course, that at least the properties
of the new coupling system S.; = [ — G157 Fy should be improved, e.g. it should have a
better condition number than the previous one.

Example 3.3 In Example 3.1 the initial coupling system [ — GS™LF will be

1 —9.9951-10"! —5.0024 - 10" 0

¢ |t 1 0 0
“7 1 0 0 1 —9.9951 - 1071

0 —4.8852-10"* —4.9976-10"! 1
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/le Nmentioned earlier, its concgitjon number is cond z(S.0) ~ 1.2 107. For our choice of
F.G we get for Sy = So — FG a small coupling system S.o = 1 — GS™'F = 1. For
A =5, — FiGy a new coupling system S.; = I — G ST Fy of size 3 X 3 is obtained,

4.8852 -107*  —5.0024 - 10~* 0
Seq = 0 1 —9.9951 - 1071
—4.8852-107* —4.9976 - 10! 1

One can easily verify that its condition number is 6.5647 - 10% while for the other choice
F,G the condition number of the corresponding S.; will be 8.1870 - 10°.

It is clear that we can successively repeat the strategy of replacing Sy by S; leading to a
nested sequence of splittings So, S1,...,5,, and therefore we obtain a nested sequence of
coupling systems S.o, Se1s- -, Sem-

We will now discuss the following topics.

e A formal description of the nested divide & conquer process as motivated above.
e The properties of the sequence of coupling systems.

e The choice of low rank modifications.

3.2 General Construction of Nested Splittings

We start with some general comments on the construction of nested splittings.

We will briefly describe the idea behind the construction of a nested sequence of splittings.
Assume that an initial splitting A = Sy — FoGy 1s given. In order to construct a low rank
splitting of the form S; = Sy — FyGo and a resulting splitting A = 57 — F1(G; we introduce
a matrix U € M (r x s,F) such that U*U = I, and extend it to an orthogonal matrix U =
[(7, U] Then we set Iy = FOU, Go = (NJSGO. Since UU* = I and FpGo = FoGo + FolU*Gy
we obtain in a natural way £} = FOU, G, = UI*GO and thus 5;.

This strategy can be obviously generalized in the following way. Consider two matrices

U vt e M (r x s,F) such that VU = I, ie., the columns of U and the rows of V are
biorthogonal. In this case both matrices can be extended to matrices U/ = [/, ], V = [“;]
such that VU = I.

Here we will restrict ourselves to the use of orthogonal matrices U. The more general case
has already been discussed in [10].

The general construction can be described as follows. Given an initial splitting A = .5 —
FG = Sy — FyGo we consider numbers sg, 81,..., 8,1 with ZEI s; < r and define
successively ro = r, rga1 = rp—Sg, k =0,...,m—1. We consider a sequences of orthogonal
matrices Uy € GL (ry, F) partitioned as Uy = [(N]k, Uk], where U, has size rj, x s; and U}, has
size rg X rr41. Using this sequence of matrices we will define a nested sequence of splittings.

(34) SO = S, FO = 177 GO = G
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[Fk, Fkﬂ} - {Fkﬁk, Fkﬁk}:FkUk

3.5 k=0,....m—1: Gy o @:Gk _qr=
o 6] - [ ]

Sk+1 = Sk — Fkék
By the definition of the nested sequence of splittings we are now in the situation that

(36) Sk+1:Sk—ﬁkék,k:0,...,m—1, A:Sk—Fka,k:O,...,m.

The sequence of nested splittings as it has been defined so far involves two sequences of
coupling systems. One sequence of small coupling systems S, ; from the relation Sy1; =
Sk — I,Gy and another sequence of resulting coupling systems S, ; from the relation A =

S — F.Gy. They will be defined by

Sep = I —GpST Fe k=0,...,m—1,
(3.7)
qu = ]—GkSk_le,k:O,...,m.

Using twice the Sherman—Morrison—Woodbury formula (1.4) we obtain

Sity = S+ ST ESIGRST k=0, om —1
(3.8)

=
I

St ST RS GRS, k=0,...,m

The successive use of nested splittings generates in every step a remaining coupling system
Se k- Even if the reduced coupling system S, ; is not better conditioned than S, ;_;, at least
the size has been reduced by s.

So in any step of the successively defined splittings we have the following coupling systems.

k H splitting ‘ small coupling systems ‘ remaining coupling system
0 |A=5—-FG Se

1 A = Sl - FlGl Scp Sc,l

2 A= 52 - FZGQ Sc,Oa Sc,l SC,Q

m || A= S, — FuGo | Seore vy Seni s

Before we will give an algorithmic description of the generation and the way of applying the
nested sequence splittings, we will briefly comment on the equivalent approach using left
inverses in Section 1.3. In (1.7) we have assumed that rank /' = r and that H € M (nxr,F)
is chosen such that H[' = I. This assumption has lead to an equivalent way to write A~!
as it is shown in (1.9).

A7l = 971 4 S_IFTc_lH([ — AS_I), where T. = HAS™'F.
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We easily get left inverse matrices ]:]k, Hj. 1 analogously to the construction of ék, Grat-

3.9 Hy=H, = | = =UiHy, k=0,....,m—1.
(3.9 ’ {Hkﬂ} {U;Hk K .

Analogously to (3.4)—(3.8) we can successively use the low rank modification formula (1.9).
Since the nested generation for the left inverse approach is quite analogous to the first
description in (3.4)-(3.8) we need not go into detail to describe the analogous procedure
for the left inverse approach. This has been done in [10].

3.3 Algorithmic Description of Nested Divide & Con-
quer Methods

In this section we will give an abstract algorithm for the generation of nested splittings.
From the definition of the nested sequence in (3.4)—(3.8) it seems as if the application of
A7l = Sk_l + Sk_leS;,inSk_I with S.p = I — GkSk_le involves a exponential call of
Sty Sk—1,Sk—2, ... when used for larger numbers k, since S; ' appears four times in the
Sherman—Morrison formula. One can avoid this, if in any step of the generation of nested
splittings a matrix £ = Sk_lﬁk is once computed and used in further steps. Using this Fj
we immediately obtain

(3.10) Sep =1 — GyEy,

and

(3.11) Sity = (I + EpS7EGR)ST = (14 ERSTLG) -+ (T4 EoSiyGo)S™"

From this we can derive an algorithm for solving systems with Sj.

Algorithm 3.12 (Solving systems with nested D & C operators)

Let A € GL(n,F) be split as A= S — FG, where F,GT € M(n x r,F). Using
the notation of (3.4)-(3.11), we assume that all So,..., Sy are nonsingular.
Suppose in addition that Eqy, ..., Fr_1 are already computed and that for any
[=0,....,k—1 an LU decomposition SNYCJ = L. Uy has been computed. Then
a system Spx = b can be solved in the following way:

Solve Sz = b
for [=0,1,...,k—1
p = Gl
Solve L. U.;6 = p directly
v =k
rTi=r+

For Algorithm 3.12 we have required that FEy, ..., Fx_1 have already been computed and
that an LU decomposition has been computed for S, ;. To construct the nested sequence of
splittings itself and to provide these assumptions we have to formulate another algorithm.
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Before we do this we will briefly comment on one technical detail. Note that by (3.5), Iz
and G, can be directly obtained from F, ' without using Fy_q, Gy_1:

(3.13) F, = Iry;, Gy = Y, G, where Y} = UO(- - Uk_Q(Uk_lﬁk) ).
Analogously Fj, (). satisfy
(3.14) Fy=FUy-- Uy, G = Us - UG,

Thus in order to compute I}, Gj, we need not explicitly compute Fj_;, Gy_1 but only Y;
and then apply it to F,G. This is important, since for small sg, Fj_; and Gr_; will have
almost r columns/rows and consequently their computation may be expensive, while Y}
only has s; columns and the application to F, G will probably be cheap, since F,G are
sparse.

Algorithm 3.15 (Generation of nested D & C operators)
Let A € GL(n,F) be split as A = S — FG, where F,GT € M(n x r,F). Using
the notation of (3.4)—(3.11), we assume that all Sy, ..., Sk are nonsingular.

So =S, ro=r.
for k=0,...,m—1
Consider sy < r, and U, € M (r X sg, F) such that (N],j(}k =1 and
expand ﬁk to an orthogonal matriz Uy, = {(N]k, (A]k}
Tk_|_1 2:A Tk—SAk. ) N
Vi i= Uo(- - Upa(Uhma U) )
.= FY,
Solve SpEy = Iy applying Algorithm 3.12.
qu =1 — ékEk
Factorize qu = L.xU.r (LU decomposition)

Algorithm 3.15 itself calls Algorithm 3.12. But at this stage Eo, ..., Fjx_1 are already been
computed. Also an LU decomposition has been performed for S.o,..., 5 k—1.

The interaction between Algorithm 3.15 and Algorithm 3.12 is shown in the following table.

provided by Alg. 3.15

k || to compute by Alg. 3.15 for Alg, 3.12 call of Alg. 3.12
Eo

' Seo = LeoUeo o no
B, i

! Ser = LeaUes LeoUeg yes, with k=1
B Forrr B

" Sc,m = LemUem LeoUcoy. ooy Ley—1Ucm-1 yes, with k=m
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Remark: By construction we have

(3.16) A=S5,—F.Gp.

This leads to a remaining coupling system

(3.17) Sem 1= I —GuS ' F, =Us_ - U1 =G YUy Uy

As long as we use a Krylov—subspace based method [41], pp.475ff, [37] for solving a system
with S, ,,, we only have to multiply vectors with F'Uy---U,_y1, Ul _, --- UG, Therefore
we do not have to assemble the product explicitly. If we would have to form the product,
this would be expensive, since we have assumed that each s; is small compared with r.
So if m is not too large, each U, would be almost an r x r matrix, while in principle a
multiplication with U can be done in O(si) steps because of the special relation to Us.

It might be sensible to compute the product S F explicitly, since this can be easily done
in parallel. If we would solve the coupling system explicitly this would be even necessary.
Beside this fact an explicit computation of G'S~'F might be useful if multiplications with
Sem have to be performed several times to avoid the more expensive solution of systems

with S,,.

The general construction of nested splittings and its algorithmic description involve several
questions.

Conditions have to be formulated in order to guarantee the rigorous assumption that
all Sy are nonsingular. The properties of the sequence of small coupling systems qu and
remaining coupling systems have to be examined. Especially the properties of the remaining
coupling S, ,, are of great interest, since the nested use of splittings has been introduced to
improve the properties of S, ,,. An answer to these problems will given in the next section.
Finally one has to discuss the choice of U. This will be done lateron.

3.4 Algebraic Properties of Coupling Systems Ob-
tained by Nested Divide & Conquer Methods

In this section we will discuss conditions which ensure that the sequence of nested splittings
defined by (3.5),(3.6) will exist. We will see that this is closely related to the choice of Uy
in (3.5). In addition we may ask about the properties of the sequence of small coupling
systems qu from (3.7) and especially the last remaining coupling system

Sem = Voo Vi(I = GSV YU, -+ U,

which is obtained by Algorithms 3.15 and 3.12. This is of great interest, because usually
we would like to solve this system by a Krylov-subspace based method.

The following lemma will give an answer. We will show that the sequence of coupling
systems arising from the nested sequence of splittings can be obtained from a block LU
decomposition of S. after a similarity transformation with the product of Uy---U,,_;
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Lemma 3.18 Let A= S — FG with A,S € GL(n,F) and F,G" € M(n x r,F). Using
the notation of (3.4)-(3.8) we assume that for k =0,1,...,m — 1 the matriz Uy is chosen
such that Sy ts nonsingular. Then So, ..., S, and S.q,...,Sc, are also nonsingular.

In this case define for any Uy = {(N]k,f]k} of size v, x vy, the augmented matriz U of size

rxr by
I._ O
k. r—rg
U* = ( st 0 )
and set Q :== UY---U™ L, The product Q induces a column partitioning with columns of
SIZE S0y .y Sm_1,Tm- Lhen Q*S.Q has a decomposition
Q*S.QQ = LDR,
where R
Seo O
BLO
(3.19) L = : - . :
Bm—l,O Bm—l,m—Q gc,m—l
Bm,O Bm,m—? Bm,m—l [
(3.20) D = diag (5*;5,...,5*;;_1,50%),
ch BO,I BO,m—l BOm
(321) R - B@—Q,m—l Bm—Q,m
Sc,m—l Bm—l,m
O I

For any 0 <1 < k < m, By and By, satisfy

(3.22) By =UlUL, - U'S.,U, By =UlS, U - Uy, Uy
For anyl=10,...,m —1, B, and By, satisfy

(3.23) By =UF - UFS.,Up, By = UL S, U U,y
Proof:

The proof consist of three steps.

As first step we will show the nonsingularity of So, ..., S, Sco,. ..y Sem-
As second step we will show that

gck O g_l O S' k ﬁTS kUk
3.24 ULS oUp = o % ck ek Uk e, ‘
(3.24) hPekTR (Ugsc,kUk I > ( O Sopp ) ( 0 I

And finally as third step we will prove the LD R decomposition of *S.Q) with L, D. R
from (3.19)-(3.23) by induction on m using (3.24).
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Step 1: We will first show the nonsingularity of So, ..., S, Sco,. .., 5 m. For this we note
that if A =5 — FG with a nonsingular matrix 5, then A is nonsingular, if and only if the
coupling system S. = I — GS™!F is nonsingular. We have already pointed this fact out
when introducing the Sherman—Morrison—Woodbury formula in (1.4).

For m = 0 there is nothing to show, since Sy = S, A are assumed to be nonsingular, so
Seo = S 1s nonsingular.

If So,...,5m=1, Seo,---55m—1 are nonsingular for some m > 0 and (N]m_l 1s chosen such
that Sc,m—1 is nonsingular, then S, must be nonsingular, too. This follows from the fact
that Sc,m—1 is the coupling system with respect to the splitting S, = S,-1 — F,, G, and
from the nonsingularity of 5,,_1, §c7m_1.

But if 5, is nonsingular, then S, ,, will also be nonsingular. This follows from the fact that
Sem 18 the coupling system with respect to the splitting A = 5,, — F,,G,,, and from the
nonsingularity of A,.5,,.

Step 2: For (3.24) we have to show that
Sc,k+1 = UgquUk — UESc,kngggﬁgSc,kUk
But by (3.6) and (3.8) we have that
Sept1 = I — Gk+15k__|}1Fk-|—1

= UL - GpS7 F)Ux — UL GRS RULS UGSy RO,

= ULSepUs — UL SexUnSLUS iU
Step 3: The proof of the LD R decomposition of *5.Q) will be done by induction on m.
For m = 0 this is just (3.24) with m = k = 0. Now assume that (3.19)—(3.23) hold for some

m. To distinguish between step m and m + 1 we assume that L= L,,, D =D,,, R= R,,,
Q = Q.. We will show that (3.19)—(3.23) are true for m replaced by m + 1.

By (3.24) we have

T _ SCJH O Sfc_gln O gc,m Bm,m—l—l
(3.25)  ULS., U, = ( B ) ( 5 s 5 ; .

From this it follows that

QL 1S:Qumer = (UMT(QLS.Q)U™
= (UL, U™((U™)" Dy U™)Y(U™)T R, U™).

(U™TL,, U™ will be the matrix from (3.19) with [Bo,..., Bmm—2, Bmm_1] replaced

by Bro o B Bonma . Analogous arguments can be applied to
Bm—l—l,O Tt Bm—l—l,m—Q Bm—l—l,m—l
(U™TR,,U™.

To complete the proof we note that (U™)TD,, U™ = diag <§;&, . .,SNYC_’;_I,UTESCMUTH)
and ULS, U, can be replaced by the decomposition (3.25). O
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Remark: It follows from Lemma 3.18 that we get the coupling systems
Se0s -3 Sem—1,9m by performing a block LU-decomposition of U*S.U.

From the practical point of view we can easily obtain the sequence of resulting coupling
systems S.; throughout the process. Given a coupling system S, at some stage of the
nested generation we apply a similarity transformation with Uy to S :

qu — U]:quUk

After this similarity transformation we partition the new matrix with respect to U, =

{Uk, Uk}
Uy < oo Ty T
{U;]Sc”“w’“ U”‘(Tzl T22>'

By Lemma 3.18 it follows that T7; = qu is the small coupling system while the Schur—
complement 15, — T21T1_11T12 = S¢ k41 will be the new coupling system. For S, 4, one can
apply the same strategy again.

We will illustrate this by an example.

Example 3.26 In Example 3.1 the initial coupling system will be

1 | =9.9951 107! —5.0024 - 10 0

¢ | ! 1 0 0
“7 1 0 0 1 —9.9951 - 101

0 | —4.8852-10"* —4.9976- 10! 1

Using the first choice F,G we need not perform a similarity transformation to S. since
F,G is the first column/row for F,G. We can choose U = I and U*S.U = S.. We obtain

as small coupling system S.o =1 and as remaining coupling system

1 0 0 ~1
0 1 —9.9951 - 107 —| 0 |(—9.9951 - 10=" —5.0024-10~" 0)
—4.8852 - 107" —4.9976 - 10~ 1 0
4.8852-107*  —5.0024 - 10~ 0
= 0 1 —9.9951 - 107!| = Se1.
—4.8852-107*  —4.9976 - 10~ 1

By Lemma 3.18 it is not surprising that the remaining coupling system which has been
derived here coincides with that of Example 3.5.

In this section we have shown, that if Uy is chosen such that qu is nonsingular in any
step, then the nested sequence of splittings exists. The corresponding remaining coupling
systems S. ;41 can be obtained from their predecessor by a similarity transformation with
Uy and then taking the Schur—complement.

The question, which has not been discussed so far is the choice of Uj. Of course we have
some hints what conditions should be fulfilled by U,. First it should ensure that qu
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is nonsingular and second it should improve the properties of the new coupling system
Sek+1- Example 3.3 has shown that different choices of Uy, may lead to completely different
conditioned coupling system. In one case, the condition number only has slightly changed,
while in the other case it drastically decreased. This topic will be discussed in the next
section.

3.5 Modifying Schur—-Complements by A Priori Or-
thogonal Transformations

In this section we will discuss the following problem:

Let M € GL (r,F). Which kind of orthogonal matrix U = [U, U] with 7 € M(r x s,F),
UeM (r x (r —s),F) is suitable to improve the properties of the Schur-complement of
the transformed matrix U*MU. l.e., we are interested in improving the properties of

(3.27) B=UMU—-UMUMU) U MU.
This question will be of great interest for the construction of nested splittings.

Independent on the choice of U we have for any U such that U*MU is nonsingular
(3.28) 1B7H 2 < [M 7.

This follows immediately from the fact that B~! is the lower right diagonal block of
(U*MU)™.

A very simple choice for U can be the following one. Denote by Ay, ..., A, the eigenvalues
of M. Assume that U corresponds to an invariant subspace of M with respect to the
eigenvalues Ay, ..., A;. For any orthogonal matrix U = [(7, U] the Schur—complement B
from (3.27) will have the eigenvalues Asy1,...,A.. It is clear that by this choice of Uy the
condition number of B will be less than or equal to the condition number of M.

More interesting will be the following result which uses a linear combination of two orthog-
onal eigenvectors.

Lemma 3.29 Let M € GL(r,F) and suppose that there exist u,v € F" such that Mu =
Mu, Mv = pv and [u,v] [u,v] = 1. We define U by U = cu + /1 — c2v, where ¢ € [0,1] is
chosen such that

AN+ (1 - cz)/,c # 0.
Then U*MU = X\ 4 (1 — ) and for any orthogonal (unitary) U = {U, U} the set of

eigenvalues of B will be the set of eigenvalues of M with A, u replaced by v = Mﬁ

Proof:

We consider an orthogonal (unitary) matrix W, such that the first two columns of W are
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u and v. An equivalence transformation W*MW will produce a matrix of following form.

A0 M13
W*MW == 0 H M23
0 0 Mss
We set s =1 —¢? and G5 = _CS i . We apply a further equivalence transformation

to W*MW using the block diagonal orthogonal matrix ¢ which has Gy as upper left 2 x 2
block and [ in the other block diagonal position. This will lead to the following matrix.

AN+ 5P es(A—p) Mz — sMa;
GWMWG = | es(A—p) s2A+cu sMyz+ cMys
0 0 M3

Since 2\ + s%p is assumed to be different from 0, we can take the Schur-complement with
respect to the upper left 1 x 1 block:

\ .
o Mas )
0 M3
If U is any matrix such that the first column of U is that of W, then the columns
2 to r of U can be obtained from columns 2 to r of WG by multiplication with an

orthogonal (unitary) matrix @ of size (r — 1) x (r — 1) from the right. But this will be
an orthogonal similarity transformation to B which does not change the eigenvalues of B. O

Remark: Note that the construction of U is possible for any normal matrix. Otherwise
one cannot guarantee to find a pair of orthogonal eigenvectors. One has to be careful how
to choose ¢, since the function

e
fun(t) = (-t

has poles, if the convex hull of A and g contains 0.

It is clear that one can generalize Lemma 3.29 if one can find 2k piecewise orthogonal
eigenvectors and combines k times pairs of eigenvectors. For the general case it is not clear
if choosing eigenvectors of the matrix is advisable. At least some success has been made
for the GMRES method in [62] when augmenting the Krylov subspace with eigenvectors
corresponding to eigenvalues with small modulus. Another interesting approach using low
rank modifications has been made in [53]. This might be an interesting approach for future
works.

For the symmetric positive definite case we can derive optimal orthogonal transformations,
which will be discussed next.
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3.5.1 Optimal Conditioning Schur—Complements of Symmetric
Positive Definite Matrices by A Priori Orthogonal Trans-
formations

In the case when M € GL (r,F) is a symmetric (Hermitian) positive definite matrix M €
GL (r,F) we can determine the optimal choice of an orthogonal (unitary) U = [U, U],
U e M(r x s,F), with respect to the condition number, i.e. find U = [U, U] such that

(3.30) cond 3(B) = cond Q(U*MU — UM(?((N]*M(?)_lﬁ*MU) < min.

In other words: We look for an orthogonal (unitary) matrix /' which minimizes the condi-
tion number of the Schur—complement of U* MU with respect to the upper left s x s block.
The following lemma shows, that skillfully combining the eigenvectors of the smallest eigen-
values and largest eigenvalues pairwise will lead to the optimal choice.

Theorem 3.31 Let M € GL(r,F), M = M~ positive definite. Let s be a number
satisfying 0 < s < r/2. Denote by Ay > ... = A, > 0 the set of eigenvalues of M

and by vy,...,v, a corresponding set of orthonormal eigenvectors. We define u; = c;v; +
V1 — vy, where ¢; € [0,1] is chosen such that
)\i)\r—i 1
v = - S [)\7’—57 )\s—l—l]

022)\2 + (1 — C?))\r—i-l—l

foralli =1,...,s. Let U = [U, U] be orthogonal (unitary), such that U = [uy,... uy.
Then the eigenvalues of B be from (3.30) are

(332) 1/1,...71/5,)\5+1,...,)\r_5
and B satisfies in the sense of quadratic forms
(3.33) M—sl < B < Agyq !

This choice is optimal in the following sense: for any orthogonal (unitary) W = (W, W]
with same partitioning as U it follows from

NI KW MW — WMW(W*MW)"W*MW < TT

that v < A—s, Asy1 < T

Proof:

First of all we point out that by applying Lemma 3.29 s times with the pairs
(v1,0,), (V2,0,21)5 o, (Vs, Vrmsp1) We get a Schur—complement B where the eigenvalues
Myeooy Ay Ap_sa1, ..., A of M have been replaced by vy, ..., v, while the remaining eigen-
values are those of M. This shows (3.32). But the choice of ¢1,..., ¢, ensures that the s
new eigenvalues lie between the remaining eigenvalues Ay, ..., A._;. From this it follows
that

)\r—s[ < B < )\s—l—l-
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Finally we will show the optimality. For any orthogonal (unitary) W = {W, W} with the

R . . . N L 1-1
same partitioning as U we have that D™! = {W*MW — WMW(W*MW)_IW*MW}

is the (r — s) x (r — s) diagonal block of (W*MW)~! in the lower right corner. Using the
Rayleigh quotient characterization of eigenvalues [41], p. 411, we have that

1 . M1 x 1 Mz
= min  max , = max min ———.
Ar_s  dim(S)=r-szeS\{0} z*z Ast1 dim(S)=r—szeS\{0} x*T
The space which is spanned by the columns of W is one possible choice for 5, so % > Arl_s’
% < MlT’ from which the assertion of the theorem follows. a
Summary

In this chapter we have shown that a nested use of the Sherman—Morrison—Woodbury
formula can be employed to improve the properties of the remaining coupling system S ,,,.
Note that for substructuring methods the improvement of the Schur—complement is usually
done by construction of preconditioners. Here, for Divide & Conquer methods the successive
modification of the initial splitting gives an additional way to achieve an improved coupling
system. The successive modification can be read as adaptively constructing a sequence of
preconditioners S = Sy, S, ..., 5, where the rank of the remaining matrix is reduced at
the same time. This strategy can be summarized in the following table.

Nested Divide & Conquer
Level‘ Current Splitting ‘ remaining size ‘ Current Coupling System
0 initial splitting . initial coupling system
A= Sy — FoGo ’ Seo
current splitting Schur-complement of the current coup-
4rank sq ling system after transformation
1 A =Sy — FyGy To — So Seo
N3 N3
A=5 -G, Se
current splitting Schur-complement of the current coup-
4rank s;_¢ ling system after transformation
ko |A=Si_1 — Fi_1Gho1 |70 — S0 — Skt Se k-1
N3 N3
A= Sk — Fka Sc,k

We can interpret this strategy as a compromise between a direct solution and an iterative
solution of the coupling system. This problem was part of question 3 from our list of ques-
tions on page 10. It has turned out that the related coupling systems S.q, ..., Scm-1,5cm
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can be viewed as diagonal blocks in a block LU-decomposition of the original coupling
system, after a suitable pre— and post multiplication. In general it is still open what trans-
formation should be used for the pre— and post multiplication.

The interpretation as LU decomposition leads to the question in which way Divide & Con-
quer methods are related to block I'LU-decompositions and algebraic multigrid methods.
This will be discussed in the next chapter.

40



Chapter 4

Relations to Algebraic Multigrid
Methods

In this chapter we will demonstrate the close relationship between the nested use of the
Sherman—Morrison—Woodbury formula (1.4), (1.9), especially their nested use in Chapter
3, and algebraic multigrid methods.

Recall that we have two equivalent low rank modification formulas for writing the inverse
of A= S — FG, where A, S € GL (n,F), G, FT € M(n x r,F). The first one, referred as
Sherman—Morrison—-Woodbury formula (1.3) can be seen as Schur—complement approach
for a suitably extended system. The second one in (1.9), which assumes the existence of
a left inverse matrix H € M (r x n,F) such that HF = [ can be viewed as a two level
iteration for A.

These two different points of view and their application will be discussed in this chapter.

We will start with some general results from algebraic multigrid methods.

Definition 4.1  Consider a linear system Ax =b, A € GL (n,F), x,b € F* and a linear
operator B € M (n x n,F).

Then a linear iteration—scheme is given by the iterates (:z;(k)>keN, where

2©) € F* is an initial guess, =% =2® — B(Az® —b), £ =0,1,2,3,...
The matriz [ — BA is called linear iteration operator.

Some well-known results are given in the following Lemma (see [41], [18]):

Lemma 4.2 Consider a linear system Az =b, A € GL(n,F), «,b € F* and a linear
operator B € M (n x n,F). Then

o o) — gz = (I - BA*2® —2)

o The sequence (x(k)>keN converges to x for any x(®) € F* if and only if p(I — BA) < 1.
p(I — BA) denotes the largest eigenvalue in modulus of [ — BA (see Definition 2.17).
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We will now explain an algebraic multigrid iteration.

Definition 4.3  Consider a non—singular linear operator A : F* — F" and a sequence
of | > 2 nested spaces F* = DF2 O ... D F" £ {0}.

For each k € {1,...,1 — 1} we consider lincar operators Ay, ¥y : " — F" defined as
follows. Ay : F" — T where Ay = A and each Ay s non—singular, k =1,....,[.

We consider further linear restriction operators Ryqyy @ % — F'*+1 and prolongation
operators Py g : Fo1 — T for k=1,...,0 —1.

Then an algebraic multigrid operator M = M is recursively defined by:

I— MkAk = ([ — Pk7k+1Mk+1Rk+17kAk)mk([ — ZkAk)yk, k<l

(44) Ml — [4[—17

where vy, my, are natural numbers, my > 0, v, > 0.
The corresponding iteration

200 = 2O — M (A2® —b), 2 initial guess

is called algebraic multigrid iteration (AMG—iteration).
Yy is called (pre—) smoother.
A is called coarse grid correction.

Remark:

o In [47],[48],]49], all my are identical and chosen as 1 or 2.
For mj, = 1 the iteration scheme is often called V-cycle.
For mj, = 2 the iteration scheme is often called W-cycle.

o Multigrid methods are often used in the numerical treatment of partial differential
equations. There the subspaces "+ k= 1,...,[ correspond to hierarchical grids. For
the matrix A, often a model-dependent linear operator is used.

Restrictions and prolongations are usually chosen with respect to the special grid
hierarchy.

e FEach Aj can be viewed as approximation to A on a suitable subspace, i.e.
Riv1 k Ak Prir1 = Agna

In fact, if Ryy15AkPr i1 = Agqr for any 0 < £ < [ — 1, then the nested iteration
from Definition 4.3 can already be read as a product iteration for Ay itself, which
will be shown in the next lemma. This generalizes a result of [85] for the symmetric
positive definite case and Rz-l—l,k = Py it1, Rz,k+1Rk+1,k =1.

Lemma 4.5 Let k < n,A € GL(n,F),B € GL(kF), PR € M(n x
k,F), M,Ny,...,No€ M(kxkTF). Let [—MB=(I—NB)---(I—NB). If B= RAP,
then

[~ PMRA = (I — PN,RA)--- (I — PN,RA)
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Using the notation of Definition 4.3 we have for 1 < k < [: If Ry 1 Aps—1Pr_1 s = Ag,
then
(46) [ — PeapMiBep1Ar = (I — P pPrrps Mig Ripr p B o1 Ap—1) ™

(I = Pr—y o310 p Ri jm1 A1)

Proof:

We prove the first part by induction on [.

For [ =1 this is obviously true.

Assume that the assertion holds for some { > 1. Then

[—PMRA = [—P[l—(I=NB)---(I—NB)(I— Ny B)]B'RA
= [—P[I—(I—NB)---(I—NB)]B'RA
—P(I = N;B)---(I — N\B)N.;1RA

"8 (I — PNyRA)...(I — PN,RA)
—(I — PNiRA)---(I = PN\RA)PN;;1 RA
= (I—=PNRA)--- (I —PNRA)(I - PN;;1RA)
The second part then follows immediately. a

Successively applied, (4.6) will finally end in a product iteration of the form
[ - MlA - ([ - PlNlRlA) et ([ - PTNTRTA),

where r = vy +my(ve +ma(- - vi—g +my_o(vi—1 +my_1) - - -)) is the total number of iteration
steps. Each P, R; can be written as product of the form P, = Pi3Pys- -+ Py, k11, Bi =
Ry 41 6 Biy gi—1 -+ - Ra1. N 1s either Yy 4q or My, if by =1—1.

This shows that the nested iteration from Definition 4.3 can be lifted to a product iteration
for A if the induced system matrix on the smaller space is chosen to be the Ritz approxima-
tion B = RAP. In other words, for algebraic multilevel methods with Ritz approximation
as coarse grid system any nested iteration can be read as multiplicative iteration for the
initial system using the corresponding products of restriction and prolongation operators.
For the symmetric positive case this was already shown in [85].

4.1 Incomplete block LU Decompositions as Alge-
braic Multigrid Method

We will briefly explain how a block LU decomposition and also an incomplete block LU
decomposition can be read as algebraic multigrid method. Any nonsingular matrix A =

< All A12

€ GL (n,F) with nonsingular A;; can be written as
Ay Ay

1 O A O I A7'A _
(47 4= (AQIA—I I )( 0 S ) (o r 12) - where S = A = An A7 e
11
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It is well-known (see e.g. [20]) that a block LU—-decomposition can read as exact algebraic
2-level method. This can be seen from the fact that

—ATlA _ _ AT O
4 o= (TN s Canar D= (809 )

For a block I LU decomposition one typically replaces Ay € GL (r, F) by some nonsingular
approximations Lqq, Uyy, D11 and Sy by Dgs. This leads to the following matrix

(4.9) I 0 D O I UG'Ap
' An L7l T O Do o I

L D U

and defines in a natural way an algebraic 2-level method by setting
_ —U Arg A O
R:<_A21L111 [>’P:< 1} >7Z:< (31 O /-

A special case is the choice Dy = RAP = Syy+ Fyy, where Fyy = Aqy (L7 — A7 AU —
A7 A, In this case Lemma 4.5 is applicable, i.e. when successively applying an incomplete
block LU decomposition with Dyy = S5 + Fsy the iteration can be lifted to a product
iteration for the initial matrix A.

4.2 Theoretical Results for the Positive Definite Case

Let us consider the case when A is symmetric (Hermitian) and positive definite. We will
cite two results for algebraic multigrid methods. The first one [45], [46] discusses spectral
equivalence properties for incomplete LU-decompositions. The second one [72] discusses
the convergence rate of the 2-level scheme (4.3). These two results can be applied to the
two low rank modification formulas (1.4),(1.9).

The first result [45], [46] will be a result concerning the approximation properties of in-
complete LU-decompositions.

For a pair A, B of two symmetric (Hermitian) positive definite matrices a typical way to
get estimates for condo(B~"2AB~/%) is comparing A and B in the sense of quadratic
forms, i.e., we have to find I,y > 0 such that

vB< A<LTIB.

From this it follows that cond o( B~/2AB~'/?)

N

B
Here we want to approximate A by a block [ LU-decomposition. The question is, how
~,[' > 0 have to be chosen such that

YLD < ALTLDL”
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The condition number plays a key role for Krylov—subspace methods in the positive definite
case. We cite a result from [45], [46] on so—called substructuring methods. Later this result
will be applied to algebraic domain decomposition methods based on the nested use of the
Sherman—Morrison—Woodbury formula.

We can apply (4.7) to a given symmetric (Hermitian) positive definite matrix A €
GL (n,F).

Analogously to the general case we can replace A3y € GL(r,F) by some nonsingular
approximations Ly, Uy = L7, D11 and See by Das. This leads to the following matrix

[ O DH O [ Ll_l*AIZ
(4.10) (AQIL;II I ) ( O D ) ( o 1 )

L D L*

where at least Dyq, Dqy are assumed to be symmetric (Hermitian) positive definite. For the
approximation properties of (4.10) the following result can be shown.

Theorem 4.11 Let A € GL (n,F) be symmetric (Hermitian), positive definite. Consider
the block I LU—decomposition of A from (4.10). Consider v,I' > 0 such that

D11 < At < T'Diy, vDaa < Soa + Eag < I'Dyy,

where Eoy is defined by Eyy = Agi (AT} — L) AN(AL — L) A1z and Soy is taken from
(4.7). Set i = p(S3y Eyq). Then the block I LU factorization ({.10) satisfies

(4.12) 5 (1 . L) LDL* < AT (1 + L) LDL".
14 u 14 u

Furthermore the condition number of (LDL*)™' A can be estimated by

(T < SRy < (V)

mi

where

(4.14) Mﬁ = cos Z(span ((l)) , span <_L1} Al?))

and the angle is taken with respect to the inner product defined by A.

Proof:
See [45]. 0

Remark:
Note that u = p(S; Ea) implies that ﬁ = p((S22 + E22)) ' FE3) = 0. Thus we can

replace ﬁ by /o in Theorem 4.11.

The second result from [72] can be used to get estimates for the convergence rate of the
2-level scheme in the symmetric positive definite case.
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In the following we denote for « € F*, K € GL(n,F), K = K* positive definite, the

K-norm by
2|k = VarKe.

For any n x n matrix A we denote by

A -
Al = sup 1221
2 Tielle

the corresponding matrix norm.
Theorem 4.15 Let A € GL (n,F), A = A* positive definite, H € M (nxr,F), rank H =
r. H will be used as prolongation operator and its adjoint matriz H* as restriction operator.

Let N € M (n xn,F) be a smoother in the sense of Definition {.3. Set Ay = H*AH,T =
I — HAG H*A and choose Ay € GL (r,F) such that

(4.16) 11 — Az Aglla, <n <1
If there exists § > 0 such that
(4.17) I(1 = NAell% < llelly — SIIT(1 = NA)e]l

for any e € F*, then
5 1
(4.18) (I — HAG H*A)(I — NA)||a < max{n, 1-|-—5}

Proof:
See [72]. 0

4.3 Divide & Conquer as AMG

We will now apply the results from algebraic multigrid theory to the nested Divide &
Conquer methods from Chapter 3. For this we will recall the properties of nested splittings
obtained by nested Divide & Conquer algorithms. We consider a splitting

(419) A:S—FGESO—F()G(),
where A, S € GL(n,F), F,GT € M(n x r,F). Similar to Chapter 3 we assume that
there exists a sequence of orthogonal (unitary) matrices Uy, = {(N]k, Uk} € GL(ry,F), k =
0...,m — 1 such that U, € M (rg x sg, F). Let rpqp1 = rp — s, 0 = 7.
In this case we can write A as a nested splitting in the following way: Define successively
for k=0,....m—1
Fy = FUy-- Uy Uy,
(4.20) Gp = UUr_ - UsG,

Sk+1 - Sk - Fkék
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Then we obtain

A = S,—- F,G,, where
(4.21) F, = FUy---U,_y,
G, = U:_,---UrG.

By successive use of the Sherman—Morrison-Woodbury formula we obtain:

So—l — S—l7
(4.22) Sih = STt ST - GRS R T GRS, B =0, m — 1,
———
S4‘c,k
ATV = S SR (T — GRS ) TGS
—
Sc,m

Now we will show that the Sherman—Morrison-Woodbury formula can be interpreted as
Schur—complement for a suitable extended system, which shows the close relations to Schur—
complement methods:

Theorem 4.23
Let A,S € GL(n,F), F.G* € M(n x r,F) and assume that A = S — FG. Set S. =
I —GSYE. Then

: : S F x b
(4.24) Ax = b, if and only if ( o1 ) (y) = (0)

Using the notation of (4.19)—(4.22) we have

S Iy o P By x b

CN?O I Y1 0

(4.25) Ax = b, if and only if : : =| :
Clonn I Ym 0

G I Unm, 0

The augmented system has a block LU—-decomposition of the form L-D- ]%, where

s_|o
e S| By - By P

4.26)L = : , D = diag (57", D 7]%:< o o Py P >
G

and L, D, R taken from (5.19)-(3.21).
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Proof:
(4.24) follows from

(1 o)(é ];>_1<([)>:(S—FG)‘1:A‘1.

In the same way (4.25) follows from

Sk Py B, 1
Go 1 0]
(I O - 0 0)
G I 0
G, 1 O
— (S - Flél - - Nm—lém—l - Fme)_l
= Al
(4.26) immediately follows from Lemma 3.18. O

As a consequence of Theorem 4.23, we can get + = A~'b by the Schur-complement ap-
proach for the extended system:

(4.27) ¢ = (I, O) ( g ]; >_1 (8) = (I, —87'F) ( S(;l S(;l ) ( —GIS—l >b.

But this is just the Sherman—Morrison—-Woodbury formula for inverting A = S5 — FG.
Similarly we can proceed for a nested application of the Sherman—Morrison—-Woodbury
formula.

The main difference to substructuring methods is, that we extend the initial system with
respect to the given splitting A = .S — W and the factorization W = F'(G, while substruc-
turing methods only work with permutations.

Analogous to Schur—complement methods we can use the nested Divide & Conquer and a
corresponding [ LU—-decomposition to define an approximation to the original system A.

4.3.1 The Positive Definite Case

For the special case of symmetric positive definite matrices we consider an approximate
nested Divide & Conquer scheme similar to (3.4)—(3.8).

We assume that A, S are symmetric positive definite and G = F*. It is clear that G, =
Fr Gy = F}.

Now we consider approximations A, ¥ € GL (n,F) to S, where at least A should also

be positive definite. This case may occur, if S is perturbed or if one uses an incomplete
Cholesky decomposition for S.
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First of all we define recursively a sequence ¥, of approximations to Si, k =0,...,m and

A to qu, k=1,...,m. Y is not necessarily symmetric. Essentially we will replace S '
in (3.8) by X', but in any step we will introduce an additional factor oy, k = 0,...,m—1.
The numbers «aq, ..., a,,_1 are positive numbers. Their choice will be discussed later.

Zal = Zal(ao) = Oéoz_l,

E, = S7°F
(4.28) Sl =Sl (akpn) = eI+ EAEDS, k=0,...,m—1
where Ay = [ —[Ej v+ FYE, — E;SyEy], k=0,....,m—1.

Obviously Ej = Z?Fk, A, can be obtained analogously to Algorithm 3.12,3.15.

The main difference between (4.28) and (3.8) is the definition of A . If Z,:l = Sk_l, then
A = Sek. The reason for this definition will be given in Corollary 4.30.

Following the definition of ¥,k = 0, ..., m we define symmetric positive definite operators
Ay as approximations to S.

k
(4.29) No=A, Al =AY EATE, k=0,...,m— L

(=0

If aj =1, for all [ =0,...,k, then by the definition we have A;' — 3! = A=t — ¥~ In
theory, we have A = 5, — I, I . But if we replace S by A, ¥ we do not have the low rank
property any more. But one can still use A,, as preconditioner for A. For S,, we know,
that AS-'F,, = F,,Sc... So essentially S, ,, will correspond to the preconditioned system
AS-!. Here we have to examine, which influence the use of ¥~! instead of S~ will have
for AAZL To get estimates we can apply Theorem 4.11.

Corollary 4.30  Using the notation of (4.28)—(4.29) let I',~ be constants such that I' >
1>~ and
YA LS LKTA

for some symmetric positive definite matriz A. Set
= p(S T (ST = XSS = B Fr), k=0, m = 1

Then the following estimates hold:

m—1 m—1
HE Hk

4.31 Amin(Sem 11— A, <ALT 1+ A
(431) - Phwinl ),g)< 1+Mk> ,g( 1+Mk>
Furthermore )

)\maX(A_lA) i
4.32 m (Vir+ /1 )
(4.32) Amin( B A) S vam L (v Vi
where

Xt

(4.33) . ikﬂk = Cos Z(span , span k) =0,...,m—1,
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and the angles are taken with respect to the inner product defined by ( ]S;k ];k ) , k=
k

1,....m.

Proof:

The proof consists of two steps. First of all we know, that
(4.34) Amin(Se,m ) Sm < A< Sy

The right inequaltiy follows directly from the definition of 5,,. The left inequality is a
consequence of the fact that A(S..,) U {1} = A(S;;}A).

Second we have to estimate the relations between A,, and S5, in the sense of quadratic

forms. To show this we will apply Theorem 4.11 to ( ng* ];k ) and the block ILU de-
k
composition .
1 O St O I X7 F,
it oo O A O I '
L Dy L

From Theorem 4.11 it follows that

HE * Sk Fk) ( HE > *

1 — LD L7 < ~ <1+ LD L7,

( 1+Mk> S (Fk* 1 L) R
Lk

1 S
T = cos Z(span (O)’ span ( k] k))

and the angle is taken with respect to the inner product defined by ( ?i ];k ) We
k

where

N
compare the upper left blocks of ( ng* ];k ) and (LgDyL;)™" and obtain
k
1 - - 1 . .
(ST + SP BA ST = S5 2 —————=(S7 + S B ALER S,

Y e— k1 &
[ [
I = 1+Zk I+ 1+Zk
This gives us a recursive characterization of Sk_jl and the perturbed system S;' +
Z;IFkA;iFk*Z;*. Successively applied we will find that

m—1
1 . .
St 2 —— = (ST 4+ SPTRALITSE)
k:O <1 —I_ 1+Mk> k:O

and

m—1
1 . N
— = (ST ST RALEST) = 80
k=0 <1 Y, 1+Mk> k=0
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Replacing S™! by A shows that
m—1

v 11 (1 -
k=0

which yields the assertion. a

By Corollary 4.30 we get a criterion for the choice of ayg, ..., a,,_;. We should try to choose
o > 0 such that

fir(on) = minp( ST (SE = S (@) Sk(S = B (@) Fr), k=1, m.
For the simplest case s, = 1 we obtain the scalar problem

Fr(S5t = oS (D) Sk(SE! — oS5 (1) Fe
Sc,k

This minimum will be attained for
Real (F*Z_*(I)F )
Frsy () SS (D) B

O =

It is an open problem how ay should be chosen in practice, when s; > 1. One problem,
which we have in determmmg oy, 1s that we know neither F S le nor Sc  in practice. At
least the function f(«) = p(chF*(S - ady el ))SK(Sy - ozZ (1))Fk) is convex. Thus
there exists a global minimum.

Another possibility to use A,, for a preconditioner is

A= AT S ST eyl

C,m = m 9

where one has to perform an inner iteration for solving a system with 5. ,,. Here it may
be too expensive to compute X F),, explicitly, since the number of columns of F,, is ry,
which is close to r. For the preconditioning properties of A in principle we could apply
Corollary 4.30. But if we solve a system with S, ,, inexactly or using only a few steps of
the cg—iteration, then the bounds for the condition number obtained by Corollary 4.30 are
probably far too pessimistic, since we can expect that A is not worse as preconditioner
than A,,. Note that for substructuring methods one must solve the Schur—-complement
at least approximately, since otherwise the preconditioner would be singular. For Divide
& Conquer methods this is not necessary, since we do not need to solve the artificial
extended system but only the subsystem corresponding to the original problem.

Beside the nested use of the divide & conquer method based on (1.4) we have another
interpretation in the sense of subspace correction methods using the equivalent approach

(1.9). For this we assume in addition that rank F' = r and that H € M (r x n,F) satisfies
HF =1.(1.9) can equivalently be written as

(4.35) O=(I—ST'FTPHAYI — 57 A), where T. = HAS™'F.
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In order to have an interpretation in the sense of Theorem 4.15, we define H =

(F*S7YF)=*F*S~! obtain T. = (F*S™ F)~Y((STLF)TAS™LE) and

(4.36) O=(—ST'F((STF)TAST )L STHFT AT — S71A).

When replacing S™! by a perturbed matrix ¥~! we obtain a 2-level scheme.

The difference between algebraic multigrid methods in [72] and the algebraic domain de-
composition is, that for algebraic domain decomposition the coarse grid corresponds to
an invariant subspace of AS™! while for algebraic multigrid methods the coarse grids are
constructed with respect to the relations between the coefficients of the matrix A.

Summary

In this chapter we have shown the close relations between the nested application of both
versions of the Sherman—Morrison-Woodbury formula and algebraic multigrid methods.
The first version, defined by the nested sequence in (3.4)—(3.8) can be seen as block LU-
decomposition of a suitably extended system. When the exact inverse S™1 is replaced by
an approximate inverse, results for incomplete block LU-decompositions were applicable.
The equivalent approach from (1.9) gives us another interpretation of divide & conquer
methods as subspace correction method for A. When the exact inverse S™1 is replaced by
some approximation, we immediately obtain an algebraic multilevel scheme.

From our list of questions on page 10 we have made a suggestion to answer question 1-3.
The concept so far can be applied to any low rank splitting and does not require a special
splitting A = 5 — W. This can be summarized in the following picture.

(Algebraic Propertie§

1
Low Rank Splitting

!

Coupling System

!

Nested Divide & Conquer

Algebraic Multigrid

To handle the nested divide & conquer method in parallel, i.e., to give an answer to question
4 on page 10, a concrete class of splittings, namely (modified) block diagonal splittings will
be considered and a corresponding parallel model will be derived. Therefore modified block
diagonal splittings will be discussed in the next chapter.
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Chapter 5

Block Jacobi-like Splittings

In this chapter, we will discuss the class of block diagonal splittings. These are the classical
block Jacobi splitting as well as modified block Jacobi splittings chosen with respect to
minimize the rank of the remaining matrix.

The reason for examining this class of splittings is its simple use for parallel computations.
Since we are interested in applying the Sherman—Morrison—-Woodbury formula (1.4) to a
splitting A = S — W with a nonsingular block diagonal matrix S, we have to discuss in
addition factorizations of W = FG. F, (' should be low rank matrices in order to reduce
the size of the coupling system S. = [ — GS™'F from (1.4).

Let A € GL (n,F), p some positive number counting the number of blocks. Assume that
A 1s partitioned as

An - Ay
(5.1) A= :

Apl ) App
with square diagonal blocks of size ny, ..., n,.

Since we are interested in parallel computations on distributed memory machines with p
processors, we have to describe which block of A should be related to which processor.
Here we assume that any block A, is located on processor ¢ and on processor r at the
same time. For ¢ # r, A, will be stored twice. For sparse matrices this overhead will be
acceptable, since many A, are zero or only have a few number of entries. This memory
distribution and its consequences will be the topic of Chapter 7. Here we will only keep
in mind this distribution in order to construct special block diagonal splittings. This is of
great importance for the factorization of the remaining part.

5.1 General Construction of Block Jacobi-like Split-
tings

We will start with the classical block Jacobi splitting.
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Definition 5.2  The splitting A = S; — Wy is called block Jacobi splitting, if

All O
(5.3) Sy = .
0] Ay

We are interested in modified block Jacobi splittings A = 5 — W for large sparse matrices.
In addition we would like to have W of low rank and W should should be factorized as
W = F'@. Since we consider block diagonal splittings for reasons of parallel computation,
the factorization W = F'GG should be performed in parallel. This reduces the possibility of
efficiently constructing factors F, G with as small rank as possible.

Let I, be the identity matrix of order n and write [, as
(5.4) L= (FE,....,E,),

where the partitioning corresponds to the block partitioning of A. Then we can write A as

0O —A, \[ET
A= Y EAET - Y [E, E,,]<_Arq a >{EqT}

g=1 1<g<r<p

SJ WJ

= SJ—WJ

Note that many pairs {¢,r},¢ < r only exist formally, if A, and A,, are zero. Therefore
we define the index set

(5.5) J:={{¢,r}: ¢#r, A,y #0or A,, # O}.
We can restrict ourselves to pairs {q,r} € J instead of considering any pair {¢,r}, 1 <
g, < p. Assume that the indices 1 of J are taken in some fixed order 1y, ...,15. Whenever

we consider elements 1 of J as indices for blocks of matrices, we will assume that they are
taken in this order.

If a block A, is stored on processors ¢ and r, then we can find a straightforward factor-
ization if we just construct a factorization of

0 —A,
—A, O )°

We can also modify this 2 x 2 block matrix in the block diagonal positions. Then we obtain
a splitting

p Al A ET
i T S
(56) A = El Eq(Aqq + E AM,)Eq - Z [Eqv Er] ( _[iiq A;j ) |:E5T:|
q:

rii={g,r}€J i={q,r}€3

S W
= S-W
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Definition 5.7  The splitting A =S — W from (5.6) is called modified block Jacobi
splitting.

Note that the block Jacobi splitting from Definition 5.2 is a special case of a modified block
diagonal splitting using Al = 0 for any {¢,r} € 7.

A;q _Aqr’
_Arq A;’r

Al —A Fi . .
q9 oar — q 1 1
(5.8) (_Arq 4 ) (F; ) (Gh Gh)

for suitable matrices F;,(G;)T € M(n, x nt,F), FL(GI)T ¢ M(n, x nl,F) for some
positive number n'.

Assume that i = {¢,r} and that ( ) is factorized as

We define
(5.9) Ne = Z n'.
ied
The ordering iy, .. .,i; of the elements in J and the corresponding sizes ni', ... n't induce a

block partitioning for vectors in F*¢ and matrices in M (n x n.,F), M (n. x n,F). Partition
the identity matrix [, of size n. X n. columnwise as

(5.10) L, = (B", ... E"Y),

where E' denotes n'' unit vectors one after another.

Here we would like to briefly comment on the notation. Whenever a matrix contains an
index of the form 1 which is superposed, then the matrix corresponds to what we will later
define as the coupling system and its related block size. For all indices ¢, r which are used
as sub indices with a matrix, the matrix corresponds to the initial system and the initial
block partitioning. Equation (5.8) is no contradiction to this notation. A matrix with a
lower index and an upper index at same time will be used for both systems, the (small)
coupling system and the (big) initial system.

Assumption (5.8) is no restriction, since we can always obtain such a factorization, if e.g.

F O\ . . . . o Al AL
( Fql ) is set to the identity or if we perform an LU-decomposition of ( [L‘iq Aiq )
r T 4Arg

Example 5.11 Let

All A12 0] All A12
A21 A22 A23 A21 A22
A= A32 A33 A34 S = A33 A34
A43 A44 A45 ’ A43 A44 ’
A54 A55 A56 A55 A56
O A65 A66 A65 A66
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then a simple way to factorize the remaining matrizc W = 5 — A will be

1 —Ajys
I —Asy

Using the (local) factorization (5.8) we obtain a straightforward factorization of W,
W= > (EFi+EF)(GE+GE).
i={q,r}ed

In order to recover the four components Fqi, F G; and G we will introduce four matrices
L, M, L, M. We will distinguish between Fq‘ and I} (G; and G1) by taking the minimum

and the maximum value of {¢,r}. Set

L = Z Emlanl;lnl i) [ Emlanl;lnl o ] i€y

ied
M = Z Ema)ﬂFl;axl(Ei)T = [ o Ema)ﬂFl;axl o ] ey
i€d
(512) IJ = Z E Gmlnl mini — Ginlnl mini
ied :
i€d
M = Z E Gmaxl maXl = G:naxl maXl
ied :
i€d
By construction we have
O —A - —A,
LM =
: _Ap—Lp
O O
Using the matrices L, M, L, M we can factorize W as
(513) W = [ Emlanlinnl —I_ EmaXlFl;axl o ']iej Ginlnl mini —I_ G:naxl maxi
L+M =%}
L+M
= (L+M)(L+ M)
——— N——
F G
= FG,
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where blocks in F, G are taken with respect to the underlying ordering iy, ..., 1, of J. Using
this notation we can rewrite the block Jacobi splitting as

(5.14) A=S;—(LM+ ML)
N’

Wy
and the modified block Jacobi splitting can be rewritten as

(5.15) A= (S;y+LL+MM)—(L+ M)(L+ M)

S w

with block diagonal matrices LL, M M.

The introduction of F,G and L, L, M, M as well defines a block partitioning of the form
S. = (Si’j)ijej for matrices like the coupling system S. = [ — GS™'F. According to our
convention the indices are superposed and the order of the blocks is assumed to be some
ordering 1y,...,1,. In the sequel we will use this notation also for other matrices which
correspond in size and their partitioning to S..

Example 5.16  Let us assume that A is block tridiagonal. In this case we get J =

{{1,2},{2,3}, ..., {p—1,p}} and

Fl{l,z} 0
F2{1,2}
L - F{p_17p} ’ M - [
p—1 —1p}
0 Firte
Gil,Z} 0 G;l,Z}
I/ = ’ 5 M - T
G}{)z:l,p} 0 G}{)p—lm}
FI{I,Q}G?,Z}
LL = ,
Fp{_pILp}GZ{)Zi_le}
O
O
MM - F2{1,2}G§1,2}
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5.2 Block Jacobi-like Splittings With Respect to Spe-
cial Classes of Matrices

In this section we are interested in conditions for the 2 x 2 subproblem (5.8) which ensure
that properties of A are inherited by S from a modified block Jacobi splitting and the
related coupling system S, = I — GS™'F. E.g. if A is symmetric, S and S. should also be
symmetric. We will do this for the class of symmetric matrices and M—matrices. Essentially
we can derive conditions for the 2 x 2 subproblem (5.8) by applying the theory of Chapter
2.

Corollary 5.17 Let A € GL(n,F), A = A*, positive definite. Assume that for any
i={q,r} el —A,, —A, are factored as —A, = Fini,,—A,,q = F;Gf] = (G;)*(Fq‘)*
Define A, AL by AL = BI(FEY, AL = (GE)(Gh).

Then we already have a factorization

()= (o e a.

L,M,L,M from (5.12) and F,G from (5.13) satisfy
L=1"M=M,G=F"

We obtain a modified block Jacobi splitting of the form A =5 — FF*, where S and S. =
I — F*S™'F are symmetric (Hermitian) positive definite.

Proof:

By construction A = S — F'F* is a modified block Jacobi splitting. S is also symmetric
(Hermitian) positive definite, since S = A 4+ F[F*. By Lemma 2.8 we obtain that S. is
positive definite. a

By Corollary 5.17 the choice of Al Al not only reduces the size of the coupling system

q9°
by a factor of two, it also ensures the symmetry and the positive definiteness of S..

Corollary 5.18 If A is an M-Matriz and A;q, Al are diagonal matrices with nonnega-
tive entries for anyi= {q,r} € J, then S is an M -matriz.

Assume in addition that we have a factorization

Al —A > ( Fi > C
qq L q GGl
( _Arq A;’r ; < ! )
for any i = {q,r} € T with nonnegative matrices Fqi, P Gfl, GL, then we obtain a modified

block Jacobi splitting of the form A = S — FG, where S and S, = [ — GS™'F are M-

matrices.
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Proof:
Again we get by construction a modified block Jacobi splitting. Using Lemma 2.13 we
obtain that S, 5. are M—matrices. O

If Ais an M—matrix, then we do not have as much freedom in the choice of Aflq, Al asin
the positive definite case, since we have to care about the sign pattern of S. Nonnegative
diagonal matrices Aflq, Al will in general not allow to reduce the size of S. efficiently.

A:Jq _Aqf’
A, A
this matrix with exclusively nonnegative factors, if we just choose one of the factors to be
the identity.

Since ) i1s a nonnegative matrix we can perform a trivial factorization of

In general it is not necessarily true that F' or GG has full rank, if ( ]]::‘11 ), ( G; Gh ) have

full rank. At least for block tridiagonal matrices this is sufficient.

Lemma 5.19  Assume that A is block tridiagonal.
F{q’q-l—l}
q
F{iiﬁl}

If Gqé%q—l—l} has full rank for all q=1,....,p—1, then has full rank.

i\h\ih

G{qg-l—l}
_I_

If L ]ias full rank or if M has full rank, then F has full rank.
If L has full rank or if M has full rank, then G has full rank.

Proof:

For block tridiagonal matrices L, M, L, M are block diagonal.

We have ' = L + M, where F'is block bidiagonal. The upper diagonal blocks are those
of L, the lower diagonal blocks are those of M. Analogous one can proceed for G. O

Summary

In this chapter we have discussed block Jacobi-like splittings. We have generalized block
Jacobi splittings in such a way that the remaining part can be factorized in a straightfor-
ward way while modifications for the diagonal blocks are still possible. For positive definite
matrices and M-matrices, we have examined which modifications are allowed or necessary
to inherit the structure for the modified block diagonal matrix and the related coupling
system.

Note that in principle the theory of block Jacobi-like splittings can be extended to the
case of overlapping diagonal blocks. This would be rather technical and will be done in a
future paper.

The modifications that have been subject of this chapter have addressed the low rank
property and modifications have been chosen to inherit structures. The topic of the next
chapter will be, how the freedom in constructing low rank splittings can be used to improve
the properties of the coupling system beyond just preserving structures.
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Chapter 6

Modified Block Jacobi Splittings

In general the main problem in using block Jacobi splittings is that the diagonal blocks may
be singular or at least ill-conditioned. Modifications should not only preserve structures like
in the positive definite case. They should also improve the condition number of the diagonal
blocks or at least improve the properties of the coupling system .. Since (AS™') F = F' S.
an improvement of the eigenvalue distribution of S, could also be useful for the properties

of S.

6.1 Motivation for the Choice of Modifications

We will now discuss more general factorizations for modified block Jacobi splittings. Recall
that by (5.8) we have local block 2 x 2 problems

Al —-A Figh  pich Fi : :
9g Jr) = ' Dt R i
(—Arq A, ) (F;G; F;G;> ( ;><Gq G ).

for any i = {¢,r} € J. By introducing a nonsingular matrix X! we can change this block
2 x 2 problem to

(6.1) Ay —Ae N _(BXG 0 FG N

—A,, Al G, FA(XY)T'GL
By modifying this local problem the block diagonal matrix S will also change. In addition,
the modification here does not essentially change the rank, since

FiIXiG Figh Fixi : . :
- T4q g — K -1 i i
(6.2) ( Fig ' Ex G > ( %; )(X) (X'Gh Gl

Example 6.3 Consider as concrete example the matric A from Frample 2.15. A arises
from the discretization of the problem

~Au = fin[0,1]?
u = gon J[0,1]?
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using five point star difference discretization [48]. Set

T -1
~1
T -0
g Si|0 N ~1 T+1I| O
N0 ]S ) O |[T+1 -I
-1 T
i
-1 T

This block matriz S can be read as dividing the discrete problem into two subproblems with
a suitable boundary condition on the interface between both subdomains.

S
52
I 1 X 1
The block 2 x 2 problem here changes from ( I to ; x- ) Analogously the

lower right diagonal block of Sy and the upper left block of Sy changes from T + I to
T+ X, T 4+ X71. These changes only affect those nodes which are located at the internal
boundary between both subproblems.

The example has illustrated that the introduction of X' in (6.1) can be read as the intro-
duction of some kind of algebraic boundary conditions to improve the properties of 5, 5.
with the additional requirement to maintain the low rank.

If one would like to have two factors instead of three factors on the right hand side of (6.2),
then write X' as X' = N'N' and one obtains

Fixich FiGh FiNi o . .
¢ T4 A A IR i ici -1

After this introduction we will now formally describe the problem (6.1) as problem for the
modified block Jacobi splitting. Instead of writing

FG=(L+M)(L+M)
we will use the freedom in this factorization and change IF'G to

(6.5) FG= (LN +MNYWNL+N'M)
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for some nonsingular N, N. (6.5) corresponds to (6.4) when taking all i € J. These new
F, G from (6.5) differ from the choice of F,G in (5.13) of Chapter 5 if N, N are different
from the identity . Thus S from (5.15) will change to S = S+ INNL+MN*N-M.In
order to preserve the block diagonal property of S we have to restrict ourselves to block
diagonal matrices N, N, if p > 2.

To do this we now choose nonsingular matrices N', Nt € GL (n!,F) and let

N = ZEiNi(Ei)T = diag [+ N' ],
ied
(6.6) N = ) ENY(EY = diag [-- N' -],
ied
X = NN.
By construction we have
(6.7) F=LN+MN ' G=NL+N'M,S=LXL+MX'M.
Hence A can be written as
A = S;—LM—-ML
(6.8) = (Sy+LXL+MX'M)—(LX +M)X N XL+ M),
s FG

where S = S(X) is also block diagonal.

Using this formal description for the modified diagonal blocks we are interested in improv-
ing the properties of 5., where

(6.9) S.=I—(NL+N""M)S™ (LN + MN™")

or equivalently

(6.10) ST'=T+(NL+N"'"M)AT (LN + MN™).
By multiplying with N from the left and N from the right, we obtain
(6.11) NSIIN =X+ (XL+M)ATY(LX + M).

Formally it is easier to consider NST'N than to consider NS.N, since S. contains the
expression S(X)~L.

To improve the properties of ST we will investigate the expression

(6.12) R(X) = N(S:'—al)N

for some o € R\ {0}. Ideally we would like to have N(S7! — al)N = O. In this case S
is a multiple of the identity, which would be optimal. An equation of the form

(6I3)RX)=MA'M+(1—-—a)X + X (LAT'M)+ (MAT' L)X + X (LAT'L)X =0
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is called algebraic Riccati-equation. For the study of Riccati-equations we refer to [58], [54].
To get N, N we can derive solutions for X from R(X) and after that we can reconstruct
N, N, e.g., by using the LU-decomposition for X.

So the problem of improving the properties of S7! has been traced back to finding block
diagonal solutions of algebraic Riccati equations.

In order to have a block diagonal matrix S we need a block diagonal matrix X, if p > 2. In
general block diagonal solutions of R(X) = O not necessarily exist. But what we can do
is to derive approximate solutions of R(X) = O and to use these approximate solutions to
obtain a resulting block diagonal matrix X. A special case where we will show that explicit
solutions exist is the case when the block graph of A is block 2—cyclic (see Definition 6.16).
It is an open problem how the theory can be generalized to the non block 2—cyclic case.
Of course we could ignore the property ‘block 2—cyclic’ and choose some approximate X
and hope for the best but this seems not to be senseful.

In what follows we will examine R(X) in more detail.

First in Lemma 6.19 we will simplify R(X) for the case that the block graph of the initial
matrix A is block 2—cyclic. Under some assumptions we will show that R(X) can be
rewritten in the form

(6.14) R(X)=Q+ (X + B)C(X + B).

This will be the topic of Lemma 6.36.

Since the rank of C will be essential for deriving solutions of R(X) = O, we will give
sufficient conditions on the nonsingularity of C.

After rewriting R(X) in the form (6.14) we will show in Theorem 6.46 that the equation
R(X) = O has explicit solutions, if « is suitably chosen.

Since explicit solutions of R(X) = O require the computation of a matrix square root, we
will show how this can be avoided.

For symmetric positive matrices we will derive almost optimal modifications in the sense
of quadratic forms. Moreover we will discuss the sharpness of these bounds.

The results will be summarized in an algorithm.

Example 6.15  To illustrate the steps in deriving X we will consider a model matrix

-1 —1]1 0
0
0 —1/0
-1 0 [2 -1
Y Dt L o —107%1 € M (n x n,R)
0 1
—1 2 -1
o 0
0 —1/0 0

for which the steps will be illustrated. Our most frequently choice will be n = 12 and p = 3.
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In this case a quite easy minimum rank splitting will be

Ay T 0
~1 By+1 I
Ao — By—1 I I O I|-1 |
2 —1  By-1 - ~1 ( | 11 O)'
Bo+1 1 I
1 B 0
-3 -3
Here By = ( 2 _30 _1_01_3 ) and Ay = ( -1 _010 1 :110_3 ) From the split-

ting A = S — F'G we obtain the following coupling system S. =1 — GS™'F of (1.4):

1 9.99-10%]0.501 —5-10"*
& 0 106 0 0.5
71 —05 5-107* | 1.21 —0.357
0 -0.5 0 0.501

Unfortunately this coupling system s very ill-conditioned. Its eigenvalues will be
approximately 1.11 4 0.489:, 10°%, 0.501 and its singular values are approvimately

10%, 1.37, 1.11, 0.481.
Another choice of @ mintimum rank splitting will be A =5 — FG, where

o)
1 0
0 102
0.5 —1.5-10"° 2 —03]-1 0
o) o)
| 0 —1072 G 0 —10*| 0 -10?
- o —-0.25 0.15 | 7 o 1 04 —6-10°
0 103 0 1/0 —103
1 0
0 1
o)

and S = A+ I'G. Here we have

0.575 1.13-107216.9-1072 —4.21-1072

§ 0 0.5 0 —0.1
¢~ 1 -0.138 3.93-1073] 0.483  —2.33.1072
0 1072 0 0.499

with eigenvalues 0.531 £0.0874z, 0.54+0.03162 and singular values 0.6, 0.55, 0.487, 0.453.
The second minimum rank splitting is far away from being obvious. But it drastically im-

proves the resulting coupling system.
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6.2 Simplifications on R(X) for Block 2—Cyclic Matri-
ces

The expression R(X) as well as NST'N contain the term A, which we will not have in
practice. From this point of view a more convenient representation of R(X) is desirable.
We will now show that for the class of block 2—cyclic matrices we can extremely simplify

NSTIN.

Definition 6.16 A matriz of the form

Al,l O Al,s—l—l Tt Al,p

O As,s As,s—l—l Tt As,p

As—l—l,l Tt As—l—l,s As—l—l,s—l—l O
Ap,l T Ap,s O Ap,p

is called block 2—cyclic.

Many sparse matrices fulfil this condition up to a suitable permutation if the corresponding
block graph is bipartite [13],p.4, i.e., up to a suitable relabelling of the blocks. E.g. for block
tridiagonal matrices, block circulant matrices (if p is even) firstly the blocks with the odd
numbers have to be taken and then the even ones. Similarly matrices whose block graph
is a checker board can be reordered.

Lemma 6.17 Let A € GL (n,F) with partitioning from (5.1). Assume that A is block
2-cyclic and that the diagonal blocks of A are invertible. If A = S; — LM — ML is the
standard block Jacobi splitting from (5.14), then LS7'M = O, MS7'L = O.

Proof:
We will only show LS7'M = O, the proof of MS7'L = O is analogous. By definition we

have

]

= | GhiniFhini , M = [ o EmaXiFliiaxi . ']iej'

ied
Since A is assumed to be block 2—cyclic, there exists a fixed number s such that for any
1 € J we always have mini < s < maxi.

Let i,j € J, then the block of LS;'M at position i,j will be
G i B 197 B

mini‘~mini maxj*

Since Sy is block diagonal, this block can only be different from O if mini = maxj. Since
mini < s < max] this case does not occur. O
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Example 6.18  Let us assume that A is block tridiagonal and that p is even (for sim-
plicity). Instead of permuting A we can achieve the same effect by separating odd and even
numbers, i.e., we obtain the following factors L, M, L, M:

t~
|

B B BB, BT B, BT

M = [EQFZ,{“}, [oN S N S i et ORI e o8 Fp{p—l,p}}

GhAgr Gl pr
_ G:{f’A}EST _ :
L= M= :
: GrPrUED
G Gl gl
1, -1,
i G}{)Zil p}Eg—l | i G}{)p p}Eg

We denote the elements of L,L by % and the elements of M, M by 4+ and illustrate
F=L+M,G=L+ M in the following pattern.

*
+ +
*

F: 7G’:

*
+ +
* ok

_I_

By construction we obtain A = S;— LM — ML. We illustrate this in the following picture

* % * *
X ok ok * * %
Xk k B * * %
x %k B * N N x %k
x ok ok * * %
* % * *
A Sy LM ML

In fact we have MS7'L = O,LS;'M = O. The modified block diagonal matriz will be
S =854+ LXL+ MX~'M. By definition, for any odd i we have

Seo= A4+ F{i—lvi}X{i—l,i}G{i—lvi} + F{i7i+1}X{i,i+1}G{i7i+1}
and for any even 1 we have
Sii= A+ Fi{i—lvi}()({i—l,i})—1G2{i—17i} + Fi{i’i+1}(X{i’i+1})‘IG?’M},

(Here we have to set F1{0,1}7 Gio’l}, Fn{n’nﬂ}, G 0).
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The property LS7'M = O0,MS7"'L = O from Lemma 6.17 will be essential in simplifying
NSZ'N, which will be done in Lemma 6.19. Note that Lemma 6.19 will not explicitly
require that S is block diagonal. This will be true for the whole theory in Section 2,4 and

3.

Lemma 6.19 Let A€ GL(n, F). Let A= S;— LM — ML and assume that Sy is invert-
ible. Set C = LA™YL,D = MS;'M,D = LS;'L. Suppose that MS7'L = O, LS7'M = O.
Then I — DD is nonsingular,

(6.20) C=(I-DD)'D.

Moreover, for X = NN, NSTIN from (6.11) can be written as

(6.21) NST'N=(X+D)C(X + D)+ (X + D).

Proof:
We have A = S;—[L, M] {]\fﬂ with nonsingular A and S;. In this case the related coupling

system, here denoted by G\, = [ — {]\fﬂ S7V[L, M], is nonsingular and has the form

I =D

We have two ways to write GG7'. The first one is to use the corresponding Schur—
complements I — DD and [ — DD, which must be nonsingular:

. ( (I=DD)" D(I-DD)"
Ge :<(§—DD)LD ((J—DD)21 )

The second way is using the Sherman—Morrison-Woodbury formula for G.:

I+ MAL C )

M
-1 _ -1 - A
Ge _”[L]A [L’M]_< C [+LA'M

where C = M A=Y M. From this it follows that C'= (I — DD)™*D,C = D(I — DD)~!. This
shows (6.20). Next we want to simplify

NST'N = MAT'M+ X+ XLAT'M+ MAT'LX + XLAT'LX
= C+X+X(LA'M)+ (MATLX + XCX.

In order to obtain (6.21) we have to show that
(6.22) C=D+DCD, LA™ M = CD,MA™'L = DC.

In this case a straightforward calculation yields (6.21).
It remains to show (6.22). Calculating D + DC' D gives

D+DCD=D+D(I—-DD)'DD=D(I-DD)y"*(I-DD+DD)=C,
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which shows the equation for C' in (6.22). Again using the Sherman-Morrison-Woodbury
formula, this time for A=!, we find that

ATt = (S;—[L, M] {Aﬂ )= ST+ ST [L, MG {Aﬂ STt

It follows that

_ ~ _ M
MA™'L = MS;'L+MS7'[L, MG {L] STUL
O
= DG Z
.06 [}
= D(I—-DD)™'D
= DC.
Analogously we can proceed to obtain LA™*M = C'D. This shows (6.22). O

By Lemma 6.19, NS7'N no longer explicitly contains A~!. Essentially one only needs
D, D, which only require the block diagonal matrix S7".

If C~' exists, then it is easier to access than ', since C~' = D™' — D and D,D are almost
block diagonal, i.e., D is block diagonal if the block size is suitably enlarged. D = LS;'L

can be written as

D= ZLEA 'ETL,

where Fi,..., F, are the block columns of the identity matrix from (5.4). It follows that
D can be written as a sum of up to p matrices EEqu_ql EqTL. By the definition of L, L from
(5. 12), we only have to consider those ¢ € {1,...,p} which satisfy ¢ = mini for at least
one 1 € J. For ¢ with this property we have

LEAJE'L=" Y EGAF(E)
i,jedinj={q}

It immediately follows that for ¢ # r, the blocks of LE, A_lETL and LE,AZYETL do not
intersect. Thus D is a matrix having the block entries of LE A ETL as diagonal blocks
of larger size. Analogous properties hold for D. We will 1Hustrate thls in an example.

Example 6.23  For the block tridiagonal matriz from Ezample 6.18 we oblain that the
matrices D, D will be block diagonal with the following block pattern.

*

ol
I
o
I
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If D7V exists,then C~' = D™ — D is block tridiagonal.
Particularly for the model matriz Ao from (6.15) we obtain

1 -2-107 o ~0.4 0201 | -0.2 —0.4
o 4 0 10°] 0 -1
b= 04 —oz201 |* Y™ |02 04 [—0a 0201

0 —10-3 0 1 0 1073

As a nice consequence of Lemma 6.19 we can see, that the nonsingularity of D and C are
strongly connected. This can be seen from the following observation. We have

Dz=0&(I-DD)'Dr=0&Crx=0and yD =0& yD(I - DD)' =0 & yC =0.

This connection can be generalized to the singular case in Corollary 6.24.

Corollary 6.24  Under the assumptions of Lemma 6.19 we have the following relation
between D and C.

Suppose that D = U ( DO

O O

(Vi, Vo) and a nonsingular Dy, of order s x s (this can be achieved, e.g. using the singular

) V= for orthogonal (unitary) matrices U = (Uy,Uy), V =

value decomposition). Set Du D =V*DU. Then C has rank s and
Day Da

(6.25) C =U,(I — Dy D) ' Dy VY

Proof:

From C' = (I — DD it follows that

E (6 o) (5 b2)) ( o)V
| ;

O
)

I — D11D11 —D11 D1y ) ( Dy
1

= Ui ({ - D11D11> Dy V.

O

The close relation between D and C' will give us the opportunity to get the left and right
null space of C' from D. But as we have already shown, D is almost block diagonal. The
nonsingularity of D as well as left and right null space can be computed in parallel, since
only S7! is required.

In the sequel we will restrict ourselves to the case of nonsingular €. The generalization to
the singular case is more technical. Several assertions from the nonsingular case still hold
in the singular case. In the appendix we will discuss an example for the singular case.

In this section we have simplified the expression R(X) from (6.12) for the class of block
2—cyclic matrices which has lead to a more convenient representation of R(X) that does
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not longer contain A~! explicitly. For the representation of NST'N in (6.21) the rank of C'
will be essential. Since we will only consider the nonsingular case here, sufficient conditions
on the nonsingularity of €' will be presented in the next section.

6.3 Sufficient Conditions for the Nonsingularity of C

In Section 2 we have shown that the problem of improving S. can be traced back to finding
solutions of the algebraic Riccati equation (X + D)C(X 4+ D)+ (X + D) —aX = O. Since
the rank of €' will be essential in this equation we will give a sufficient condition for the
nonsingularity of C' = LA™'L. A necessary condition will be that L, L have full rank. In
general this will not be sufficient except for some classes of matrices.

In the sequel we assume that A is block 2-cyclic, i.e., there exists s such that for any
Ay # 0,4, # O we have ¢ < s < r. In other words, for any pair i = {¢q,r} € J we
can assume that ¢ < s < r. The blocks of L, L are obtained from the factorization of
—-A, = Fini,,—A,,q = F;Gf] By construction Fq‘ will become a part of L and G; will
belong to L. In (6.1) we did not discuss how this decomposition should be constructed. A
very simple factorization could be

—Ap =1 (—Agr), —Arg = (—Ay) [
F;{‘Z,T} qu,r} qu,r} Géqﬂ"}
In this case the block columns of L and block rows of L would correspond to the block unit

vectors I/, E,. This factorization is much too rough, since A, Azq typically have many
rows which are zero and we should make use of this property.

Example 6.26  Consider A from Frample 6.18. There we have the following L.
L= B P By By Y B, T B, BT

This matriz has the following patterns.

has full rank. Analogous arquments can be used for L.

For the model matriz A,, from (6.15) with n = 12,p = 3 we have already seen in Erample
6.18 that L, L will have full rank. The situation changes if we choose p = 4 and choose Sy

Obviously it suffices to require that [Fz{f_if’%_l} Fz{f_i;l’%}] has full rank to ensure that L
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as the block diagonal part of A1y with diagonal blocks all of size 3 x 3. We obtain

0 0
1 0| O 0]
01
0] 0] 0]
— 7T
L= 1 0/0 0  L=1
O |0 1|1 0
0 0]0 1
0] 0] 0]

In this case L, L will be singular.

Example 6.26 has illustrated that a full rank requirement on L, L is not unrealistic.

The entries of A, correspond to the rows Ei;ll ny+1,...,3.0 _ ny, of Afrom (5.1), since
any diagonal block A,,, is assumed to be a n,, x n,, matrix. Under these assumptions we
can find numbers [y, ..., € {Ei;ll ne+1,...,5.0 _ ny,} such that A, only has nonzero

entries in those rows corresponding to [y, ...,[, and likewise A,, only has nonzero entries
only in columns corresponding to [y, ..., [s. We will denote this set by A,.. We can formally
define A, by

(6.27) Ay ={le{l,....n}: ¢/ E,A, # O or A,,qEqTelT # 0}, g < s,

where e; denotes the [-th unit vector in R”. A, is the union of nonzero rows of A, and
Azq as part of the initial matrix A.

Using this set A, we can find a factorization of A, for ¢ < s,1={¢,r} such that

(628)  —A, = FiG, F, € M(n, x #A4,.R), ([ E,F}),_, € GL(#A,.R).

€Ay

Here #.A,, denotes the number of elements. Likewise we are able to achieve

(629) _Arq = F;G:p Gq S M(#A!N’ X nqu)v <G;E3€l> S GL (#Aqu)'

€Ay

By construction the factors Fqi, G; are full rank matrices for any ¢ < s and L, L only consist
of Fqi, G; for ¢ < s! The easiest way to find such Fqi, G; is just to take a diagonal matrix
with respect to the elements of A,,.

Example 6.30 Consider the model matric A = A, from (6.15) and n = 12,p = 3. Here
Ay, Agn, Az s, Az g are given by

0 0|0 0 00‘—1 0
0 0[0 0 0 0/ 0 —1
Al,? — A2,3 — 1 0 0 0 Y A2,1 = A3,2 — 0 0 0 0
0 1[0 0 00‘0 0
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The union of nonzero rows of Ay 2,A2Tl will be 3,4 and the union of nonzero rows of
A, 3,A32 will be 7,8 as rows of the whole matrix A. We can factorize Ay 3, Azy as

0 0 10
0 0 1 0]0 0 0 1 0 0|1 0

=Ty (0100)’4‘“_ 00 (0001)'
0 -1 ey 0 0 e
Fi2 Fi2

The roles of Ay 3, Ass have to be interchanged in order satlisfy the condition block 2-cyclic

fO?“ALQ.
00 10
00 ~1 0 ]0 0 0 1 0 0[1 0
=T (0 —100)"A372: 00 (0001)'
0 1 00

iz iz

£ F2%)

(1,2}
The factorization which has been use here ensures that <FO > , <F{(2),3}> have full rank.
3

These matrices will become block columns of L. Likewise <Gi1’2}, O> , <O, G§2’3}> have full

rank and will become block rows of L.

Using this kind of factorization we have a sufficient condition for the nonsingularity of L, L
in terms of A, ,, {¢,r} €7

Lemma 6.31 Let A € GL(n,F) with partitioning from (5.1). Assume that A is block
2-cyclic,i.e., there exists s such that any pair {q,r} € J satisfies ¢ = min{q,r} < s <r =
max{q,r}. Let A= S;— LM — ML be the standard block Jacobi splitting from (5.14) and
assume that for ¢ < s < r, Ay, Ay are factored according to (6.28), (6.29). Suppose that

foranyg=1,...,s,
(6.32) Ay VA =0, for any {q.r} # {q,7'} €7

Then L, L have full rank. Moreover, the matrices

(6.33) (ezTL)ze U Ag (Eel)le U Ag

gqge<r gqge<r

are block diagonal and nonsingular. They coincide with the nonzero rows/columns of L, L.

Proof:
We will only show that L has full rank. The proof for L is analogous. Define for ¢ = 1,..., s,
L, by

Lq = |: o Fq{qJ,} o i| r: {q,r}Ej
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Then L can be written as

L — [ElLl, ceey ESLS] .

L has full rank, if any L, has full rank. But since A,, N A, = 0 for any r # ', L, has

full rank if any Fq{q’r} has full rank. This is true by construction.
The matrices from (6.33) are just the restrictions of L, L to their nonzero rows/columns.
Therefore they have to be nonsingular block diagonal matrices. O

The condition A,, N A, = @ for any r # ' has an interpretation in terms of graph
theory. We assign an undirected graph (V, ) with the matrix A by setting V = {1,...,n},
E={{i,7}: ai; #0,i # j}. For any diagonal block A,, we can analogously define V,, &,.
The set A,, describes those nodes of V, which have a common edge with some node of V,,
g < s < r.In other words A, describes the connection between the subgraphs (V,, ;) and
(V,, &) as part of the whole graph. The requirement A,, N A, = ) for any r # means,
that any node of V,,¢ < s has at most one connection to another subgraph.

Example 6.34  Consider the matriz A, from (6.15) and n = 12,p = 3. The following
picture shows the undirected graph of A, the subgraphs of any diagonal block.

2 4 ) 5 10 12
T T T
1 3 5 7 9 11

In order to satisfy the block 2—cyclic requirement, we assume that the diagonal blocks with
the odd numbers are taken first. Here we have Ay o = {3,4}, Az, = {9,10}. Condition
(6.32) will be satisfied, since for ¢ =1 or ¢ = 3 there only exists one set A,,.

Now we assume that p =4 and the block diagonal part of A will have blocks of size 3 x 3.

2 / 6 8 10 12
s qf\ .
< = > =
S .
1 3 5 7 g 11

We have Ay = {2,3}, As, = {7,8}, As4 = {8,9}. Condition (6.31) is violated, since
Az N Asg = {8} #10.

The assumptions that L, L have full rank are in general only necessary to guarantee the
nonsingularity of C. But for L, L from Lemma 6.31 the situation is better, since these
matrices are essentially block diagonal matrices, i.e., to have a nonsingular C = LA™'L
it suffices to require that the reduced diagonal block of A~! according to [ J A, is
nonsingular.

q<s<r
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Corollary 6.35  Assume that the conditions of Lemma 6.31 are fulfilled. Suppose that
any diagonal block of A is nonsingular, i.c., for any subset I C {1,...,n} the matriz
(aij); ser is nonsingular. Then C' is nonsingular.

Partition C,C™1 as C = (C’i’j)ijej Cc-1 = ((C_l)i’j)idej with respect to (5.10). Then any
diagonal block of C,C~1 with respect to this partitioning will be nonsingular.

Proof:
Note that if any diagonal block of A is nonsingular, this will be true for any diagonal block
of A7 and any Schur-complement of A. We can factorize

A_<A11 A12>_< 1 O)(All O )( 1 A1_11A12>

o A21 A22 o A21A1_11 I O A22 — A21A1_11A12 O I )
The nonsingularity of A together with the nonsingularity of A;; imply that So = Ay —
A21A1_11A12 is nonsingular. The block of A™! in the lower right corner will be 52_21. This
argument can be used as well for any symmetric permutation of A and any principal
submatrix of A.

C = LA7'L and since by Lemma 6.31 L, L are essentially block diagonal, the reduced
matrix

T 4—1
(1A en)ime U Ay
gqge<r

must be nonsingular, too. This matrix differs from ' up to nonsingular block diagonal
factors from the left and from the right side. The partitioning is precisely that of C'. So C'
is nonsingular and the same is true for any diagonal block of C,C~! with respect to the
partitioning C' = (Ci’j)ijej, C~1 = ((C‘l)i’j)ijej. O
The assumption that any diagonal block of A is nonsingular will be fulfilled for a wide class
of matrices, e.g. diagonally dominant matrices[8],p.186, M-matrices[8],p.133. In principle
this assumption can be extended to the case of matrices with an underlying block structure
like block diagonally dominant matrices[35], generalized M—matrices [63],[64]. So for a wide
class of matrices we can derive the nonsingularity of C' from the graph theoretic criterion
Ay N A =0, # 7' given in Lemma 6.31.

In this section we have discussed sufficient conditions on A and its graph to guarantee the
nonsingularity of C' and the diagonal blocks of C,C~!. This shows that the requirement
on the nonsingularity of C' is not too unrealistic. Moreover, for several classes of matrices
we have a graph theoretical criterion that ensures the nonsingularity of €', provided that
the off-diagonal blocks A,,, A,, are suitably factorized.

The criterion presented in this section allows us to investigate more precisely the case
where (' is nonsingular and to find conditions under which the algebraic Riccati—equation
R(X) from (6.12) has explicit solutions.
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6.4 The General Nonsingular Case

Using the general formulation for modified block Jacobi splittings, which has been intro-
duced in Section 1 we will examine the choice of X more detailed. We will only consider the
case when C from (6.20) is nonsingular. In Section 3 we have given a sufficient condition
for the nonsingularity of C.

The following lemma plays a key role for the subsequent theory. It will show that under rel-
atively general assumptions, i.e., MS7'L = LS7'M = O and a nonsingularity requirement
on D from Lemma 6.19 we are able to use quadratic expansion. This extremely simplifies
the treatment of Riccati equations and will be a step towards finding explicit solutions.

Lemma 6.36  Let A € GL (n, F). Let A = S; — LM — ML and assume thal Sy is
nonsingular. Assume that MS7'L = O, LS7'M = O and that D from Lemma 6.19 is
nonsingular. In this case C' from Lemma 6.19 is nonsingular and we can define Ty, Ty by

-1 —1 - 1
6.37)  Tifa) = ———CT'—D :O‘Q p-t_of

(6.38)  Tyla) = (O‘;1>20—1—a1): (O‘;1>2D—1— (O‘;FIYD.

Then we get for X = NN

(6.39) N(S7' — al)N = (X = Ty(a))C(X — Ti(a)) — Ta(a).

Proof:
By Lemma 6.19 we have

N(ST'—al)N

(X + D)CO(X + D) — (o — 1)(X + D) + aD

a—1

2
— (X+D— 0—1)0(X+D—O‘;10—1)—<0‘_1> C' +aD

= (X = Ti(a)C(X = Ti(a)) — Ta(a).

By Lemma 6.36 we are able to obtain
(6.40) Z2C7 =Tya),

if there exists a matrix square root of CTy(«). If a square root exists, then we would
be able to solve this equation exactly as long as we have any freedom in the choice of
X = Z+Ti(a). For the existence of a matrix square root of a matrix B it is sufficient that
all eigenvalues of B are in the open right complex plane. The next lemma will prepare this
step.
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Lemma 6.41  Assume that D from Lemma 6.19 is nonsingular and set W = DD (by
Lemma 6.19, I — W is nonsingular). Then (6.40) is equivalent to

(6.42) 7% = CTy(a),
where 7 = C(X —1T1). If o € R\ {0} satisfies
(6.43) (a+1)* > 4a Rep

Jor any eigenvalue p of (I — W)™t then the eigenvalues of CTy(a) have nonnegative real
parts. If in addition o > 1, then the eigenvalues of C'Ti(er) also have nonnegative real parts.
If a strictly satisfies inequality (6.43), then the eigenvalues of CTi(ar), CTo(e) do not touch
the imaginary axis. In this case there exists B such that

(6.44) B? = CTy(a)

and all eigenvalues X of B satisfy Re A > |[Im A|.

Proof:

Equation (6.42) immediately follows from (6.39).

If 41 is an eigenvalue of (I — W)™, then 1 — i is an eigenvalue of W.

We have CTy(a) = (I — W)_1(<QT_1>2 R (%‘"1)2 W). Thus the eigenvalues of CTy(«) are

a—1\* [a+1)’ 1 (o + 1)
_ 121 =_— =Ty
A(CORCONCHIERTE
for any eigenvalue y of (I —W)~*. This shows (6.43). Analogously we can proceed to show
that the eigenvalues of C'Ti(a) are

a-+1
2 2

which has nonnegative real part, if o > 1 satisfies (6.43).

If in inequality (6.43) the equality is excluded, then no real part of CTi(a) or CTy(«)
will be 0. In this case the eigenvalues of C'Ty(«) are in the open right complex plane and
thus a square root B of C'Ty(«) exists. The eigenvalues of B are the square roots of the
eigenvalues of C'Ty(«a) and the angle can be chosen such that the real parts dominate the
absolute values of the imaginary parts. a

Remark: Condition (6.43) if fulfilled for all sufficiently large o.

Example 6.45 For Ay from (6.15) the eigenvalues of (I — DD)™! are

0.999 +£ 0.03152, 0.781 £ 0.02462.
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For this example the matriz square root of CTy(«) will exist and be real for any o

0.707 0.147 | —=0.122  —0.144
a+ 1) 0 0.998 0 0.998
CTae) ~ ( > I = | I8 107 248107 0.854 241107

0 —9.98-107* 0 0.999

Lemma 6.41 has shown that there exists a matrix square root of CTy(«) if « is suitably
chosen. Therefore we have explicit solutions of the algebraic Riccati—equation from (6.13).
The next theorem will summarize the results.

Theorem 6.46 Let A, S; € GL(n,F), let A= S;— LM — ML. Assume that D from
Lemma 6.19 is nonsingular and MS7'L = O, LS7'M = O. If a salisfies (6.43), then the
Riccati equation N(S:7' — al)N = O from (6.39) has extremal solutions

(6.47) Xi(a)=Ti(a) £ C'B

with B from (6.44) and X = NN.

Proof:

This is just a summary of the previous results. a

In this section we have shown that solutions of the algebraic Riccati—equation exist if «
is suitably chosen and the additional requirement LS7'M = O, MS7'L = O is fulfilled.
In practice the explicit solution will be too expensive to compute since it requires the
computation of a matrix square root of C'Ty(«). In the next section we will show that the
computation of a matrix square root can be avoided.

6.5 Approximate Solution T(«a)

The theory so far is only suitable for the existence of solutions of the Riccati—equation
N(S7t —al)N = (X — Th(a)C(X — Ti(a)) — Ta(a) L 0. For the exact solution of
(C(X — Ti(a))? — CTy(a)=0 one has to compute the square root of C'Ty, which will be
very expensive. So we have have to approximate the theoretical solution. In practice we
cannot solve the Riccati—equation exactly, since X is only allowed to be block diagonal.
In this section we will show that for sufficiently large v, X = Ti(«) from (6.37) is almost a
solution of N (571 — 2LI)N = O, i.e. for this choice of X we will have 571 = 2=L(] + E),
where F is a perturbation matrix of small norm. The advantage of this result is that Ti(«)
is much easier to compute than the exact solution, since it does not require the matrix
square root of CTy(«).

For this we will show that for sufficiently large o, Ti(«), Tzx(a) are close to be a multiple
of C71,
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Lemma 6.48  Using the assumptions and notation of Lemma 6.36 we assume that D is
nonsingular (then by Lemma 6.41, [ — DD is nonsingular). Let 0 < § < 1 be fized. If o > 1
is chosen such that

(6.49) (@ 1) > tall( — DD)/6,
then Ty (), Ty(a) satisfy

a+1 a+1 ? _
(650) Tl(Oé) = 5 C 1([ - El), TQ(O[) = ( 5 ) C 1([ - Ez),
where || Ey[], [ B < 6
Proof: )
By  definition ~we have that Ty(«) = (%) C‘l — aD™! =
(2£1)* 01 (1 — e - DD)—1>. We set By = A2(1 — DD)™. Using (6.19)
we obtain ||Es|| < J. Analogously we can show that T}(« ) = ﬂC Y(I — E,) for a matrix
Ey with norm less than or equal to 9. a

Using Lemma 6.48 we will now show that X = Ti(a) almost solves the equation N(S7' —
2=L[)N. More precisely we will obtain S;*' = 221(] + E) for a small perturbation F.

Theorem 6.51  We use the assumptions and notation of Lemma 6.36. Assume that D
is nonsingular and that o is chosen such that & = aT_l > 1 satisfies (6.49).

[l 7535C0X = 1| <e <1, then we obtain for X = N,N =1

1
(6.52) st=12 5

(I+FE)

and E satisfies
(6.53) 1]l <2

5 2

- e+4é /4—|—3/45‘
l—e¢

Particularly for X = Ti(«), E satisfies

5
54 Bl < ——
(6.50) < -
Proof:
By (6.39) and Lemma 6.48 we have for X = N, N = [
1 oa—1 -1 -1 ApvA
(5. — 5 I) = (CX)"CN(S;" —al)N

(
= (CX)'[(CX = CTi(&))* — CTy(a)]
(

_ 5‘11)2(0)()— [(a2 CX =1+ B)? —I+Ez]
_ (Oé 1—61)2(0)()_1 |:(a 1CX_ [‘|‘E1)2 o [‘|’E2:|



We set %HCX = | + E, and obtain
a—1 a-+1

(S — 5 I = 3 (I+E,)"" [(I+2E,+ E)? — [+ E,)
a+1 _
= [AE, + (I + E.) " (AE.Ey + 4B E, + E} + 2E, + Es)]
_. o 1E.
2
From aT_l > 1 it follows that
1 85e + 8%+ 36 48 + 8%/2 4+ 3/26
HEH<L jo 4 eI H 0 < 2+ e+ 0°/2+3/ _
4 a—1) l1—e¢ l1—¢
Particularly for X = Ti(a) we obtain more precisely
—1 —1 _ —1
(s - on=""(n(a)tcD " = —F.
2 2 2
Here we have 5 e 5
2 a+1
IE] < <

(G+1D(1-6) 46 T 1§

Example 6.55 For the model matriz A, from (6.15) and n = 12,p = 3 it suffices if «
satisfies the inequality
(o +1)*
4o
since the smallest singular value of I — DD will be ~ 6.19 - 10~'. For § we prescribe the
values 1/4,1/8. In this case we obtain o > 27.8,53.7 and

> 1.62/5,

19.2 —2.92|2.88 5.76 37.3 —5.54‘5.47 10.9
0 —134| 0 14.4 0 —26.4] 0 27.3

T (27.8) =~ T ) =~

1(27.8) —2.88 —5.76/39.3 —6.72-10% |’ 1(53.7) 547 —10.9|76.8 —1.32-10%
0 —144| 0 —1.34-10% 0 2731 0 —2.63-10%

FEssentially Ty(53.7) = 2T1(27.8). For ST we obtain in this case
—0.0521 —0.0104 | 0.00379 0.0115

0 —1.6-107° 0 0.08
_1N —
Se(T1(27.8)) 7 ~ 13.4(1 —0.00784  0.00157 | —0.064 0.00260 )
0 —0.0694 0 —0.149

E(T1(27.8))

—0.0268 0.00536 0.00189  0.00570

0 —2.47-107% 0 0.0393
_1N —
Se(T1(53.7)) 7" ~ 26.4(1 —0.00394  0.000787 | —0.0319 0.00126 )-
0 —0.0366 0 —0.0758

B(T1(53.7))
The relative error has essentially been reduced by a factor 2, since || E(T1(27.8))|]2 < 0.181,
|E(T1(53.7))]|2 < 0.0918. This shows that Ty(«) is almost a solution of S7* E aT_ll.
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By Theorem 6.51 the problem of finding X has been reduced to approximating Ti(«)
or aT"HC_l by an appropriate nonsingular block diagonal matrix X. So far it is an open
problem which choice of a block diagonal matrix should be used. By Theorem 6.51 to
minimize the norm H%_HCX — I|| is one theoretical possibility. But in practice we can
access only C~1 explicitly. Even if C' is available a block diagonal solution which minimizes
H%_HCX — [ is known only for a few norms. And also in this case X may be singular.
In principle we could choose X as the block diagonal part of Ti(«) or QTHC_l. But this
requires that the diagonal blocks of Ti(«), aT"HC—l respectively, are nonsingular. But we
do not necessarily have this property. In Section 3 we have at least presented a sufficient

criterion to ensure that the diagonal blocks of €', C'~! are nonsingular.

6.6 Optimal Choice of Modifications in the Symmet-
ric Positive Definite Case

The problem of improving the properties of the coupling system S, has been traced back to
finding approximate solutions of an algebraic Riccati equation. We have shown in Theorem

6.51, that X = T () and aT"HC—l almost solve the algebraic Riccati equation S7'—al = 0.
In practice this approximate solution still has to be replaced by a block diagonal matrix.
Under relatively general conditions it is hard to discuss the quality of an approximate block
diagonal choice X. The situation is different, when we consider symmetric positive definite
matrices. Again we will concentrate on the case where the block graph of A is 2—cyclic. For
this case it has been shown in [30] that the optimal block diagonal preconditioning matrix
will be given by the block diagonal part S; of A itself. Here we examine modified block
diagonal splittings and the related matrix S = LXL* + M X M* need not necessarily give
an optimal preconditioner for the initial matrix A. The reason is that in general S™'A will
have 1 as an eigenvalue, while for the coupling system this is typically not the case.

Example 6.56 As symmetric positive definite model matriz we will take

0732 —-1|-1 0 0
—1 310 -1
-1 014 -1
A, = O e € M(n xn,R)
-1 0
0 -1
-1 4 -1
0 0
0 —-1|-1 4

n =12 and p = 3 will be our most frequent choice, i.e., Sy will be the block diagonal part
of A with blocks of size 4 x 4.

Assume that A is positive definite. The problem of finding optimal modifications has al-
ready been studied in [11] for block tridiagonal matrices. Here we will use a different
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approach.
Corresponding to Lemma 5.17 we assume that A,, is factorized as —A,, = Fq{

qu}quvr}
for all ¢ < r and set

A{w} _A,, F{w} ) )
(6.57) ( _qjqu Aiﬁ’i} ) = ( (qu,r})* < (Florhy gler >

In this case we obtain M = M*, L = L* and it is only natural also to require N := N* in

(6.6). Thus we have
A = S;— LM —ML*
(6.58) — (S 4+ LXL* + MX'M*)— (LN + MN~) (N*L* + N“'M").

S F F*

So S will be symmetric positive definite and the coupling system
(6.59) Se=1—(LN+MN*S™(LN+ MN™™)
is also positive definite in this case.

In the sequel we will assume that D = L*S7'L is nonsingular. In the symmetric positive
definite case we can find simpler conditions which ensure the nonsingularity of D and as
well the nonsingularity of /. Lemma 6.31 can be simplified to the following corollary.

Corollary 6.60 Let A € GL(n,F) with partitioning from (5.1). Let A= S; — LM* —
M L* be the standard block Jacobi splitting from (5.14). Assume that A is block 2—cyclic,i.e.,
there exists s such that any pair{q,r} € J can satisfy ¢ < s < r. Assume that in (6.57) the
factorization at least Fq{q’r} has full rank. Suppose that for allg=1,...,s, A,, N A, .. =10
for any {q,r} # {q,r"} €3, where A, ., A, are taken from (6.27). Then L has full rank

and D,C from Lemma 6.19 are symmetric positive definite.

By Corollary 6.60 we essentially have a purely graph theoretical criterion to guarantee the
positive definiteness of D, (.

In the positive definite case we will try to minimize N(S:7! — al)N* = (X — Ty («a))C(X —
Ti(a) — Ty(a) from (6.39) with Ti(a), To(e) from (6.37),(6.38) in the sense of quadratic

forms, i.e., we will consider the problem

(6.61) I < S < T,
or equivalently
1 1
(6.62) 1 <SP~
r g

for 0 < v < T <1 such that 5 = min. To solve this problem we will follow the arguments
used in [32],[33].

We set
(6.63) R(Z,a) = ZCZ —Ty(a), where Z = X — Ti(a).

So the problem has been reduced to finding symmetric (Hermitian) solutions of algebraic
Riccati inequalities. We state this result as a Lemma.
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Lemma 6.64 Using the notation of Lemma 6.19 and (6.63),we assume that D is nonsin-

gular (in this case C' is nonsingular). Then the problem of finding a symmetric (Hermitian)
positive X = NN* such that

S. < I'l,
is equivalent to finding a symmetric (Hermitian) solution Z of the Riccati inequality

1

(6.65) R(Z. §)

>0, Z=X—T(a)

such that X > O.
The problem of finding a symmetric (Hermitian) positive X = NN* such that

Se =~

is equivalent to finding a symmetric (Hermitian) solution Z of the Riccati inequality

(6.66) R(Z, %) <0, Z=X-Ta).

such that X > O.

The relations between Ti(a) and Ty(«) from (6.37),(6.38) are described in the following

lemma.

Lemma 6.67 Assume that D from Lemma 6.19 is nonsingular. Let D = KK*, W =
K*DK and assume that A, A satisfy sharply

(6.68) A< (1= W) V<AL

Then X > 1 and for a > 1 the following inequalities hold:

(6.69) Ty(a) O <= (a+ 1)2 <dal.
(6.70) Ty(a) > 0 <= (a+ 1)2 > 4aA.
In this case we have | 2
o — o’ —
71 > Ti(a) > 1> 0.
(6.71) 5 C 1(a) ™ C O
Proof:

D is assumed to be nonsingular. By Corollary 6.24 this implies that C' is nonsingular and
positive definite. From this it follows that K*C 'K = K*D™'K — K*DK =1 —-W > O.
Since W > O we have A > 1.

Let 1 be an eigenvalue of (I — W)~!. Then the eigenvalues of K*Ty(a)K are

() () () e
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It immediately follows that
Ty(a) <0 <= (a+1)° <4da), Ty(a) > 0 < (a+1)* > 4aA.

From Ty(a) > O it follows that

_ —1\? 2 _
Tia) > & 10—1—l<0‘ 1) c-1=® 1o

2 o 2 4o

which shows the inequality in the middle of (6.71), while the left and the right inequalities
of (6.71) are clear. O

The positive semidefiniteness of Ti(«) and Ty(«a) can be seen as a special case of Lemma
6.41 where we have shown that for sufficiently large o the eigenvalues of CTi(«) and CTy(«)
are in the right half plane. Here we have in addition C' is positive definite.

By Lemma 6.67 we have to compute solutions of Riccati inequalities, provided they exist.
For R(Z,«a) > O it is clear that we always have solutions, while for R(Z, o) < O we have to
require that Ty(«) > O. The following Lemma determines sets of symmetric (Hermitian)
solutions of both Riccati inequalities.

Lemma 6.72  Using the notation of Lemma 6.67 we assume that C s factorized as
C = PP* and that a, oy, a3 > 1. If (a+1)? > 4a, then the Riccati equation R(Z,a) = O

has two extremal solutions Zi(c),
(6.73) Zy(a) = £ P (P*Ty(a)P)/* P71,

Any symmetric (Hermitian) 7 satisfying

(6.74) Z<Z(a) V Zi(a) < 2.
solves the Riccati inequality

R(Z,a) > O.
The Riccati inequality

R(Z,a) <O

has the set of symmetric (Hermitian) solutions 7 satisfying
(6.75) Z_(a) < 7 < Za(0).
If (a + 1)? < 4aA, then the Riccati inequality

R(Z,a) <O

has no symmetric (Hermitian) solution 7.
If (a+1)* < 4da), then any symmetric (Hermitian) Z is a solution of the Riccati inequality

R(Z,a) > O.
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Proof:

(6.73) is just the special case of symmetric positive definite matrices in Theorem 6.46.
(6.74) and (6.75) follow immediately from (6.73).

The Riccati inequality O < ZCZ < Ty(«) can have solutions only if Ty(«) is positive
semidefinite. By Lemma 6.67 this is only possible if (o + 1)* > 4aA.

For (a4 1)* < 4a the matrix Ty(e) is negative semidefinite, so R(Z,a) > O is always
true. 0

From Lemma 6.72 we can derive solutions X of problem (6.61),(6.62).

Theorem 6.76  Using the notation of Lemma 6.67 we assume that C s factorized as
C = PP* and a,aq, a0 > 1. If (a 4+ 1)* > 4al\, then the Riccati equation

1
S.=—1

(a4

has two extremal symmetric (Hermitian) positive definite solutions X_ (o), X4 (), defined

b
(g.m Xi(a) = Ti(a) £ P (P*Ty(a)P)/? P71,

They satisfy

(6.78) z §+(0z2) } , for any ay > ag, such that (ay + 1)* > dazA,
(6.79) X_(o1) < Xy(ag), for any ay,ay such that (o +1)% > 4a1A, (ay + 1) > 4asA.
Let 1 > T >~ and assume that I' satisfies (1+£)? > 2A. Then any symmetric (Hermitian)
positive definite X satisfying

1 1
(6.80) 0 <X <X(5) V Xi(p) <X

solves the Riccati inequality

S. < T'M.

The Riccati inequality
S(X) =1

has the nonempty set of symmetric (Hermitian) positive definite solutions X, defined by
1 1

(6.81) b exex,d
v v

Any symmetric (Hermitian) positive definite solutions X satisfying

(6.52) X2 <X X(F) VXl € X X0

solves the combined Riccati inequality

I < S(X) < T
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Se is a multiple of the Identity, if v =T is chosen.
If (1+ %)2 < %A, then the Riccati inequality

Se =l

has no symmetric (Hermitian) positive definite solution X .
If (14 £)? < £, then any symmetric (Hermitian) positive definite X satisfies the Riccati
inequality

S. < T'M.

Proof:

From Lemma 6.67 and Lemma 6.72 we already know, that X4 («) are the extremal solutions
of the Riccati equation S.(X) = é[. We still have to show that both solutions are positive
definite and that inequalities (6.78), (6.79) hold. By Lemma 6.67 it is clear, that at least
Xi(a) > 0.

X_(a) > O
— PTy(a)P > (P*Ty(a)P)?
— Ti(a)CTi(a) > Ty(a)
= (SCT-D)C(SC'=D) > Ty(a)
— Ty(a)+ D+ DCD > Tya)
= D+DCD > O.

Next we will show (6.78). Since Xi(a) can be uniformly transformed to diagonal form
by any orthogonal matrix which consists of an eigenvector basis of W, inequalities (6.78)
are essential diagonal problems, i.e., scalar problems. For this purpose consider w € [0, 1),
define 24(a) = (a—1) — (o + Nw £ \/(1 —w)((a—1)? = (a4 1)?w). It suffices to show
that the derivatives satisfy #/ (a) > 0,2" () < 0. It is easy to verify that

, B 1—w
Ti(a) = i\/(oz — 12 —(a+1)%w zx(a).

But we already know that x4 («) is always positive, since X4 («) is positive definite.

Next we show (6.79). If oy < ag, then X_(on) < Xy(a1) < Xi(az). if a5 > ag, then
X_(o1) < X_(02) < Xi(a2).

The remaining assertions follow immediately from Lemma 6.72 and inequalities

(6.78),(6.79). 0

Example 6.83 Consider A1y from (6.56) for p = 3. For the matric W we obtain A\ =~
1.0036, A ~ 4.878 - 10%. By Theorem 6.76 we will always have

S, >yl = ~v<5.12-107*1.

This bound is prescribed by the problem and independent on the choice of X . By Theorem
6.76 this lower bound cannot be improved whatever the choice of X will be. Even the exact
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solution of the Riccati equation must satisfy this bound. Thus this bound is sharp. For the
other inequality we will always have

Se < 0.6811.

This bound can be improved. 0.681 will be an upper bound for any choice of X. By Theorem
6.76 we cannot do worse. For the exact solution this upper bound can be moved to the lower

bound 5.12 - 107, If we choose X = I, then we will have
4.05-107"7 < 5. < 0.6781.

As expected the lower bound must be less than 5.12-107*. Likewise the upper bound has to
be less than 0.681, but unfortunately it is pretty close to it for this choice of X. This yields
a large condition number of 1674. This will be unsatisfactory for the solution of systems

with S..

Theorem 6.76 requires the computation of the square root (P*Tg(oz)P)l/2 from (6.73). Since
this is very expensive one would like to omit this square root. By Theorem 6.51 we already
know that X = Ti(«) almost solves the problem. But Ti(«) still has to be replaced by
a block diagonal matrix. Typically a block diagonal approximation X of Ti(«) will be
described in quadratic forms by an inequality of the form

§X < Ti(a) < AX.

Note that the almost best block diagonal approximation of Ti(«) with respect to the ratio
A/é is the block diagonal part of T1(«) itself (see e.g. [21]).
More sensibly adapted to the situation here is the inequality

(6.84) Ti(aa) < X < Ti(as),

for suitable a;s, aan. The following Corollary shows how this affects the properties of 5.

Corollary 6.85 Using the notation of Theorem 6.76 we assume that as > aa are positive

constants such that (6.84) is fulfilled. Then S. satisfies

2
6.86 S. < I.
(6.86) on it
If in addition 32_: zi_: >1- %, then
2
(6.87) —— I <8,
as + aa

Proof:

First we will show (6.86). X — Tl(aAQ‘H) > 2a=l=1 > . From this it follows that

1 —1\? 1 1

¢ 2 4 2 2
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Next we will show (6.87). We have =22~ > X — Tl(a‘s‘zaA) > @az2s (=1 From this it
follows that

N(§-! as + aa N Qs — OA : 1 as + aa
(S ———NON* £ |———) 7 = Th(———)
2 4 2
< _(ozg—l)iozA—l)C_l_l_ozg—;ozAD
_ (as=Dlea=1) 5 (es+ Dlaa )
4 4
< O

1
"
and typically v < 1. So omitting the square root part of the solution is not critical, Tl(%)

Remark: For the special case a5 = ap = = we obtain vI < 5. < %[, where 0 < v < 1

is almost optimal with respect to these inequalities.

By Corollary 6.85 it is advisable to scale X such that a5 ~ % or a little bit less than 1.
We cannot improve the condition number of S. by this scaling, but we can avoid that the
eigenvalues are too much scaled in the direction of 0.

Example 6.88 Consider Ay from (6.56) for p=3. For X = Ti(«a) we will get

51210747 < S, < 1.02-10731.

The upper bound is less than twice as much as the lower bound. Thus Ti(«) is almost
optimal. If we choose X as the block diagonal part of Ti(«), then we get

5.5-107°71 < S. < 1.94-107°1.

The resulting condition number will be 35.3. This is many times better than for the choice
X =1, where we had a condition number of 1674. If we scale X such that as ~ 1/4, then
we obtain

3.16 - 10747 < 5. < 1.29 - 107%1.
This is slightly worse, but both bounds are approximately 10 times larger.

In this section we have discussed the expression R(X) from (6.12) for the positive definite
case and derived approximate solutions in the sense of quadratic forms. Moreover we have
shown the sharpness of the results and how approximate solutions affect the resulting
coupling system. It remains to summarize the results in an algorithm.

6.7 Algorithm

To apply the theory presented in Section 1-6 we will present an abstract algorithm. The
algorithm essentially consists of computing Ti(«). By Theorem 6.51, Ti(«) is an almost

87



optimal solution for the Riccati—equation (6.39) for nonsingular C' from Lemma 6.19 and
in Section 3 we have given sufficient conditions to achieve the nonsingularity for C'. For
simplicity we restrict ourselves to classes of matrices which fulfil the assumptions of Corol-
lary 6.35.

One way to approximate Ti(a) by X could be to choose X as block diagonal part of Ty («).
To choose the block diagonal part of Ti(«) will most likely not be the best choice in the
unsymmetric case.

Algorithm 6.89 (Compute Approximate Block Diagonal Solution)

For any{q,r} € 3 with ¢ < s < r assume that Ay, A, are factorized with respect
to (6.28) and (6.29).

Perform an LU decomposition of Ay, ..., Ay,.

Define for q=1,....p, I,,G, by

Fy=- Fq{‘”’} -] Gy = Gé‘”}

r:{q,r}€d’
r:{q,r }€J

Using the LU ~decomposition of Ay compute D, D by

D = dlag (GlAl_llFl, ceey GSAS_SIFS), D = dlag (G5+1As_—|}1,s—|—1F5+17 ceey GpA;ple)-
Compute an estimate A for 1/omin(I — DD) and choose o such that
(o + 1)2 > 4.

Define the block diagonal matriz X = diag (X“)iej by XM =T (o)t
Perform an LU decomposition NV - N1 = X1 of X1,

Note that in the symmetric positive definite case we can replace the LU decomposition by
the Cholesky decomposition.

The bottle neck in this algorithm is the computation of A which may become relatively
expensive. There are several ways to compute an estimate, see e.g. [41],p.351{f. The main
problem will be that one would not like to solve systems with I — DD, since this will be
as expensive as the solution with of systems with the coupling systems S.. An additional
problem is, that D and D are distributed over the processors when the method is imple-
mented on a parallel computer. From this point of view the inverse iteration[41],p.383ff is
not suitable. Essentially we can only perform matrix—vector multiplications with D and
D. To get an estimate for o one can use Lanczos” method [67]. The problem in using Lanc-
zos’ method will be that the convergence of the approximate eigenvalues obtained from
the Lanczos method may be slow. In this case the estimate for A can be too small. The
situation could be more improved using implicitly restarted Lanczos methods [81],[19],[56].
It has been observed that for implicitly restarted Lanczos methods the convergence of the
extremal eigenvalues will be typically faster than for the normal Lanczos process.
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In addition we will discuss a heuristic variant of Algorithm 6.89, which will not need a. A
simple observation can help to have an estimate for a. Under the assumptions of Lemma
6.48 we have

a+1
Ti(a) = 5 CHI—-FE), ||Ei| <6< 1.
From this it follows that
2 _ _ a+1l 0o _
-1 -1
177 < Gopa g 10 =227 NPl < =~ =5 121
If in (6.49) « is chosen such that
(a+1)° 51
——=||({-DD )
U - poys
then we also have a lower bound for ||Ty(a)™}|.
_ _ a+1 B _ (a+ 1)(1 =9) B _
|(1=DD)~ | = [CD7 || = 5= T3(a) " (I=E) D7 < 5 [Tu(e) | [ D7 -
+1 ¢ 1
Ty(a)7t > 2 I
= B> =, L= 3|[D]|
For large o and sufficient small § we can assume that %—ZI% < 1 or at least %—‘;1% ~ 1.

Typically [|[D]] > 1 and ||D7!|| > 1. Unless || D|| < 1, any sufficient large a which ensures
that
T3] <1

should be satisfactory. B
If o is large, then by (6.50) we have Ty(a) = “HC~' = 2 (D' — D). To have an

2
approximate block diagonal solution X we suggest to set

X = Bblockdiag(D~! — D),

where 3 is chosen such that || X~!|| < min{1,]||D||}. This choice of X will be compared in
the numerical examples with X from Algorithm 6.89.
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Algorithm 6.90 (Heuristic Block Diagonal Solution)

For any{q,r} € 3 with ¢ < s < r assume that Ay, A, are factorized with respect
to (6.28) and (6.29).

Perform an LU decomposition of Ay, ..., Ay,.

Define for q=1,....p, I,,G, by

Fy=- Fq{‘”’} -] Gy = Gé‘”}

r:{q,r}€d’
r:{q,r }€J

Using the LU ~decomposition of Ay compute D, D by

D = dlag (GlAl_llFl, ceey GSAS_SIFS), D = dlag (G5+1As_—|}1,s—|—1F5+17 ceey GpA;ple)-
Define the block diagonal matriz X = diag (X“)iej by X¥ = (D_l — D)i’i.
Compute an estimate (3 for 1/|| X7 and set X = 3X.

Perform an LU decomposition NV - N# = X1 of X1,

Remark: Common packages for LU decompositions like LINPACK or LAPACK provide
estimates for the norm of the inverse when performing the LU decomposition with an
additional overhead, which only is in the magnitude of solving one system with the factors
from the LU decomposition.

For the positive definite case we can replace the LU decomposition everywhere by the
Cholesky decomposition, since C'~' = D~' — D is positive definite.

To take the block diagonal part of C'~! or the block diagonal part of T}(«) in Algorithm
6.89,6.90 will most likely not be the best choice in the unsymmetric case. Other choices
may be better. In order to improve this choice we will introduce an additional scaling.
Since N - N should approximate Ti(a) (23C~! respectively) we should ensure to have
N='Ti(a)N~! close to the identity. We can try decrease the norm of the off-diagonal part
of this matrix by an additional balancing. In theory, by Theorem 6.51 it suffices to reduce
%HCX — [ in a norm. In practice we can at most reduce QT"HX_IC_l — [ in some norm.
Now any decomposition NN = X can be changed to (NE)(E~'N) without changing
X. What we can do is to construct £ in order to reduce |12 N-ICINTIE — | or
|E-*N~'T\(a)N~*E — I||. To reduce the norm by similarity transformation see [66],[68].
The main idea behind balancing is to successively transform a matrix by equivalence trans-
formation such that locally the row sum and column sum of the absolute values of a given
matrix will be the same. This is done successively starting from the first row/column to

the last row column.

Summary

In this chapter we have discussed modifications for block Jacobi splittings to improve the
properties of the coupling system. It has turned out that under the relatively general condi-
tion MS7'L = 0, LS7'M = O in Lemma 6.36 and an additional nonsingularity condition
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on Sy, we can rewrite the modified coupling system as a linear quadratic expression of the
form (X + D)+ (X + D)C(X + D). This has lead to finding solutions of algebraic Riccati
equations. The condition MS;'L = O,LS;'M = O is fulfilled at least by the class of
block 2—cyclic matrices. The information about the relabelling of the diagonal blocks to
obtain MS;'L = 0, LS;'"M = O can be read as part of a preprocessing step.

For the case that (' is nonsingular it has been shown that solutions of the Riccati equation
exist.

An exact solution requires the computation of a matrix square root. We have derived an
approximate solution for the Riccati equation which is close to the exact solution without
having to use of the matrix square root. These approximate solutions still have to be re-
placed by block diagonal matrices.

For the symmetric positive definite case we have shown sharper results. They show that the
smallest eigenvalue of 5. has a lower bound which cannot be improved even for the exact
solution. The matrix T} («) is almost optimal with respect to the condition number of S..
Moreover to choose X as the block diagonal part of Ti(«) is almost the best approximation
among all block diagonal matrices.

The following problems are still open.

First it is still an open problem how the theory can be extended if the condition MS7'L =
0, LS7'M = O is not fulfilled.

More critical is the question how this theory can be generalized to the case when Sj is
singular. In principle we can express Sy in terms of S = Sy + LXoL + M X;' M for a given
choice of Xy. The initial choice of Xy should ensure that at least S is nonsingular. S is the
Schur—complement of the matrix

Syl -L -M
L|X;" O
M| O X

and the matrices [Sy, —L, —M] as well as [Sg, LT, MT] have full rank, since A is nonsin-

gular and A satisfies

{ 5
A:[Sjv_Lv_M] [j :[[7_L7_M] [j
M M

In [32],[33] it has been shown that under these conditions there exist matrices X =

A X which minimize
Xo1 Xoo
Si|-L -M S /A
H [: X Xy H201" H [j X Xy Hz
M X21 X22 M X21 X22

This shows that computing a well-conditioned S = SJ—I—LXOE—I—MX()_lM is closely related
to the completion problem [32],[33]. In this case the theory has to be adapted. )
Another problem in general is the nonsingularity requirement for ¢ = LA™'L, D =
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LS7'L. For this it is only necessary but not sufficient to have full rank matrices L, L. For
some classes of matrices we have shown that this is already sufficient, but in general it will
be necessary to compute the left and right null space of D.

It is also open, if the nice relations between the left /right null space of €' and D in Corollary
6.24 have an analogy if Sy is singular.

Finally it is open how we have to replace the approximate solution Ti(«) by an appropriate
block diagonal matrix X in Algorithm 6.89. To choose the block diagonal part of Ti(«)
will most likely not be the best choice in the unsymmetric case.

We have introduced modified block diagonal splittings and discussed modifications which
can be read as some kind of algebraic boundary conditions. The manipulations discussed in
Chapter 5 and Chapter 6 on block diagonal Splittings can be summarized in the following

4 N

Algebraic
Boundary
Conditions

Block
Diagonal

Preserve

Splitting Structures

Modified Block Diagonal Splitting

From our list of questions on page 10 we now have to establish a parallel model in order
to give an answer to question 4 on page 10.
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Chapter 7

Parallel Treatment of the Coupling
System

In this chapter we will discuss the treatment of the Sherman—Morrison—-Woodbury formula
(1.4) on a parallel architecture. Here we will only consider the case of block diagonal
splittings that have been discussed in Chapter 5 and 6. To do this let us assume that we
have p processors each of them having its own memory. The communication should be
done by message passing.

A distribution of a matrix A over the processors will be defined. We will briefly comment
on how this model of distribution can be affected by preprocessing, that is a reordering of
the initial system before its distribution is fixed.

According to the distribution of A we will examine the representation of the coupling
system S, from (1.4) and its related distribution over the processors.

To have a better understanding about the coupling system S. we will examine the corre-
sponding block graph and give two ways to derive the block graph of S. from the block
graph of A.

The distribution of S. and its representation involve a natural overlapping distribution
of vectors which are related to the coupling system. The concept of adding type vectors
and overlapping type vectors which is well-known in finite element methods for partial
differential equations [55],[45],[46],[6] can be transferred to the situation here.

We will comment on the consequences of the representation of S. for solving systems with

Se.

7.1 Distribution of the System and Preprocessing

For the whole chapter we will assume the following distribution of a given matrix A. Let
A € GL (n,F), p some positive number counting the number of processors. Analogous to
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Chapter 5 we will assume that A is partitioned as

Ay oo Ay
(7.1) A= : f

Apl ce App
with square diagonal blocks of size nq, ..., n,. We will assume that processor ¢, g =1,...,p

can directly access the blocks A, ., A, ,, for all r = 1,...,p. From this it follows that for
any ¢ # r A, is available for precisely two processors.

Example 7.2 Let p =4 and

Ay A O O

Ay Az Az O
O Az Asz As
O O Ay A

A=

We get the following (overlapping) distribution of A with respect to the processors.

1| 2 | 3 | 4
Ay Ags
An A A
DT Aw Ay Ap | As Aw sy |0
21 A32 A43 43 34

For sparse matrices the overhead of storing A,.,q # r simultaneously on two different
processors seems to be acceptable. One could try to reduce the number of off-diagonal
blocks A,, by reordering the rows and columns of A in the form PTAP by a permutation
matrix P. This problem can be described in graph theoretical terms by the undirected
graph defined as follows.

Definition 7.3 Let A€ GL(n,F) as in (7.1).

Then the undirected scalar graph Gs(A) = (Vs(A),E(A)) = (Vs, &) of A is defined by
Ve=A1,...,n}h& ={{1,5}: 1 # j,a;; #0}.

The undirected block graph Gy(A) = (Vu(A),&E(A)) = Vi, &) of A is defined by V, =
{17' .- 7p}7gb = {{%r} - q 7£ rquT’ 7£ O}

The elements of V are called vertices and the elements of £ are called edges.

For strategies of permuting A by renumbering the nodes of V, we refer to [52], [17], [34], [70],
[80]. This preprocessing part is assumed to be done a priori and we will not discuss this in
detail here. Denote by V4, ..., V), the sets corresponding to the diagonal blocks Ay4,..., A,
of the permuted matrix PTAP. At least the following aspects should be handled by the
preprocessing step.

1. The number of edges & N (V, x V,.), ¢ # r, q,r = 1,...,p should be as small as
possible.
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2. #&, should be as small as possible.

3. Gy should be constructed with respect to the underlying processor topology, that is
the physical communication network between the processors.

Of course, not all of these criteria can be satisfied simultaneously. The first criterion is
suitable to decrease the rank of the remaining part and therefore the size of the coupling
system. The second criterion will have influence on the block graph of the coupling system
(see Section 3 for details) and its fill-in. Many nonempty sets & N (V, x V,) of small size
may reduce the size of the coupling system but will require additional communication.
In principle communication has to be performed between all processors p,q such that
{q,7} € Gy, which can be seen in Section 4. So a fewer number of elements in nonempty
sets EsN(V, x V,) # 0 of larger size might be more useful than several sets EsN(V, x V,.) # ()
of small size. Finally the third criterion is necessary to adapt the algebraic problem to the
underlying processor system.

The distribution of A over the processors will induce a special overlapping distribution for
the coupling system S.. This will be investigated in the next section.

7.2 Representation of S.

Based on the distribution of A introduced in Section 1 we will examine the representation
of the related coupling system S, from (1.4) and the corresponding distribution over the
pProcessors.

Analogous to Chapter 5 we denote by

(7.4) J:={{¢,r}: ¢#r, A, #0or A., # O}

and assume that the indices of J are taken in some fixed order iy, ..., 1,.

For any i = {¢q,r} € J we assume that A, A,, are factored as
(7.5) —Ay = FIGE A, = FIG,

with matrices F;,(G;)T € M(n, x n',F),G (F)T € M(n' x n,,F) for some positive
number n'. We define
(7.6) Ne = Z nl.

ied
Choices of this factorization have already been discussed in Chapter 5. For simplicity we
assume that this factorization has been performed in parallel a priori on processor r,q
simultaneously.

The ordering iy, ..., 1, of the elements in J and the corresponding sizes n't, ..., n'

block partitioning for vectors in F** and matrices in M (n x n.,F), M (n. x n,F). Partition

induce a
the identity matrix [, of size n. X n. columnwise as
(7.7) L, = (EY, ... EY),
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where E% denotes nlt unit vectors one after another. This notation has already been intro-

duced in (5.5)—(5.10).
We define F, G analogous to (5.13) by

(7.8) F= Y (EF+EF)EY, G= Y E(GE +GE])
i={q,r}eJ i={q,r}€3

and the block diagonal matrix S = diag (Si1,...,5;) by

(7.9) Su=Ag+ Y FG qg=1,...p.

i={q,r}€3

This definition corresponds to the definition of S in (5.15). Here we will assume that S is
invertible.

Syq can be computed in parallel since Fqi, G; are available on processor gq.

From this definition we obtain a splitting
(7.10) A=5-FdG.
For an example of this splitting we refer to Example 5.16.

The corresponding coupling system for the Sherman—Morrison-Woodbury formula (1.4)
will be

(7.11) S.=1—-GS'F.

The definition of F, G induces a block partitioning for S. = (Si’j)ijej with blocks S of
size n! x nd. Analogous to Chapter 5 we will superpose indices for matrices and vectors
which correspond in their size and partitioning to S.. These indices are always elements of
J.

The distribution of the blocks of A induces in a natural way a distribution for the coupling
system 5.

Lemma 7.12  Let S. = (S¥);;0y = [ — GS™'F € GL(n.,F). With respect to the
partitioning from (7.7), [ —S. can be written as sum of p elementary matrices My, ..., M,

2 P
p
(7.13) Se=1-Y M,
q=1

where each M, = (M;’j)i,jej has the following properties:

(7.14) My= Y ENGS'FH(E).
1,J€T: g€inj

M, s available on processor q without communication.

MP =0, ifqginj.

If M # O and M} # O for q # r, then i =j = {q,r}, i.e., two different elementary
matrices My, M, overlap at most in one diagonal block, provided that {q,r} € J.
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Proof:

We can write the coupling system S. as
S. = I-GS™'F

P
= 1-) GESE'F

q=1
P

— J_E] §: E'GY)S Y §: Fi(EHT)
=1 i={r,q}€J i={s.9}€7

S 1YY EGS R

9=1 i={r,q}.j={s,9}€7

SIS Y @Sy

g=1 i,jE€T: g€iNj

:]—i%.
g=1

Thus I — S. can be written as sum of p elementary matrices M,, ¢ =1,...,p.

M, is obviously computable on processor ¢ without communication, since S, Fy, G are
stored on processor q.

By the definition of M, it follows immediately that M, can have nonzero blocks only in
those positions M;’j, 1,] € J, where 1 and j both contain q.

Consider ¢ # r,1 < ¢,r < p. M, can have non trivial blocks only in positions M;’j, if
q € iNj. Analogously M, can have non trivial blocks only in positions M, if r € iNj.

To have a common block M;’j,Mri’j, we need {¢,r} C iNj. But this is only possible if
i=j={¢r} el .

Remark: By Lemma 7.12 we get nonzero blocks of S. (at most) for all nonempty inter-
sections {q,r} 01 {5,1}, g, 1} {5, 1} € 7.

Example 7.15 Let p = 6 and let the set T = {{1,2},{2,3},{4,5},{5,6},{1,4},
{2,5},{3,6}} be given. According to Lemma 7.12, [ — S, is a sum of 6 matrices My, ..., M,
each of them present on the corresponding processor without communication. We use for
each M, a different symbol in the following way:

My | My | M3 | My | Ms | Mg
tlxlalofef~
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Then the distribution of the blocks of S. can be described by the following pattern:

112141511123

2‘3 5 ‘6 4 ‘5‘6‘
1,2 4+ % + %
2,3 * [l * O
4,5 o o O <
5,6 & @ O x
1,4]+ O @
251« x O O &
3,6 * )

The picture illustrates that only the diagonal blocks can overlap. Two different elementary
matrices My, M, overlap precisely in one diagonal block, if {q,r} € 3. Otherwise they do
not overlap.

Lemma 7.12 and Example 7.15 show that M, ..., M, have several blocks which are zero.
Moreover, by Lemma 7.12 we can fix those blocks which are possibly nonzero, i.e. we can
reduce any M, to its nontrivial part. This will be done in the next corollary.

Corollary 7.16  Using the notation of Lemma 7.12 we define for any ¢ = 1,...,p the
matriz K, by

(717) [(q = < o E{qu} o '>r:{q,r}€37

where B0 corresponds to the partitioning of the identity matriz in (7.7). Set Mq =
KIM,K,.

Then M, = [&”quKqT and Mq equals Mq = (M;j)i,jeﬁz Lcing- 10 addition we have

b K K] =21

Proof:

From Lemma 7.12 it immediately follows that M, only has nonzero blocks M;J for
g € 1N . By definition, the block columns of K, are the corresponding block columns and
1) [&”qTMqKq is just the reduction of M, to those blocks which satisfy ¢ € i N j. For the
sum 2521 ]&”qKqT we note that any block unit vector E' = E197} will appear precisely
twice. Once as block column of K, and once as block column of K,. From this it follows

that Yr_| K,K] =23 EN(EY)T =21 O

Example 7.18 We continue Ezxample 7.15. By Corollary 7.16 we obtain K; =
(E{L?},E{M})} Ky, = (E{L?}?E{?,S},E{?é})} K; = (E{273},E{376}), Ky = (E{475},E{174}),
K5 = (E{4’5}, E5:6} E{2’5}>, K¢ = (E{5’6}, E{3’6}>. The pattern in Example 7.15 has already
dlustrated that My, ..., M, only have blocks in those positions associated with Ky, ..., Ks.

In this section we have shown that the distribution of A over the processors has lead to
an interesting representation of S. as sum of p elementary matrices. As Lemma 7.12 has
already shown, the block graph of S. is not arbitrary. In the next section we will derive

the block graph of S. from the block graph of A.
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7.3 Deriving the Block Graph of S,

In this section we will derive the block graph of S, from the block graph of A.

Example 7.19  Assume that the scalar graph Gs(A) = (Vs, &) of A can be represented
by the following rectangular mesh, where the vertices in V, are on the crossings and the
edges of E; are the lines between the crossings.

Consider the scalar graph Gs(A) of A. Next we will assume that the set of vertices V; is
written as disjoint union of p nonempty subsets, V, = V;U---UY,. These p subsets induce
subgraphs or subdomains (V,, &), where &, = & N (V, x V,). Beside these edge sets
Eity .oy Epp we have for all ¢ # r &, = EN((V, x V,)U(V, xV,)). Then & can be written

as disjoint union of all &,,.

Since we have assumed that A has already a given block partitioning the sets Vy,...,V,
will be the numbers {1,... . ni}, {n1+1,....,n1 +n2},...,{ f:_;nq—l—l,..., f:qnq}, We

set V, = {1,...,p} and the corresponding edge set &, can be obtained from the scalar edge
sets by & = {{q,r} : ¢ # r, &, # 0}. This gives us precisely the block graph of A with
respect to the given partitioning (7.1).

Example 7.20 We consider Example 7.19 and assume that the nodes of Vy,..., Ve can
be characterized by the following 6 overlayed rectangles.
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Now the block graph can be obtained by considering only the rectangles as nodes. An edge
in the block graph exists, if there exists a scalar edge between different rectangles.

Using the definition of a block graph of A we can see that
(7.21) J=2&,

i.e., the labels for the blocks of S. are the edges of the block graph of A. Consequently the
number of diagonal blocks #7J in S, is precisely the number of edges in the block graph of
A.

We can obtain a first abstract description of the block graph of S. in graph theoretical
terms.

Lemma 7.22  Consider A € GL (n,F) with the block partitioning from (7.1) and the
splitting A = S — FG from (7.10),where S should be nonsingular. Set Py(A) the set of all
paths in Gy(A) of length 2, i.e.,

(723) pb(A) = {{{%r}v {Svt}} : {%r}v {Svt} S gb(A)v #({%r} N {Svt}) = 1}'

Let S. =1 — GS™'F and consider for S. the induced block partitioning from (7.7).
Then the block graph of S. can be obtained from the block graph of A in the following way
(by using the elements of &(A) as labels instead of 1,...,#&(A)):

(7.24) Vi(S.) = &(A), E(S.) C Py(A).

Proof:
From Lemma 7.12 we know that S. = [ — 2521 M,. For any matrix M,, an off-diagonal

block M;J can be different from O, only if iNj = {q}.

For g # r, M,, M, do not have any common off-diagonal block. It follows that up to a sign
the off-diagonal blocks of S, are those of My, ..., M,. Consequently M;J # O or Mg‘ # 0
for i # j can at most occur if iNj = {q}. So the off-diagonal blocks of S, are essentially
characterized by

Ui biedini={g} = J{ii}: Lie&A),inj={q}.

g=1 g=1
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This is obviously Pj(A). O

Remark: Typically we have &(S.) = Py(A). The reason that in (7.24) only &/(.S.) C Py(A)
is asserted, is that there are a few exceptions where &,(S.) # Py(A) can occur. Consider
i=1{q,r},j={rs} €3 with ¢ < r < s and the block entries S = —qu’r}S;,lFr{r’s},
Sii = i g I of U IF A, # O and A,, # O, then we have G # O and
Rl £ 0. So we can expect that S £ O. Obviously one can construct counterexamples
where G{"") £ 0, 5.1 +£ 0, Rl # O but qu’r}SﬁlFr{r’s} = 0. Analogously one can
proceed for Sg’i. Another exception is, when A, # O, A, = O, A,, = O and A, # O.
In this case the undirected block graph of A contains the edges {q,7}, {r,s} but S =
0, S% = 0. To describe this effect one has to consider the directed graph of A instead of
the undirected graph of A. In fact, 4, # O, A,;, = O, A, = O and A, # O means that
there exists neither the path {(q,r), (r, s)} nor the path {(s,r), (r,q)}.

q r S

The block graph of S, is well-known in graph theory [13], p.11 as the ‘edge graph’ with
respect to the block graph of A.

Example 7.25 We  consider FExample 7.20. Here the edges are &(A) =

{{1,2},{2,3},{4,5},{5,6},{1,4},{2,5},{3,6}}. E(A) is identical to 3 and can also be

identified with V,(S.) using the elements of E,(A) as labels instead of 1,2,...,7. It easy to

see that J here is tdentical with J in Example 7.15.

From &(A) we get the following P,(A):

PyA) = (L1021 (L4}, (10,25 12,33 (1021, 2,531 (42,31, 12,5}, (2.3}, {3.6}).
4,50 {1,435, {{4.55.42.53 ), {{4,5},{5,6}}, {{5,6},{2,5}}, {{5,6},{3,6}} }.

{1,2} {2.3}

o

{4,5} {5,6}

Beside this formal graph theoretic derivation of the block graph of S, from the block graph
A there exits another constructive derivation using elimination graphs for LU decomposi-
tion [27],pp.93f. Essentially we can derive the graph of S. from the fact that S, is defined
as the Schur—complement of the matrix

(7.26) ( . )
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Definition 7.27  Let B = (Byj); .y .1 < g <m . If Gy(B) = (Vi(B),&(B)) is the
block graph of B, then the elimination block graph Gy(B/By,) = (Vo(B/By,),E(B/Byy))
of B with respect to By, is defined by

Vi(B/Byq) = Vi(B) \ {a}, &(B/Byy) = (E&(B) N (Vs(B/Byy) X Vi(B/Byg))) U Ao( B/ By),
where Ay(B/Byg) = {{r,s}: {r.q},{s,q} € &(B)}.

The elimination graph can be read as follows. From the initial graph we remove the node ¢
and the corresponding edges {q,r} for all r. The remaining graph will get additional edges
{r, s} for all former adjacent vertices r,s of ¢. Adjacent vertices of ¢ are those vertices r
for which an edge {q,r} exists in the old graph.

The main reason for the introduction of elimination graphs is its close relation to the block
graph of the Schur—complement

1 < ¢ < m and assume that By, is nonsingular.

Lemma 7.28 Let B = (By;)
B-1 which is the

Set C = (Brvs)r,s:l,...q—l,q—l—l,...m - (Brvq)r:l,...q—l,q—l—l,...m qq (B‘LS)s:l,...q—l,q-l—l,...m’
Schur—complement of B with respect to By,.

Then for the block graph Gy(C') = (Vu(C'), E(C)) we have:
(729) Vb(C) = Vb(B/qu), gb(C) C gb(B/qu).

i,5=1,...,m?

Proof:

This can be obtained from the definition of C: It is clear that V,(C) = Vy(B/By,).
Compared with gb((Brvs)7’,5:1,...q—1,q+1,...m) E(B) N (W(B/Byy) x Vo(B/By,)) the
block graph of C' can have additional edges {r,s} only if C = B, ,B;'B,, # O or
C' = B,,B.'B,, # 0. But this is possible only if the edges {r, ¢}, {q,r} exist in the block
graph of A, i.e. {r,s} € A,(B/By,). 0

The close relation between LU decomposition and graphs is well-known in literature [40]
and has been used for several algorithms, e.g. the minimum degree algorithm, see e.g.

[40],[18].

By Lemma 7.28 we have a constructive algorithm to obtain the block graph of S.. First
of all we define the undirected block graph G, = (V,, &) of the augmented matrix from
(7.26) by

(7.30) Vo =WVi(A) U E(A). & = {{a.{q,r}} : {a.r} € &(A)}.

It easy to see that this definition exactly gives the block graph of the augmented matrix
from (7.26) in the sense of definition 7.3 up to the use of the edges of &(A) as labels for
the additional vertices in V.

From the definition of V;, & it immediately follows that the block graph of the augmented
matrix can be obtained from the block graph of A replacing all edges {¢,r} by a vertex
labelled as {g,r} and the two corresponding new edges {q,{q,r}},{q,{q,s}}

Example 7.31  We consider example 7.20. According to (7.30) the block graph of the
augmented matriz (7.26) looks as follows.
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L L
{4,5} {5,6}

One can see, how the new labels {1,2},{2,3},{4,5},{5,6},{1,4},{2,5},{3,6}} are just

placed as vertices on the previous corresponding edges in the block graph of A.

Now the block graph of S, can be constructed from the block graph G of the augmented
matrix building the elimination graph with respect to the Siy,...,5,, one after another.

Since S is block diagonal, there is no difference in the order of eliminating the vertices
1,2,...,p.

Example 7.32  We continue Frample 7.31 and start eliminating the vertices correspond-

ing to the rectangles. First of all, node 1 is removed and its adjacent vertices labelled as
{1,2},{1,4} are connected.

12 423}

Next we take node 2.

L L
{4,5} {5,6}

We continue this procedure and finally get the following graph:
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{1,2} {2.3}

{3,6}

{4,5} {5,6}

In this section we presented two ways of deriving the block graph of 5. from the block
graph of A. The investigation of 5., especially its representation and its block graphs has
provided the basis for the following discussion on how the coupling system 5. can be treated
in parallel computations.

7.4 Parallel Treatment of S,

In this section we will discuss how the preception of the representation of S. in Lemma
7.12 and the relations to the block graph of A from Section 3 can be exploited to get a
convenient concept for the parallel treatment of 5.

From Corollary 7.16 we have got a representation of S, as

p
Se=1-Y K,MK,

g=1

where each Mq is available on processor ¢. K, has been defined in (7.17) by K, =
(- E' e, i={y,}- Note that ¢ is fixed in the definition of A;. We set

(7.33) K =(Ky,...,K,).

Ky, ..., K, have an interesting property. As shown in Corollary 7.16, any block unit vector
Ef = B} from (7.7) appears as block column in K, and K,. This induces a natural
overlapping distribution for vectors x = (:L’i)iej € <. In the sequel we will introduce two
type of vectors called overlapping type vectors and adding type vectors. The idea of such
kind of vectors in the use for parallel computations can be traced back to [55] and has
been used in several implementations of finite element methods in parallel computations
[45],[46],[6]. In [6] the two type of vectors are referred as consistent and inconsistent vectors.

Definition 7.34 Let X € M (n, x s, R) for some number s > 0. Then X € M (2n, x 5,R)
defined by

(7.35) X:=K'X
is called the overlapping representation of X. Any X € M (2n. x s,R) satisfying
(7.36) KX =X

is called an adding representation of X.
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Of course this abstract definition needs some more detailed explanation. In order to avoid
confusion about the notation of overlapping and adding type vectors and matrices we like
to point out that an overlapping representation is overlined, otherwise it is underlined.
Before we will examine Definition 7.34 and its consequences for the use in parallel compu-
tations, we will state some very interesting results related to the use of overlapping type
vectors and adding type vectors. Essentially Theorem 7.37 says that we can express all
elementary vector operations and matrix—vector operations in terms of overlapping type
vectors and adding type vectors. A closer look from the point of parallel computation will
be done afterwards.

Theorem 7.37 Let X,Y € M(n. x 5,R) for some number s > 0 and let X,Y €
M (2n. x s,R) be corresponding overlapping and adding representations. Using the notation
of Lemma 7.12 and Corollary 7.16 the following assertions hold.

1—
(7.38) X = §X
is an adding representation of X . B
(7.39) Y = KTKY
is the overlapping representation of Y. Let
(7.40) R=Y"X,
then R =Y7TX. Define Y by
1— A —
(7.41) Y = -X — diag <Mq> X,
2 q=1,...,p
then Y is an adding representation of Y = S.X.
Proof:
If X = KTX, then by Corollary 7.16 we have K%y = %KKTX = X, which implies
(7.38).

Y = KTKY = K'Y, since Y is an adding type representation of Y. From this (7.38)
follows.

IfKY =Y, then YTX = YTKTX = YTX.

Finally, by Corollary 7.16 we have

~

P
. N 1
Se=1-Y K,MK] =1— K diag(M,),=1,.,K" = K (51 — diag (Mq)qzl,,,.,p> KT
q=1
Then Y = 5.X becomes Y = K <%] — diag (Mq)q:17...7p> X = KY, which shows that Y is

an adding representation of Y. O

This nice result itself is useless as long as we do not know, which advantages we will have
in parallel computations when using these kind of representations.
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We will now have a closer look at the definition of overlapping/adding type representations
and their meaning. For simplicity let s = 1. The case s > 1 can be traced back to s = 1
by considering any column separately.

Any x € F"¢ has a natural partitioning x = (:Jci)iej taken with respect to (7.7). Since the
overlapping representation is defined by K7z we obtain the vector

Kz

(7.42) T =

Since K, = (- E' -+ )5, i={g,r}> €ach KTz will consist of (:z;{q’r})r:{w}ej, where ¢ is fixed.
From this it follows that any «{9"} will appear twice in T, one time as part of KqT:L' and

another time as part of K!z. In the sequel we will assume that KqT:L' is stored on processor
q,g=1,...,p. We will give an example.

Example 7.43 We continue Framples 7.15,7.18. Any x € F*¢ has a natural partitioning
as v = (:Jci)iej. The relation between x and T is illustrated in the following table.

Processor

1 2 3 4 5 6
Klo | KIz | KIz | Kz | KIz | Klx

L2y || g2y | Rz

123} 23} | p{2:3)
{15} 45} | {45}

156} 5.6} | 16,5}
LA || 04 LA}

125} 125} 125}

136} 136} 136}

In order to distinguish between the duplicate copies of {97} in T at two different positions,
we denote the two copies of 2127} by (@) and 9. This is important, since the two copies
of 2197} are assumed to be stored on different processors! For any ¢ = 1,....,p we set

(7.44) zlor) — z(na) . pdar}
Note that {¢,r} = {r, ¢} but (¢,r) # (r,q). Then we have

(‘%(Lr))r:{l,r}ES
(7.45) Kjv= (:f(q7r)) Aqryey T = :
(j;(p7r))r:{p,r}€3

The assumption that KqT:L' should be stored on processor ¢ now reads as %) is stored on
processor q.
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We now examine adding type vectors. If z € F?"¢ is an adding type vector, then the
equation K2 = x induces a partitioning for z. At the first place we have K = (Ki,..., K},)
and secondly any K, can be refined as K, = ( o plerd -)r:{q e

The partitioning of x can be done analogously to the partitioﬁing of T, i.e. we have

(7.46) z= (2, e

Kz = z now reads as

p

(7.47) 7 = Z Cplart, e loryes 2(@7)

r:{q,r }€J

The main reason for the introduction of overlapping and adding type vectors is its con-
venience in the parallel treatment of S.. We will show this for the following subroutines
which have been mentioned in Theorem 7.37. For these subroutines we will assume that any

overlapping and adding representations X = (Y(q’r)){q ey Y= (Z(q’r)){q 11y of matrices
X,Y € M (n, x s,R) will have their blocks y(q’r),i(q’r) stored on processor q.
We can omit a subroutine for (7.38) since the implementation is trivial. For this reason

we start with (7.39). From (7.47) it follows that for any {¢,r} € J we have X107} =
X(qu) _I_ X(rvq)‘

Algorithm 7.48 (adding type — overlapping type from (7.39))
FOR any {q,r} € 3:

local data exchange X4 «— X9 between processor q,r.
FOR all g€ {1,...,p}:

X X 4 XD for any r such that {qg,7} € 7.

The local data exchange only affects those pairs ¢,r of processors such that there is an
edge in the block graph of A between ¢,r. We will illustrate this by an example.

Example 7.49  Consider the block graph from (7.20), which also corresponds to Example
7.43. The data exchange is illustrated in the following picture.

| X(1,2) d X(2’3) d
) XD ) X062
X(4 1) X(l 4) X(5 2) X(2’5) X(6 3) X(S 6)
4 X(4 5) J s X(5 6) oJ 5
) G0 ) X (65)
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Next we will discuss the realization of (7.40). R = YTX can be written as sum R =
2521 R,, where any R, satisfies R, = Er:{q7r}ej(Z(q’r))T7(q’r).

Algorithm 7.50 (scalar product from (7.40))
FOR all g€ {1,...,p}:
r ~(a.7)
Rq = Z:r:{q,r’}ES(Z(q7 ))TX !
Compute global sum R = 2521 R, by data exchange of over all processors.

In many realizations of a global sum like R = 2521 R, the data exchange and the compu-
tation of the sum are combined. We illustrate this by continuing Example 7.49

Example 7.51 Consider Example 7./9. Suppose that Ry, ..., Rg have already been com-
puted. To compute the sum over all processors we can proceed as follows.

Ry
!k o 3
Ry
RellRs
R
Ik = = 6
Rs

The computed partial sum we will denote by Ry 2, Ry5 and Rsg. The computation of R can
be continued as follows.

Ry .
1 2 - 3
A R376
Ras|| R 2
R
y 5k —-W
Rse
As last step we get
Ras .
I R o 2 3
R376 A
Ras||F12
R
I R —K 6
Rse

The example shows that the computation of a global sum extremely depends on the un-
derlying processor topology, that is the network of data channels between the processors.
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Of course both types of communication, local data exchange and global data exchange
are dependent on the parallel machine which is used. In addition the local data exchange
depends on the preprocessing part which permutes the initial matrix before a system is
solved, since one may obtain different connectivity properties for the block graph of A for
two different permutations.

As a last step of realization we consider the matrix—vector product from (7.41). The nice
result is, that there is no communication necessary, but one starts with the overlapping
representation and ends up with an adding representation.

Algorithm 7.52 (matrix—vector product from (7.41))
FOR dall g€ {1,...,p}:

e Y _(qu)
(Z(q ))r:{q,r}ej - MQ(X )r:{q,r}Ej

ylar) = %7(%7’) _ Z(qﬁ’)} for any r such that {q,r} € 3.

In this section we have introduced a convenient way to treat S. in parallel computations
based on adding type and overlapping type vectors. This concept allows an easy realization
of elementary vector operations and matrix—vector operations. Next we will discuss the
consequences of this concept for direct and iterative methods applied to S..

7.5 Direct Solution of S.x =0

The direct solution of a system S.x = b requires the explicit generation of S. and this
means that the matrices Ml, cees Mp from Corollary 7.16 have to be computed explicitly.
Although this can be performed in parallel without any communication this might be ex-
pensive, if some nl,i € J are not small, since for any ¢ = 1,...,p processor q has to solve
> ien: gei n' systems with S,,.

After the generation of Ml, cees Mp a block LU—-decomposition of S, still has several prob-
lems. First of all the matrix S. is distributed over the processors which means, that the
decomposition will be a strongly sequential process. As long as we do not have a stability
criterion like positive definiteness, diagonal dominance or the M-matrix property it may
happen that we have to do pivoting, which will be rather complicated with respect to the
distribution of S. over the processors. Even if a stability criterion exists, it may happen
that one produces fill-in, which requires additional administrational work. A special class
where a direct solution method is feasible is the class of acyclic matrices, where fill-in can
be avoided, if a stability criterion exists.

Definition 7.53 Let B = (B;;)
graph.

A sequence of k > 1 piecewise disjoint edges {q1,q},{q2, ¢}, {qe, 1} is called
cycle in G,.

Gy is called acyclic, if it does not contain any cycle.

€ M(n xn,F) and let Gy = (V3, &) its block

,5=1,...,m
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Gy is called a chain, if there exist piecewise disjoint {q1,q2},{92,63},- - {qm-1,qm} such
that & C {{q1, 42}, {2, 45} - - - Adm—1,4m }}-

Lemma 7.54 Let B = (B;;)
and that for any permutation matriz P which leaves the blocks B;; invariant, PT BP has a
block LU ~decomposition. Then there exists permutation matriz () such that QT AQ = LU
is a block LU—decomposition of A and the block graph of L, U is included in the block graph
of A.

€ M (nxn,F). Assume that its block graph is acyclic

i,5=1,...,m

Proof:
See e.g. [31]. O

If a stability criterion exists for S. and if the block graph of 5. is acyclic, then we can
order the blocks of S. such that we do not produce fill-in. Unfortunately the requirement
‘acyclic’ for the block graph of S. is very restrictive. Essentially the only possibility for 5.
to have an acyclic block graph is the case when 5. is already block tridiagonal.

Lemma 7.55 Assume that the block graph of S, is acyclic and that &/(S.) = Py(A) in
(7.24), i.e., the block graph of S. can be derived as in Section 3 and does not have less
edges. Then the block graphs of S., A are contained in chains.

Proof:

For the block graph of S. we use the same labels for the vertices as in Lemma 7.22. Assume
that the block graph of S. is acyclic but not contained in a chain. Then there exists at
least one vertex i € V4(.S.), which has more than two adjacent vertices, i.e., there exist at
least three piecewise different vertices j,k,1 € V4(S,) \ {i}, each of them labelled as set
with two elements, which are adjacent vertices of 1. From the special structure of the block
graph of S, described in Lemma 7.22 it follows that we must have nonempty intersections
1N j,iNk,iNL But these three intersections cannot be piecewise disjoint, since 1 has
only two elements. From this it follows, that at least two of the three vertices j, k,1, say
J, k must have a common intersection with i. Since j # k, it follows that j Nk = {q¢},
for some ¢q. For the special block graph of S., the edge {j,k} must also belong to &(S,),
since &(S:) = Py(A). So &(S.) contains the edges {i,j}, {i,k}, {j, k}. This is a cycle and
therefore a contradiction to our assumption, that the block graph of S. is acyclic.

So the block graph of S, is a contained in a chain, i.e., Vs(S.) = {i1,...,15},E(S:) C

{{i1,12}, {12,153}, ..., {1s_1,15}}, where any i N ixy; contains one element. But then
i1,...,1; can be written as {q1, ¢}, {q2, 93}, -, {4s, gs41}, which means that the block
graph of A is also a contained in a chain, since 1y, ...,1, are piecewise disjoint. a

This somehow strange result is illustrated in the following figure, which makes the result
more transparent. At least one of the dashed lines must also exist in the picture.
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So the case, where A is block tridiagonal is essentially the only case, where the block graph
of S, is acyclic. This case has already been treated in [59].

One way to handle the stability problem as well as the problem with the fill-in in parallel
is to collect all M, ..., M, on one processor or on all processors. Then the problem has
been reduced to a usual sequential problem. The disadvantage is of course, that this step
requires global communication and unless all M;,..., M, are small, a lot of data have to
be exchanged. Nevertheless, for small M;,..., M, this strategy is feasible and simplifies
the problem extremely.

7.6 Iterative Solution of S.x = b

For the iterative solution of S.x = b, more precisely for the use of Krylov—subspace based
methods[74] to solve S.x = b, one only needs elementary operations, like matrix-vector
multiplication, scalar products and operations of the form ax +y, where a € R, x,y € R™.
Up to the operation ax + y the other two operations were already discussed in Theorem

7.37.

Unfortunately the number of iterations may be huge if the condition number of the eigen-
vector matrix of S, is big, or if the eigenvalue distribution is bad[50].

To improve the properties of S. one usually constructs preconditioners, i.e., nonsingular
matrices Sc, such that S LS. has improved properties, but S, should be relatlvely cheap
to compute and systems of the form Scy = ¢ should be easy to solve.

The distribution of S. over the processors and parallel computation aggravate the con-
struction of Sc.

The idea behind the nested Divide & Conquer strategy is to give an additional way of
improving the properties of S.. It is a compromise between a direct solution and an iterative
solution of S, i.e., the given coupling system is divided into a small part which is directly
solved and a remaining reduced coupling system, which still has to be solved. However in
principle the nested divide & conquer could be combined with the use of a preconditioner.
The only thing which changes is that the updates using orthogonal transformations have to
be taken with respect to the preconditioned coupling system instead of the initial coupling
system. The problem is how to get a preconditioner for the coupling system and how to
parallelize this preconditioner. Even if S, is explicitly computed any preconditioner for S.
has to take care of the natural distribution of S. over the processors. By Corollary 7.16
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S, has a natural representation 5. = [ — 5:1 KquKqT, where any K, is describes the
blocks of S. which are located on processor q. A preconditioner which is in natural way
adapted to the memory distribution could have the form 2521 ]&”quKqT since applying
this matrix is analogous to applying S.. In the positive definite case one could choose

5:1 [&”q(](qTSc[&”q)_lfx’qT. A general construction of preconditioners of this form will be

discussed in future work.

Summary

In this chapter we have discussed the parallel treatment of nested divide & conquer meth-
ods. Especially the related coupling system S. and its representation were of special interest.
It has been shown that the coupling system can be written as a sum of p elementary ma-
trices, which overlap only in their block diagonal positions. Fach elemental matrix can be
generated independently on each processor.

Closely connected to the elementary matrix representation of S, is its block graph. We
have discussed two ways to derive the block graph of S, from the block graph of the initial
system A. First the block graph of 5. is the so—called edge graph with respect to the block
graph of A giving a first derivation of the block graph in terms of graph theory. Second we
have presented a constructive way using the block elimination graph of a suitably extended
system.

The special structure of S. has turned out to give a convenient parallel treatment using
two kind of vectors, overlapping type vectors and adding type vectors. This can be seen as
algebraic analogy to techniques which are already used in the parallel treatment of finite
element methods for several years. Here analogous results between the relations of over-
lapping type vectors and adding type vectors and the coupling system could be shown.
For the direct solution we have shown that the most common case of systems where no
fill-in is produced during the LU-decomposition, namely the acyclic case, coincides already
with the block tridiagonal case. For the iterative solution the nested divide & conquer is a
compromise between a direct solution and an iterative solution of S..

The coupling system and the topics which we have discussed in this chapter can be sum-
marized in the following picture.

Initial
coupling system

block distri-

bution

Use of overlap./
adding type

\\ vectors /

In the next chapter we will generalize this parallel concept to the nested divide & conquer
method.
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Chapter 8

Parallel Treatment of Nested Divide
& Conquer Methods

In this chapter we will discuss the parallel treatment of the nested application of the
Sherman—Morrison—Woodbury formula (1.4) from Chapter 3. The concept of parallelization
for the initial coupling system from Chapter 7 will be adapted to the nested sequence of
coupling systems which is invoked by the nested divide & conquer process.

Again the concept of adding type vectors and overlapping type vectors will be useful to
overcome problems which may be caused by using several steps of the nested Sherman-—
Morrison-Woodbury formula.

8.1 Overview

The aspects which have been discussed in Chapter 7, essentially concentrate on the parallel
treatment of S.. When using the nested divide & conquer approach from Chapter 3, the
initial coupling system S. will be replaced by a sequence of coupling systems S.;. In
addition the block diagonal matrix S is replaced by a sequence of matrices Sy, which are
typically no longer block diagonal but differ from S up to a low rank matrix. The parallel
treatment of this sequence is much more complicated than the initial case, where no nested
strategy is applied.

The main idea which we are now going to present is to use the fact that implicitly an
LU decomposition is performed on the initial coupling system S.. Using this fact the
sequence of nested coupling systems can be traced back to the initial coupling system with
additional low rank updates and pre- and post multiplication with suitable matrices. Of
great importance for the parallel realization will be the collection of low rank updates
in order to keep the data exchange small. These arguments can be used as well for the
representation of S} '

Based on the Nested Divide & Conquer theory in Chapter 3, we now describe its parallel
realization. For this we recall the construction of nested splittings in (3.4)—(3.8). For a
given initial splitting A = S — F'G from (7.10) the nested strategy can be described as
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follows: We consider numbers 0 < sq,...,$,,_1 with EZ:Ol s < n.. Furthermore we set
ro = Ne, Thy1 =Tk — Sk, kK =0,...,m — 1. Using these settings we have considered for any

k=0,...,m—1 orthogonal matrices U, € GL (ry, F) partitioned as U} = {(N]k, Uk}, where

U, e M (rp x sg, R), U, e M (rg X rg41, R). The numbers sq, ..., s,_1 are assumed to be
small compared with n..

By the aid of these matrices the nested sequence of splittings is defined by Sy := S, Fp :=
F.Gy:=Gandfork=0,...,m—1:

{Fk, Fk-H} = Uy,
(8.1) {Gfﬂ = UGy,
Skr1 = Sk — LGy

Since Sg11 = Sk—Fkék, k=0,....m—1land A= 5,— F,Gy, k=0,...,m we can express
Sit1, A" using the Sherman-Morrison-Woodbury formula (1.4).

St SV SRS S
8.2 — 3 H A SR o
(8:2) {A—l S+ S Fom STl G Sl

Here we have set

(83) gc,k =1 - GkSk‘le, Sc,k+1 =1 - Gk+15k__|}1Fk+1-

In (3.13) we have introduced in addition
(8.4) Vi = Ug(- - Up—a(Uh i Ug) - - ).

Using Y; we can rewrite Fk as Fk :NFYk. @ further matrix £}, = Sk_lﬁk has been defined
in order to simplify the use of Sk_le for S, and Sk__:l. Once E; has been computed we
obtain

(85) qu =1 - ékEk, Sk_-:l = ([—I— Ekgc_;ék)sk_l

This has lead to product representation
(8.6) Sty = (I + ExS7LGr) -+ (I + EoSTyGo) S,
as it was shown in (3.11).

In this nested definition we have assumed that all S; are nonsingular. In this case the
corresponding coupling systems are nonsingular, too.

For the practical implementation of course not all matrices have to be computed explicitly.
Since in addition we would like to implement this method on a parallel machine we have
to look closer at this sequence of matrices.

Applying Sk_-:l to a vector b means that we have to solve a system Sx = b followed by
several low rank updates. From the product representation of Sk_-:l in (8.6) it follows that
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we have to compute k + 1 scalar products and vector updates of the form ax + y one
after another. Since the vector and the matrix are assumed to be distributed over the
processors, this will require k + 1 steps of global communication. The solution process will
be illustrated in the following tabular.

‘ Step ‘ Operation ‘ Communication ‘
b=S"1b —

0 b=>b+ EOSC_(}GOb global. comm. for R = Ggb
1 b=>b+ ElSc_llGlb global. comm. for R = G1b

k b=>b+ EkSc_gGkb global. comm. for R = Gb

The situation will be quite similar for S, ;41, since Sk_-:l is part of it. When using House-
holder reflectors for the orthogonal matrices Uy the same problem will occur.
For this reason, we will discuss the following topics:

e The general treatment of a product of low rank modification matrices I — VB™'W
in parallel computations.

o The treatment of Uy, ..., U,,_1, especially the way to handle a product of Householder
reflectors and how Householder reflectors can be used in combination with vectors of
adding type and overlapping type from Chapter 7.

e The parallel treatment of S, 41 from (8.3).

e The realization of the product representation of Sk_jl from (8.6).

The templates used for the parallel solution of S, ,, & = b are summarized in the following
table.

‘ Algorithm ‘ Purpose ‘ Subject ‘
8.10 Compute Householder reflector of distributed vector
8.15 Form product of Householder reflectors Householder
8.16 reflectors
817 Apply Householder reflectors
8.20 Matrix—vector product S,z
8.23 Update vectors B,,_10,...,Bn_1m—2 from LU-
decomposition of S,
8.25 Form product of Householder reflectors, version adapted | Handle
for the use with nested divide & conquer Sem
8.26 New low rank update from step m — 1 — m
8.27 Parallel nested divide & conquer, application of the tem-
plates to treat S.,x = b in parallel
8.29 Multiplication with first m columns from the product of
Householder reflectors Handle
8.30 Multiplication with first m columns from the product of | S-*
Householder reflectors
8.31 Solve a system 5,,x = b in parallel
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8.2 Treatment of Products of Low Rank Modifica-
tions

As a first step to get a sensible parallel realization of nested splittings obtained by the
divide & conquer approach from Chapter 3, we will discuss how a product of the form

(I =ViB'Wh) -« (1 = Vi B W)

can be modified in order to be effective in parallel computations. A product of this form
occurs twice when applying the nested Sherman—Morrison—Woodbury formula from (1.4).
At the first place it appears in the product representation of Sk_jl in (8.6) and secondly
the product of orthogonal matrices Uy, ..., U, _1 will be of this form when using their
Householder representation.

The product (I —ViBy'W,y) -+ (I — Vi B 'Wy) itself applied to a vector x requires k scalar
products like Ry = Wyra and additional updates like x — VkBk_le. For vectors which are
distributed over the processors any scalar product will require global communication as we
have already discussed in Algorithm 7.50. For practical purposes, communication depends
not strongly linear on the length of the data, but it depends on one hand on a fixed latency
time which is needed to set up communication and on the other hand it depends on the
length of the data. For small number of data the second part is almost neglectible. Thus it
is typically many times cheaper to exchange a block of data in one step than to exchange
one value several times.

Example 8.7 (Computation Time for Low Rank Updates) We will illustrate this
by a practicle example. We compare for rank 1 updates of size n X n, where n = 1000,
the time which is requested by a product of say | rank 1 updates compared with the time
which is needed by a rank | update. The computations were carried out on a PARSYTEC
GCPP-128. This is ¢« MIMD parallel computer with a distributed memory architecture.
For the numerical experiments we used p = 4 processors. For the size | of the rank we
used [ = 5,10,...,50. In the following picture we compared the total time as well as the
maximum time for arithmetic operations for both variants. To have reliable results, the
operations were carried out 10000 times and the average was taken over the computational
time.

We can see in the following picture that for the product of | rank 1 updates as well as
for the rank | update the maximum number of arithmetic time is almost the same and it
grows linearly with the rank, which is expected. A great difference is the total time, or more
precisely the communication time. For the rank | update the communication time is almost
constant, while for the product of | rank 1 updates the communication times grows rapidly.
Even for smalll, e.g. | = 10 the communication for the product of rank 1 updates is more
than three times as much as the time for the arithmetic operations.
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The situation becomes more dramatic, if we increase the size of the problem, e.g. n =

4000, p = 16. For larger number of processors, the time which is needed for the global

communication will increase while the arithmetic time will be almost the same as before.
0.1

0.09 total time forl ,

k 1 updates(-
ool rank 1 updates(-) |

0.07} 1
time 2% i
[s] o0.05

T

0.04 - b

0.03f total time for 1 .
rank | update(-)

0.02f- larithm. time for(

0.01 rank 1 updates (—-)

Soarithm. time for 1
rank | update(-.)

5 10 15 20 25 30 35 40 45
rank [

The example illustrates that handling of a product of low rank updates is a serious problem,
if the data traffic should not overlay the computation.

This observation is the background for the following lemma, which describes how a product
of low rank modifications can be collected to one matrix.

Lemma 8.8 Consider forl=1,...,k, Vi, Wl € M(n x n;,F), B, € GL (n;,F). Then
(I —ViBZ'Wh) -+ (I — ViBZYW,) = T — VB'W,
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where

By WiV, - WLV
1 .1 2 | 1 k W,
V_[‘/lv '7‘/16]7B: 7W:
WiV W,
O By,
Proof:
This follows immediately by induction on k. a

Applying Lemma 8.8 to a product of low rank modifications (I — Vi B;y'Wy)--- (I —
VkBk_IWk) requires the additional computation of W;V,. This will be an additional over-
head. But if some columns of this product are explicitly needed, then this overhead will be
compensated by the fact that we can easily compute a column of I — VB™1W.

([ — VB_1W)€k = € — VB_lwk.

Here ¢, should denote the £—th unit vector and w; denotes column &k of W.

8.3 Handling a Product of Householder Reflectors

Now we will discuss the treatment of Uy, ..., U,,_1 or more precisely the treatment of the
product

(3.9) Qk‘:%((])l(f)l)”'(([)%)'

For the realization we have to perform several multiplications with Uy, ..., Uy. We will
assume, that all Uy, ..., Uy are represented by a product of Householder reflectors[41], i.e.
products of matrices of the form

I — Bvvl v e R™,
Before we discuss this in detail we give an algorithm which solves the problem
(I — Bovlu = oey,

for a given vector u € R™ in overlapping representation w. Here e; denotes the k—th unit
vector. Since I — fvvT is assumed to be orthogonal, ¢ is unique up to a sign. Following [41],
p-196, we can adapt the computation to the parallel case. This problem has been studied
in [76],[77]. Here we will concentrate on the adaption to the use of adding type vectors and
overlapping type vectors.
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Algorithm 8.10 (Compute Householder reflector)
FOR dall g € {1,...,p}.
T

Compute local scalar product of p = u* u:

U, = SUq- Pq = quﬂq.

Get component k of distributed stored vector w:

IF  w, contains the k—th component of u, then let v, be this element.
ELSE v, = 0.

Compute global sum [p,v] = 3 7_,[pg,v,] by data exchange of over all processors.
p=\/p V=3

Compute Householder parameters:

IF £ 0, 0 = v+ psgno, v = ufa, § = o/

IF v, contains the k—th component of v then set this component to 1.

We can immediately apply Lemma 8.8 to a product of Householder reflectors (I —
Bovovd) - -+ (I — BsvsvT). This requires the additional computation of vl v;. This will be
an additional overhead. In our case we will see that these products have to be performed
in any case, even if we keep the reflectors in factored form. The reason for this is the fact
that we need some columns of the product @y of reflectors explicitly. Y, defined in (8.4) is
essentially k—th column of Q, if sg = 81 = -+ = 5. Whenever we increase the number of
Householder reflectors from k to k + 1, we have to compute vlvgyy,. .., vf vy Again the
communication can be done in one step exchanging &k values.

For the parallel treatment of S. we will see that multiplications with one or a block of
Householder transformations can be easily performed based on adding type vectors and
overlapping type vectors.

Lemma 8.11  Let x,y € R™ and denote by T,y € R27e corresponding overlapping and

adding representations. Let V,W € M (n, x k,R), T € GL(k,R) and denote by V. W €
M ((2n.) x k,R) corresponding overlapping representations of V.W. Then

1— -
(8.12) (I— §VT_1WT)§
is the overlapping representation of (I — VT 'WT)z,

1—
(8.13) (I — 5VT—IWT)y

is an adding representation of (I — VT *WT)y.

Proof:

For (8.12) we have to show that (I — %VT_IW # = KT — VT-'WT)z. But
KT(I=VI'WT)z =7 — KTVT'WTEEL, — 5 17137 7

For (8.13) we have to show that K(/ — %VT_IWT)Q = (I — VT7'WT)y. In this case we

have K(I — %VT_IWT)Q =y— %[&”[&”TVT_le[(g =y—VI~'Why. O
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If we have collected a product of Householder matrices to one matrix according to Lemma
8.8, then by Lemma 8.11 we need the overlapping representation of this matrix in order to
apply it to both kind of vectors, adding type vectors and overlapping type vectors. This
will be the case for Householder reflectors.

Analogously to Theorem 7.37 and the related Algorithms 7.48, 7.50,7.52 we will formu-
late subroutines to compute the collected Householder representations and to apply the
collected product to a vector. For these subroutines we will assume that vy, ..., vs, vs11
are given by their overlapping representations. Any overlapping and adding representation
T = (f(q’r)){w}ej, y = (g(q’r)){w}ej will have its blocks Z(%"), 2(¢") stored on processor ¢.

We start with the collection of Householder reflectors from Lemma 8.8. According to
Lemma 8.8 suppose that (I — Bovevd) - -+ (I — Bsvsv]) have already been collected to one
matrix

() (1B = TV,

where
ﬁl_o UOTU1 o UOTUS
(8.14) Vs = [vo, ... v4], Ty = (Tij)i,jzo,...,s = .
Us—llvs
0 5

Then the product (I — Bovovd) -+ (I — Bevvl)(I — [35+1v5+1v5T+1) =1 - V5_|_1TS__|_11V5§_1 can
be computed by the following algorithm.

Algorithm 8.15 (Product of Householder reflectors from Lemma 8.8)
Let V = V,,v = vy and compute B = vTV by calling Algorithm 7.50 with
X=VandY = %U.

= [Tor10s - Logrs) = By Toyr 511 = 1/Bsy1-

If the product of Householder reflectors is given by I — V,T.7*V.I then the following algo-
rithms compute ¥ = (I — V,T7'VI)® for ® € M (n., xs,R). In order to get no conflict in
the use of X, Y in Algorithm 7.50, the matrices here are called ® and W. The first algorithm
is used for overlapping type vectors and the second one is used for adding type vectors. In
practice, the algorithms coincide, i.e., one can apply any of the two Algorithms 8.16,8.17
to both kind of vectors.

Algorithm 8.16 (Apply Householder reflectors from Lemma 8.11)
Let V = V,, T = T, and compute R = ®TV by calling Algorithm 7.50 with
X=VandY = %6
Solve TR = R stmultaneously on all processors.
FOR all g€ {1,...,p}:
g gl V(q’r)]% for any r such {q,r} € 3.
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Algorithm 8.17 (Apply Householder reflectors from Lemma 8.11)

Let V = V,, T = T, and compute R = ®TV by calling Algorithm 7.50 with
X=VandY = o.

Solve TR = R stmultaneously on all processors.

FOR all g € {1,...,p}:
pler) — @lor) _ %V(q’r)]% for any r such {q,r} € 3.

8.4 Parallel Treatment of S,.,,

After the parallel treatment of Householder reflectors we will discuss the way how the
coupling system S, ,, from (8.3) which is generated by the nested divide & conquer approach
from Chapter 3 can be treated in parallel computations. For m = 0 this was already the
topic of Chapter 7. When introducing low rank updates the remaining coupling system
Se = Sco will be replaced by its Schur-complement, after an equivalence transformation
with Uy. This has been shown in Lemma 3.18. This gives a way to treat the coupling system
Se.m from (3.7), which is involved by the nested divide & conquer process, in parallel. From

Lemma 3.18 it follows that we can write for £ =0,...,m — 1, S.; as
k-1
(8.18) Ser =ULUL - U7 SUg -+ Uy Up = > BuSs B

(=0

and 5., as

A

m—1
(8.19) Sem = UL+ UF 800+ Upiy = Bt SZ Bi.
=0

)

Before we will describe the matrices BM, By, let us assume for a moment that these matrices
are available. Essentially (8.19) says that we have to apply the product of Householder
reflectors and its transpose to 5. followed by m additional low rank modification to obtain
Sem- We can state an algorithm for a multiplication y = 5., . For this algorithm, we
assume that B, B;, are given by their adding representation, SNYCJ should be globally
available. The vector z is assumed to be given by its overlapping representation analogously
to the standard case when y = S.a is computed. Since the size of S, ,, is less than the size
of S. we assume that z,y are extended by n. — r,, leading zeros.
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Algorithm 8.20 (Matrix—Vector Product 5. ,,x)
Bom-1
Let B=[Bp_10s--.,Bmnm-1], B = : , S, = diag (S0, s Sem—t),
Bin-1,m
Apply Algorithm 8.16 with ® =T and result V.
FOR all g € {1,...,p}.
Compute local scalar product of R = 27 B:
R, = Blz,.
Compute global sum R = Zp: R, by data exchange of over all processors.
=1
This sum can be build sin”fultaneously with the global sum in Algorithm 8.16.
FOR all g€ {1,...,p}.
y@r) = BOISIR for any r such {q,r} € 3.
Apply Algorithm 7.52 with X := U and result Y.
Apply Algorithm 8.17 with ® =Y and result V.
FOR all g€ {1,...,p}.
y@or) = y@r) L G for any r such {q,r} € 3.

We have seen that the introduction of By, B,,; only requires two steps of global commu-
nication, while the usual application of S.,, = [ — G,,S ' F requires 3 * (m — 1) steps of
global communication, m — 1 steps for S~! and twice application of Householder reflectors
requires 2(m — 1) steps of global communication. For the collected Householder product
the usual application of S, ,, would still require m + 1 steps of global communication.

We now study the matrices By and Bi,. Following (3.22), By and By, 0 <1 < k < m,
are defined by

(8.21) Bkl = ﬁgﬁg_l s UZTSCJUYZ, Blk = (NJITSCJUIT s Uk_lﬁk.
According to (3.23) B and By, k=0,...,m — 1 satisfy
(8.22) B =Ur_ - UFS. Uy, By = UFS UF - U,y

The definition of BM, Blk, B,.r and By, can be made more transparent, when these matrices
are successively generated and updated. We will show this by the following (sequential)
scheme.

m = 1: Set BI,O = UgSc70U0, BOJ = ﬁgSquo, ggo = UgScﬁo
m > 1: Assume that for all K =0,...,m —2, B,,_; ; and By ,,_1, have been computed.
FOR £ =0,....,m — 2

Bm—l,k Ugr:—l I & 2
|: BmJg :| = |: Ugn“_l Bm—l,ka |:Bk,m—17 Bk,m:| = Bk,m—l |:Um—17 Um—1:| .

Bm,m—l = Ugr:_lsc,m—lﬁm—la Bm—l,m = Ugr:_lsc,m—l[jm—l-

Sc,m—l — Ugr:_lsc,m—lUm—l-

This scheme shows that in any step from m —1 to m the old matrices By, ,,_1, B,,—1 5 will be

updated by a Householder transformation to become B,,_1 i, By, x and By ,—1, By . Then
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new matrices By, ;—1, By—1,m are generated. Of course for the use in parallel computations
the computation of B,, ,,_1, B;n—1,, has to make use of the representation of S, ,,_; from
(8.19) with m replaced by m — 1. In this case the computation of By, -1 and Bu_1,
changes to the following sequence.

Y1 =Uy- - Up—2Uy_1.
7T 7T T m—2 51 T
Bm,m—l T Um—lUm—2 e UO SCYm—l - =0 BmvlSc,l Bl,m—l-
L uT A A A —g L4
Bm—l,m = Ym_lchO T Um—QUm—l - =0 Bm—l,lScJ Bl,m-
S T m=2 p G-1F
Sc,m—l = Ym_lscym—l - =0 Bm—l,lScJ Bl,m—l-

For a sensible use of BM, Blk, B,.r and By, we will now present a concept. These additional
low rank modifications have to be sensibly handled in order to avoid too much additional
communication. The concept can be divided into three parts. The first part will be a
strategy for the distribution of BM, Blk, B,.;; and By,,. The second part will be a analogous
strategy for the distribution of Vi from (8.14). Finally the third part will consider the
computation of B, 1, Bym_1 and §c7m_1.

To present the first part we set

gc,O BO,I Tt Bm—l,O BO,m
BI,O ‘ ‘ : :
Bm = N : N B@—Q,m—l Bm—Q,m
Bm—l,O Bm—l,m—Q Sc,m—l Bm—l,m
Bm,O Bm,m—? Bm,m—l H Sc,m

The idea is now to keep some part of B,,, namely the upper left part with qu, Bu, By
on all processors. Since sg,...,s,,_1 are small compared with n., this requires not too
much storage and overhead. The part with By,,, B,,; will be held as adding type vectors,
distributed over the processors. Finally 5., will stay in its factored form as in (8.19). We

give a sketch of the memory distribution for B, and B,,;; for the case s =--- =3, = 1:

m Ne—m m+1 ne—m—1
globally distrib. distrib. globally | globally distrib.

" available | add. type | add. type available | available || add. type
distrib. m+1 globally | globally distrib.

add. type available | available || add. type

e distrib. Seum ) { distrib. distrib.

add. type ) add. type | add. type Semt1

Bm

Bt

In order to provide this memory distribution we will give an algorithm which

computes Bri-10 Brn—1,m—2 from Bn_10,..-,Bm-1,m—2 and which makes
Bm,O Bm,m—?

By_10,.-.,Bn_1m—2 globally available. For the algorithm we assume that

B._10,..., By_1.m—2 are expanded by m — 2 leading zeros and that B,,_10,..., Bn_1m—2
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are given by their adding representations. We assume that U,,_; is given by its Householder

representation = [ — 3,,_1v,,_1v1 _|, computed by Algorithm 8.10.

Algorithm 8.23 (Update B,,_10,..., Bu—1,m-2)
Let B=[Bn-10,--sBm-1im-2], vV = V1, B = Bim-1.
FOR all g € {1,...,p}.
Compute local scalar product of R = v B:
R, =v!B.
Get rowm — 1 of distributed stored matriz B:
IF B, contains the (m — 1). row of B, then let Z, be this row.
ELSE 7, = 0.

P
Compute global sum [R,Z] = Y[Ry, Z,] by data exchange of over all processors.
q=1
B=7—-03R.
FOR dall g€ {1,...,p}.
B,=B,— iv,R.

2
IF B, contains the (m —1). row of B, then set this row to 0.

= Bm—l,Oa ceey Bm_Lm_Q — B7 [Bmp, ceey Bm,m—2] — B

For the second part we note that in order compute By, ,—1, By—1,,m and Sc,m—1 we have to
compute Y,,_; = Ug e Um_QUm_l from (8.3). The computation of Y;,_1 no longer requires
the expensive successive application of elementary Householder reflectors. If the product
of Householder reflectors has been collected, then Y,,_; corresponds to s,,_; columns of
Q) m—1. For simplicity of representation we will again assume that so = --- =s,, = 1. Then

V-1 will be column m of Q_1. Let Vi, = (vi),_, nek=0....m_1s then

(824) Ym—l = Qm—lem = CEm — m—lTrgil(Umk)zzo,...,m—l'

For this operation no additional scalar product is necessary, but we should ensure that
(Vmk)p—o .,y 1s available on all processors. To ensure this we have to proceed for
T—1, Vin—1 analogously to B,,. Set

Too Toa s Tom
V1,0
Tm—l,m
Nm = Um0 0 Umom—1 Tm,m
UTTH‘LO e e Um_l_Lm
U’]’Lc70 DTS DTS /Unc7m

Note that by construction of Householder reflectors in Algorithm 8.10, V,,, is a lower tri-
angular matrix with unit diagonal. For N,, and N,,1; we will construct a similar memory
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distribution as for B,,, B,11:

m m+1
globally globally globally
" available available available
distrib. e globally || globally
overl. type avallable avallable
e distrib. distrib. distrib.
overl. type | "~™~1 3 | overl. type || overl. type
—_——
Nm Nt

veey

Algorithm 8.25 (Product of Householder Reflectors)
Let V =V, _1,v=uv,.
FOR all g € {1,...,p}.

Compute local scalar product of R = vV :

v, = %Uq, R, = QqTVq.

Get row m of distributed stored matriz 'V :

IF  V, contains the m-th row of V, then let Z, be this row.

ELSE 7, = 0.
P
Compute global sum [R, Z] = > [R,, Z,] by data exchange of over all processors.
q=1
= [Ump, Ce 7Um,m—1] = %Z, [TOJH? Ce 7Tm—1,m] = R, Tm,m = 1/6m

Finally as third part we will discuss the computation of B, 1, By—1,m and Sc,m—1 using
the special distribution of By, By, By, k. Bim and V,,_;. Recall that

Ym—l = UO te Um—QUm—la

m—2
A7 A o 57
Bm,m—l - Um_lUm_Q T Uo ScYm—l - E Bm,lScJ Bl,m—la
=0

m—2

T A A A ~ 51
Bm—l,m — Ym_lchO T Um—QUm—l - E Bm—l,lScJ Bl,ma
(=0

m—2

Sc,m—l — YTZ_l’ScYm—l - Z Bm—l,lggllél,m—l-

(=0

For the computation of these values we can formulate the following algorithm.
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Algorithm 8.26 (New Low Rank Update)
Let y = Yoo1,0 = (0o oy Ummet) s Ty = T,V = Voot B = By, B =
By_1m, 5} = §c7m_1.
Computation of y:
FOR all g€ {1,...,p}:
Solve Tz =v, y=0.
If y, contains the m—th component of y, then set this component to 1.

Yg =Yy — qu.

Computation of B, B', S,

Perform ¢ = Sy, d¥ = y*'S, applying Algorithm 7.52 with X =5, 7".

Compute R = yTc using Algorithm 7.50 with X =75, Y =

Multiply ¢,d by the product of Householder reflectors applymg Algorithm 8.17 with

X = [¢,d] and denote the resull again by [c,d].
The global sum in Algorithm 7.50 and Algorithm 8.17 can be carried out simultaneously.

Update S., B, B':
- - - T -
= |:S;(}B0,m—17-- Scé 2 B 2,m—1:| , b= { m— 105007---,Bm 1m— 2Scm 2

gc = R- |:Bm—1,07 ceey Bm—l,m—Q

B=c- [Bm,Ov"'vBm,m—Q] a, B'= (d_ {Bg:m—lv" BTTn 2,m—2
Set the entry m — 1 of B, B’ to 0.

T

a

b7,

To end up with a parallel version of the nested divide & conquer algorithm (3.15),(3.12)
we obtain the following algorithm, which summarizes the previous steps.

Algorithm 8.27 (Parallel nested D & C) Consider a modified block Jacobi—splitting
from (7.10). Assume that Aqr,Fq{q’r},Géq’r},Fr{q’r},qu’r} are stored on processor ¢ and r
at the same time, ¢,r =1,...,p.
FOR m =0,1,2,...
Consider w = U,, € R™\ {0} and assume that the first m rows of u are zero and
that u is given by its overlapping representation.
Step 1. Compute the Householder representation H = I — BvvT of u applying
Algorithm 8.10.

Step 2. Compute column m of T, and make vy, g, ..., 0p.m globally available
using Algorithm 8.25.
Step 3. Update [Bmp, ceey Bm_Lm_Q], [Bgm, .. BT

2 1] and make

B_10.--., Bm_17m_2:| , |:BO,m—17 ey Bi—?,m—l} globally available by

calling Algorithm 8.23.
The global sum in Step 2 and 3 can be performed simultaneously.

Step 4. Compute B,—1.m, Bm—1, §c7m_1 and make §c7m_1 globally available using
Algorithm 8.26.
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Algorithm 8.27 provides the matrices BM,Blk, By, B, and SNYCJ for the matrix—vector
multiplication with S, ,, in Algorithm 8.20. This shows that the parallel treatment of S, ,,
can be traced back to the parallel treatment of the initial coupling system S. by using
collected products of low rank modifications. Once the collected products are used for the
product of Householder reflectors and once they are used for the low rank updates of the
coupling system.

8.5 Parallel Application of Snfbl

As a consequence of the representation of 5., in Section 4 we can easily solve a system
with 5,,. Again we will assume for simplicity that sg = --- = s, = 1. Let Q,,,_1 =

Qm_1[€1,--.,€nl, then

Sat= (8= FQuaQf,_,G)!
(8.28) = ST 4 STRQ, 1 (QF _S.Q,_) QTGS

But for Q 1S Q.n_1 we obtain the LU decomposition by takmg the upper left m x m part

of L, D, R from Lemma 3.18, which consist of the matrices BM, Blk and Sc 10 Nl < k<m.
But thls part is globally avallable We denote these matrices by Lu,_1, D1, Bp_1, €.,

Q Sle—mlelle

Since the first m x m part of V,,_; is also available on all processors, Q,,_; can be directly
accessed. We denote this upper m x m part of V,,_y by V,,_;. In this case we have

C?m—l - [617 sy em] - Vm—lTT;iIVTZ—I

The application of Q,,_1, CNQTTn_l will be done in the following two algorithms. For the mul-
tiplication with (),,_; we will end up with an overlapping type vector, while for Q1 | we
assume that the right hand side is given by an adding type vector.

Algorithm 8.29 (Multiplication with Qum_1)
LetV = Vm 1,V Vo1, T =T,,_1 and compute X = Qm 2.
FORI!=0,....m—1
IF X, contains the (I +1). component of X then set this component to
the (I +1). component of Z.
ELSE Set component [ +1 of X, to 0.
FOR all g€ {1,...,p}
X —xer) V(q’r)(T_l(\N/TZ)) for any r such that {q,r} € 7.
= X is given by its overlapping representation.

127




Algorithm 8.30 (Multiplication with Q7 _,)
LetV=V,_ 1,V Vi1, T'=1T,,_1 and compute Z = Q
FOR [ =0,. —1
IF X contams the (I +1). component of X then let 7, be this component.
ELSE Set component [ +1 of X to 0.
FOR all g€ {1,...,p}
R, =V, X,
Compute [R, Z] = 2521 [Ryy Zo.gs« s Zm—14) by exchange of over all processors.
Z=7-VITTR.

This simplifies the application of S!, since only the application of CNQTTn_l requires one step

of global communication.

We assume that b = (bq)q:1 ..p € R™is distributed such that b, lies on processor ¢. The

solution of S~'b will be denoted by = = (z

q)q:L...,p'

Algorithm 8.31 (Solving a system S,z = b in parallel)
Compute X = GS™1b:
FOR allqE {1,...,p}
X G{q’r}S lbq, for any r such that {q,r} € 1.
— X s given by an addmg representation.
Compute 7 = Qm—lX applying Algorithm 8.30.
Solve f/m_lf)m_lfx’m_le = 7.
Compute X = QTTn_le applying Algorithm 8.29 with 7 = e and result X.
Final update x = S™Hb+ FX):
FOR all g€ {1,...,p}

— T ~=(a.7)
Lqg = Sqql <bq + Er:{q,r}ej Fq{q }X ! >

In contrast to Algorithm 3.15,3.12 we do not need any more the matrix Er = S, le
from (8.1). Instead we have introduced the matrices Bkl, Blk, By, B, which have several
advantages in the parallel realization of the nested divide & conquer method. In addition
B, B typically need much less storage than FEj, since they are only of the same order
as the coupling system.

So far we have not discussed the choice of Uy. For the positive definite case we have by
Lemma 3.31, that skillful linear combinations of eigenvectors are optimal with respect to
the condition number of the remaining system. We can compute approximate eigenvectors
using Lanczos” method[67]. For the unsymmetric case it is still open, which orthogonal
transformation should be used. On one hand an orthogonal transformation which corre-
sponds to an invariant subspace may be useful in combination with a preconditioner, but
on the other hand this may be hard to obtain. Another way can be to take U, from the
Hermitian part or skew-Hermitian of S, in order to modify the field of values.

If U, is taken from the Arnoldi process, then the computation of By, ,,—1 in (8.22) can be
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simplified since By, -1 = Ug_lsqm_lf]m_l. The Arnoldi process [41],pp.501-502, gener-
ates a sequence of the following form.

Sc,m—l‘/t = ‘/t—l—lgt

where V; = [v1,..., v, Vie1 = [Vi, ve41] and Viyg satisfies mﬁlWH = 1.
, H,
H, =
t 0 - 0 huyry

where H; is an upper Hessenberg matrix. In this case ﬁm—l will have the form ﬁm—l = Vt\N/.
From this 1t follows that

Bm,m—l — Ugr:_lsc,m—l‘/tf/ — ng_l(‘/t—l—lﬁtf/)-

But Vt_|_1[:]t\N/ is typically much easier to compute that S, ,,_; (N]m_l which shows that the
computation of B, ,,_; can be essentially simplified.

Unless S. -1 is symmetric, By,_1,, still has to be computed using (8.22). In the symmetric
case only By ,,—1 with [ > m is necessary for symmetry reasons.

Summary

The parallel realization of nested divide & conquer methods has been discussed in detail.
For the update matrix U, its Householder representation has been used. Since the successive
use of Householder reflectors involves several steps of communication, the reflectors have
been collected in a single matrix reducing the data traffic to only one communication step
each time when they are applied. The same collected representation has been made for
Sk_l and S.;. To get this, additional matrices have been introduced which can be seen
as part of the nested LU-decomposition of S.. Their generation and the way one has
to work with these matrices has been described in Algorithm 8.27. The algorithm has
taken care of reducing communication time by collecting operations which can be done
simultaneously and performing the communication afterwards. The introduction of the
additional matrices has turned out to simplify the use of nested divide & conquer methods
in parallel computations.

The parallel realization of nested divide & conquer methods can be summarized in the
following table.

129



Initial

coupling system

Nested Divide & Conquer

partial generation
of the LU collected product

decomposition of low rank
of the modifications

coupling system

!

Use of overlapping/adding type vectors

!

Initial coupling system

+ additional low rank updates
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Chapter 9

Numerical Results

In this chapter we will illustrate the theory that has been presented for several numerical
examples.

We will start with the symmetric positive definite case. In this case we will first examine
the modified block Jacobi splittings from Chapter 6. Then we will present numerical results
for the corresponding parallel realization.

As third part we will discuss some unsymmetric examples. For these examples we will also
examine the modified block Jacobi splittings from Chapter 6. In addition we will illustrate
how the nested Divide & Conquer strategy can be applied in these examples.

The programs that have been used are on a floppy disk, which has been added to this
paper.

9.1 Numerical Examples on Modified Block Jacobi
Splittings

To show the improvements of the coupling system S. when using modified block Jacobi
splittings from Chapter 6 we will examine several examples. We will compare the unmod-
ified block Jacobi splitting from Definition 5.2 with the modified block Jacobi splitting
constructed by Algorithm 6.89 and the modified splitting obtained by Algorithm 6.90,
that is the approach which does not require the parameter a from (6.49).

The case when C from Lemma 6.19 is singular will be illustrated for an example.

We denote by 2(B) = Amax(B)/Amin(B) the condition number of B. For S7'A this will

be the condition number of 551/2145;1/27 where S is the block diagonal part of A. S, .
will be the coupling system with respect to the optimal block diagonal modification from
Algorithm 6.89. S s, will be the coupling system from Algorithm 6.90.

In all these examples we will compare the block Jacobi method with Algorithm 6.89 and
Algorithm 6.90 for various numbers p of blocks, p = 2,4,8,16,.... The relation between p
and the size n of the system together with the size of the blocks will restrict the freedom in
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choosing p. In many examples the maximum number p of blocks will be < 8. Therefore the
requirement to have a small coupling system compared with the size of the initial system is
not fulfilled and the computation time in calculating the modified block diagonal splitting
will be expensive. However these examples can be used to illustrate the improvement of
the coupling system.

The computation were carried out using MATLAB [60]. For the computation of the
parameter « in Algorithm 6.89 we used MATLAB ’s ‘eig’ function.

Note that by computing D, D from Lemma 6.19 and X we get an explicit representation
of S. in (6.9). This will reduce the number of flops when applying a matrix—vector
multiplication S. - z, e.g. using the cg—method.

For any example we will compare the following four topics.

1. the condition number x5 of Sle with those of S¢ ope, 5S¢ fo-
2. the number of iterations needed by the CG—method

3. the number of sequential floating point operations( flops ) for the LU-decomposition
versus the flopsrequired for the generation of X in Algorithm 6.90.

4. the number of flopsfor the iterative solution process for the block Jacobi method
versus the number of flopsrequired by Algorithm 6.90.

As stopping criterion for the solution process we will use ||ry|| < \/eps||rol[, where ry is
the residual in step k. Here eps ~ 2.2204 - 1071, The iterative solution is performed ten
times for random right hand sides and finally the average is taken. As initial guess we will
choose zg = 0.

We will consider several examples from the Harwell-Boeing sparse matrix collection [28].
The test matrices can be accessed via anonymous ftp from ftp.orion.cerfacs.fr.

Example 9.1

The matriv LANPRO/NOS1 is symmetric
positive definite, its size is n = 237 and it s
block tridiagonal with all blocks of size 3 x 3.
Its pattern is illustrated in the picture on the
right hand side. We will apply the three meth-
ods to this this matriz for various number of

blocks p = 2,4,8,16, 32.

0 50 100 150 200
nz = 1017
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The condition number of the preconditioned matrixz is given in the following table.

Condition Number
L r\p | 2 | 4 [ 8 | 16 | 32 |
/432(5}114) 1.4-10° | 3.4-10° | 6.4-10° | 1.2-107 | 2.2-107
Ka(Seopt) 1.3-10° | 4.3-10" | 7.4-10% | 1.3-10* | 4.2-10°
Ka(Se f0) 4.0-10° | 6.2-10" | 1.1-10° | 1.8-10* | 3.4-10°

From the comparison of the condition numbers we expect a remarkable difference in the
number of iterations for the CG—method, at least for smaller numbers p.

Number of Iteration Steps

la\p 2] 4[8] 16] 32|
STTA 929180 171] 524
Seopt || 4110 241 53] 200
Sero [ 41101 24| 561 188

In spite of a large condition number the number of iterations is relatively small. This is
probably related to the low rank property here. For S7'A the rank rank of the remaining
matriz will be 6(p — 1) and the size of S. will be 3(p —1). Again the condition number and
the number of iterations for Algorithm 6.89,Algorithm 6.90 are quite close to each other.
At last we will compare the number of flops. We will split this into two parts. The first
part will be the number of flops for the Cholesky decomposition compared with the number
of flops for the generation of X from Algorithm 6.90. The second part will be the number
of flops for the solution process.

flops for Cholesky Decomposition Versus the Generation of X

| flops \ p I 2 [ 4+ | & | 16 | 32 |
Cholesky decomposition Sy | 3.8-10° | 3.6-10° | 3.4-10° | 2.2-10° | 1.7-10°
Alg. 6.90 Seto || 7.8:10° | 1.2:10* | 2.5-10* | 6.9-10* | 2.5-10°

flops for the Solution Process

[ flops\p[| 2 | 4 | 8 16 32
S7'A 7.4-10% | 2.4-10° [ 6.4-10° | 1.3-10° | 2.3-10°
Se.so 1.2:10* | 1.5-10* | 3.4-10" | 1.3-10° | 9.2-10°

Total Amount in flops

[ flops\p| 2 | 4 | 8 [ 16 32
S7'A 7.8-10% | 2.4-10° [ 6.5:10° | 1.3-10° | 2.3-10°
Se.fo 2.0-10" | 2.7-10" [ 6.0-10* | 2.0-10° | 1.2-10°
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As expected, the generation of X will be more expensive than the pure Cholesky decomposi-
tion. But the additional number of flops is moderate since only 6 right hand sides have to
be solved with Sy in Algorithm 6.90. As side effect of the generation of X, S. is explicitly
computed and thus a step of the solution process for S. will need much less flops than the
corresponding solution process for the block Jacobi method. This compensates the more ex-
pensive generation of X . In addition the number of iterations has been significantly reduced
when the CG method s applied to S, ;,.

Example 9.2
The matriv LANPRO/NOS2 is symmetric 0

positive definite, its size is n = 957 and it s
block tridiagonal with all blocks of size 3 x 3.
We will examine this matriz for various num-
ber of blocks p = 2,4,8,16,32,64. 300y

4001

100

2001

500

600

7001

800

900

0 200 400 600 800
nz = 4137

The condition number of the preconditioned matrixz is given in the following table.

Condition Number
Lo w\p [ 2 [ ¢4 | 8 [ 16 [ 32 | 64 ]
/432(5}114) 8.4-10% | 8.1-10% | 1.6-10° | 3.1-10° | 5.9-10° | 1.1-10'°
Ka(Seopt) 1.3-10° | 4.1-10' | 6.4-10% | 1.0-10* | 1.7-10° | 3.3-10°
Ka(Se f0) 4.0-10° | 7.2-10" | 1.2-10° | 2.0-10* | 3.2-10° | 2.8-10°

Like in Example 9.1 the condition number is clearly improved by Algorithm 6.89 and Al-
gorithm 6.90. Next we compare the number of iteration steps in the cg—method.

Number of Iteration Steps

L p» [ 2[4[8116] 32 [ 64]
STTA [ 11] 58] 111 359] 1015 | 2271
Seom | 4110 24| 57| 161] 527
Sero | 41 10] 25| 63| 19| 501

Due to the low rank property the big condition number does not affect the problem for small
p. But for larger p the number of iterations increases drastically. For Algorithm 6.89,6.90
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this effect is not so critical as for the block Jacobi method. But for larger numbers of p the
improvement is weaker.

Again we will compare the number of flops for the Cholesky decomposition versus the gen-
eration of X and for the iterative solution process.

flops for Cholesky Decomposition Versus the Generation of X

| flops \ p I 2 [ 4 | & | 16 | 32 | 64 |
Cholesky decomposition Sy || 1.6-10* | 1.6-10* | 1.6-10* | 1.5-10* | 1.4-10* | 9.1-10°
Alg. 6.90 Seso | 3.0-10* | 3.9-10* | 5.7-10* | 1.0-10° | 2.8-10° | 9.7-10°

flops for the Solution Process

[ flops\p|| 2 | 4 | 8 [ 16 | 32 | 64 |
S7TA [3.7:10° [ 1.3-10° | 3.8-10° [ 1.2-107 | 3.3-107 | 6.8-10"
Se.fo 4.7.10" [ 5.1-10* [ 7.1-10" | 1.8-10° | 9.9-10° | 5.9-10°

Total Amount in flops

[ flops\p[| 2 | 4 | 8 [ 16 | 32 | 64 |
S7'A [3.9-10° [ 1.3-10° | 3.8-10° [ 1.2-107 | 3.3-107 | 6.8-107
Se.so 7.7-10* [ 9.0-10 [ 1.3-10° | 2.8-10° | 1.3-10° | 6.9-10°

Algorithm 6.90 needs significantly less flops than the block Jacobi method. The fact that the
system ts very ill-conditioned extremely affects the block Jacobi method, while the influence
of the huge condition number is much less for Algorithm 6.89,6.90. Like in Frample 9.1
the additional amount for generating X is quite moderate, since for the computation of
D, D 6 right hand sides have to be solved. This is neglectible compared with the number of
iterations for the solution process.

Example 9.3

The matric BCSSTRUC1/BCSSTKO03 is
symmetric positive definite, its size is n = 112
and it is block tridiagonal with all blocks of size
4. Its pattern is illustrated in the picture on the
right hand side. We will examine this matrix for
various number of blocks p = 2,4.8.

40 60
nz = 640

The condition number of the preconditioned matrixz is given in the following table.
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Condition Number

‘ Ko \ P H 2 4 8
ro(S7TA) || 1.8-101 | 5.2:10% | 2.0-10°
Ko(Seopt) || 1.3-10° [ 1.8-10° | 2.9-10°
ko(Ses0) || 1.2-10° | 1.8-10° | 2.3-10°

The condition number of the coupling systems Se pi, Se o 15 extremely improved compared
with the condition number of S7'A. Thus we expect a remarkable difference in the number

of iteration for the CG—method.

Number of Iteration Steps

[a\pJ 2] 4]8]
STTA 8] 22] 53
Seot | 4] 9] 23
St | 4] 9] 20

Although the condition number has been significantly improved by Algorithm 6.89,6.90, the
number of iterations of the block Jacobi method is moderate. Here again the low rank will
reduce the number iteration steps. At last we will compare the number of flops.

flops for Cholesky Decomposition Versus the Generation of X

flops \ p H 2 ‘ 4 ‘ 8 ‘
Cholesky decomposition Sy || 2.1-10° | 1.8-10% | 1.2-10°
Alg. 6.90 Seto || 5.7-10° | 1.2-10* | 3.3-10*

flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8
STTA 3.6-10* | 9.4-10* | 2.1-10°
Se to 6.8-10° | 1.1-10% | 3.0-10*

Total amount in flops

[flops\p[ 2 [ 4 [ 8
STTA 3.8-10% [ 9.5-10 | 2.1-10°
Seto 1.2:10% | 2.3-10% | 6.3-107

The more expensive generation of X in Algorithm 6.90 compared with the Cholesky decom-
position for the block Jacobi method will be equalized by the iterative solution process. The
overhead for generating X is moderate (8 right hand sides) while the number of iterations

will be clearly reduced.
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Example 9.4

The matrix BCSSTRUCI/BCSSTKO9 18 1000
symmetric positive definite, its size is n = 1083
and it is block tridiagonal with blocks of size
57 x 57. Its pattern is illustrated in the picture
on the right hand side. We will examine this
matriz for various number of blocks p = 2,4, 8.

200

300

4001

500+

600

700

800

900

1000+

0 200 400 600 800 1000
nz = 18437

The condition number of the preconditioned matrixz is given in the following table.

Condition Number

LN\ | 2 | 4 | 8 |
ko(S7TA) || 3.2.10° | 6.6-10° | 1.3-10*
Ko(Seopt) || 1.3-10° | 3.8-10% | 1.3-10°
#o(Seso) | 1.1-10° | 3.1-10% | 1.1-10°

From the comparison of the condition numbers we expect a clear improvement in the number
of iteration for the CG—method at least for p = 2 and p = 4. In fact this will be the case
as the following table will show.

Number of Iteration Steps

Lit\pfl 2] 4 ] 8]
STPA | 50 113 ] 172
Seopt | 6] 221118
Sero | 5] 211 102

Again we will compare the number of flops.

flops for Cholesky Decomposition Versus the Generation of X

| flops \ p [ 2 [ 4 | 8 |
Cholesky decomposition Sy || 1.7-10° | 7.1-10° | 1.8-10°
Alg. 6.90 Seto || 9-1-10° | 2.5-107 | 7.7-107
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flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8
STTA 1.0-107 | 1.7-107 | 1.8-107
Se.fo 5.7-10° | 2.1-10° | 2.1-107

Total amount in flops

‘ flops \ p H 2 ‘ 4 ‘ 8
STA | L2107 | L8107 | 18107
S 0.7-10° | 2.7-107 | 9.8-107

The fact that the size of the off-diagonal blocks is 57 means that Algorithm 6.90 has to
spend a large amount of computational cost into the generation of D, D and D~ (114 right
hand sides). On the other hand the size of S, will be 396 for p = 8. Compared with the size
n = 1083 of the initial system S, cannot be called small. In addition the improvement in the
condition number is for p = 8 not so great. So the number of iterations for the CG—method
is not essentially reduced for p = 8. Here the block Jacobi method will need less flops than
Algorithm 6.90.

Example 9.5
The matric BCSSTRUC2/BCSSTK16 is 0

symmetric positive definite, its size is n = 4884 500l
and it is block tridiagonal with blocks of size
< 138 x 138. [ts pattern s dlustrated in the
picture on the right hand side. We will exam-

1000
15001
ine this matriz for various number of blocks 2000t
p=2,4,8,16. 2500f
30001
3500

40001

4500

0 1000 2000 3000 4000
nz = 290378

The condition number of the preconditioned matrixz is given in the following table.

Condition Number

L\ | 2 | 4 | & | 16 ]
ro(S7TA) [ 1.4-10% | 2.3-10% | 4.6-107 | 9.9-10?
Ko(Seopt) || 1.3:10° [ 1.8-10° | 6.6-10° | 4.6-101
#2(Seso) || 1.0-10° [ 1.8:10° | 6.6-10° | 4.8-10*

The small condition numbers of Seopt, Se,so ensure a small steps of iteration for the CG-
method. We may expect an improvement in the number of iterations which is partially
confirmed by the numerical observations.
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Number of Iteration Steps

li\p| 2] 4] 8]16]

STTA 19 26| 34| 47
Seopt | 7] 91| 211 53
Sc,fo 5 91 20 54

Although the system obtained by Algorithm 6.90,6.59 is better conditioned than the initial
matriz, preconditioned by the block diagonal matriz Sy, the number of cg—iterations for
this preconditioned system is small. Here we cannot expect an improvement neither in the

number of iterations nor in the total amount of computational work.

flops for Cholesky Decomposition Versus the Generation of X

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16 ‘
Cholesky decomposition Sy | 2.3-10% | 1.4-10% | 4.6-107 | 1.2-107
Alg. 6.90 Seto | 3.8:10% | 4.6-10% | 8.7-10% | 2.5-10°

flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16 ‘
STTA 7.7-107 | 8.8-107 | 7.8-107 | 7.2-107
Se. fo 9.6-10° | 1.1-107 | 2.3-107 | 1.1-10%

Total amount in flops

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16 ‘
STTA 3.1-10% | 2.2-10% | 1.2-10% | 8.4-107
Se. fo 3.9-10% | 4.7-10% | 9.0-10% | 2.6-10°

Algorithm 6.90 cannot compete in this case, although the condition number s approrimately
102 less than for the block Jacobi method. The condition number itself only gives few infor-
mation about the eigenvalue distribution of the corresponding matriz. But the eigenvalue
distribution will be more important for the solution process than the condition number. This
may be the reason for the few steps of iteration for the block Jacobi method.
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Example 9.6

The matric BCSSTRUC3/BCSSTK20 is |
symmetric positive definite, its size is n = 485
and it is block tridiagonal with blocks of size <
15x15. Its pattern is llustrated in the picture on
the right hand side. We will examine this matriz 200}
for various number of blocks p = 2,4, 8,16.

100

150+

3001

3501

400

450

0 100 200 300 400
nz = 3135

The condition number of the preconditioned matrixz is given in the following table.

Condition Number

L w\p [ 2 [ 4 [ 8 | 16 ]
k2(S7TA) [ 1.8:10% [9.4-10% | 5.3-107 | 1.2-10™
F2(Seopt) || 1.3-10° [ 1.8107 | 6.0-10° | 3.1-10°
k2(Seso) || 1.O-10° [ 1.210% | 4.6:10° | 1.2-10°

Algorithm 6.90 and Algorithm 6.59 show a drastic improvement for the condition number
Of Seopts Se.to compared with S7'A. From this we expect that the number of iterations for
the CG-method is significantly reduced by Algorithm 6.90 and Algorithm 6.89.

Number of Iteration Steps
la\p 2] 4| 8] 16|
STYA 44 ] 1221 390 | 997

Soopt || 6] 27| 63 266
Seso || 5| 25| 63] 291

As expected the number of iterations for Se,u, Se o 15 much less than for the block Jacobi
method. At last we will compare the number of flops .

flops for Cholesky Decomposition Versus the Generation of X

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16 ‘
Cholesky decomposition Sy || 1.5-10* | 1.2.10* | 9.2-10% | 7.5-10°
Alg. 6.90 Seto | 9.2:10* | 1.3-10° | 3.0-10° | 9.0-10°
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flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16
Sle 9.4-10° | 2.5-10° | 7.7-10° | 1.9-107
S 33107 | 9.3-107 | 2.810° | 2.0-10°

Total amount in flops

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16
STTA 9.6-10° | 2.5-10° | 7.7-10° | 1.9-107
Se.fo 1.3-10° | 2.3-10% | 5.7-10% | 2.9-10°

The generation of X in Algorithm 6.90 requires the additional solution of up to 30 right
hand sides with Sy in order to compute D,D and the size of S. will be approximately
15,45,105,225 for p = 2,4,8,16 which is at least small for p < 8 compared with the total
size n = 485 of the system. But on the other hand this additional amount of work will
be equalized by the iterative solution process. In addition the system preconditioned by the
block-Jacobi method is still ill-conditioned while the improvement for S. ends up in much
smaller number of iterations.

Example 9.7

As final example for the use of modified block Jacobi splittings we discuss the case when the
matriz C' from Lemma 6.19 in Chapter 6 is singular. Throughout Chapter 6 we considered
only the case when C is nonsingular. The nonsingularity of C' has played an important
role in deriving explicit solution for the Riccati equation (6.12). Here we will show for
an example that the singular case is more technical but in principle it can also be treated
similarly to the nonsingular case.

Consider the matrix

T -1 4 -1
A, = ! T ,_.[ y e R™", where T = ! 4 ,_.1 . e RVN n = N2,
T R
This matriz has already been discussed in Example 6.3, 2.15. A arises from the discretiza-
tion of the problem

—Au = fin[0,1]?
u = gon d[0,1]?
using five point star difference discretization [/8]. Its graph can read as a checker board

having the crossings as nodes. Assume that its graph is partitioned into 4 parts checker
board—wise.
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Fach part should correspond to a diagonal block of A after a permutation PTAP with a
suitable permutation matriz P. This case is of special interest, since assumption (6.32) of
Lemma 6.31 ts violated and C' will be singular in this case. By taking the blocks in the order
1,4,2,3 we obtain the following system. Set m =n/4, K = N/2.

Aw O | =B —F

T D e oh

" “ET —F| A, O |
—FT —E‘ 0 A,

E, F are defined by
E=1Ix® ((f]x"@{)a F= (GKG?) ® Ik.

Here @ denotes the Kronecker product (see e.g. [3], p.149). Here L from (5.12) will corre-

spond to the nonzero columns of

E F
FTopT
O .- .- 0
O -« -« 0O
Denote the set of nonzero columns of this matrixz by 11, ...,1,. The indices are illustrated
by big bullets in the picture below.
1 2
3 4
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The indices 11, ...,15 can be grouped together into four sets corresponding to the four pairs
{1,2},{2,3},{4,2},{4, 3} which will form the setJ from (5.5) for the block partitioning of
the coupling system. These are the following entries. For the connection between subdomain
1 and 2 we have

K.N+K2N+K,....(K—1N+K

for the connection between subdomain 1 and 3 we have
(K—UD)N+1,(K-1)N+2(K-1)N+3,....(K—-1)N+ K
for the connection between subdomain 3 and 4 we have
KN+ K41, (K+ )N+ K+1,(K+2)N+ K+1,....,(N=1)N+ K +1
and finally we have the entries
KN+ K+ 1, KN+ K+2, KN+ K+3,...,(K+1)N

for the connection between subdomain 2 and 4.

Here the indices with label (K — 1)N + K and KN 4+ K + 1 appear twice. From this it
follows that L is rank deficient. The rank will be 2(N — 1) instead of 2N, but it is easy to
caleulate a full rank decomposition of L. For this we only have to annithilate the duplicate

entries.
(o

We obtain a decomposition L = [Ly, 0] {Uq where Uy has size N x 2. Up to additional

1

3 >:<ﬂ 0).

V2

S-S

vy

zeros, Uy will correspond to

|H§|H Sye

V2

The theory of Chapter 6 is based on the splitting A = S;— LM — M*L*. By setting M, =
UM we obtain A = Sy— LMy — M; L} with a full rank matriz Li! So in principle we can
apply the theory from Chapter 6 for the problem, where L, M are replaced by Ly, My. In this
case Th(a) = aT—101—1 — Dy and aT‘HCl_l will be almost optimal. Here Dy = LT S7'Ly, Dy =
MlTSlel and Cy; = LITA_ILl = D1_1 — D1 denote the reduced problems. After X is
chosen as approzimation to Ty(«) the modified S is defined in (6.8) by S = Sy+ L1 X117+
M X7 M. Typically this matriz is no longer block diagonal even if Xy is block diagonal.
To get a block diagonal matriz S we have to use a block diagonal matric X = NN* and S =
Sy+ LXL*+MX~YM* for the original unreduced problem. But these matrices have larger
size. A natural choice will be to approvimate Uy T)(a)UL + UsUL or aT"HUlcl_lUlT + U, U]
by a block diagonal matriz X.

In order to reflect the rank deficiency of L by this choice we can utilize the nested divide &
conquer method from Chapter 3. By the nested divide & conquer method from Chapter 3
we replace the initial given splitting A = S — FFT by a new splitting A = S; — Fy F'L where

o °§|H§|“
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Sy, Fy are obtained from S, F' in the following way. If V = {\N/, V} is orthogonal, then we
have o o
A=S—FFT =(S—FVVIFDY - vV VTFT,
N N —

S, " FT

By Lemma 3.18 the corresponding new coupling system S.; can be obtained from S. by
taking the Schur—complement of VI S.V. In terms of the inverses we have that Sc_ll =

VTSC_IV. On the other hand, by (6.21) we have for the initial problem NST'N* = (X +
DYC(X+D)+(X+D). The reduced problem will be (X1+ D1)C1(X14D1)+(X14 Dy). But
this matriz coincides with Uy NST*N*Uy. From this it follows that V has to be chosen such
that the columns ofv span the same space as the columns of N*Uy, i.e., the columns of V
have to span the same space as the columns of N™'Usy. V can be computed by performing

a QR decomposition,[{1],pp.211ff, of N~'U.

In our example the additional amount consists of computing an initial rank 2 update after
X has been chosen. In other words, in the singular case we can proceed analogously to the
nonsingular case if this modification is followed by a well-chosen initial low rank update.

The arquments used here can be used as well when dividing the graph into more than four
parts. To illustrate the difference between the initial coupling system S. and the coupling
system obtained by the additional low rank update we will compare their condition numbers

forp=4,16,64 and N = 32,64,128 for X obtained by Algorithm 6.89, 6.90.

Condition Number ra(Se opt)

without low rank update after low rank update

IP\N| 32 | 64 | 128 | |[p\N| 32 | 64 | 128
4 5.3-10' | 8.7-10! | 1.5-10% 4 1.2-10* | 2.0-10' | 3.5-10!
16 — 1.7-10% | 2.7-10% 16 — 3.9-10' | 6.3-10!
64 — — 6.5-102 64 — — 1.5-102

For S, s, we obtain condition numbers which are relatively close to those of Se ,p

Condition Number r2(S, ¢,)

without low rank update after low rank update

IP\N| 32 | 64 | 128 | |[p\N| 32 | 64 | 128
4 4.2-10" | 9.5-10" | 2.2-107 4 1.1-10' | 1.4-10' | 1.8-10!
16 — 1.3-10% | 2.9-107 16 — 3.4-10" | 4.2-10*
64 — — 5.0-10% 64 — — 1.3-102

The reduction in the condition number results in a small number of iterations for the cg—
method for Algorithm 6.59,6.90. We compare the number of iterations with that of the
corresponding block Jacobi method. for p =4, N =32, p =16, N =64 and p = 64, N =
128.
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Number of Iteration Steps

SJIA Sc,opt Sc,fo

[pP\N [ 32]64]128] [p\N || 32]64]128] | p\N [ 32]64] 128]
4 J20]25] 30 4 Jo]12] 14 4 Juuf12] 12
16 || — 35| 42 16 || —]19] 21 16 || —]20] 21
64 | —]—| 8 64 | — | | 32 64 || —]—1] 33

Although an improvement in the number of iterations for the cg—method has been made in
this example, the additional overhead in computing D, D, D"
smaller number of iterations. FE.g. for p = 64, N = 128 up to 64 right hand sides have to
be computed.

cannot be equalized by the

Summary

The use of modified block Jacobi splittings has turned out to effectively improve the con-
dition number of the underlying coupling system. In some examples the condition number
was extremely improved. The disadvantage so far is that the generation of X requires the
solution of several right hand sides with the block diagonal part of A. If e.g. the initial
matrix A is block tridiagonal with all blocks of size m, then 2m system with the block
diagonal matrix S; have to be solved. If the cg—method with block Jacobi preconditioning
does not exceed 2m steps, the generation of X will be more expensive in any case. However
for ill-conditioned systems or larger number p of blocks this will be typically the case. In
this case the generation of X will not consume most of the computing time. As additional
advantage of the computation of X we will have an explicit representation of the coupling
system which reduces the computation time for a matrix vector multiplication with the
coupling system as well the computation time for a direct solution of the coupling system.
In this case the a larger number of iterations to solve the coupling system is less critical.
This is not a problem of the symmetric case and will also occur in the general case.

If the system is not well-conditioned the use of modified block Jacobi splittings can ex-
tremely improve the properties and thus the computational costs for the cg method may be
reduced not only with respect to the matrix—vector multiplication but also for the number
of iteration steps.

The problem which is open in general is that this theory can only be applied to block 2—
cyclic matrices. But in practice we would like to reorder the given matrix by a preprocessing
step. This reordering should reduce the size of the coupling system and in general the
reordered matrix will not be block 2-cyclic. This reduces the application of modified block
Jacobi splittings and the theory has to be adapted for the non block 2—cyclic case. The
case when the matrix C' from Lemma 6.19 in Chapter 6 is singular has not been discussed
in detail in Chapter 6 but by Example 9.7 we have illustrated how the theory can be
generalized to this case by allowing slightly more than a block diagonal splitting.

An important observation that has been made among the numerical examples is that
Algorithm 6.89 and Algorithm 6.90 behave quite similar for both, the resulting condition
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number and the number of iteration steps. From this point of view the main bottle neck
of Algorithm 6.89, namely the computation of the parameter « in Algorithm 6.90 can be
replaced by the heuristic approach from Algorithm 6.90.

So far we have only compared the sequential flop count. For a parallel implementation one
has to take care of the additional communication costs. The generation of D, D has the
advantage, that the their computation can be done without communication, since several
systems have to be solved with a block diagonal matrix. To perform the difference D=' — D
one step of local data exchange is necessary and for the scaling of X one global step of
communication has to be done. In contrast to this in an iterative process local and global
communication have to be done in any step. So we may have a better improvement than

in the MATLAB computations.

9.2 Parallel Numerical Results for the Positive Defi-
nite Case

In this section we compare for several examples the cg—method, preconditioned by the
block Jacobi method with the nested Divide & Conquer method. For all these examples we
used the partitioning obtained by METIS [52]. For the updates we use the Lanczos Process
[67],[41], pp.475ff for S., with selective reorthogonalization [51],[69],[41],pp.489-489. We
can easily derive the cg—method from the Lanczos process (see e.g. [41], pp.494-497,523—
524) and find during the Lanczos process an approximative &) to the problem S, zxy = by.
In practice we used the Lanczos process for up to 50 steps. An update is made when the
criterion for the orthogonality between the Lanczos vectors signals a loss of orthogonality.
From the eigenvalues that have been delivered by the Lanczos process we used all extremal
eigenvalues until the smallest remaining eigenvalue was greater than 1072 times than the
largest remaining eigenvalue. If there are no eigenvalues satisfying this criterion, then the
Lanczos process is continued.

A practical problem which arises when applying the nested divide & conquer process is
that for a larger number of iterations it might be useful to generate the coupling system
S.. This occurs for example for larger numbers p of processors. The coupling system is
distributed over the processors and any processor will have to compute 2n./p right hand
sides in the average, where n. is the size of the coupling system. So a natural strategy to
compute S, which is also a compromise between a direct and an iterative solution will be
to compute the parts of the coupling system if the number of iterations will be more than
2n./p. To have a simple heuristical criterion for this we will check after a while, namely
after the first update or after n./p iteration steps in any further step the residual of the
computed solution Z;. A first criterion obtained by the Lanczos process can be obtained
from the condition number. The well-known bound [41],p.525 on the norm of the residual

1S
NCESR
e <2 (Y251) trala

Here the norm is the energy norm ||z||4 = vVa*Ax and & is the condition number of A. In
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practice the number [ of steps which is needed to to have the residual less than a given
tolerance times the initial residual is overestimated by this inequality. We use an additional
heuristic. If [ steps of the iterative method have been performed we will check how long the
iterative process will take, provided that the decreasing of the residual will not be worse
in the next [ steps than in the first [ steps. This will give us an estimate for the number
of iterations for the iterative process. The disadvantage will be of course if the iterative
process will converge in step [ + 1 then the computation of the parts of S. was in vain.
But for larger numbers of p (e.g.16,32,64) this additional overhead will be moderate. As a
consequence we have by (7.13) and Corollary 7.16 a representation of S, in the form

p
Se=1-Y K,MK],
q=1

where any Mq is precisely the part of S. which is stored on processor ¢q. A simple precon-
ditioner which we can immediately get from this representation is

p
Y K (K!'S.K,)TK]

g=1

By the definition of K, in Corollary 7.16 this will be a simple overlapping block diagonal
preconditioner. When having a preconditioner we can construct our low rank updates with
respect to the preconditioned system instead of the original system, i.e., we use the Lanczos
process for the preconditioned coupling system instead of the original coupling system.

By using the nested application of the Sherman—Morrison—-Woodbury formula we obtain
in principle the solution of Az = b, when the small coupling system S, ; has been solved.
In practice the solution obtained by the divide & conquer approach can be perturbed
solving the small coupling system. For this reason the method is embedded into an outer
cg-iteration. Le., by k steps of the nested divide & conquer method we obtain in theory

AT = S0+ SRS TGRS

We use the numerically computed A" as preconditioner for A in the outer cg—iteration.

As stopping criterion for the combined update and iteration we used |[rg||2 < /€ps||roll2,
where r, denotes the residual.

The parallel computations were performed on Parsytec GCPP parallel computer. This
parallel computer is MIMD computer with distributed memory. Communication is done
by message passing using the communication library of [44]. For the diagonal blocks a sparse
Cholesky decomposition from SPARSPAK [40] was taken. For the off-diagonal blocks a
sparse LU decomposition from MA28 [27] was used. The Cholesky decomposition of the
small coupling systems was done using LAPACK]J1]. For elementary vector operations the

BLAS library[23] was used.
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Example 9.8
Consider the matric LANPRO/NOS2 from Example 9.2. Since this matriz is quite small
(n = 957) for parallel computations, we extend this matriz. The matriz has the form

¢ B 0]
BT C B
0] BT C

We extend this matriz by taking the corresponding block tridiagonal matriz with size 8 -
n,16 - n and 32 - n, i.e., essentially the matrixz is taken up to 32 times. We first examine
the block Jacobi method for this matriz.

Time [sec] needed for Cholesky decomposition of S

|size(A)\p || 2 | 4 ] 8 | 16 ] 32 ] 64 ]
8- n 1.08 ] 0.27 [ 0.09 | 0.03
16 - n 4.45 [ 0.50 | 0.28 [ 0.09 | 0.04
32-n 17.42 [ 4.45 [ 1.13 ] 0.28 [ 0.09 | 0.06

When increasing the number of processors the time required by the Cholesky decomposition
decreases approvimately quadratically. More important is the time and the number of it-
erations for the iterative solution process. The results are very disappointing. The number
of iterations drastically increases with the number of processors which makes the iterative
method no longer applicable to this problem.

Number of iterations needed for the cg-method

el [ 2] 7] 8 [ 6] 52 [ o7 ]
8-n 13130 | 133 | 397
16 - n 25 | 57 | 207 | 614 | 2423
32-n 19 | 44 | 179 | 652 | 3369 | 13973

Obviously the time for the iterative process will become huge as well when increasing the
number of processors.

Time [sec] needed for the iterative solution process

|size(A)\p|| 2| 4 | 8| 16 | 32 | 64 |
8- n 0.39 [ 0.51 [ 1.65 | 4.61
16 - n 1.51 | 1.86 | 4.48 | 9.43 | 38.75
32-n 2.17 [ 2.71 [ 6.78 | 15.62 | 63.80 | 385.41

As a consequence of the huge number of iterations the total amount will be essentially
dominated by the iterative part for larger p.
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Total amount [sec]

|size(A)\p || 2 | 4 ] 8] 16 ] 32 | 64 |
8- n 147 [0.78 | 1.74 [ 4.64
16 - n 5.96 | 2.36 | 4.76 | 9.52 | 38.79
32-n 19.59 | 7.16 | 7.91 | 15.90 | 63.89 | 385.47

The iterative part consumes for p > 4 most time for the solution process. For p > 4 the
extremal number of solution steps makes an iterative solution impossible.

Next we study the nested divide & conquer method applied to this problem. Like for the
block Jacobi method we start with the time needed for the Cholesky decomposition. We
expect that there is no essential difference which is confirmed by the numerical results.

Time [sec] for the Cholesky decomposition

|size(A)\p || 2 | 4 ] 8 | 16 ] 32 ] 64 ]
8- n 1.11 [0.28 [ 0.10 | 0.05
16 - n 4341052 ]0.29 | 0.12 | 0.07
32-n 17.92 [ 4.34 | 1.11 | 0.32 [ 0.13 | 0.16

Next we examine the number of iterations needed by the nested divide & conquer method
applied to this problem. In this example the coupling system was generated after 3 steps
except for p = 2. The reason is that the coupling system is quite small and on any processor
not more than a 6 X 6 part of S. ts stored.

Number of steps for combined update and iteration

A e [ 2] 7 [ B (18] 32 [ o7

8-n 711513460
16 -n 711513560 | 106
32-n 9119 |45 |66 | 137 | 227

Compared with the standard block Jacobi method the number of steps has been extremely
reduced. During the iteration the size of S. has been successively reduced. We give the size
of the initial S. and the final S. in the next table.

Size of the coupling system, initially — finally

|size(A) \p[| 2 | 4 | & | 16 | 32 | 64
8- n 2152129 25— 23
16 -n 2153 127 25— 21| 520 47
32 n 2153127 25 17] 52~ 44 | 106 95

Beside the lower number of iteration steps and the reduction of S. we are interested in the
computational costs.
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Time [sec] needed for the combined update and iteration

|size(A)\p || 2| 4| & | 16 ] 32 ] 64 ]
8- n 0.230.24 [ 0.44 | 0.84
16 - n 0.43 ] 0.36 | 0.54 | 1.09 | 2.21
32-n 1.13 ]0.78 | 0.90 | 1.40 | 3.25 | 7.47

Note that this time table gives the time, which includes arithmetic and communication
costs. For larger p the computational costs are still dominated by the communication part,
although the updates have been collected to keep the data traffic small. This can be seen,
when we examine the arithmetic part of the computation.

Maximal arithmetic time [sec] for the combined update and iteration

|size(A)\p || 2| 4| & | 16 ] 32 ] 64 ]
8- n 0.21]0.14 [ 0.11 | 0.12
16 - n 0.41]0.27 [ 0.17 | 0.15 | 0.27
32-n 1.08 ] 0.66 | 0.46 | 0.28 | 0.36 | 0.86

This is not only a problem for the nested divide €& conquer process. The same problem also
occurs for the block Jacobi method.

Altogether we have the following total amount for the nested divide & conquer process.

Total amount [sec]

L p [l 2 [ 418 [16]32]64)]
S-n || 134052 | 054 ] 0.89
161 | 477 | 0.83 | 0.83 | 1.21 | 208
32 0 || 19.05 | 5.12 | 2.00 | 1.72 | 3.33 | 7.63

What we can see in this example which is really ill-conditioned is that not only the number
of iterations for the nested divide & conquer is much less than for the standard block Jacobi
but that in addition several updates were necessary to adapt the process to the problem. The
improvement made by the nested divide & conquer method is not only due to the additional
preconditioner for S. which one can see when only taking the preconditioned coupling system
with no later update. Here the number of iterations also becomes huge for larger p and even
worse, in several cases the iterative process did not converge!

Number of steps for iterative process

[size(A) \p [ 2] 4 8 | 16 [32]064]
8-n 7119 | 31| 4017
16 -n 7119 36 0 | 0o
32-n 9124|132 oo | 0o | 00
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In those cases where the iterative process did not converge, the residual was decreasing for
a while and then increasing again and finally the process diverged.

Time for the iterative process

|size(A)\p || 2| 4 | 8 | 16 [32]64]
8-n 0.23 [ 0.16 | 0.26 | 27.64
16 - n 043]025]0.29| oo oo
32-n 1131055089 oooo| oo

Beside the smaller number of iteration steps the nested divide & conquer process has another
advantage. The number of iterations and thus the computing time for solving a further right
hand side will be much less than for the first system. We will show this in the following
tables.

Number of steps for a further right hand side

| size(A) \p || 2] 4| 8| 16]32] 64]
8- n 6] 7[25]37
16 - n 6| 9[18]38]55
32-n 8122334 ]52]91

Time [sec] needed for a second right hand side

|size(A)\p || 2| 4| & | 16 ] 32 ] 64 ]
8- n 0.22 [ 0.16 [ 0.33 | 0.65
16 - n 0.42 ] 0.27 [ 0.33 ] 0.82 | 1.42
32-n 1.12 ] 0.63 | 0.60 | 0.80 | 1.49 | 3.41

The problem that the communication part overlays the arithmetic part will occur for a
further right hand side again.

In this example the nested divide & conquer has turned out to be a quite useful method to
overcome problems when the system is really ill-conditioned and an iterative process like
the block Jacobi will not converge. Of course for extremal cases like this we cannot always
expect that by increasing the number of processors we will need less time since the number
of iterations may rapidly increase. More important is the observation that in this example
the iterative process has been stabilized using the nested divide & conquer method leading
to a moderate number of iterations as well as to a reduction of the system. The initial block
diagonal matriz will be successively adapted to the problem using low rank modifications.
The fact that the computational costs increase for larger p may be related to the fact that the
coupling system s extremely small and that the communication ts quite expensive. On any
processor not more then a 6 X 6 block of the coupling system is stored. Thus the numerical
costs will be very small compared with communication costs. Nevertheless up to p = 16 we
could reduce the total amount and in contrast to the block Jacobi method the computational
costs for p = 32,64 s still moderate. Another point which is not satisfactory so far is the

151



local data exchange. Currently a general purpose routine based on the graph of the initial
system is used. What is missing so far is a communication routine which adapts the local
data exchange required by the block graph of the initial system to the physical communication
network.

Example 9.9

The example that we will discuss is closely connected to the matriv LANPRO/NOS1 in
Fxample (9.1). Since the size of this example (n = 237) is much too small to use it in
parallel computations we will use the matrivc A = [ @ T + T @ I, where T denotes the
matriz from (9.1). The resulting matriz has size n = 56169.

We will examine the parallel block Jacobi method and the nested divide €& conquer method
forp=2,4, ..., 64

We start with the block Jacobi method.

Time [sec] for Cholesky decomposition of Sy

el 2 | 4 [ 8| 16]32] 64|
| [[52.57[16.43 [ 6.53 | 2.57 [ 0.89 | 0.35 |

The time needed for the Cholesky decomposition decreases by a factor between 2 and 3 when
increasing the number of processors. For larger p the time and the number of iterations
needed for the iterative process comes more and more into account and will dominate the
total amount. Unfortunately the number of iteration steps is huge.

Number of iterations needed by the cg—method

el e[ 4] 8 [ 6] 32| 6]
| |43 | 842 [ 2041 [ 2577 | 3000 | 3436 |

Consequently the time will be high as well.

Time [sec] needed for the ilerative solution process for S7'A

e 2 | 4 [ & [ 16 | 52 | 6 |
|| 38.60 | 331.57 | 414.38 | 252.03 | 158.86 | 134.18 |

Already for p > 2 the iterative solution process dominates the total costs.

Total time [sec]

e 2 | 4 [ & [ 16 | 52 | 6 |
| ] 91.17 | 348.00 | 420.91 | 254.60 | 159.75 | 134.53 |
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Here for p = 2 the least time is needed. One important reason for this effect is that
the coupling system S. will rapidly increase in its size as the number of processors in-
creases. In other words for the block Jacobi method the rank of S; — A is rapidly increas-
ing. The rank will be typically 2 times more then the size of the coupling system for the
nested divide & conquer process. The size of S. for the minimal rank approach will be
84,448,1099, 1892, 3216, 5058 for p = 2,4.8, ... and thus the rank of S;— A will be approz-
imately twice as much. This is a specific property of this matrix and clearly this will also
affect the nested divide & conquer method.

It is clear that the time required for the Cholesky decomposition will be almost the same for
the nested divide & conquer method as for the block Jacobi method.

Time [sec] for the Cholesky decomposition

el 2 [ 4 | 8 [16]32] 6]
| [[51.28 [19.26 | 7.41 [ 2.67 [ 1.09 | 0.49

More important is the number of iterations and the time needed for the iterative process.
Here up to the case p = 2 the coupling system was generated during the iteration (forp =4
after the second update in step 100 and for p > 4 after the first update in step 50). The
updates were then performed with respect to the preconditioned system.

Number of iterations needed for the combined update and iteration

el 2| 4[5 [ 16]32] 6]
| [[46 [ 121 [ 124 ] 206 | 397 | 529 |

The number of iterations for the nested divide & conquer is already much less than for the
block Jacobi method. During the nested divide & conquer process the coupling system has
been reduced in its size.

Size of the coupling system, initially — finally

el 2 [ 4+ | 8 | 6 | 32 | 6 |
|| 8483 148443 | 10991093 | 18921884 | 32163198 | 50585025 |

The fewer number of iterations will also reduce the time for the solution process.

Time [sec] needed for the combined update and iteration

el 2 [ 4 | 8 [ 16 ] 32 | 6 |
| ] 51.96 | 156.25 | 76.93 | 50.62 | 46.77 | 39.45

Like in Fxample 9.8 the arithmetic part will be much less for larger p. Here the situation
is not so drastical as in Example 9.8.
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Maximal arithmetic time [sec] for the combined update and iteration

p| 2 | 4 [ 8 [ 16 ] 32 | 64 |
| ][ 51.88 [ 154.60 | 75.30 | 46.55 | 36.10 | 18.46 |

Finally we have the following total amount.

Total amount [sec]

el 2 [ 4 [ 8 [ 6] 352 [ 6|
| [[103.24 [ 175.51 [ 84.34 [ 53.29 [ 47.86 | 39.94 |

We see that the nested divide & conquer will need much less iterations and much less
time than the block Jacobi method. Again the fewer number of iterations is not only a
consequence of the additional use of a preconditioner for the coupling system, which can be
seen when we omit later updates.

Number of iterations without later updates

pl2[ 4 [8]16]32]064]
| 46 [ 121 [ 129 | 238 | 458 | 859 |

Time [sec] needed for the iteration without later updates

p| 2 | 4 [ 8 [ 16 ] 32 | 64|
| [[51.94 [ 157.01 | 76.74 | 53.31 | 49.04 | 53.37 |

Again the solution of a further right hand side is quite cheap when using the nested divide
& conquer method.

Number of steps for a further right hand side

(p[ 214 ]8]16]32] 6]
| 44 ]21]54[89]114]130 |

Time [sec] needed for a second right hand side

e 2 | 4 | 8] 6] 3 | 6|
| [[50.90 [ 4.35[5.99 ] 10.79 | 11.81 [ 10.84 |

One problem which aggravates the parallel solution of this system is the fact that with
increasing number of processors the coupling rapidly grows. This is a problem for any
method working with low rank splittings. This is the reason why still for p = 8 the method
is only slightly faster than for p = 2. In addition the size of the distributed parts is strongly
varying especially for p = 4. In this case two processors had a part of the coupling system
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which has a size larger than 320 while the other ones had parts of S. in the order of
100. This effect also occurs for p = 8,16 but there the different sizes of the parts of S,
are not so strongly varying as for p = 4. For p = 64 the coupling system already has
size larger than 5000 while the whole system has a size of n = 56169. In addition it is
ill-conditioned which is stated by the enormous number of iterations needed by the block
Jacobi method. Consequently the improvement in the computational time will not be so
strong when increasing the number of processors. With respect to this specific problems
the improvement which is made using the nested divide & conquer approach is still quite
acceptable.

Example 9.10
We consider the matrix BCSSTRUC1/BCSSTKO09 from Fzample 9.4. Analogously to
Example 9.8 we extend the matriz by essentially taking the matriz 8,16 and 32 times.

We start this example by examining the block Jacobi method for this problem.

Time [sec] for Cholesky decomposition

|size(A)\p|| 2 | 4 | 8] 16] 32 64 |
8- n 6.46 | 2.86 | 0.90 | 0.29
16 - n 10.62 | 5.91 [ 2.69 | 1.00 | 0.29
32-n 32.21 | 14.41 [ 6.35 [ 3.23 | 1.09 | 0.33

For larger p the number of iterations for the cg—method will consume most of the compu-
tational costs since the number of iterations will increase.

Number of iterations needed for the cg-method

| size(A) \p|| 2] 4] 8] 16] 32] 64 ]
8- n 62 | 133 | 224 | 448

16 -n 58 | 136 | 246 | 322 | 514
32-n 52 | 128 | 209 | 228 | 256 | 478

Since the number of iterations will increase the time will at least increase in those cases
where the number of iterations drastically increases from p to 2p.

Time [sec] needed for the iterative solution process

|size(A)\p || 2 | 4 | 8 | 16 | 32 | 64 |
8- n 10.29 [ 10.66 | 8.43 | 9.83
16 - n 17.74 [ 21.86 | 20.37 | 13.34 | 13.62
32-n 38.68 | 45.10 | 35.69 | 20.44 | 12.22 | 16.56
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Total amount [sec]

|size(A)\p || 2 | 4 | 8 | 16 | 32 | 64 |
8- n 16.75 [ 13.52 | 9.33 [ 10.12
16 - n 28.36 | 27.77 | 23.06 | 14.34 | 13.91
32-n 70.89 | 59.51 | 42.04 | 23.67 | 13.31 | 16.89

For the total amount increasing the number of processors will make the block Jacobi faster
up to the last but one processor that has been taken here. But finally for 8 -n,p = 16 and
for 32 - n,p = 64 the number of iterations will increase too much.

Next we study the nested divide & conquer method applied to this problem. Like for the
block Jacobi method we start with the time needed for the Cholesky decomposition which
will be almost the same as for the block Jacobi method

Time [sec] for the Cholesky decomposition

|size(A)\p|| 2 | 4 | 8] 16] 32 64 |
8- n 519 | 2.58 | 1.06 | 0.37
16 - n 11.43 | 5.66 | 2.83 | 1.16 | 0.40
32-n 36.03 | 10.23 | 7.02 [ 2.89 | 1.13 | 0.46

Next we examine the number of iterations needed by the nested divide & conquer method
applied to this problem. Here after the first update (for p = 2 after 33-36 steps, in the other

cases after 50 steps) the coupling system is generated and the update is made with respect
to the preconditioned system.

Number of steps for combined update and iteration

|size(A) \p || 2] 4| 8] 16] 32 64|

8-n 39 | 54 | 63 | 124
16 - n 36 | 53 | 58 | 64| 206
32-n 36 | 51 | 56 | 58| 64 | 241

Due to the generation of the parts of S. the improvement in the number of iterations is
partially weakened.

Time [sec] needed for the combined update and iteration

|size(A)\p || 2 | 4 | 8 | 16 | 32| 64 |
8- n 13.74 [ 10.71 | 539 [ 4.46
16 - n 26.88 | 23.13 | 12.48 | 5.58 | 8.89
32-n 70.45 | 44.64 | 28.01 | 12.48 | 5.75 | 12.37
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Maximal time [sec] needed for arithmetic part

|size(A)\p|| 2 | 4 | 8 | 16 | 32| 64 ]
8- n 13.66 [ 10.35 | 4.92 | 2.61
16 - n 26.81 | 22.00 | 11.70 | 4.80 | 3.80
32-n 70.38 | 43.95 | 26.45 | 11.87 | 4.84 | 5.02

Here the increasing time for larger p obviously is related to the increasing amount for the
communication. As mentioned in Example 9.8, one problem is the current realization of
the local data exchange, which is not yet satisfactory. Like in Frample 9.8 this problem
also occurs for the block Jacobi method.

During the iteration the size of S. has been successively reduced. We give the size of the
initial S, and the final S, in the next table.

Size of the coupling system, initially — finally

| size(A) \p|| 2 | 4 | s | 16 ] 32 | 64

8-n T2 72| 191 190 | 472+ {69 | 987— 978

16 - n 66— 60| 198 196 | 482 479 | 996+ 993 | 2078 20606

32 -1 66— 66 | 192 192 | J61— /56 | 958 955 | 1946 1943 | 122/ /209

Up to the final number p of processors that have been used the reduction of S. is quite
small. For the final number p of processors that have been used the number of iterations is
larger and consequently S. will be more reduced in its size. To summarize the nested divide
& conquer we have the following total amount.

Total amount [sec]

L p [ 2 1 4 [ 8 [ 16 ]32] 6 |
S.n || 18.93 | 1320 | 645 ] 4.8
161 | 3331 | 28.79 | 15.30 | 6.74 | 9.2
32 n || 10648 | 54.87 | 35.03 | 15.37 | 6.85 | 12.83

Up to the case p = 2 where the heuristic for the generation of S. has slowed down the
nested divide & conquer strategy the total amount for the nested divide & conquer is less
than for the block Jacobi method and the reduction of S. is moderate except for the case of
the finally used p, but there the number of iterations also clearly increases.

Here only slight reductions were necessary and this is the reason why without using updates
the time does not essentially differ from nested divide & conquer process. In fact for 16 -n,
p =32 and 32 -n, p = 64 it needs slightly less iterations.

Number of steps for the iteration with no further updates

EEAAVIEARARAN AR AN
8-n 39 | 54 | 63 | 146
16 - n 36 | b4 | b8 | 64 | 197
32-n 36 |51 | 56| H8 | 64| 233
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Time [sec] needed for the iteration with no further updates

|size(A)\p || 2 | 4 | 8 | 16 | 32| 64 |
8- n 13.74 [ 10.61 [ 5.36 | 4.81
16 - n 26.88 | 22.62 | 12.47 | 5.58 | 7.70
32-n 70.41 | 44.67 | 28.07 [ 12.49 [ 5.74 | 10.53

The situation drastically changes when we replace the initial matriz A by a shifted matriz
A —ul. The first 10 digits of i1 coincide with those of the smallest eigenvalue of A. Again
we will examine both methods for the shifted matrix which has the same eigenvectors and
distribution over the processors as the original system.

For the block Jacobi the number of iterations and the computational costs will increase too
much for a sensible application to this problem.

Number of iterations needed for the cg-method
| size(A) \p [ 2] 4] 8 [ 16| 32 [ 64 |

8-n 265 | 643 | 1407 | 1800
16 -n 238 | 696 | 1428 | 3335 | 4149
32-n 139 | 446 | 1094 | 2290 | 4753 | 9112

The drastical increase in the number of iterations will be reflected in the computational
time leading to a long time the more we increase the number of processors.

Time [sec] needed for the iterative solution process

size(A)\p || 2 | 4 | 8 | 16 | 32 | 64 |
8- n 44.27 ] 51.68 | 53.26 | 39.60
16 - n 73.39 | 112.00 | 118.62 | 138.39 | 113.80
32-n 103.62 | 157.34 | 187.19 | 205.55 | 222.91 | 316.66

Of course the nested divide & conquer will also be affected by this ill-conditioned matrix.
But the impact of this ill-conditioned matriz is much weaker.

Number of steps for combined update and iteration

|size(A) \p || 2] 4| 8] 16] 32 64|

8-n 42 166 | 96 | 194
16 -n 40 | 61 | 90 | 122 | 365
32-n 39 16192 113|162 | 603
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Time [sec] needed for the combined update and iteration

|size(A)\p || 2 | 4 | 8 | 16 | 32 | 64 |
8- n 14.67 [ 11.60 | 6.26 | 6.72
16 - n 28.82 | 23.82 [ 13.49 | 7.39 | 16.24
32-n 75.39 | 46.63 | 29.53 [ 14.25 | 9.60 | 34.47

Here the communication overlays the arithmetic part much more than in the unshifted case,
which can be seen, when considering only the maximal arithmetic costs.

Maximal arithmetic time [sec] for the combined update and iteration

|size(A)\p || 2 | 4 | 8 | 16 | 32| 64 |
8- n 14.56 [ 11.10 | 5.32 [ 3.41
16 - n 28.73 | 22.55 [ 12.27 | 5.41]6.28
32-n 75.30 | 45.83 | 27.48 [ 12.60 | 5.85 | 12.32

In contrast to the unshifted matriz now S. ts much more reduced in its size.

Size of the coupling system, initially — finally

| size(A) \p|| 2 | 4 | s | 16 ] 32 | 64

8-n T2 71| 191 186 | 472+ f65 | 987— 977

16 - n 66— 65| 198 194 | 482 475 | 996+ 990 | 2078 — 2058

32 -1 66— 65 | 192 188 | J61— 455 | 958 950 | 1946 19]1 | 422]— /182

The reduction in the total amount compared with the block Jacobi is not only a consequence
of the additional preconditioner, which can be seen when we do no further updates. Here
for 16 -n and p = 32 as well as for 32-n and p = 64 the iteration did not converge. In both
cases the residual was decreasing for a while and then stagnating. A similar effect occurs
for 32 -n and p = 16. Here the iteration was stagnating for a long time and then slowly
converging. This is the reason for the enormous time and number of steps in this case.

Number of steps for the iteration with no further updates

|size(A)\p || 2] 4| 8] 16 | 32]64]
8- n A1 [117 [ 102 | 515
16 - n 36 | 85| 111 | 358 ] oo
32-n 39 | 87 [ 155 | 14722 [ 205 | oo

Time [sec] needed for the iteration with no further updates

| size(A) \p|| 2 | 4 | 8 | 16 | 32 |64
8- n 14.01 [ 11.84 [ 6.31] 14.88
16 - n 28.84 [ 23.26 [ 13.84 | 1338 oo
32 n 71.84 | 45.48 [ 30.59 | 377.29 | 10.82 | oo
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What we can see is that in this example which is really ill-conditioned not only the number
of iterations for the nested divide & conquer is much less than for the standard block Ja-
cobi but that in addition several updates were necessary to adapt the process to the problem.
Here the nested divide & conquer process will also slow down for the last p that has been
used but the number of iterations is still much below the size of S. and in any case S. has
been successively reduced.

When solving systems with further right hand sides this will lead to a few number of itera-
tions.

Number of steps for a further right hand side

| size(A)\p | 2] 4| 8]16] 32| 64 ]
8- n 6]11]26]71
16-n [[6] 9]20]53]117
32.n 6] 9]25[45] 781129

Time [sec] needed for a further right hand side

|size(A)\p || 2] 4 | 8 | 16| 32| 64 |
8- n 1.57 [0.95]0.92 ]2.31

16 -n 3.27 | 1.79 | 1.24 | 1.83 | 5.39
32-n 8.40 | 3.21 | 2.49 | 2.07 | 3.26 | 8.47

Again the communication part will overlay the arithmetic part for larger p.

In this example the nested divide & conquer process has turned out to be competitive to the
block Jacobi method for the unshifted initial matriz and it has been extremely superior for
the ill-conditioned shifted matriz. While the block Jacobi will no longer be applicable to this
problem the nested divide € conquer will be much less affected by the bad condition of A. But
for the shifted matriz more updates are necessary and a bigger part of S. is directly solved
by the reduction. Of course the nested divide & conquer will also slow down for the final p
that has been used, but in this case the system is much more reduced leading more and more
to a direct solution of S.. While for the unshifted matriz the nested divide & conquer will
almost coincide with the version with no further updates, the situation drastically changes
for the shifted matriz, where without using updates the convergence extremely slows down
or will not converge at all.

Summary

The use of the nested divide & conquer method has turned out to be a useful method
to overcome problems which occur when an iterative method will need a large number
of iterations. We have illustrated for the positive definite case how this method can be
efficiently implemented on a parallel computer. When the cg-method with block Jacobi
preconditioning slows down and becomes useless for parallel computations the concept of
making a compromise between an iterative and direct solution will be clearly superior.
We have illustrated that this is not only the fact that for larger number of iterations the
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coupling system is build and an additional preconditioner is available but in addition the
nested divide & conquer strategy will generate more and more updates the longer the
iteration takes generating adaptively a preconditioner for the initial system and reducing
the coupling system at the same time. And while without using the updates in theses cases
the iterative process slows down or does not converge any more we have at least a reduction
in the size of the coupling system and the numerical experiments have shown that in this
case the nested divide & conquer will need much less iterations. An additional effect when
using the nested divide & conquer is that solving further right hand sides will be much
cheaper than for the first right hand side, since due to the updates the number of iterations
will become smaller and smaller.

What we not necessarily get by this approach is a scale—up when using this method as black
box solver. The problem is that the nested divide & conquer still needs the eigenvector
information from the (preconditioned) coupling system. In theory it is possible to use
larger number of updates in any step than in our numerical experiments but this would
typically slow down the iterative process, since the updates do not contain more essential
information for the iterative process but require more computational costs, more storage
and more communication.

9.3 Some Unsymmetric Examples

We will now examine some unsymmetric examples. In contrast to the symmetric case here
we can only work with numerical observations, since the approximation properties of the
modified block Jacobi splitting from Chapter 6 have not been discussed. In addition we have
to restrict ourselves to examples with nonsingular block diagonal part, but this reduces the
freedom of examples that can be examined.

We will compare Algorithm 6.89,6.90 with the simple modified block Jacobi splitting where
only X = [ is used. In addition we will compare these methods with the unmodified block
Jacobi splitting. Like in the symmetric case the relation between the number of blocks p
and the size n of the system together with the size of the blocks will restrict the freedom
in choosing p. In order to investigate whether we can make an improvement when using
modified block Jacobi splittings we will examine the following topics.

1. the condition number kg of S; s, Semods Sc,fm» Se1. Here S, ; is the coupling system
when using the Sherman—Morrison—-Woodbury formula for the block Jacobi splitting.
By Corollary 2.6 we have AS7'F = I'S.; where F' denotes the matrix which has
unit vectors as columns with respect to the nonzero rows of W = 5 — A, i.e., we have
W = F(FTW) The reason for using S ; instead of AS;I is that its size is many
times smaller than that of AS7' and this simplifies estimating the condition number
of Seg. Semod denotes the coupling system of Algorithm 6.89, S, ., is the coupling
system obtained by Algorithm 6.90. Finally S. ; denotes the coupling systems of the
modified block Jacobi-splitting for X = I. For estimating the condition numbers we
used MATLAB ’s ‘condest’ function.
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2. the eigenvalue distribution of these matrices.

3. the number of sequential floating point operations( flops ) for the LU-decomposition
versus the flopsrequired by the generation of X in Algorithm 6.90.

4. the number of flops for the iterative solution process for the block Jacobi method

versus the number of flopsrequired by Algorithm 6.90 and for S.; when using the
GMRES [75] method.

To examine the condition number of the coupling system will be important when applying
a direct solution method to S. as well as for the iterative solution of S.. For the iter-
ative solution of S, using GMRES a moderate condition number allows the use of the
modified Gram-Schmidt process [41], pp.218 for the reorthogonalization during the GM-
RES iteration [71], while otherwise reorthogonalization using Householder transformation
[41],pp.21 11T is preferred.

Of course a small condition number and an improved eigenvalue distribution may have
nothing to do with a small number of iterations in general [42]. We will apply the full
GMRES method using Householder reorthogonalization to the block Jacobi method as

well to SCJ, Sc,modv Sc,fm-

As stopping criterion for the solution process we will use ||7¢|l2 < \/eps ||rol|2, where 7y, is
the residual in step k. Here eps ~ 2.2204 - 1071, The iterative solution is performed ten
times for random right hand sides and finally the average is taken. As initial guess we will
choose zg = 0.

Again the computations were carried out using MATLAB [60]. For the computation of
the parameter o in Algorithm 6.89 we used MATLAB ’s ‘eig’ function.

Note that by computing D, D from Lemma 6.19 and X we get an explicit representation
of S. in (6.9). This will reduce the number of flops when applying the GMRES-method to
Se.

In practice the GMRES method is only used for a limited number, say k, of steps. Then
the iteration is restarted with the computed solution. The reason for using restarts usually
is memory requirement as well computational costs. For detail we refer to [74]. For our
problem here the memory requirement is not so critical, since the iteration is only performed
for the coupling system, which is typically much smaller than the initial matrix. In practice
it may happen that when using a restarted version of the GMRES method the number
of iteration steps can drastically increase. Clearly increasing the number of GMRES steps
may reduce this danger. But in practice we do not know if increasing k will effectively
reduce the computational costs and in addition we do not know how large k has to be
chosen. This is the point where we can introduce the nested divide & conquer process.

The nested divide & conquer method has been constructed to make a compromise between
a direct solution of S, and an iterative solution for S.. Unfortunately the problem is that
in general it is not known what orthogonal transformations should be used for the update
procedure. In the symmetric positive definite case we have shown in Theorem 3.31 that
skillful linear combinations of eigenvectors of S, are optimal in the sense of quadratic forms.
What one can do in the general case is to use some of the approximate eigenvectors from
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the underlying Arnoldi process to generate updates. Strategies concerning approximate
eigenvectors have been used in several papers, see e.g. [62], [53], [73]. In [53] the initial
system has been preconditioned by a product of rank 1 transformations. The transforma-
tions are based on eigenvalue translations. The idea in [53] was to transform the spread
eigenvalues into a vicinity of 1. Spread eigenvalues are eigenvalues which are far away from
the remaining eigenvalues.

In [62] eigenvectors corresponding with small modulus have been used to fill up the Krylov
space over which the residual is minimized. In [62] it has been shown that approximate
eigenvectors of eigenvalues with small modulus will have an essential influence on the
convergence even if the these approximate eigenvectors are not quite exact.

Here we will give a simple heuristic for the choice of updates. Note that it is not our
alm to present an optimal strategy but to illustrate that updates can be used to make a
compromise between a direct and iterative solution of S.. There may exist several strategies
which are better. In contrast to [62], [53], [73] we will use this heuristic to perform an update
and to explicitly reduce the size of the coupling system and successively modify the initial
splitting. Even if the update strategy will not improve the iterative process we will finally
end in a direct method.

The heuristic to create the update is described as follows. Using the GMRES method for
a matrix A we obtain the equation

AQy = Qui1 Hy,

where Q; = [q1,...,q], { = k,k 4+ 1 consists of mutually orthogonal column vectors and a
(k4 1) x k upper Hessenberg matrix

By e - hix
) har hao : i,
hig—1  hgk
0 Pt i

In [62] it is suggested to use the generalized eigenvalue problem

1
(9.11) H'z = XHTHx

for the computation of eigenvalues close to zero. The author points out that this general-
ized eigenvalue problem is well suited to find eigenvalues of A close to zero. Here we will
use this eigenvalue problem to define a simple heuristic update strategy. First of all we will
determine isolated eigenvalues. These are all eigenvalues of (9.11) whose distance to the
remaining eigenvalue is larger than the average. All eigenvalues of (9.11) can be located
in a rectangle. Next we will define from these isolated eigenvalues those ones as spread
eigenvalues which do not lie in a rectangle of half length and half width of the original
rectangle. Finally all eigenvalues which have modulus less than a given tolerance (here
1072) times the remaining ones are selected as small eigenvalues in modulus.

By this heuristic we select spread eigenvalues and small eigenvalues from the spectrum of
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(9.11) to construct a low rank update. As update we choose the corresponding approx-
imate invariant subspace which is spanned by the corresponding eigenvectors. l.e. If V
denotes the eigenvector matrix of (9.11) corresponding to our selected eigenvalues, then
a ) R-decomposition of ),V gives us our update. Clearly this is only a heuristic. In [62]
eigenvectors have been used to augment the corresponding Krylov subspace, in [53] spread
eigenvalues have been translated using pole placement.

In contrast to these methods here we take out spread and small eigenvalues only from
the small coupling system. By explicitly reducing the coupling system of small size the
initial system will be adaptively modified by a low rank leading to an successively adapted
preconditioner.

We will examine the examples for a restart £ = 30.

Firstly we will consider some examples from the Harwell-Boeing sparse matrix collection
[28]. The test matrices can be accessed via anonymous ftp from ftp.orion.cerfacs.fr.

Example 9.12
The matriz PORES /PORESS3 has size isn =

532 and it is block tridiagonal with blocks of size o

< 12 x 12. In this representation the matriz has ]
been reordered using MATLAB ’s ‘symrcm’  1sof
function which implements the reverse Cuthill- 0|
McKee ordering. Its pattern is illustrated in the
picture on the right hand side. We will exam-
ine this matriz for various number of blocks

p=2,4,8,16.

2501

300+

3501

400+

4501

500

0 100 200 300 400 500
nz = 2802

First of all we will compare the condition numbers of Se 7, S:1,S¢cmod and Se fum .

Condition Number

L m\p [ 2 [ 4 [ 8 | 16 |
k2(Ses) || 1.3-10° [ 8.1-10° | 1.8-10° | 1.8-107
k2(Semod) || 1.810° | 4.1-10" | 2.6-102 | 1.0-10°
#2(Se.fm) || 1.0-10° | 4.1-10" | 2.6-10% | 1.0-10"
k2(Se.7) || 4.6-10% | 1.4-10% | 2.3-10% | 4.9-10°

The improvement in the condition number that has been made using S¢ mod, ¢, fm instead of
Se,1 is quite large. The extremely improved condition number will be useful for an iterative
solution of S. as well as for a direct solution of S.. Clearly a small condition number will
not at all be sufficient to ensure that an unsymmetric iteration like GMRES will lead to a

164



small number of iterations, but an ill-conditioned system will be typically much worse.
Next we will compare the eigenvalue distribution for p = 4,16. The matrices are multiplied
by a scalar such that the smallest eigenvalue in modulus has absolute value 1.

Eigenvalues of S.y-3.7-10%, p =4 FEigenvalues of S.y-1.3-10°, p=16

x 10

1000}

151

0.5

ok X X X x OO XK KX XX X 0K X0k

-0.5-

-1.5F

—1000 L

-2500 —2000 -1500 —1000 -500 o]
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The eigenvalues of S. 1 are widely distributed for p = 4 and even worse for p = 16. Already
for p = 4 the largest eigenvalue in modulus has a modulus of more than 2500 while for
Semods Se.fm the largest eigenvalue in modulus s approximately 14. For p = 16 the situation
is even worse. The largest eigenvalue of S, in modulus has a real part of approximately
5 -10°% while for S, mod, Se.pm this is approzimately 5000. Clearly we cannot expect that the
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improvement on the coupling system is for p = 16 as well as for p = 4 since by construction
of X from Algorithm 6.89, 6.90 X s only allowed to be block diagonal. The eigenvalue
distribution of Se pmeq and Se s are quite close to each other. This was also observed in the
other numerical examples.

Next we will examine the number of iterations using the full GMRES method. The iteration
for Ser1,5¢mod and Se rm will be compared with the GMRES method using Sy as precondi-
tioner for A.

Number of Iteration Steps of full GMRES

lit\p || 2] 4| 8] 16]
S.r |[13] 58] 99] 199
Semod | 6] 17] 31| 107
Setm || 41 16] 31 107
STYA | 151 36| 63| 120

The number of iteration steps has been effectively reduced using the modified coupling sys-
tems S¢ pms Seomod. The reduction in the number of iterations has the disadvantage that the
computation of X has to be taken into account. For this reason we will compare the number
of flops (for Semea we will skip the number of flops, since the caleulation of the optimal
parameter o will be typically quite expensive).

flops for LU Decomposition Versus the Generation of X

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16
LU decomposition S, X =1 | 3.8:10° | 3.4-10° | 3.0-10° | 2.2:10°
Alg. 6.90 Se, fm 5.7-10° | 8.2.10° | 1.1-10° | 1.4-10°
LU decomposition Sy 3.7-10° | 3.2:10° | 2.7-10° | 1.6-10°

Of course the computation of X will be much more expensive than a pure LU decomposition,
since for the generation of X a block diagonal system with up to 24 right hand sides has to
be solved.

flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8 16
Ser 3.0-10° | 1.0-10° | 3.1-10° | 1.5-107
Sefm 2.1-10° | 3.0-10° | 6.6-10° | 5.6-10°
STTA 9.8-10° | 3.8-10° | 1.0-107 | 3.1-107

Total amount in flops

(op 2 [ 7 [ 8 [ 7]
Se.r 6.7-10° | 1.4-10° | 3.4-10° | 1.5-107
Se, fm 7.8-10° | 1.1-10° | 1.8-10° | 6.9-10°
Sle 1.3-10% | 4.1-10° | 1.0-107 | 3.1-107
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Here the modified block Jacobi splitting has turned out to be more suitable than just choosing
X = 1. When only choosing X = [ in this example the related coupling system becomes
ill-conditioned which causes problem for the direct solution of systems with S. as well for
an iterative solution. The expensive generation of X consumes much of the improvement
on S..

Beside the full GMRES as iterative method one typically uses a restarted GMRES as iter-
ative process. Here we will use 30 GMRES steps before a restart is performed. Clearly this
is interesting in this example for p = 8,16 while for p = 2,4 the number of iterations for
Setm and S7'A is small. Especially the nested divide & conquer strategy can be combined
with this method. For the case X = I, Algorithm 6.90 and the system preconditioned by
the block Jacobi matriz Sy we will examine the restarted GMRES combined with low rank
updates. Note that the standard block Jacobi splitting also fits into the class of low rank
splittings, but the rank will not be locally minimized. The corresponding coupling system

will be denoted by S, ;.

Without our low rank update strategy we obtain the following number of iterations. For the
case when the number of iterations exceeds the size of the initial system we do not continue
the process anymore.

Number of Iteration Steps of GMRES(30)

lit\p || 2] 4 | 8] 16 ]
Seq || 13301 >n|>n
Sepm || 4] 16| 30| >n
Seg || 15| 61 >n|>n

Here none of the methods is satisfactory. Even the iteration for S. s, which required the
least number of iterations for the full GMRES will need more than n iterations if only 30
steps of GMRES are used.

The situation changes in combination with the nested divide & conquer method. Here we
need the following number of steps.

Number of Iteration Steps of GMRES(30) combined with nested d& ¢

lit\p || 2] 4] 8| 16|
S.r | 13]87] 241 391
Serm || 41 13] 23] 98
S.q [ 15|49 121 211

Of course the number of iterations will still be larger than those of the full GMRES. But
at least the number of iterations will no longer exceed the size of the system. During the
nested divide & conquer process the coupling system has been successively reduced in its
size. In the following table the initial and the final size of S. are given.
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Size of the coupling system, initially — finally

lit\p | 2 | 4 | 8 | 16 |
Ser [ 1212138261 79— 49| 61— 89
Setm | 12— 11] 38— 37| 19— 75| 161 14/
Sey | 24— 241 76— 69| 156 140 323 288

As expected, for S, several steps of updates are necessary but this matriz is ill-conditioned,
while for the other two coupling systems the heuristic for updating S. gives a much more
moderate reduction.

The successive reduction of S, will adaptively replace the initial block diagonal matriz by a
block diagonal plus an additional low rank modification. This will have the side effect that
solving system with further right hand sides will require less iterations than the first right
hand side. To see this we apply all algorithms to a further right hand side.

Second right hand side of GMRES(30) combined with nested dé ¢
Lit\p] 2] 4| 8]16]

S.; || 13] 48] 91 91
Serm | 4115119 44
S.; | 15| 23|59 91

Finally we will compare the flops when using the nested divide & conquer for one right

hand side.

flops for the Solution Process of GMRES(30)

‘ﬂops\pH 2 ‘ 4 ‘ 8 ‘16‘
Se.r 3.0-10° | 8.9-10° — —
Setm | 2110° [3.0-10° | 6.410° |
5o 3.410° [1.910° | |

flops for the Solution Process of GMRES(30) combined with nested d& ¢

‘ flops \ p H 2 ‘ 4 ‘ 8 ‘ 16 ‘
Se.r 3.0-10° | 9.1-10° | 3.3-107 | 9.2-107
Se, fm 2.1-10° | 3.9-10° | 1.5-10° | 1.4-107
Se 3.410° | 4.6:10° | 1.7-107 | 5.7-107

Since the iteration steps for the GMRES(30) exceeds several times the size of the system,
we can only partially compare it with the use of the nested divide & conquer strategy.

Much more important here is the observation that using the nested divide & conquer strategy
the iterative process becomes more and more a direct process the longer the number of
iterations will be, since the size of the coupling system will be reduced. Compared with the
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GMRES(30) which does not use updates, the combination with the nested divide & conquer
ensures that the process will terminate after a moderate number of steps. Note that in this
example we have n = 532 and without the updates the iterative process for p = 16 will take
more than n steps for all three coupling systems!

Example 9.13

The matric WATT/WATT1 has size is n =
1856 and it is block tridiagonal with blocks of
size < 64 x 64. Its pattern is illustrated in the
picture on the right hand side. We will examine

this matriz for various number of blocks p

2,4,8.
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First of all we will compare the condition numbers of Se 7, S:1,S¢cmod and Se fum .

Condition Number

L m\p || 2 [ 4 [ & |
k2(Ses) || 4.1-107 [ 3.9-10% | 2.6-10°
k2(Semod) || 2.1-10° | 4.7-10T | 1.8-102
k2(Se.fm) |[ 1.0-10° | 4.5-107 | 1.8-102
k2(Ses) || 7-0-10% | 1.3-107 | 2.5-102

The improvement of the condition number of S;mod, Se,fm compared with that of S.r ts
remarkable. Algorithm 6.89 as well as Algorithm 6.90 extremely improve the condition
number. Next we will compare the eigenvalue distribution for p = 4,8. The matrices a
multiplied by a scalar such that the smallest eigenvalue in modulus has absolute value 1.

x 1

Eigenvalues of S.y-4.3-10%, p =4

L
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169

-0.5f

FEigenvalu

x 10°

es of Ser-4.3-10% p=38

1

0.5F

0.5 1

x 10°



Eigenvalues of Senoq - 2.3 -107, p =

o DX XU XK X

2k

4

Eigenvalues of Se jpm - 2.1-10°, p =4

Eigenvalues of S¢moq - 3.8 - 107, p=38

10

S R T ——

L
30

Eigenvalues of Se 1.9 -10%, p =8

10

o@ x XX 300K RO MK >R XK XK

L
30

Already for p = 4 the eigenvalues of S.; are widely distributed (watch the scaling!). They
are from —3 - 10* to 1.3 - 10°, while there are still eigenvalues with modulus 1 which are
quite small in modulus compared with the extremal eigenvalues. For Se 04 the eigenvalues
relatively close to each other and no large gap is seen. The situation will be analogous for
p = 8, but for both coupling systems the gaps increase. Again the eigenvalues of Sepod,

Se,fm are quite close to each other.

Next we will examine the number of iterations using the GMRES method. The iteration for
Se.1:9mod and Se pm, will be compared with the GMRES method applied to the preconditioned

system S7'Ax = S7'b.

Number of Iteration Steps

LitAp [ 2] 4 [ 8]

S.r || 65] 1907 403
Semod | 8| 15| 30
Serm || 5| 13| 30
S7tA 40 0] 88

Here the number of steps has been drastically reduced compared with the choice X = I. And
also the GMRES with block Jacobi preconditioning needs more steps.
Finally we will compare the number of flops .
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flops for LU Decomposition Versus the Generation of X

| flops \ p [ 2 [ 4+ 1 & |
LU decomposition S, X =1 || 2.8-107 | 2.5-107 | 1.8-107
Alg. 6.90 Se, fm 5.2-107 | 7.8-107 | 1.1-108
LU decomposition Sy 2.8-107 | 2.5-107 | 1.9-107

flops for the Solution Process

‘ flops \ p H 2 ‘ 4 ‘ 8
Ser 2.2-107 [ 8.7-107 | 3.4-108
Setm 1.7-10° | 3.0-10° | 1.0-107
STTA 3.0-107 | 6.4-107 | 8.4-107

Total amount in flops

‘ flops \ p H 2 ‘ 4 ‘ 8
Ser 5.1-107 | 1.1-107 | 3.6-10%
Setm 5.3-107 | 8.1-107 | 1.2-10®
STTA 5.8-107 | 8.8-107 | 1.0-10®

For the generation of X in Algorithm 6.90 here up to 128 right hand sides have to be solved
with Sy which makes the generation of X quite expensive. But without modifying the block
diagonal part of S the condition number and the number of iterations grow drastically. At
the end the improvement in the condition already is worth enough to use the modified block
Jacobi splitting instead of just using X = 1.

Neat we will use the GMRES(30) method instead of the full GMRES method. The number
of iterations will then grow drastically but again the nested divide & conquer method can
be used to reduce the number of iterations as well as the size of the coupling system.

Number of Iteration Steps of GMRES(30)

LitAp | 2 | 4 [ 8 |
Ser || >n|>n|>n
Se, fm 50 14| 30
Sed 31| 61| 91

For S, ¢m we need not apply the nested divide & conquer process since the number of
iterations is still under the limit 30.

Applying the nested divide & conquer method to S.; and S, ; will reduce the number of
iterations and the coupling systems will be successively reduced.
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Number of Iteration Steps of GMRES(30) combined with nested d& ¢

Lt\p ][ 2] 4] 8]
S.. || 72| 2521 691
S.s | 51| 61 91

Here for S. 1 the number of ilerations is stil pretty large, but without using the updates we
have more than n = 1856 iteration steps. For S, j the reduction in the number of iterations
is not so high, but the number of iterations is already moderate without using the nested
divide & conquer process. The reduction of the size of the coupling system is given in the
following table.

Size of the coupling system, initially — finally

Lt 2 | 4 | 8 ]
St | 64—~ 12] 192~ 13| {7~ 8]
S.s || 128 128 | 38/ 383 | 893 890

Here we can see that S, ; is extremely reduced in ils size while S, j is only slightly changed.
But for S. this is not surprising, since its condition number is very high (up to 10°) and
already the full GMRES needed almost as many iterations as the size of the system.

Again the number of iterations for a further right hand side will be reduced as side effect

of the nested process.

Second right hand side of GMRES(30) combined with nested dé ¢

Lit\p ] 2] 4] 8]
S.r || 13] 14 ] 61
S., | 31| 61] 61

For S.1 the number of steps for the second right hand side is extremely less than for the
first right hand side, but note that the coupling system has also been extremely reduced such
that we only have a small coupling system at the end. In addition the enormous reduction
of Se;1 means that multiplying with the remaining S. 1 will be quite expensive. For S, ; the
number of iterations for the second right hand side is only slightly less than for the first
one. But here the reduction as well as the number of iterations is quite moderate and the
nested divide & conquer process need not essentially reduce the coupling system S, j.

At last we we will show the flops for the nested divide & conquer method for the first right
hand side.

flops for the Solution Process of GMRES(30)

(fops\pl 2 [ 4 | 8 |
Se,r — — —
S..; L1107 | 25107 | 4.1-107
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flops for the Solution Process of GMRES(30) combined with nested d& ¢

[flops\pl 2 [ 4 | 8 |
S.1 5.2-107 [ 2.6-10° | 1.2:10°
Set L1107 | 2.9-107 | 5.1-107

Of course the nested divide & conquer will become expensive for S.r but without using the
updates the process needs more than 1856 steps and will be much more expensive. For S, j
the same number of flops is needed but in this case the nested divide & conquer process will
only slightly change S. ;

At last we will examine a more realistic example from fluid dynamics.

Example 9.14 We will consider a realistic  problem. The Generalized
Stokes Problem see e.g. [38]) in two dimensions is the following partial differen-
tial equation

—ﬁAu + (aw)y + (bu)y +p, = 0
(9.15) —ﬁAv + (av)y + (bv), +p, = 0
Uy —I_ Uy - 0

where u,v,p are the desired functions depending on x and y, Re is the Reynolds number.
As model domain we consider the backward facing step problem [61]. The domain can be
described as follows.

h=1 1} IH:1.5

On the left end of the domain we preseribe a parabolic inflow with mazimum 1 and on the
right end of the domain we prescribe a parabolic outflow with mazximum 2/3.

As Reynolds numbers we will take 100,300 and 1000. For a,b we take for simplicity
a=1,b=0.

The discretization is done by the finite volume approach together with a flux—difference
splitting method [22]. It has been shown in [64] that the matrices arising from this dis-
cretization are generalized M —matrices.

The domain is discretized as follows.
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22N

L

3N

The numbers M, N determine the number of cells in horizontal and vertical direction and
the size of the corresponding matriz. As the picture shows the grid has been graded with
respect to lower left corner of the large domain. This is done in order to be closer to the
physical problem. A very simple strategy was used for the cell partitioning, i.e., the size any
cell is linearly increasing with the distance from lower left corner of the large domain.

The matriz, a generalized M-matriz, arising from this problem can be partitioned into
blocks of size 3 x 3 such that any block is a symmetric 3 x 3 matriz. Moreover the diagonal
blocks are positive definite and the off-diagonal blocks are negative definite. In order to
split the initial matric A = S — W we adapt the initial modified block Jacobi splitting as
follows. Without modifications Wy from the standard block Jacobi splitting would consist

of matrices of the form
O C
D 0O )’

where C' and D are symmetric positive semidefinite matrices. In this case there exvists G
such that [C, D] = [GAcGT,GApGT] and Ac, Ap are positive definite diagonal matrices.
As modified S we use the block diagonal matriz such that W has locally the form

GA10/2 /2 ~1  AL/2 ~T
(G%HQ (Ayer afar ).

The reason for this choice is that the modifications made for S give symmetric positive
definite diagonal blocks and inherit the given initial symmetry structure.

We will examine this problem for the values

M|4]5] 8
N |23 4
p ||4|8]|16

The size of the system will approximately increase by 2 if p increases by 2. In fact we have
for the size n of the system

p| 4] 8| 16

n || 1476 | 2754 | 5868

First of all we will compare the condition numbers of the related coupling systems.
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For this example the condition number of S. od, Sefm was not improved when using the
modified block Jacobi splitting. It was often worse then for the simple choice X = I, but
not much worse. It is clear that from the construction of X we do not have any guarantee

Condition Number, Re = 100

L e\ [ 4 [ 8 [ 16
k2(Ses) || L.0-10° [ 9.1-10% | 1.3-10°
k2(Semod) || 4.0-10° | 1.4-10° | 2.8-10°
k2(Sefm) || 8:2-10% | 2.9-10° | 2.9-10°
k2(Ses) || L.7-10° [ 4.4-10° | 1.3-10°

Condition Number, Re = 300

L\ [ 4 | & [ 16 |
k2(Ses) ][ 9.6-102 [ 2.4-10° | 1.8-10*
K2(Somod) || 2.8-107 [ 4.8-10° | 5.4-10°
k2(Se.rm) |[ 2.9-102 [ 6.6-10° | 4.4-10"
k2(Ses) || 1.810% | 4.1-10° | 4.3-102

Condition Number, Re = 1000

Lm\p [ 4 [ 8 [ 16
k2(Ses) | 8.3-102 [ 3.1-10° | 1.4-10*
K2(Somod) || 2.2-10° | 5.9-10° | 2.8-10°
k2(Sefm) || 2.2-10° | 7.0-10° | 2.8-10°
k2(Ses) | 1.3-10° | 4.4-10° | 1.9-10°

that we will get an improvement in the condition number.

For the special case that a = 1,b = 0 and Re = 100,300,1000 we will compare the eigen-
values of S. ;1 with those of S. poq and S; pp,. First we will consider the case Re = 100 and

compare the eigenvalue distribution of S. 1 with that of S; o4

Figenvalues of S.1-2.7, p=4
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FEigenvalues of S.y-4.4-10', p =16

Figenvalues
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For p = 4 the eigenvalues of S, p0q are extremely clustered compared with those of S, ;.
For p = 16 the eigenvalues are still more clustered for S; .4 but additional spread eigen-
values are coming in (note that the eigenvalue plots have different scaling!). For S, ¢, the

etgenvalue distribution is quite analogous to that of S¢..q. We illustrate this for p = 16.

40
30
20

10

An analogous effect was
etgenvalue plots of Se tr, .

Next we will consider the

Figenvalues of S.r-2.1, p=4

Eigenvalues of Se jp -5.0-10%, p =14

x x
x
x x
L Coralecl x R
X 3
x x

observed for Re = 300,1000. For this reason we will skip the

case Re = 300.

Eigenvalues of S¢mod - 8.3, p=14

1.5F

15 2 2.5
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FEigenvalues of S.1-9.9, p =16 Eigenvalues of Sepmoa - 3.4 - 10, p =16
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x x
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x « X X
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x X KR X x x
x _af J
X XXX
Xy X x
| -2r x x x 1
x
X x x
4 -3r x x 1
o 2 4 6 8 10 12 14
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0 2 4 6 8

Here for p =4 the eigenvalues of S. 1 are more clustered than for Re = 100 but for S. .4
the eigenvalues are even more clustered. For both matrices the eigenvalues are much more
clustered when Re = 300 than for Re = 100. Here extremal spread eigenvalues like for
Re =100 do not occur for Semoq. The clustering of the eigenvalues is still better for S .4
than for S.r.

At last we will consider the case Re = 1000.

Figenvalues of S.r-2.1, p=4 Eigenvalues of S¢moq - 7.8, p =14

x
x5 X

X

XXX %
4
X

15

FEigenvalues of S.1-5.6, p =16 Eigenvalues of Semoa - 2.4 - 101, p =16

af q af ]

3+ x = 4 «

Here we observe that the eigenvalues of S. 1 and S, .4 are more clustered than for Re = 300
and in this case the improvement using Se.noq is less than for Re = 300.

177



Beside the condition number which is unfortunately not improved for this problem we will

examine the GMRES method applied to S;lA, Ser Semod and Se pp.

Number of GMRES Steps, Re = 100

L p [ 4[8[16]
Ser [ 2041790
Semod || 11] 22 53
Setm | 11]22] 53
STTA | 16] 27 51

The number of iterations for all four algorithms is quite moderate. Compared with S, 1, we
observe that Se p04,5: rm will need much less iteration steps. The situation for all algorithms
will become better when increasing the Reynolds number.

Number of GMRES Steps, Re = 300

L » [ 4] 8]16]
S.r || 19] 337 65
Semod | 111221 46
Serm || 11] 227 46
STA 15 27 47

Number of GMRES Steps, Re = 1000

L » [ 4] 8]16]
S.r [ 20] 33757
Semod | 121 22 45
Serm || 12] 23] 45
STTA | 151 261 46

The improvement made by using the modified block Jacobi=Splitting is quite small since the
number of iterations for all methods is very moderate.

Note that here we used full GMRES. In practice one typically uses a restarted GMRES, i.e.
after k steps of the iteration one stops and begins the iteration again. Now we will examine
for p =16 how the number of iterations will change when using the GMRES method with
30 steps. In addition we will combine the restarted GMRES method with the nested divide
& conquer method. In order to be able to compare the GMRES(30) with and without using
low rank updates we will apply for the block Jacobi method the GMRES iteration to the
related coupling system S. j. Since S; jp and Sepoq show a similar behaviour we will not
examine Semoq tn the next computations.

First we will compare the number of iterations when not using the nested divide & conquer.
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Number of Iteration Steps of GMRES(30), p = 16

| it.\ Re || 100 | 300 | 1000 |
Ser | >nl121] 91
Seqm | 241] 61] 61
Sea | 121] 91] 61

When replacing the full GMRES by the GMRES(30) method for the coupling system the
number of iterations increases drastically particularly for Re = 100. For Re = 300,1000
the situation is better. For S.; we do not have convergence after n steps. The siluation s
better for S. pm,Se.y but still unsatisfactory.

The situation changes in combination with the nested divide & conquer method. Here we
need the following number of steps.

Number of Iteration Steps of GMRES(30) combined with nested d& ¢, p = 16

| it.\ Re || 100 | 300 | 1000 |
Seq [ 181] 91] 60
Seqm | 118] 59| 53
Seut 911 90| 61

Here the number of iterations for Re = 100 has been significantly reduced. For Re =
300, 1000 the difference is less strong but here the GMRES(30) is much more moderate.
For S.1 and Re = 100 we did not have convergence after n steps but this has drastically
changed now.

During the nested divide & conquer process the coupling system has been successively re-
duced in its size.

Size of the coupling system, initially — finally

| it.\ Re | —| 100 | 300 | 1000 |
Sea | 1041—] 1019 1035 | 1027
Seym || 1041~ 1026 | 1035 | 1031
Sea || 2082—] 2066 | 2072 | 2078

For S.1, Re = 100 the reduction is bigger than in all other cases bul here the problem
of convergence was most critical without using the nested divide & conquer. For the other
cases only a small reduction has been done and except for the case Re = 100 for S. s, the
reduction in the number of iterations is small as well.

Finally we will compare the flops when using the nested divide & conquer for one right

hand side.
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flops for the Solution Process of GMRES(30)
| flops \ Re | 100 | 300 | 1000 |

Se —  [1.710° [ 1.3-10°
Se 2.1-10° | 5.0-107 | 5.0-107
Ses 1.3-10% | 9.6-107 | 6.3-107

flops for the Solution Process of GMRES(30) combined with nested d& ¢, p = 16
| flops \ Re | 100 | 300 | 1000 |

S.1 3.8-105 [ 1.6-105 | 1.2-10°
Sefm 14105 [ 6.2-107 | 6.3-107
Set 1.6-105 | 1.4-10° | 7.8-107

For those cases where the GMRES(30) without using the nested divide & conquer method
has lead to a larger number of iterations the nested divide & conquer could effectively
reduce the number of iterations as well as the computational time. For those cases where
the number of iteration steps was already quite moderate without using the nested divide &
conquer the number of iterations was only slightly reduced but the computational costs even
increase slightly. The problem for the heuristic that we have used is that it does not give
a guarantee that the number of iterations will be reduced and the additional computational
work can not always equalize the additional work. But more important is the fact that
for large number of iterations we could reduce the number of iterations as well as the
computational costs and in addition the size of the system that has to be solved has been
reduced.

Summary

We have illustrated for some examples the use of modified block Jacobi splittings as well
as the application of the nested divide & conquer method. Modified block Jacobi splittings
in general were used to improve the properties of the coupling system. In Example 9.12
and 9.13 an improvement in the condition number and the eigenvalue distribution has been
observed. However in Example 9.14 there was no improvement in the condition number. The
condition number of the coupling system using the block diagonal part of the approximate
solution X of the algebraic Riccati equation from Chapter 6 has partially lead to worse
condition number. The problem in general is that choosing the block diagonal part of X
will be most likely not the best choice and so far there is no theory which block diagonal
approximation of X should be chosen. Thus an improvement of the condition number
cannot be expected in general. But what has been observed is that the eigenvalue clustering
of the coupling system has been improved. In Example 9.14 this effect is not as strong as
in the other examples. One problem in general concerning modified block Jacobi splittings
is that we have required the nonsingularity of the block diagonal part of the initial matrix.
This currently reduces the applicability of modified block Jacobi splittings and future
investigations have to discuss the case when the block diagonal part of A is singular. A
general problem in the practical realization of modified block Jacobi splittings is that
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the computation of the approximate solution X of the algebraic Riccati equation requires
the solution of several right hand sides with a block diagonal matrix. If e.g. A is block
tridiagonal with all blocks of size m x m, then 2m systems with a block diagonal matrix
have to be solved. This make the generation of X expensive if an iterative method is used
and if this iterative method only needs a moderate number of steps, i.e. less than 2m
steps. Of course in general the number of iterations may become arbitrary many. In this
case we can exploit the fact that computing X will also give us the opportunity to have
an explicit representation of the coupling system. For a direct solution as well as for an
iterative solution of the coupling system this will essentially reduce the costs of the solution
process. For an iterative solution much of the time consumed by the generation of X can
be equalized by the cheaper matrix vector multiplication.

Here we have only compared the sequential flop count. When being implemented on a
parallel machine one has to take into account that additional communication has to be
done. Here the generation of D, D has the advantage, that the their computation can be
done without communication. This aspect is analogous to the symmetric case, where we
have already discussed the problem.

Modified block Jacobi splittings as well as the unmodified block Jacobi splitting form the
basis for the nested divide & conquer process. If the (modified) splitting exists then the
nested divide & conquer method is applicable. The nested divide & conquer process has
been applied to all examples using a simple heuristic for constructing updates. This strategy
here has been constructed using the GMRES method and the eigenvalue information which
is produced by this algorithm. The strategy essentially tries to find spread eigenvalues and
eigenvalues of small modulus. In contrast to other strategies like [73],[53],[62] here we have
used the corresponding approximate invariant subspace to reduce the size of the coupling
system. Like other strategies there is no guarantee that the iterative process will converge
faster when using this update strategy. But here we have always reduced the size of the
coupling system which will finally lead to direct method even if the iterative process would
fail. This semi-direct approach makes the nested divide & conquer process applicable to a
large class of problems. The problem which is open in general is how the updates should
be chosen. To use this simple heuristical strategy by detecting spread eigenvalues and
eigenvalues of small modulus will be most likely not the best strategy. But in any case this
strategy will tend more and more to a direct method the longer the iteration will take.
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Conclusions

We have developped an algebraic strategy of domain decomposition for large sparse linear
systems, which is based on the low rank modification formula of Sherman, Morrison and
Woodbury. The advantage of this approach is its high flexibility, since only low rank split-
tings of the form A = 5 — W with W of small rank are required. From the point of view
of parallel computations we need to specify the low rank splitting and here we have used
block diagonal splittings. In general we need a block diagonal splitting with a nonsingular
block diagonal matrix S such that S and much more the related coupling system is not
ill-conditioned.

To get a block diagonal matrix an algorithm that partitions the matrix with respect to
the underlying graph has to be used. In principle this algorithm has to partition the graph
such that as few edges as possible have to be taken out to get the block diagonal part of A.
If a block diagonal matrix is obtained by this partitioning, then we can modify the block
diagonal matrix with respect to certain aspects. For certain classes of matrices, symmetric
positive definite matrices, M—matrices we can modify the block diagonal part in order to
inherit structures for the block diagonal part S as well as for the coupling system. Beside
this modifications we can locally minimize the rank of the remaining matrix. Here there
are still restrictions in the general case. So far we still need the nonsingularity of the block
diagonal part of A, i.e. we need that it is not ill-conditioned. In addition we have as re-
quirement, that the block graph has to be block 2—cyclic. The modifications then can be
traced back to the solution of an algebraic Riccati—equation and under relatively general
assumptions explicit solution exist. For practical purposes and the application to the initial
block diagonal matrix these solutions have to be approximated by a matrix which is itself
block diagonal. So far it is open which block diagonal matrix has to be taken and taking
the block diagonal part of the solution is most likely not the best choice in the general
case. In contrast to this in the symmetric positive definite case we have derived bounds on
the optimality of this modifications.

Based on the given splitting we apply the Sherman—Morrison—-Woodbury formula to solve
the problem in parallel. The main problem is to solve the coupling system of small size
which is involved by this formula. To make a compromise between a direct and an it-
erative solution of the coupling system, the Sherman—Morrison—-Woodbury formula has
been successively applied in order to reduce the size of the coupling system and thus
to reduce the rank of the remaining matrix. By this nested application the initial split-
ting has been adaptively modified by low rank updates. The nested application of the
Sherman—Morrison—Woodbury formula can be read as performing an LU decomposition of
a suitably extended system and likewise the remaining coupling system which is generated
by the nested divide & conquer strategy can be obtained from an LU decomposition of
the initial coupling system after a suitable pre— and post multiplication. From this obser-
vation close connections to algebraic multigrid methods could be derived and results have
been transferred to the nested divide & conquer strategy. Here we have used orthogonal
transformations and for the symmetric positive definite case optimal transformations in
the sense of quadratic forms have been derived. In the general case it is still open which
kind of transformation has to be chosen. In any case a reduction of the coupling system
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can be achieved and even if an iterative method would fail we reduce the coupling system
by this approach.

For this algebraic concept a parallel realization has been developped. Here the block graph
of the block diagonal splitting induces a natural distribution of initial system and also for
the related coupling system. We have transferred the use of so—called adding type vectors
and overlapping type vectors to our algebraic problem which has lead to nice treatment of
the coupling system in parallel. To generalize this parallel realization to the nested use of
the Sherman—Morrison—Woodbury formula, we have presented a strategy that collects the
low rank updates to one matrix in order to keep the data traffic small. Here the fact that
implicitly an LU decomposition of the coupling system is made has been turned out to be
quite useful.

In the numerical experiments we have compared the modified block diagonal splittings with
the unmodified splittings. While in the positive definite case an effective improvement of the
condition number has been illustrated, this is not necessarily true in the general case. What
has been observed in the general case is an improvement in the eigenvalue distribution.
Here the gap in the choice of the block diagonal matrix from the Riccati—equation has to be
closed. We have observed that in several cases the iterative process (CG,GMRES) will be
accelerated by this choice but there also exist counter examples. For the application of the
nested divide & conquer strategy we have used a heuristical approach in the unsymmetric
case to define an orthogonal transformation which is based on the eigenvalue information
of the underlying Arnoldi process in the GMRES method. By choosing updates with re-
spect to this heuristic we cannot necessarily reduce the number of iterations in general, but
in any case the size of the coupling system will be reduced and finally the nested divide
& conquer strategy becomes more and more a direct method. In the symmetric positive
definite case we have illustrated how the nested divide & conquer process can be used on
a parallel computer and in the numerical examples the nested divide & conquer strategy
has turned out as compromise between a direct and iterative solution that can overcome
problems with the iterative process especially when the system is ill-conditioned and the
iterative process will extremely slow down or does not converge at all. An additional nice
aspect in using the nested divide & conquer process is that solving further right hand sides
will be much cheaper than the first right hand side.

What we cannot handle by this algebraic concept so far is the application of general
matrices with possibly singular block diagonal part. The problem that has to be solved is
that the block diagonal matrix S must be nonsingular and moreover it must not be too
ill-conditioned. At the same time we need that the remaining part W = S — A has low
rank. Adaptions in this direction still have to be done. By the nested divide & conquer
method we cannot ensure scalability, since on one hand information from the underlying
eigenvalue process is needed and on the other hand too many low rank updates may still
slow down this approach.
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Summary of the Thesis

We have developped an algebraic strategy of domain decomposition for large sparse linear
systems, which is based on the low rank modification formula of Sherman, Morrison and
Woodbury. The algebraic concept is based on three columns. First the nested use of the
Sherman—Morrison—-Woodbury formula which is applicable to any low rank splitting. The
second one is the use of modified block Jacobi splittings and the factorization of the low
rank part. And finally the third column is the parallel realization of the nested divide &
conquer method applied to a block diagonal splitting.

As first column we have presented a nested divide & conquer strategy which consists of
successively replacing the initial matrix S by S plus an additional low rank modification.
By this strategy we have adaptively constructed a preconditioner of the form S plus low
rank which ensures that even if an iterative method for S. would fail we would reduce
the coupling system in its size and in this case we finally end up in a direct method. By
Theorem 4.23 the nested application of the Sherman—Morrison—Woodbury formula can be
interpreted as implicitly performing an LU-decomposition of a suitably extended system
and likewise we have an LU decomposition of S. after a suitable a priori transformation.
Optimal orthogonal transformations have been derived in Theorem 3.31 for the symmetric
positive case. We have demonstrated close connections to algebraic multigrid methods. In
Corollary 4.30 results for the symmetric positive definite case which have been designed for
substructuring methods, have been applied for algebraic domain decomposition methods.

Especially block diagonal matrices were of interest due to their easy realization on par-
allel architectures. We have discussed a way to factorize the low rank part of the block
diagonal splitting and for some classes of matrices we have discussed structure preserv-
ing modifications of the block diagonal part. More complicated modifications that can be
read as some kind of algebraic boundary conditions have been introduced. We have shown
that this problem can be traced back to finding approximate solutions of algebraic Riccati
equations. For the general case there are still many questions open concerning the choice of
algebraic boundary conditions while in the symmetric case we have discussed in Theorem
6.76 the optimality of the choice of algebraic boundary conditions in the sense of quadratic
forms.

The third column of algebraic domain decomposition concept is its parallel realization.
So—called adding type vectors and overlapping type vectors which are well-known in do-
main decomposition methods have been transferred to this algebraic method of domain
decomposition in Theorem 7.37. To adapt the parallel treatment to the use of the nested
Sherman—Morrison—Woodbury formula we have presented a concept that accumulates the
low rank modifications to one block of data in order to reduce the data traffic.

The theory has been illustrated in several examples to confirm with the theoretical results
and how especially a parallel realization behaves.
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1. Mit der Entwicklung von Parallelrechnern sind in den letzten Jahren eine Reihe
von Techniken und Ansétze [5] entwickelt worden, um grofle Systeme Az = b mit
schwachbesetzter regularer n x n Matrix A auf Parallelrechnern numerisch zu losen.
Ein Ansatz beruht auf der Verwendung der Sherman—Morrison—Woodbury Formel
zur Invertierung von Matrizen bei Modifikationen von niedrigem Rang. Ist etwa A =

S—W=5—FG, Sregular, W = F'G von niedrigem Rang, so gilt

(9.16) (S—FG) ' =854+ STF(I -GS E)TTGST
N’

Se

Bei der parallelen Behandlung kann insbesondere S der blockdiagonale Anteil oder ein
leicht modifizierter blockdiagonaler Anteil von A sein, gegebenfalls nach vorheriger
Neuanordnung der Koeffizienten von A. Bei groflen schwachbesetzten Systemen hat
die Restmatrix W dann niedrigen Rang. Parallele Verfahren dieser Art sind z.B. in
[1],[9] fiir blocktridiagonale Matrizen diskutiert worden.

2. Das Hauptproblem bei (9.16) ist die Behandlung des Kopplungssystems S, auf einem
Parallelrechner. Hier tritt das Problem auf, daf S. zunachst nur implizit gegeben
ist und die Verteilung des Kopplungssystems tber die Prozessoren die Behand-
lung dieses Systems erschwert. Eine Moglichkeit ware naturlich dieses System di-
rekt zu losen [1],[9]. Dieses ist, bedingt durch die Verteilung des Systems iiber die
Prozessoren, jedoch ein sequentieller Prozess. Alternativ ware eine iterative Losung
moglich, wie etwa [6], pp.516ff, [11], [4]. Problem bei Iterationsverfahren ist jedoch
die Abhangigkeit der Iterationszahl von der speziellen Matrix [6], p.523, [3], [12]. In
der Regel 1aft sich dies durch den Einsatz von Vorkonditionierern [10] abmildern, das
grundsatzliche Problem aber bleibt. Die parallele Verteilung des Kopplungssystems
reduziert jedoch die Moglichkeiten des effizienten Einsatzes von Vorkonditionierern.

3. In der vorliegenden Dissertation wird zur numerischen Losung grofler schwachbe-
setzter linearer Gleichungssysteme auf Parallelrechnern ein Konzept der algebrais-
chen Gebietszerlegung diskutiert, welches im Grundsatz auf der Verwendung der
Formel (9.16) basiert. Ahnlich den numerischen Methoden bei der Gebietszerlegung
in der Behandlung partieller Differentialgleichungen wird die Systemmatrix tber die
Prozessoren mit lokalem Speicher verteilt und der Datenaustausch findet tuber ein



zugehoriges Kommunikationsnetzwerk statt. Fir (9.16) werden blockdiagonale Ma-
trizen und modifizierte blockdiagonale Matrizen behandelt. Zur Losung des Kop-
plungssystems S, wird mit der geschachtelten Verwendung von (9.16) ein Kompromif}
zwischen einem direkten und iterativen Verfahren behandelt. Techniken wie etwa die
Verwendung addierender und tiberlappender Vektoren [8],[7], die unter anderem bei
Gebietszerlegungsmethoden zur parallelen numerischen Behandlung partieller Dif-
ferentialgleichungen zum Einsatz kommen, konnen hierbei auf den algebraischen Fall
ubertragen werden.

. Im ersten Teil der Arbeit wird mit der geschachtelten Verwendung der Formel (9.16)
ein Ansatz behandelt, der einen Kompromifl zwischen direkter und iterativer Losung
von S. darstellt. Diese geschachtelte Divide & Conquer Strategie erlaubt es einer-
seits, den Rang der Restmatrix W zu reduzieren. Andererseits fithrt das sukzessive
Ersetzen der Matrix S durch eine Matrix S, welche sich von S nur durch eine Matrix
von niedrigem Rang unterscheidet, adaptiv zu einer Vorkonditionierungsmatrix fur
das Ausgangssystem. Hierdurch wird sukzessiv ein neues Kopplungssystem erzeugt,
welches in seiner Dimension entsprechend reduziert worden ist. Dieser Ansatz kon-
nte implizit auf eine LU-Zerlegung eines geeignet erweiterten Systems zurtickgefithrt
worden. Entsprechend ist das aus der Divide & Conquer Strategie entstehende neue
Kopplungssystem das Schur-Komplement des urspringlichen Kopplungssystems 5.
nach einer zuvor durchgefithrten Vorabtransformation.

. Zur geschachtelten Anwendung von (9.16) 1a8t sich die Reduktion des Kopplungssys-
tems und damit die adaptive Anpassung der Matrix S im Prinzip auf das jew-
eilige [terationsverfahren abstimmen. Fiir den Fall symmetrisch positiv definiter Ma-
trizen konnten optimale orthogonale Transformationen im Sinne quadratischer For-
men hergeleitet werden. Im allgemeinen Fall ist die richtige Wahl der orthogonalen
Tranformation noch offen. Hier mufl man sich bisher mit Heuristiken begniigen. Da
hier gleichzeitig die Dimension der Restmatrix reduziert wird, hat man aber auch
fur den Fall, dafl das iterative Verfahren versagt, das System in seiner Dimension
sukzessive reduziert und erhalt dann ein direktes Verfahren.

. Die geschachtelte Verwendung von (9.16) 1afit sich formal als algebraisches Mehr-
gitterverfahren [2] interpretieren. Da sich der behandelte Ansatz als LU-Zerlegung
fiur ein geeignet erweitertes System interpretieren lait, konnen Ergebnisse fur un-
vollstandige Dreieckszerlegungen [7] auf den Fall der geschachtelten Divide & Con-
quer Strategie uibertragen werden.

. Zur Anwendung der geschachtelten Divide & Conquer Strategie lassen sich Zerlegun-
gen der Ausgangsmatrix in einen blockdiagonalen Anteil und eine Restmatrix von
niedrigem Rang gut einsetzen. Hier konnte gezeigt werden, daf sich durch geeignete
Modifikationen des blockdiagonalen Anteils Strukturen der Ausgangsmatrix, wie etwa
Symmetrie und M—Matrixeigenschaft auf den blockdiagonalen Anteil wie auch das
Kopplungssystem ubertragen. Weiter 1at sich die Restmatrix der Zerlegung auf eine
sehr einfache Weise faktorisieren. Dadurch sind auf einfache Weise die Voraussetzun-
gen fiir den Einsatz von (9.16) ermoglicht.

IT



8.

10.

Beim Einsatz blockdiagonaler Zerlegungen lassen sich Modifikationen des blockdi-
agonalen Anteils durchfihren, welche darauf abzielen, die Figenschaften des Kop-
plungssystems zu verbessern. Diese Modifikationen, eine Art algebraischer Randbe-
dingung fiir die Diagonalblocke, konnen auf approximative blockdiagonale Losungen
von Riccatigleichungen zuriuckgefihrt werden. Wahrend hier im allgemeinen noch
gekart werden muf}, welche blockdiagonalen Losungen am besten geeignet sind, die
Losung der Riccatigleichung zu approximieren, konnte im symmetrischen Fall sogar
die Optimalitat im Sinne quadratischer Formen nachgewiesen werden.

Die Verwendung blockdiagonaler Zerlegungen fihrt auf eine natirliche parallele
Verteilung der Matrix und insbesondere des Kopplungssystemes S, aus (9.16), welches
eine Ubertragung des Konzeptes addierender und iiberlappender Vektoren [8],[7] aus
den Gebietszerlegungsmethoden partieller Differentialgleichungen auf den algebrais-
chen Fall ermoglicht. Somit steht ein leichter Zugang zur parallelen Behandlung von
S. zur Verfugung.

Die parallele Behandlung des Kopplungssystems fiir den Fall der geschachtelten Di-
vide & Conquer Strategie 1afit sich durch Biindeln der einzelnen Aufdatierungen
zu einem einzigen Block verallgemeinern. Hierdurch 1afit sich einerseits der paral-
lele Einsatz der geschachtelten Divide & Conquer Strategie auf die urspriingliche
Ausgangsmatrix und ihr Kopplungssystem zurtckfithren. Andererseits bewirkt die
Bundelung der hierbei auftretenden Modifikationen vom niedrigen Rang eine Reduk-
tion der Kommunikationsschritte.
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