
Technische Universit�at Chemnitz-Zwickau

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

Gerhard Globisch

�

The hierarchical preconditioning on

locally re�ned unstructured grids

Preprint SFB393/98 30

Abstract

We present the implementation of two hierarchically preconditioned methods

for the fast solution of mesh equations that approximate 2D-elliptic boundary value

problems on unstructured quasi uniform triangulations constisting of N nodes and

having locally re�ned regions. Based on the �ctitious space approach the origi-

nal problem can be adaptively embedded into an auxiliary one in which hanging

nodes occur, where the hierarchical grid information and the preconditioner are

well de�ned. We provide the arti�cial Yserentant preconditioned conjugate gradient

method as well as the BPX{preconditioned cg{iteration having optimal computa-

tional costs. However, for the previous step that maps the unstructured locally re-

�ned grid appropriately onto the rectangular hierarchy using an octal tree numerical

operations of order O(log(N)N) are necessary. Several numerical examples demon-

strate the e�ciency of the arti�cially constructed hierarchical methods which can

be of importance in industrial engineering, where often only the nodal coordinates

and the element connectivity of the underlying (�ne) discretization are available.

Key words: partial di�erential equations, �nite element methods, automatical grid

generation multilevel methods, hierarchical preconditioning, parallel computing,

AMS(MOS) subject classi�cation: 65N55, 65N22, 65N30, 78A30

�

The work of the author is supported by the Deutsche Forschergemeinschaft (DFG).

Preprint-Reihe des Chemnitzer SFB 393

SFB393/98 30 October 1998

Contents

1 Introduction 1

2 The technique for locally re�ned grids 2

3 Aspects of the numerical implementation 4

4 The description of the program 10

5 Numerical results 14

5.1 Sequential Computing . 15

5.2 First results of the parallel computing . 22

Authors' address:

Gerhard Globisch

Faculty for Mathematics

University of Technology Chemnitz

D{09107 Chemnitz, Germany

e-mail: gerhard.globisch@mathematik.tu-chemnitz.de

http://www.tu-chemnitz.de/sfb393/people/globisch.html

1 Introduction

We want to solve the following twodimensional boundary value problem determined by the

selfadjoint di�erential operator L in the domain
, where Dirichlet as well as Neumann

boundary conditions may be imposed on its boundary @
.

L u = f in
 � R

2

l u = g on @
 = �

(1)

Discretizing the problem e.g. by means of the �nite element method �nally we get a large

scale system of linear algebraic equations

K u = f ;

where K is the symmetric and positive de�nite sti�ness matrix and f the given right hand

side vector.

Our aim is the e�cient numerical solution of the system by modern methods precondi-

tioning hierarchically, although, in practice, we have an unstructured mesh discretization

of
 available only. For real-life problems (1), adaptively re�ned and a-priori graded

meshes are usually used. Continuing the previous work done in [11, 12] for the arti�-

cial preconditioning using the fully hierarchical scheme of depth J meshing the �ctitious

square, in the next section we adaptively construct the structured auxiliary problem into

which the original one can be embedded. Hence, in this case the mapping technique de-

scribed in [11] is modi�ed, successively re�ning the auxiliary hull-square by only chosing

grid cells which contain more than one node of the unstructured grid. Finally, hang-

ing nodes will occur in the auxiliary grid. However, the method reduces the number of

auxiliary unknowns substantially, and less storage is required. For handling with hanging

nodes, the corresponding approach is given e.g. in [13, 24]. Moreover, based on the results

given in [12] for the arti�cially full scheme the adaptive method can be easily transfered to

real life 3D{simulations, where we consider a hierarchically 26-tree instead of an octal tree

performing the mapping. Having the 3D-complexity of the problem (1) this appropriate

passage is a must to diminish the storage memory as well as the larger number of the

arti�cial unknowns.

The �ctitious space lemma is applied in section 2 to derive the spectral equivalence

inequality describing the preconditioning property of the arti�cially constructed hierar-

chical preconditioner which belongs to the auxiliary grid points, see also [23, 24]. The

convergence rate of the iterative process was proved to be as fast as for the conventionally

hierarchical solution method, i.e., it is (nearly) independent of the mesh size.

We discuss several aspects of the numerical implementation of the method in section

3 preparing section 4. Furthermore, we present how the program runs getting control by

the UNIX-commando tool. In section 4 we give a short survey of the produced software

involving the available numerical toolkit. Furthermore, we describe essential subroutines

incorporated into a box diagram.

In section 5 we illustrate the e�ciency of the two adaptive algorithms computing sev-

eral 2D{potential problems. Most of them were already used in [11, 12] for being test

examples. Therefore, we recommend to read the paper being faced with the previous nu-

merical results given therein. We evaluate the corresponding hierarchically preconditioned

cg{iteration computing test series based on two kinds of discretizations. The �rst type

utilizes unstructured �ne grids generated by the parallel advancing front mesh generator

in [10] which are embedded in the arti�cially constructed full scheme consisting of the

1

rectangular hierarchy. For comparison, the examples given in [11] were computed using

the arti�cially constructed triangular hierarchy that seems to provide worser results than

the corresponding quadrilateral one. The second type includes the main contents, i.e. the

results of the hanging-node-approach are opposed adaptively performing the mapping of

the same unstructured grid. Now, the given CPU-times which are necessary to perfom the

iterative solution have the same order as those of the conventional hierarchical methods,

where the time for constructing the mapping appropriately is hidden. If the depth J of

the arti�cial hierarchy is greater than 10 this amount can not be neglected. The user

has to wait up to several hours while the mapping process runs. Moreover, our method

is compared with the cg-black-box solver which uses the modi�ed incomplete Cholesky

factorization preconditioner (MIC), see [28]. In this case the e�ect of the preconditioning

depends substantially on the numbering of the nodes in the unstructured mesh. We also

kept out of sight the time for reducing bandwith and pro�le of the sti�ness matrix K by

the nodal renumbering method described in [9]. We only mention that the corresponding

e�orts considerably exceed those for preparing the adaptively arti�cial method.

Numerical results of the parallel implementation are also given, although the numerical

analysis is still under consideration. The iteration numbers are satisfactory although the

comparison with the parallelized methods on structured grids is rather optimistic. The

basis for implementing the parallel solvers is a non-overlapping domain decomposition

data structure (see e.g. [15, 19]) which is well-suited to parallel machines with MIMD{

architecture. Section 5 also indicates the practical importance of our method. Often,

in industrial engineering boundary value problems have to be solved, where a �ne mesh

in the domain and the discretization concept are given, see e.g. [27]. However, no fast

hierarchical solver can be applied as nothing is known about the grid structure. Using

our approach this bottleneck is overcome.

2 The technique for locally re�ned grids

In this section we consider a triangulation

h

of the domain

h

=

M

[

i=1

�

i

and assume

h

is regular but not quasi-uniform, i.e. there exists a constant s, independent

of h, such that

r

i

�

i

� s; i = 1; : : : ;M

where r

i

and �

i

are the radii of the circumscribed and the inscribed circles of the triangle

�

i

, respectively. It means that the mesh

h

can be locally re�ned. For this triangulation

h

, we de�ne the space H

h

(

h

) of real continuous functions which are linear on each

triangle �

i

of

h

. For the sake of simplicity, we only consider the Dirichlet boundary

condition and assume that the functions from H

h

(

h

) vanish at �

h

.

If we introduce an uniform �ctitious grid Q

h

, then it is possible to modify the operators

R and T which were de�ned in [11] in the case of the full hierarchical scheme. Now they

must be appropriated to the locally re�ned triangulation

h

. However, the numerical

implementation of the corresponding preconditioner will be more expensive.

Let us embed the domain
 in a square � and start with a coarse uniform grid �

h

0

.

We re�ne �

h

0

several times

�

h

0

; �

h

1

; : : :

2

The grid �

h

l

consists of cells D

(l)

ij

. Let Q

h

0

denote the minimum �gure that consists of

cells D

(o)

ij

and contains

h

. Denote by I

0

a set of indices (i; j) such that

Q

h

0

=

[

(i;j)2I

0

D

(0)

ij

We de�ne grids Q

h

1

; Q

h

2

; : : : in the following way. Denote by I

l

a set of indices (i; j)

such that the cell D

(l)

ij

contains more then one vertex of the triangulation

h

. We devide

D

(l)

ij

and all neighbouring cells (which have at least one node with the cell D

(l)

ij

in common)

into four congruent subcells by connecting the midpoints of the edges. We denote the new

cells by D

(l+1)

ij

and the resulting grid by Q

h

l+1

; l = 0; 1; : : :, which is the minimum �gure

that contains

h

. We stop this process when each cell contains no more than one vertex

of

h

specifying the �nal grid by Q

h

J

=

~

Q

h

. The one to one correspondence between the

locally re�ned unstructured grid and the hierarchical grid �

h

J

=

~

�

h

having hanging nodes

is outlined in Figure 1.

SFB 393 - TU Chemnitz

SFB 393 - TU Chemnitz

map:

h

()

~

�

h

T

R

c

-

s

Figure 1: Locally re�ned grid

h

and auxiliary hierarchical grid

~

�

h

with hanging nodes

We de�ne a �nite element space H

h

(Q

h

J

) as follows

H

h

(Q

h

J

) = f

X

supp�

(0)

k

�Q

h

J

�

(0)

k

�

(0)

k

+

J�1

X

l=0

X

(i;j)2I

l

supp

X

�

(l+1)

k

\D

(l)

ij

6=;

�

(l+1)

k

�

(l+1)

k

j �

(l)

k

2 R

1

g :

From [11] we take over the projection operator R and the extension operator T .

R : H

h

(Q

h

J

) �! H

h

(

h

) ; T : H

h

(

h

) �! H

h

(Q

h

J

) :

In the following, we de�ne a preconditioning operator in H

h

(Q

h

J

) for any U

h

2 H

h

(Q

h

J

):

C

�1

~

�

h

U

h

=

X

supp�

(0)

k

�Q

h

J

(U

h

; �

(0)

k

)

L

2

(Q

h

J

)

�

(0)

k

+

J�1

X

l=0

X

(i;j)2I

l

supp

X

�

(l+1)

k

\D

(l)

ij

6=;

(U

h

; �

(l+1)

k

)

L

2

(Q

h

J

)

�

(l+1)

k

Theorem There exist positive constants c

1

and c

2

which are independent of h such that

c

1

(K

�1

u; u) � (RC

�1

~

�

h

R

�

u; u) � c

2

(K

�1

u; u) 8u 2 R

N

Proof. We use the equivalence of the H

1

-norms of �nite element functions in the

spaces H

h

(

h

) and H

h

(Q

h

J

) and the di�erence counterparts of these norms and the mul-

tilevel technique, see [22, 24] for more details, especially for the �ctitious space lemma.

3

3 Aspects of the numerical implementation

The main di�erence between the implementation of the arti�cially constructed full-hier-

archical method (see [11, 12]) and their adaptive version described here is the mapping

principle. Up to now, the mesh size parameter

�

h was computed in advance de�ning the

depth J of the arti�cially hierarchical rectangular �

h

. In the 2D-case it is consisted of all of

the L

2

= (2

J

+1)

2

vertices. Considering the nodal coordinate set X(2; i); i = 1; 2; : : : ; N of

the unstructured grid

h

one time only, for i = 1; 2; : : : ; N , the one-to-one correspondence

between selected points in �

h

and all of the points in

h

was performed. Now, we also �x

the depth J in advance. However, for l = 1; 2; : : : ; J we run through the grid cells D

l

ij

of

a transiently available �

h

belonging to the current stage of l really doing as it was given

in the previous section. I.e., in the case of more than one point of the unstructured mesh

inside of the cell D

l

ij

we re�ne D

l

ij

and their neighbourhood cells using successively the

octal tree description of the grid hierarchy. An auxiliary vector IH de�ned to be of the

Integer�2-type to save the memory having (2

J

+1)

2

transient entries marks the points of �

h

which are in

~

�

h

as follows. In the case of a regular point it is marked by 2 in the case of a

hanging node by 1. Otherwise, if the point does not belong to

~

�

h

the corresponding entry

(i; j) in IH remains equal to zero. Running through the loop l = 1; 2; : : : ; J at each stage

the nodal coordinate vectorX(2; i) of the unstructured grid must be checked for assigning

uniquely these points to the auxiliary vertex in the grid

~

�

h

, which is, in general, the point

in the left-below of the corresponding cell D

l

ij

. In comparison with the L

2

arti�cial nodes

in the fully hierarchical grid �

h

we get merely

~

L auxiliary unknowns summing up the

points in IH which are marked by 2 or 1, respectively. Since we have unstructured grids

with locally re�ned regions, in general we arrive at

~

L << L

2

. Hence, the amount of the

arti�cially performed hierarchical preconditioning using the father-son connexion of

~

L

arti�cial unknowns is nearly as fast as in the case of the classically hierarchical method

which can't be applied because nothing is known about the structure of the grid

h

. The

above mapping process which is performed by the routine LOCPRE2X costs (O(N log(N))

numerical operations. Having a relatively large J , say J > 10, the assigning is numerically

expensive waiting several hours for. To de�ne the Jacobi-preconditioning matrix J for all

of their entries belonging to the

~

L points we use the approximation which was already

given in [11].

By means of the following commando-tool version we get insight into the controlling

of the program artYs-BPX.fHPPA,ppc,parixg.px, where we also describe numerical techniques

that are hidden here.

helix% run16 pmhi.parix.px (0)

run : Creating 4 * 4 descriptor by calling mkdesc.

run : Starting D-Server at helix link 0.

#

#

SSSS PPPPP CCCC PPPPP M M PPPPP 222

S S P P C C P P MM MM P P 2 2

S P P C P P M M M M P P 2

SS PPPPP C === PPPPP M M M M PPPPP ooo 222

S P C P M M M P o o 2

S S P C C P M M P o o 2

SSSS P CCCC P M M P ooo 22222

#

#

#

Programm-Modul 2D-Potentialprobleme

Version: 2.00

#

DFG-Sonderforschungsbereich 393

TU Chemnitz, Fakultaet fuer Mathematik

#

A.Meyer, Chr.Israel, M.Pester, G.Globisch

#

4-MB-Variante (580000 Worte) - bis zu 128 Prozessoren

in Benutzung: 16 Prozessor(en)

#

#

Display: PseudoColor *** 14 colors allocated ***

4

**

Wollen Sie Globisch-Nepomnyaschikh-vorkonditionieren.?

Falls nicht, so erhalten Sie die folgenden Optionen:

1. Klass. hier. Vorkonditionierung nach Yserentant/BPX (1)

**

(Geben Sie j/J/y/Y oder n/N ein) ----->j

1: Full triangular auxiliary grid version?

2: The rectangular auxiliary grid version? (2)

(Bitte geben Sie 1 oder 2 ein) ------->2

**

Typeingabe (full=1, hanging node=2) --->2 (3)

Kuenstl. Unbekannte (Faktor zu N)? --->15 (4)

artYs/artBPX? (Yserentant=1, BPX=2) --->1 (5)

**

--> Auswahl des Elementtyps :

3 : Dreiecke

4 : Vierecke

(ENTER = Dreiecke) :

adsquare.net d2.net keule16.net qu16.net

adtest.net jinjan.net kr4.net x1004.net

Filename for User-Net:adsquare

EINGABE : Anzahl der Levels:1

lineare Finite Elemente ? (j/n)

* Netz : (Prozessor 0)

- lokale Anz. der Knoten : 0

- lokale Anz. der Kanten : 0

- lokale Anz. der Elemente : 0

Ges. lok. Knotenzahl : 0

davon : glob.Crosspoints : 101

lok. Crosspoints : 0

Summe der Randketten : 0

Koppelknoten : 0

innere Knoten : 0

Anz. der Randketten : 0

grafische Darstellung ? - [j]/n : n

**

ICH = 4, di = 0.215455E+00 (6)

ICH = 1, di = 0.387959E-01

ICH = 5, di = 0.588012E+00

ICH = 12, di = 0.481422E-01

ICH = 8, di = 0.158798E+00

ICH = 3, di = 0.244106E+00

ICH = 2, di = 0.277854E+00

ICH = 9, di = 0.167542E+00

ICH = 13, di = 0.390644E+00

ICH = 0, di = 0.000000E+00

ICH = 7, di = 0.609501E-01

ICH = 15, di = 0.157121E+00

ICH = 6, di = 0.350719E-01

ICH = 11, di = 0.714978E-01

ICH = 14, di = 0.143623E+00

ICH = 10, di = 0.527156E-01

Faktor > 0 eingeben (= 1 ?) --->1 (7)

Mehrprozessorarbeit: Wollen Sie viele Ausgaben? (8)

(Geben Sie j/J/y/Y oder n/N ein) ----->y

Optimierungsgrad der Abbildung festlegen.

(opt<0: auf Teufel komm raus Knoten sparen) (9)

(Geben Sie -3,-2,-1,0,1, ... ,5 ein) --->-1

Statt Hilfsquadrat ein Hilfsrechteck gewuenscht? (10)

(Geben Sie j/J/y/Y oder n/N ein) ----->n

Proz.: 0 max. Tiefe J = 8 L^2 = 66049 (11)

**

* Assemblierung der Steifigkeitsmatrix :

- Anzahl der Nichtnull-Elemente :

bei A : 0

Proz.: 0 nline ist Null, bin arbeitslos.

Aufbau der Abbildung; etwas Geduld bitte.

Haeng. Zushg. zeigen? (Eing. Proz.-Nr.) ==>16 (12)

maximale Tiefe des kuenstlichen Gitters: 8

Proz.: 4 --> L^2 = 1089, aber L~ = 170 (13)

Proz.: 12 --> L^2 = 66049, aber L~ = 472

Proz.: 8 --> L^2 = 1089, aber L~ = 329

Proz.: 5 --> L^2 = 289, aber L~ = 81

Proz.: 1 --> L^2 = 289, aber L~ = 69

Proz.: 13 --> L^2 = 289, aber L~ = 132

Proz.: 9 --> L^2 = 1089, aber L~ = 216

Proz.: 7 --> L^2 = 66049, aber L~ = 447

Proz.: 6 --> L^2 = 1089, aber L~ = 177

Proz.: 3 --> L^2 = 1089, aber L~ = 177

Proz.: 15 --> L^2 = 1089, aber L~ = 190

Proz.: 2 --> L^2 = 4225, aber L~ = 332

Proz.: 11 --> L^2 = 4225, aber L~ = 341

Proz.: 14 --> L^2 = 1089, aber L~ = 161

Proz.: 10 --> L^2 = 1089, aber L~ = 245

Proz.: 0 --> L^2 = 0, aber L~ = 0

5

Aufbau der Stufenapproximation; Bitte etwas Geduld.

Visualisierung (Eingabe Prozessornummer) ==>16

ICH = 0; Sum L^2 = 150127; Sum card(Q^h) = 9011; J = 8 (14)

Zeiten fuer Warten+Kommunikation [s]

Prozessor

log. /phys. input : in % : output: in % : gesamt:

0 0 0 0.00 0.00 229.06 99.95 229.18

1 1 0 0.03 0.01 228.25 99.59 229.18

2 3 0 0.02 0.01 205.27 89.57 229.18

3 2 0 20.08 8.76 205.26 89.57 229.18

4 0 1 0.02 0.01 225.52 98.40 229.18

5 1 1 2.69 1.17 225.51 98.40 229.18

6 3 1 0.02 0.01 225.19 98.26 229.18

7 2 1 0.02 0.01 23.52 10.26 229.18

8 0 3 0.02 0.01 223.16 97.37 229.18

9 1 3 1.49 0.65 223.05 97.33 229.18

10 3 3 0.02 0.01 224.85 98.11 229.18

11 2 3 0.03 0.01 208.29 90.89 229.18

12 0 2 0.02 0.01 0.01 0.01 229.18

13 1 2 227.96 99.47 0.01 0.00 229.18

14 3 2 224.59 98.00 0.04 0.02 229.18

15 2 2 224.70 98.04 0.00 0.00 229.18

reine Arithmetikzeit (max): 229.14 (15)

benutzter Speicher: 2 ... 5634 WORTE

freier Speicher: 579998 ... 574366 WORTE

* Probleminformationen (lokal Prozessor 0):

- Anzahl der Knoten : 0

- davon : Koppelknoten : 0

- interne Knoten : 0

* Probleminformationen (global):

- Anzahl der Prozessoren: 16

- Anzahl der Knoten : 361

- davon : Koppelknoten : 241

- interne Knoten : 120

-> Gesamtanzahl der Freiheitsgrade : 361

* Start der Simulation

<enter>

Geben Sie rmult fuer R^T ein --------->0 (16)

IT (r,w) (As,s) ALFA BETA

1 1.784472E+04 4.455678E+04 -4.004939E-01 0.000000E+00

2 6.913020E+03 1.933661E+04 -3.575094E-01 3.873987E-01

3 3.640377E+03 1.107323E+04 -3.287547E-01 5.265972E-01

4 1.789120E+03 4.218368E+03 -4.241262E-01 4.914656E-01

5 8.423368E+02 1.636132E+03 -5.148342E-01 4.708106E-01

6 4.809581E+02 8.316169E+02 -5.783409E-01 5.709808E-01

7 3.731538E+02 7.936708E+02 -4.701619E-01 7.758551E-01

8 2.208358E+02 2.837288E+02 -7.783342E-01 5.918090E-01

9 1.201522E+02 2.090880E+02 -5.746488E-01 5.440793E-01

10 1.087616E+02 2.858571E+02 -3.804756E-01 9.051990E-01

11 4.709540E+01 8.012380E+01 -5.877829E-01 4.330148E-01

12 2.504550E+01 4.310150E+01 -5.810819E-01 5.318036E-01

13 1.109942E+01 2.206038E+01 -5.031384E-01 4.431702E-01

14 4.043865E+00 6.676073E+00 -6.057251E-01 3.643312E-01

15 2.628543E+00 5.479189E+00 -4.797321E-01 6.500076E-01

16 1.451768E+00 2.893943E+00 -5.016574E-01 5.523091E-01

17 7.138102E-01 1.394144E+00 -5.120061E-01 4.916834E-01

18 3.706404E-01 6.902177E-01 -5.369906E-01 5.192422E-01

19 1.941290E-01 3.855149E-01 -5.035577E-01 5.237664E-01

20 1.028034E-01 1.923278E-01 -5.345221E-01 5.295626E-01

21 5.771207E-02 1.058960E-01 -5.449883E-01 5.613826E-01

22 2.280583E-02 3.317241E-02 -6.874938E-01 3.951657E-01

23 1.140175E-02 1.783604E-02 -6.392536E-01 4.999492E-01

24 5.230066E-03 8.132724E-03 -6.430891E-01 4.587071E-01

25 2.825409E-03 4.668480E-03 -6.052097E-01 5.402243E-01

26 1.264276E-03 2.293823E-03 -5.511654E-01 4.474665E-01

27 5.953633E-04 1.044797E-03 -5.698366E-01 4.709124E-01

28 2.390452E-04 3.716761E-04 -6.431545E-01 4.015114E-01

29 9.227201E-05 3.716761E-04 -6.431545E-01 3.860024E-01

* ENDE , 29 Iterationen

Zeiten fuer Warten+Kommunikation [s]

Prozessor

log. /phys. input : in % : output: in % : gesamt:

0 0 0 1.33 66.93 0.37 18.70 1.99

1 1 0 0.34 16.96 1.39 69.93 1.98

2 3 0 0.35 17.52 0.72 36.12 1.98

3 2 0 0.93 46.90 0.53 26.94 1.98

4 0 1 1.07 54.11 0.37 18.83 1.98

5 1 1 0.36 18.26 1.33 67.14 1.98

6 3 1 0.99 49.88 0.40 20.37 1.98

7 2 1 0.59 30.02 0.15 7.75 1.98

8 0 3 0.61 30.59 0.40 20.31 1.98

9 1 3 0.28 14.09 1.05 53.20 1.98

10 3 3 0.82 41.30 0.44 22.08 1.98

11 2 3 0.94 47.35 0.09 4.34 1.98

12 0 2 0.48 24.13 0.20 10.02 1.98

13 1 2 0.45 22.70 1.07 54.14 1.98

14 3 2 0.65 32.65 0.80 40.31 1.98

15 2 2 1.32 66.53 0.08 4.23 1.98

reine Arithmetikzeit (max): 1.30

grafische Darstellung ? - [j]/n :

**

Wollen Sie Globisch-Nepomnyaschikh-vorkonditionieren.? (17)

6

Falls nicht, so erhalten Sie die folgenden Optionen:

1. Klass. hier. Vorkonditionierung nach Yserentant/BPX

**

(Geben Sie j/J/y/Y oder n/N ein) ----->n

**

Yserentant oder BPX? (Ys=1, BPX=2) --->1

**

EINGABE : Anzahl der Levels:-2

lineare Finite Elemente ? (j/n)

run : Terminating with result = 0.

Figure 2: The commando tool while the program runs in parallel

(0) The older parallel parix-version of the program is initialized using 16 processors

T800 of the Parsytec-GmbH-cluster.

(1) At this stage the "Globisch-Nepomnyaschikh"-preconditioning for constructing the

hierarchical preconditioner arti�cially w.r.t. a given (unstructured) discretization

of the partial di�erential equation can be ordered. Otherwise, the user gets the

opportunity to solve with the cg-algorithm preconditioned by the classical hierar-

chical methods provided that the mesh hierarchy is given. In the case of having

only one processor, i.e. performing the sequential computing, the option for solving

the problem applying factorized preconditioned cg-methods like IC or MIC can be

selected, see [28]. Here, the previously performed nodal renumbering process costs

several hours time provided that a large scale problem is given, see [9, 11].

(2) The user may order the element-type of the arti�cially constructed hierarchical mesh

into which the original one can be embedded. The triangular hierarchy (input=1)

and the rectangular hierarchy (input=2) are available. Finally, this results in de�n-

ing the corresponding hierarchical lists which is performed within the subroutine

LOCPRE3D. The numerical tests indicate that the rectangular hierarchy almost

ever provides better results than the triangular hierarchy does.

(3) At this stage the user de�nes the type of the arti�cial preconditioning. The input

equals to "1" does �x the full-hierarchical scheme whereas the input equals to "2"

orders the hanging node version which is available now. Since the fully arti�cial

scheme requires larger auxiliary memory size than the hanging node approach in

this case the user may select a memory-saving branch of the program by giving the

input equals to "3".

(4) The user has to specify the integer factor by which the given number N of nodes

in the unstructured mesh is multiplied to predict an upper bound for the number

~

L of arti�cial unknowns in the auxiliary system preconditioning arti�cially having

hanging nodes in the hierarchy. In the case of the parallel computing the interme-

diate zero-input allows to set the factor individually per processor i = 1; 2; : : : ; p.

Otherwise, the given positive input is uniformly spread over the processors.

(5) The user may �x the type of the preconditioning. He can order the Yserentant

hierarchical preconditiong (input=1) as well as the BPX-preconditioning (input=2).

Omitting the stages (2)-(4) this input is also necessary in the case of the hierarchical

preconditioning performed conventionally. In general, the following actions of the

program are well known, see e.g. [1, 2]. In our example (see Fig. 2) the root

processor has got nothing to do.

7

(6) Here the program informs the user about the parameter d

i

belonging to the pro-

cessor i = 1; : : : ; p which was computed using the heights of the triangles in the

unstructured mesh, see [11].

(7) The user may put in a real factor (f � 1=2; f � 2) multiplying the parameter d

i

for

all i; i = 1; : : : ; p, to get a �ner and a coarser arti�cial hierarchy, respectively. The

default factor is equal to 1. By giving input equal to zero in the following the user

may specify the factor f

i

per processor distinctly evaluating the data given at the

stage (6), see also [12].

(8) In the case of the parallel computing the user may order several helpful informa-

tion per processor including error messages during the program runs (input="y").

Otherwise (input="n"), this can be avoided.

(9) The user can "optimize" the adaptive mapping described in the previous section.

The larger the given input integer (iopt = �3;�2; : : : ; 5) is the "smoother" the

hanging node connexion is spreaded over the hierarchy. Negative input tries to save

auxiliary unknowns as much as possible. The input at this stage plays together with

the factor f as it is speci�ed larger and lower at the stage (7), respectively.

(10) Instead of the hull square the user may order a hull rectangular embedding the

original discretization; for more details see also [12].

(11) Here, the maximumdepth J of the arti�cial hierarchies as well as the related number

of auxiliary unknowns L

2

are set to be output taking the corresponding values per

processor i = 1; : : : ; p into account.

(12) If the input parameter iopt at stage (9) was de�ned to be greater than -2, the user

can order the vizualization of the hanging node pattern (cf. vector IH) related to

the processor number i = 0; 1; : : : ; p�1 set to be input. If this number is not in the

corresponding integer range the program continues.

(13) At this stage the given output compares the full number L

2

with the adaptively

de�ned number

~

L based on the hanging node approach of the mapping.

(14) After the step form approximation was generated (see [11]) the output gives the

overlapping parameter Sum card(Q

h

) of the corresponding points got by summing

up the values related to each of the processors. If the full scheme is used for the

hierarchical preconditioning, at this stage the user is asked for the visualization

of the step form approximation per processor. The number for the corresponding

processor i = 0; 1; : : : ; p�1 is required to be input. If the input is equal to the number

p of processors the program continues without showing the 0�1 pattern.

(15) If the user has ordered the auxiliary output in the case of the parallel computing

(see (8)) here all of the CPU-times are given per processor which were necessary

to perform the adaptive mapping. In the case of the arti�cial BPX-preconditioning

between the stage (14) and the next stage (15) an information on the erection of

the BPX-list from the Yserentant-list will be given. Provided that the depth J is

less than 10 the corresponding process comes fastly to the end. Otherwise, the user

has to wait for patiently. However, the BPX-list for the full rectangular hierarchy

(J = 7; : : : ; 12) can be ordered being an input-�le after the artBPX-preconditioning

is choosen at stage (5). These compressed �les are available in the AFS-directory

gglobisc/svnep/listen.

8

(16) At this stage the user provides a non-negative real input parameter rmult for weight-

ing the mapping vector R

T

(see [12]) speci�cally. The default is set to be zero, i.e.

the factor is equal to one.

(17) In the following the program can be restarted using another input �le (Level number

input = -1) as well as it may be stoped (Level number input = -2), see also [1, 2].

The numerical result using 16 processors for the parallel computation of the Laplace

equation in the unit square imposing the linear Dirichlet boundary condition (u = x

1

+x

2

+

1) on the boundary was shown by the above commando tool picture, see Fig. 2. We used

the locally re�ned mesh discretization of the square which is the data-�le adsquare:net

in the mesh3-directory. To get insight into the second re�nement of the unstructured grid

in Fig. 1 as well as in the �lled isoline picture for the solution u we present Fig. 3.

To compare the above result with the sequential computing which is still more e�ec-

tive than the parallel version under theoretical consideration and to brighten the options

"artYs" or "artBPX" (see (5)) playing together with the full scheme "F

J

" and the hang-

ing node scheme "H

J

" both depending on the speci�ed grid depth J (see (3)) as well

as with the choice of the element type ("T"=triangle, "Q"=rectangle) in the auxiliary

hierarchy (see (2)) now the next survey is provided computing the test example. The

time epitomized by "(t

map

)" enlightens the amount for performing the adaptive mapping.

Furthermore, there are rows in Table 1 which contain the results of the cg-algorithm

preconditioned by the IC, MIC, and the MAF-method described in [28]. Moreover, the pre-

sented brackets contain the results of the classically hierarchical iteration which we could

apply since the corresponding re�nements of the initial mesh (see Fig. 1) were stored.

The computations are performed on a HP 9000/889 K460- workstation.

adsquare - Level 2 - 1 proc.

SFB 393 - TU Chemnitz

adsquare - Level 1 - 1 proc.

 1.00E+00

 2.10E+01

 U

SFB 393 - TU Chemnitz

Figure 3: Locally re�ned unstructured mesh and isolines

Further test problems containing locally re�ned mesh regions e.g. such as given by

the �les f:net; ad1:net; lbenchdi; i = 1; 2; : : : ; 9 illustrate impressively the nice e�ect

of mapping the original mesh adaptively to the embedding grid using hanging nodes.

The test examples in section 5 of the paper provide an additional contrast between the

superior hanging node approach and the full scheme results which were presented in [11]

computing the same.

9

Table 1: #cg{iterationens, CPU{times (in sec) for the Laplace equation in "adsquare.net"

artYs artBPX(rmult = 0:5)

N L

2

=

~

L(t

map

) T Q T Q

H

7

31 141 (0.73)

[��]

8 (0:00) 8 (0.00)

[��]

8 (0:01) 8 (0.01)

H

8

101 398 (3.61)

[12 (0:01)]

13 (0:02) 11 (0.01)

[10 (0:00)]

13 (0:04) 12 (0.04)

IC 361 f34 (0.72)g

MIC 361 f 9 (0.10)g

MAF 361 f11 (0.14)g

F

9

361 263169/ 14 (4.20) 12 (16.03) 13 (8.82) 11 (11.57)

H

9

361 1067 (48.69)

[17 (0:03)]

15 (0:04) 14 (0.04)

[14 (0:02)]

14 (0:07) 13 (0.09)

IC 1361 f66 (9.44)g

MIC 1361 f12 (0.40)g

MAF 1361 f19 (0.50)g

F

10

1361 1050625/ 18 (30.04) 16 (96.69) 17 (51.02) 14 (19.81)

H

10

1361 3740 (170.8)

[21 (0:13)]

17 (0:13) 16 (0.23)

[18 (0:12)]

16 (0:29) 15 (0.30)

H

11

5281 14628 (2115.3)

[23 (0:21)]

19 (0:55) 19 (1.14)

[20 (0:19)]

17 (2:85) 16 (3.09)

H

12

20801 55865 (9.44 h)

[26 (2:91)]

23 (6:13) 21 (6.84)

[21 (1:68)]

20 (9:28) 19 (10.60)

H

13

82561 214658 (1.82 d)

[28 (9:54)]

26 (27:13) 24 (25.14)

[22 (6:47)]

22 (24:28) 20 (23.71)

4 The description of the program

In the following the short decription of several new routines should be given, where their

connexion tree is presented in Fig. 4. The source codes are included in the directory

gglobisc/HangNode belonging to the Client/Server system of the SFB393 in Chemnitz.

The subroutine

GGINPUT asks for the "Globisch-Nepomnyaschikh"-preconditioner and reads the

initial input (2)-(5) for if those are selected; see the commando tool picture Fig. 2.

HEIGHTDEF computes the mesh size parameter

�

h for an unstructured triangular

grid using the triangle heights; see [11] for more details.

RECTADEF de�nes the auxiliary square encompassing the unstructured mesh. The

length l of the square side is calculated taking the parameter

�

h and the appropriately

chosen depth J of the auxiliary hierarchical grid inside into account such that we

have

�

h = l 2

�J

. Moreover, the location of the square is centred w.r.t. the x, y, and z

ranges of the original domain. Instead of the square, sometimes the user is asked for

a rectangle encompassing the mesh as above and having the maximum side length

l. The side lengths of the rectangle are set according to the coordinate ranges of the

domain, where no centralization is made.

10

HPNEU

GGINPUT

HEIGHTDEF

RECTADEF

LOCPRE3D LOCPRE2X

RTOPTHANG4

QUAD2D+Z2D HANGNODE

LOCPOINT

QHINTERN

QUADLIST

PPCGQ SUPP2DQ

HB2BPXGG

PPCGV QHINTERH

RTOPT

QHDEF

PPCGN

PREVOR

CDEF2

DIPOINT

EXTRDEF+SGESV

RTOPT

SUPP2DT

HB2BPX2

HSTH

HSTCOPf2,GGg

SETBCINC

LISTHANGfT,Qg

NEPLOES

GLOCOM

RTRANSFER

RREVERS

Figure 4: Scheme of (new) important routines called by the main program HPNEU

LOCPRE3D de�nes the full/adaptive hierarchy inside of the auxiliary triangu-

lar/rectangular grid meshing the hull square as well as the hull rectangle having

the hierarchical depth J . Finally, this adapter results in computing the auxiliary

hierarchical lists in the four cases (ffull scheme, hanging node schemeg combined

with f"artYs", "artBPX"g) correspondingly.

LOCPRE2X is the module for performing the hanging node mapping in the 2D-case,

where the nodal coordinate vector is an essential input.

QUAD2D+Z2D de�nes a rectangular cell in the arti�cial hierarchy of depth J as well

as, in general, their eight neighbour cells such that we have an octal tree available

for performing the mapping. Every cell is identi�ed by the name of the centred (son-

)vertex, the names of the four related fathers and the names of the four midpoints

between them. Furthermore, the coordinates of these points are computed and an

information as to whether and how the cell has a non-empty intersection with the

boundary of the hull-square/rectangle is coded.

HANGNODE handles the octal tree within the loop l = 1; 2 : : : ; J as described in

section 2.

11

HANG4 operates speci�cally with the four little subcells which are contained in all

of the cells belonging to the last level l = J of the hierarchy having the identifying

centre vertex in common.

RTOPT prepares the one-to-one correspondence between the nodes in the unstruc-

tured grid and the corresponding vertices in the arti�cial hierarchy optimizing the

mapping by determining a smaller and larger cell-neighbourhood-connexion, respec-

tively, cf. (9). Roughly speaking, the octal tree can be extended up to the "24-tree".

LOCPOINT computes the names of the fathers and the current depth l of an input

nodal name within an arti�cial square-grid hierarchy of depth J . We note that

the L

2

points in the 2D-hierarchy are numbered linewise from the left to the right

starting at the lower base of the square moving up.

QHINTERN generates the step form approximation

~

Q

h

in the case of having only

~

L

arti�cial unknowns, see [11]. The step form approximation is necessary for perform-

ing the inner Jacobi-preconditioning, see also [11]. This routine uses the algorithm

for performing the inner-outer decision basing on the convex polyhedral element

description, see [11], Computing article.

PPCGfV,Qg asks the user for the decision as to whether the distinct boundary

conditions of the problem must be taken into account for de�ning the hierarchical

preconditioner arti�cially in the case of the full hierarchy consisting of triangu-

lar/rectangular elements, see [11, 24]. Furthermore, the parameter rmult for the

weighting of the mapping R

T

is a real input value (default = 0.). Moreover, the

subroutine performes corresponding actions depending on the (in)homogeneity as

well as on the material properties of the problem to be solved.

SUPP2DfT,Qg prepares the boundary depending arti�cial preconditioner de�ned

by the fully triangular and the fully rectangular hierarchy, respectively. In this

case the preconditioner depends on the kind of boundary conditions if the above

answer into PPCGfV,Qg was "yes". Here, the arti�cial unknowns are marked if

their support is speci�cally related to the boundary conditions imposed on the

original discretization, where a lot of additional computational e�ort is required.

However, the amount hardly results in improving the convergence speed.

QHINTERH generates the step form approximation Q

h

in the case of having all of

the L

2

arti�cial unknowns, see [11]. The implemented "cut-algorithm" is a bit faster

than the convex polyhedral method.

QHDEF is the heart of the routine QHINTERH performing the cut between the

horizontal line and the element boundary scoring the number of cut points, cf. [11],

preprint SFB97 11.

PPCGN is the adapter-module for performing the preconditioned conjugate gradient

method using the arti�cially constructed approach as the subroutine PPCGM does

it classically in the case of the originally hierarchical method.

PREVOR extracts and modi�es the main diagonal of the original sti�ness matrix

K appropriately for the auxiliary preconditioning, where some steps are prepared,

which are also necessary for.

12

DIPOINT helps to compute the matrixR

�

locating the grid points of the original un-

structured mesh w.r.t. the corresponding cell-rectangle of the auxiliary hierarchical

grid �

h

; see [11] for more details.

EXTRDEF de�nes the minimum hull-rectangle consisting of all of the cells of the

grid �

h

that contain the corresponding triangle of the original mesh, where the three

vertices of the element are taken into account.

SGESV performes the decision as to whether a grid point Z of the above hull-

rectangle is outside or inside of the triangle under consideration. Provided that

x

i

are the coordinates of the three vertices of the triangle, we test the triangle

representation of Z =

P

3

i=1

�

i

x

i

, where

P

3

i=1

�

i

= 1 checking �

i

� 0; i = 1; 2; 3 for

being an interior point. The 3 � 3 systems of linear equations are solved by the

implemented LU{decomposition.

CDEF2fA,Ig computes the auxiliary main diagonal of the auxiliary operator A

Q

h

=

~

Q

h

(see [11]) which is designed to perform the interior Jacobi-preconditioning imple-

mented between the two hierarchical multiplications provided that a potential prob-

lem without discontinuous coe�cient functions must be solved. Otherwise, in most

cases we have to use the outer Jacobi{preconditioning solely multiplying with the

diagonal matrix derived from the main diagonal of the sti�ness matrix K as usu-

ally. The subroutine marked by the su�x A and I, respectively implements the

arithmetical mean approximation (input: rmult 2 [0; 2] and the weighted distance

approximation (input: rmult 2 (2; 2:5), see [11]).

HB2BPXfGG,2g computes the hierarchical BPX{list from the arti�cially constructed

hierarchical Yserentant-list belonging to the hierarchical grids �

h

and

~

�

h

, respec-

tively. The subroutine marked by the su�x "2" is the old version based on the list-

structure (vertex, father1, father2, bit-code) without the description vector. This

routine is called provided that the fully hierarchical scheme consisting of triangles is

input, where the routines HSTH and HSTCOP2 complete the corresponding trans-

formation. Otherwise, having the hierarchy consisting of rectangular elements both

in the full scheme case and in the case of hanging nodes the subroutine with the

su�x "GG" is called, where the new compact data structure is implemented using

the description vector at the top of the list. We note that the hanging nodes are

handled well transforming the list. However, the existence of two routines for trans-

fering the hierarchical list to the BPX-list depending on di�erent data structures

isn't �ne. Hence, a redesign of the software could be a task in the future.

SETBCINC �nally de�nes the auxiliary preconditioner C

�1

�

h

;bc(�

h

)

in the case of the

consideration of the boundary conditions calling the subroutine SUPP2DfT,Qg.

LISTHANGfT,Qg weights the interior Jacobi-preconditioning speci�cally according

to the given input rmult. In most cases the default rmult = 0. de�ning no weighting

is recommendable. Moreover, in the case of the hanging node approach the corre-

sponding coe�cient in the intermediate correction vector Q

T

v is set to be zero, cf.

[11].

NEPLOES solves the preconditioning system, i.e. w := R[C

�1

�

h

=

~

�

h

]R

�

r distinctly

applying the artYs-method and the artBPX-method, respectively; see also [11].

13

GLOCOM performes the communication step w.r.t. the correction values belonging

to the coupling nodes. Computing in parallel the routine is called before applying

the hierarchical multiplication using the long vector v as well as afterwards.

RTRANSFER performes the mapping v := R

�

r.

RREVERS performes the revers mappingw := Rv

p

, where the long vector v

p

already

contains the solution of the auxiliary hierarchical preconditioning.

5 Numerical results

The tables present the results for the cg{algorithm preconditioned by the arti�cially con-

structed Yserentant preconditioner "artYs" as well as by the ari�cially constructed BPX{

preconditioner "artBPX" computing the itemized test examples. The subcolumn marked

by "full scheme" means that computations are performed using the unstructured mesh

generated by the mesh generator in [10] and embedded in the full rectangular hierarchy of

depth J . For comparison, the full scheme consisting of the triangular hierarchy provided

worser results, cf. [11]. For more insight into the entity of the method, in this columns

the brackets include the iteration number and the CPU-time for the conventionally hier-

archical methods on structured grids. By this we make an unfair confrontation which is

nevertheless quite satisfactory regarding the iteration numbers. To provide a more realis-

tic comparison in braces we give the results of the cg-algorithm preconditioning the matrix

A by their Modi�ed Incomplete Cholesky factorization (MIC), where the previous nodal

renumbering is substantial and much more expensive than the preliminary steps within

the "art-methods". In this case we have the condition number �(C

�1

A) = O(h

�1

). The

nodal renumbering is performed by an algorithm which improves minimal degree order-

ing and nested dissection combining both techniques, see [9]. For this the corresponding

CPU-time is excluded. The subcolumn marked by "hanging nodes" contains the results

based on the same unstructured grids but using the new adaptive mapping technique to

get rid the "full-density e�ect" caused by locally re�ned mesh regions. Both the number

of cg{iterations and the corresponding CPU{time (in sec)

1

are given which were neces-

sary to get the relative error of the cg{iteration less than the previously de�ned accuracy

� = 10

�4

. This error is measured in the AC

�1

A-norm.

At the bottom of the tables the percentages of the CPU{time are given which were nec-

essary for performing the operations indicated by R

�

; R, and the preconditioning C

�1

�

h

within the cg{iteration, respectively, where the third percentage includes also the amount

of the cg{iteration itself. The percentages belong to the "hanging node part" of the tables

and they are measured on an average w.r.t. the given depths J of the auxiliary grids.

Comparing these percentages with those of the full scheme (see [11]) the portion of R

�

and R is slightly degraded.

Nevertheless, provided that the time for performing the adaptive mapping is excluded

the arti�cially hierarchical strategy using the nodal coordinates and the element connexion

does only need an amount which is approximately 1.5 times more than the e�ort of the

originally hierarchical technique requiring structured mesh data. Hence, the application of

our method could be a good practice especially in the industrial engineering. Moreover,

1

In the given CPU-time neither the times for generating the adaptive mapping and the hierarchical

lists of the auxiliary grid

~

�

h

nor the time for the construction of the step form approximation

~

Q

h

inside

are incorporated. In practice this hidden amount does enlarge the real CPU-time substantially.

14

our method can be easily implemented into existing software since the algorithms are

based on a modular toolkit.

Regarding the artBPX-method in several examples their convergence seems to be slightly

dependent on the mesh size parameter h. Due to [26] the independency of h can be

expected to have the starting point at a su�ciently �ne level. In particular for interface

problems with di�erent material properties the mentioned convergence behaviour is dis-

tinct. Here, the outer Jacobi-preconditioning damps the high frequencies insu�ciently

only in the points of the original grid.

Computing example no. 4 and no. 5 we observed the following. The more the quasi-

uniformity of the unstructured mesh is deteriorated progressively the more the iteration

number of the arti�cially hierarchical preconditioned cg{method does increase.

5.1 Sequential Computing

The results are computed by means of the HP 9000/889 K460-workstation using large

memory size (1GigaByte) and on an average 15MFlop performance.

1. Preconditioning having the potential problem in the square:

��u = 0 in
 = (0; 4)� (0; 4)

u =

(

0 ; on �

01

= fx = (x

1

; x

2

)

T

: x

1

= 0; x

2

< 1g [fx : x

2

= 0 ; 0 < x

1

� 4g

1 ; on �

02

= fx : x

1

= 0; 1 � x

2

� 4g ;

where �

0

= �

01

[�

02

; and, @u=@N = 0 on �

1

= @
n�

0

:

struct. mesh: N=25

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=82

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=282

SFB 393 - TU Chemnitz

qu16pre4 - Level 0 - 1 proc.

SFB 393 - TU Chemnitz

Figure 5: Struct. mesh (N=25); subsequence of unstruct. meshes (N = 82; 282; 1094)

15

Table 2: #cg{iterations and CPU{times for the computing in the square

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

4 25 289/81

[9 (0:00)]

10 (0:01)

f 6 (0:00)g

11 (0:00)

[9 (0:00)]

9 (0:01) 10 (0.01)

5 82 1089/266

[13 (0:01)]

13 (0:03)

f 7 (0:00)g

13 (0:01)

[11 (0:01)]

10 (0:03) 12 (0.02)

6 282 4225/906

[17 (0:01)]

16 (0:15)

f10 (0:01)g

18 (0:04)

[13 (0:01)]

11 (0:12) 15 (0.04)

7 1094 16641/3007

[20 (0:03)]

17 (0:66)

f13 (0:03)g

18 (0:14)

[14 (0:03)]

12 (0:53) 14 (0.19)

8 4260 66049/9634

[24 (0:14)]

19 (3:28)

f22 (0:20)g

20 (0:77)

[15 (0:10)]

12 (2:61) 15 (0.70)

9 16811 263169/34899

[26 (0:79)]

18 (14:22)

f30 (2:77)g

20 (2:19)

[15 (0:51)]

13 (12:49) 16 (3.46)

10 66789 1050625/132423

[28 (4:36)]

21 (62:42)

f37 (6:85)g

22 (11:19)

[15 (2:56)]

16 (124:25) 18 (17.17)

11 266249 4198401/519777

[29 (21:13)]

21 (262:70)

f70 (56:73)g

26 (56:20)

[15 (12:09)]

18 (279:77) 22 (121.81)

12 1063185 16785409/2078777

[29 (86:18)]

28 (1382:29)

f121 (445:41)g

30 (292:76)

[15 (48:95)]

19 (1037:1) 22 (244.46)

13 4249121 67125249/8072229

[29 (348:20)]

mem:ex:

ft

ren:

ex:g

33 (1264:1) memory exceeded

R

�

: 20 21

R: 18 18

C

�1

�

h

: 62 61

2. Preconditioning having the potential problem in the club shaped domain:

��u = 0 in
 ; (see Fig. 6)

u =

8

<

:

1 ; x 2 �

01

marked by (1) in Figure 6

�1 ; x 2 �

02

marked by (2) in Figure 6 ;

@u=@N = 0 on �

1

= @
 n (�

01

[�

02

) :

 struct. mesh: N=16

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=563

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=47

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=158

SFB 393 - TU Chemnitz-Zwickau

�

�

�

Z

Z

Z

(1) (2)

Figure 6: Struct. mesh (N=16) and subsequence of unstruct. meshes (N=47; 158; 563)

16

Table 3: #cg{iterations and CPU{times for the computing in the club shaped domain

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

5 16 1089/150

[9 (0:00)]

7 (0:02)

f 6 (0:00)g

12 (0:01)

[9 (0:00)]

7 (0:02) 11 (0.01)

6 47 4225/383

[15 (0:00)]

14 (0:14)

f 8 (0:00)g

15 (0:02)

[14 (0:00)]

13 (0:17) 15 (0.03)

7 158 16641/830

[19 (0:01)]

17 (0:70)

f10 (0:02)g

25 (0:05)

[17 (0:01)]

14 (0:65) 20 (0.09)

8 563 66049/2291

[22 (0:02)]

19 (4:84)

f14 (0:04)g

28 (0:16)

[19 (0:02)]

15 (3:16) 21 (0.22)

9 2182 263169/6467

[26 (0:07)]

20 (14:21)

f19 (0:07)g

25 (0:42)

[19 (0:07)]

17 (15:44) 24 (0.70)

10 8279 1050625/24204

[28 (0:36)]

23 (68:03)

f26 (0:57)g

35 (2:47)

[19 (0:27)]

20 (71:73) 25 (5.73)

11 32637 4198401/86816

[30 (2:00)]

27 (310:82)

f39 (3:57)g

41 (11:37)

[19 (1:49)]

22 (319:02) 30 (16.82)

12 132529 16785409/344571

[30 (11:01)]

36(1676:5)

f64 (27:59)g

46 (50:30)

[19 (7:04)]

24 (1318:9) 33 (48.86)

R

�

: 18 13

R: 9 8

C

�1

�

h

: 73 79

3. Preconditioning having the problems (a) and (b) in the circular domain:

�div(a(x)grad(u(x))) = 0 in
 = fx : x

2

1

+ x

2

2

< 1g

where (a) : a(x) = 1 ; x 2
 ;

and (b) : a(x) =

(

1 ; x 2

1

=
 n

�

2

10

6

; x 2

2

marked by (2) in Figure 7

u =

8

<

:

100 ; on �

01

= fx : x

2

1

+ x

2

2

= 1 ; �1 � x

1

� �

p

2

2

; 0 � x

2

�

p

2

2

g

0 ; on �

02

= (@
n�

01

) :

struct. mesh: N=41

SFB 393 - TU Chemnitz-Zwickau

unstr. mesh: N=40

SFB 393 - TU Chemnitz-Zwickau

@

@

@

�

�

�

@

@

@

�

�

�

�

�

�

�

(2)

Figure 7: Struct. mesh (N=41) and unstruct. mesh (N = 40) in the circular domain

17

Table 4: #cg{it. and CPU{times for the homogeneous problem in the circular domain

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

4 15 81/55

[5 (0:00)]

5 (0:00)

f 3 (0:00)g

5 (0:00)

[5 (0:00)]

5 (0:01) 5 (0.00)

5 40 289/217

[9 (0:00)]

10 (0:09)

f 5 (0:00)g

13 (0:01)

[8 (0:00)]

9 (0:02) 11 (0.01)

5 146 1089/490

[14 (0:00)]

11 (0:04)

f 8 (0:00)g

16 (0:03)

[11 (0:00)]

11 (0:04) 14 (0.03)

6 545 4225/1736

[18 (0:02)]

15 (0:14)

f11 (0:01)g

20 (0:08)

[13 (0:01)]

14 (0:16) 16 (0.11)

7 2115 16641/5123

[21 (0:06)]

18 (0:71)

f15 (0:07)g

23 (0:30)

[15 (0:05)]

11 (0:52) 18 (0.35)

8 8340 66049/18942

[24 (0:32)]

20 (3:45)

f23 (0:41)g

27 (1:47)

[15 (0:22)]

13 (3:74) 19 (1.78)

9 33123 263169/70805

[25 (1:70)]

24 (20:55)

f36 (3:43)g

31 (7:60)

[16 (1:25)]

15 (16:27) 21 (8.17)

11 132021 4198401/422562

[26 (9:68)]

26 (456:58)

f55 (22:27)g

40 (50:73)

[16 (6:19)]

18 (269:69) 24 (57.64)

12 525313 16785409/1658587

[26 (41:19)]

40(2790:0)

f81 (255:71)g

51 (289:38)

[16 (27:21)]

22 (1743:3) 26 (187.31)

R

�

: 23 22

R: 20 21

C

�1

�

h

: 57 57

Table 5: #cg{iterations and CPU{times for the material problem in the circular domain

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

4 16 289/65

[5 (0:00)]

6 (0:04)

f 6 (0:00)g

6 (0:00)

[5 (0:00)]

6 (0:00) 6 (0.00)

5 40 1089/154

[18 (0:00)]

23 (0:06)

f11 (0:00)g

22 (0:01)

[15 (0:00)]

18 (0:05) 20 (0.01)

6 144 4225/601

[33 (0:02)]

37 (0:35)

f15 (0:01)g

47 (0:09)

[23 (0:01)]

30 (0:36) 36 (0.11)

7 547 16641/2007

[45 (0:04)]

47 (1:71)

f21 (0:03)g

62 (0:32)

[28 (0:04)]

41 (1:76) 47 (0.41)

7 2115 16641/5123

[53 (0:15)]

21 (0:71)

f32 (0:16)g

28 (0:33)

[35 (0:12)]

18 (0:69) 24 (0.42)

8 8340 66049/18942

[63 (0:81)]

25 (4:01)

f48 (0:80)g

36 (1:78)

[38 (0:57)]

22 (4:13) 28 (2.13)

9 33123 263169/70805

[72 (4:93)]

31 (22:55)

f79 (6:82)g

35 (7:55)

[41 (3:24)]

21 (17:27) 25 (8.30)

10 132021 1050625/291214

[80 (30:45)]

49 (144:00)

f123 (44:07)g

44 (88:41)

[47 (23:89)]

35 (119:82) 29 (43.11)

11 527145 4198401/1077678

[88 (243:07)]

62(1185:6)

f212 (679:29)g

59 (416:96)

[51 (92:45)]

50 (728:82) 36 (221.94)

12 2106705 16785409/4307078

[94 (620:26)]

81(4162:4)

ft

ren:

ex:g

67 (1762:1)

[53 (383:96)]

mem:ex 34 (980.21)

The real unstructured meshes for computing the inhomogeneous problem were also gen-

erated by the advancing front algorithm in [10], where the interfaces can be taken into

account. To abbreviate the section we forego presenting corresponding grids.

18

4. Preconditioning having the problems (a) and (b) in the "SFB{domain":

�div(a(x)grad(u(x))) = 0 in
 = SFB ; see Figure 1 ;

where (a): a(x) = 1 ; x 2
 = SFB ;

and (b): a(x) =

8

>

>

<

>

>

:

1 ; x 2 S

10

3

; x 2 F

10

6

; x 2 B

u = x

1

+ x

2

+ 1 on �

0

= exterior part of @
 ;

@u=@N = 0 on �

1

= @
 n �

0

= 3 interior boundary pieces :

For this problem the unstructured mesh having N = 163 nodes was already shown in

Figure 1. For completing the structured part of the tables below we used the initial mesh

given in Figure 2 (N = 50) consecutively re�ning it canonically.

Table 6: #cg{iterations and CPU{times for the homogeneus problem in the "SFB-domain"

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

5 50 1089/333

[7 (0:00)]

7 (0:02)

f 4 (0:00)g

8 (0:00)

[8 (0:00)]

6 (0:02) 8 (0.01)

6 163 4225/697

[15 (0:01)]

12 (0:10)

f 7 (0:00)g

17 (0:03)

[16 (0:03)]

11 (0:11) 14 (0.04)

7 532 16641/2320

[22 (0:03)]

14 (0:45)

f10 (0:01)g

22 (0:11)

[21 (0:04)]

11 (0:42) 13 (0.09)

8 2001 66049/6771

[28 (0:10)]

22 (3:25)

f15 (0:06)g

29 (0:42)

[25 (0:10)]

15 (2:76) 17 (0.37)

9 7744 263169/22105

[33 (0:39)]

33 22:46)

f23 (0:36)g

37 (1:98)

[28 (0:45)]

20 (17:98) 19 (1.55)

10 30450 1050625/79311

[38 (2:85)]

43 (118:40)

f39 (3:46)g

35 (8:11)

[30 (2:48)]

24 (87:73) 25 (8.51)

11 120742 4198401/301655

[41 (14:93)]

48(542:61)

f60 (21:50)g

47 (58:54)

[31 (13:38)]

27 (405:26) 29 (45.94)

12 453694 16785409/1088705

[44 (67:55)]

57(2700:6)

f93 (127:25)g

57 (250:53)

[32 (52:05)]

30(1781:0) 32 (163.15)

R

�

: 25 23

R: 23 20

C

�1

�

h

: 52 57

"SFB"-isolines - Level 0 - 4 proc.

 6.00E+00

 1.74E+01

 U

SFB 393 - TU Chemnitz

Figure 8: The �lled "SFB"{isoline picture delivered by our postprocessing

19

Table 7: #cg{it. and CPU{times for the material problem in the "SFB{domain"

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

5 50 1089/333

[8 (0:00)]

7 (0:02)

f 4 (0:00)g

8 (0:00)

[8 (0:01)]

7 (0:02) 7 (0.01)

6 163 4225/697

[16 (0:01)]

13 (0:11)

f 7 (0:00)g

14 (0:02)

[14 (0:03)]

11 (0:11) 13 (0.04)

7 532 16641/2320

[22 (0:03)]

17 (0:54)

f10 (0:01)g

23 (0:12)

[20 (0:03)]

14 (0:52) 16 (0.12)

8 2001 66049/6771

[27 (0:08)]

24 (3:46)

f16 (0:06)g

30 (0:44)

[24 (0:10)]

20 (3:46) 21 (0.46)

9 7744 263169/22105

[33 (0:37)]

33 (21:84)

f24 (0:37)g

37 (1:98)

[26 (0:44)]

30 (25:57) 29 (2.38)

10 30450 1050625/79311

[37 (2:55)]

56 (152:83)

f38 (3:16)g

51 (11:60)

[28 (2:29)]

49 (193:95) 39 (13.04)

11 120742 4198401/301655

[40 (13:98)]

73 (778:73)

f63 (22:35)g

80 (84:83)

[28 (11:39)]

61 (971:21) 59 (89.56)

12 453694 16785409/1088705

[43 (65:61)]

108(4916:2)

f96 (130:59)g

90 (416:90)

[28 (45:73)]

70 (3186:9) 67 (301.51)

R

�

: 23 22

R: 22 21

C

�1

�

h

: 55 57

5. Magnetic �eld computation in an electronic motor:

The example is of practical interest, see [9, 10, 17] for details. The domain
 is the

fourth of the cross section of an electronic motor in which magnetic �eld computation is

performed. Figure 9 presents the motor's geometry with distinct material properties ad-

ditionally connected with geometric peculiarities causing solution's singularities in several

indicated points P

i

; i = 1; : : : ; 6.

�

�

(a)

(b)

(c)

(d)

(e)

r

P

1

r

P

6

r

P

3

r

P

2

r

P

4

r

P

5

abs. permeability : �

0

= 1:257 � 10

�6

Vs=Am

rel. permeability and the given materials :

(a) iron rotor �

r

= 1694

(b), (c) permanent magnet �

r

= 1:15

(d) sheet{metal shell �

r

= 2488

(e) air gap �

r

= 1

Figure 9: The fourth-cross section of the electronic motor containing 4 materials

By Maxwell's laws the magnetic �eld problem de�ned on the motor's cross section can be

rewritten in the following variational formulation, cf. also [9, 17] :

20

Find the function u 2 H

1

o

such that for all v 2 H

1

o

holds :

Z

1

�

0

�

r

(x)

r

T

urv dx

1

dx

2

=

Z

1

�

0

�

r

(x)

@v

@y

B

0x

1

�

@v

@x

B

0x

2

!

dx

1

dx

2

;

where B

0x

1

and B

0x

2

denote the remanent inductions of the permanent magnet in x

1

and

in x

2

direction, respectively.

Because of the complicate inner geometry no structured grids for discretizing the domain

are available. Moreover, by the automatical mesh generator in [10] the unstructured mesh

can be initially adapted to the given point singularities, see Figure 10.

Table 8: #cg{iterations and CPU{times for the magnetic �eld problem

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

8 469 66049/1834

[��]

42 (6:05)

f22 (0:02)g

58 (0:24)

[��]

40 (6:89) 51 (0.44)

9 1831 263169/5964

[50 (0:68)]

67 (43:60)

f33 (0:17)g

91 (1:20)

[48 (0:41)]

60 (52:22) 71 (2.02)

10 7237 1050625/20671

[54 (0:93)]

100 (263:88)

f48 (0:70)g

156 (7:82)

[49 (1:20)]

76 (317:98) 121 (14.49)

11 28777 4198401/76340

[59 (5:25)]

97 (1025:7)

f69 (5:48)g

119 (26:72)

[51 (5:48)]

100 (1386:1) 90 (47.80)

12 114769 16785409/292997

[68 (29:93)]

149 (7003:8)

f113 (38:82)g

202 (173:46)

[52 (18:47)]

123 (6640:1) 157 (160.74)

R

�

: 27 23

R: 23 20

C

�1

�

h

: 50 57

unstr. mesh: N=469

SFB 393 - TU Chemnitz-Zwickau

Figure 10: The adaptive mesh of the motor's fourth losing the quasiuniformity

Computing the inhomogeneous problems the weaker increasing of the iteration numbers

starting at a certain stage of J is due to the better approximation of the interfaces as it is

21

made more precisely in the form of steps. This can be observed e.g. in Table 4. Moreover,

to overcome the di�culties caused by jumping coe�cient functions still occuring in the

case of the adaptive mapping with hanging nodes at present we discuss the shifting of

appropriately choosen nodes of the domain

~

Q

h

J

onto the interfaces resulting in a locally

irregular grid

~

~

Q

h

J

.

5.2 First results of the parallel computing

To get the results we used the well known Parsytec parallel computer GCPowerPlus having

32MByte memory at each processor node and a peak performance of 80MFlop. For more

details describing the related software tools see also [16].

The next examples are computed using 16 processors in each case. The parallelism for

the conventional hierarchical methods resulting in the data given in brackets is based on

the domain decomposition (DD) given by the meshes in the leftabove part of Figure 5

and 6, respectively. Computing in the square we have the 16 subsquares consisting of the

two initial triangles shown in Figure 5. Computing in the club shaped domain we have

the 16 subtraingles given in the leftbelow of Figure 6. For the parallelization of the "real

unstructured grid"{computations (full scheme and hanging node approach) the FE{data

are distributed by recursively spectral bisection after the mesh generation was done by the

parallel mesh generator in [10]. Further DD-based experiments are contained e.g. in [14].

The parameter L

2

;

~

L and J are the maxima L

2

= max(L

2

s

) ;

~

L = max(

~

L

s

) ; s = 1; : : : ; p

and J = max(J

s

) ; s = 1; : : : ; p, respectively.

1. The decomposed problem no. 1. of the previous subsection:

Table 9: #cg{it. and CPU{times, where data distribution was made

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

4 25 9

[10 (0:00)]

10 (0:04) 16 (1.14)

[9 (0:00)]

12 (0:13) 16 (1.30)

5 84 1089/204

[13 (0:18)]

22 (0:56) 26 (0.50)

[11 (0:20)]

22 (0:60) 30 (0.66)

6 295 4225/432

[17 (0:22)]

36 (1:82) 37 (1.33)

[13 (0:26)]

41 (2:29) 44 (1.61)

7 1069 16641/840

[20 (0:28)]

61 (8:08) 61 (4.07)

[14 (0:30)]

65 (10:07) 69 (4.95)

8 4260 66049/2520

[24 (0:36)]

104 (49:68) 120 (24.16)

[15 (0:37)]

111 (64:05) 122 (26.03)

9 16811 263169/5959

[26 (0:47)]

170 (238:19) 203 (44.08)

[15 (0:47)]

128 (197:23) 193 (48.11)

10 65217 1050625/15724

[26 (0:47)]

mem:ex: 328 (64.60)

[15 (0:47)]

mem:ex:) 244 (50.86)

11 193620 4198401/55216

[26 (0:47)]

mem:ex: 425 (167.23)

[15 (0:47)]

mem:ex: mem. ex.

R

�

: 21 22

R: 20 20

C

�1

�

h

: 59 58

22

2. The decomposed problem no. 2. of the previous subsection:

Table 10: #cg{it. and CPU{times, where data distribution was made

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

??2 16 25

[10 (0:00)]

16 (0:07) 8 (0.00)

[6 (0:00)

6 (0:29) 12 (0.07)

3 55 81/58

[15 (0:19)]

24 (0:45) 26 (0.47)

[14 (0:24)]

25 (0:47) 26 (0.49)

6 157 4225/363

[19 (0:24)]

34 (1:40) 36 (0.89)

[17 (0:31)

37 (1:68) 41 (1.36)

7 570 16641/623

[22 (0:29)]

42 (4:66) 58 (2.41)

[19 (0:37)

45 (5:81) 66 (3.04)

8 2130 66049/1866

[26 (0:37)]

83 (32:76) 117 (13.45)

[19 (0:41)

89 (43:32) 126 (15.26)

9 8279 263169/3979

[28 (0:43)]

157 (204:80) 191 (24.46)

[19 (0:51)

171 (85:06) 207 (28.53)

10 32637 1050625/9598

[30 (0:71)]

mem:ex: 323 (50.89)

[19 (0:72)]

mem:ex: 330 (59.29)

11 129593 4198401/26658

[31 (1:77)]

mem:ex: 613 (161.28) mem. ex. mem. ex.

R

�

: 18 16

R: 10 10

C

�1

�

h

: 74 72

3. The parallel magnetic �eld computation in the fourth of the motor:

Table 11: #cg{it. and CPU{times, where data distribution was made

artYs artBPX

J N L

2

=

~

L full scheme hanging nodes full scheme hanging nodes

8 469 66049/642

[��]

60 (20:38) 73 (7.14)

[��]

49 (20:83 63 (6.46)

9 1831 263169/1382

[51 (2:92)]

117 (129:66) 140 (14.06)

[48 (4:71)]

131 (55:94) 114 (12.49)

10 7237 1050625/3075

[54 (3:14)]

mem:ex: 232 (25.44)

[49 (6:72)]

mem:ex: 196 (24.85)

11 28777 4198401/8429 mem. ex. 314 (42.97) mem. ex 255 (47.58)

R

�

: 24 23

R: 20 19

C

�1

�

h

: 56 58

Finally, let us give the following remarks comparing the results of the three tables pre-

sented here. If all of the subdomain meshes

h

s

; s = 1; : : : ; p, into which the whole mesh

h

is decomposed coincide with the auxiliary square grids �

h

s

; s = 1; : : : ; p, the compu-

tation in parallel is very e�cient as it was expected, see Table 8. Otherwise, the step

form approximation of the coupling boundaries de�ned by the domains Q

h

s

=

~

Q

h

s

which are

subsets of the overlapped grids �

h

s

=

~

�

h

s

; s = 1; : : : ; p, deteriorates the convergence of the

preconditioned parallel cg{method substantially. We still seek a remedy to recover the

fast convergence of the arti�cially preconditioned cg{methods in the general case of their

parallelization. Moreover, the rectangular full scheme does rather degrade the parallel

23

results computing the examples, whereas the scalar computation did improve the itera-

tion numbers obviously. Despite the di�culties consisting in the e�cient parallelization of

our approach which remain yet to be solved the parallelized hanging node scheme seems

to be the better method in the case of unstructured meshes really having locally re�ned

regions speci�cally adapted to (geometric) peculiarities, see the parallel computation of

the electronic motor. Nevertheless, the e�ciency of the parallel methods does decrease as

the number of processors does increase.

Acknowledgement Many thanks to Mr. S.V. Nepomnyaschikh (Russian Academy of

Sciences, Novosibirsk) for his helpful comments concerning the presented work.

References

[1] Apel, T. (1995): SPC-PMPo3D | User's manual. Preprint SPC 95 33, TU

Chemnitz-Zwickau, December 1995.

[2] Apel, T., Milde, F., The�, M. (1995): SPC-PMPo3D | Programmer's manual.

Preprint SPC 95 34, TU Chemnitz{Zwickau, December 1995.

[3] Aubin, J.P. (1972): Approximation of elliptic boundary value problems. Wiley{

Interscience, New York London Sydney Toronto.

[4] Bank, R.E., Xu, J. (1994): The hierarchical basis multigrid method and incomplete

LU decomposition. Contemporary Mathematics 180, 163{174.

[5] Bank, R.E., Xu, J. (1996): An algorithm for coarsening unstructured meshes. Nu-

mer. Math. 73(1), 1{36.

[6] Bramble, J.H., Pasciak, J.E., Xu, J. (1990): Parallel multilevel preconditioners.

Math. Comp. 55, 1{22.

[7] Chan, T.F., Smith, B.F. (1994): Domain Decomposition and Multigrid algorithms

for elliptic problems on unstructured meshes. Contemporary Mathematics 180,

175{190.

[8] Ciarlet, Ph. (1977): The Finite Element Method for Elliptic Problems. North{

Holland, Amsterdam.

[9] Globisch, G. (1993): Robuste Mehrgitterverfahren f�ur einige elliptische Randwer-

taufgaben in zweidimensionalen Gebieten. Technische Universit�at Chemnitz, Dis-

sertation, Chemnitz.

[10] Globisch, G. (1995): PARMESH { a parallel mesh generator. Parallel Computing

21(3), 509{524.

[11] Globisch, G., Nepomnyaschikh, S.V. (1997): The hierarchical preconditioning hav-

ing unstructured grids. Preprint SFB393/97 11, Technische Universit�at Chemnitz,

Chemnitz, April 1997

accepted for publishing in Computing.

[12] Globisch, G. (1997): The hierarchical preconditioning having unstructured threedi-

mensional grids. Preprint SFB393/97 25, Technische Universit�at Chemnitz, Chem-

nitz.

[13] Groh, U. (1997): FEM auf irregul�aren hierarchischen Dreiecksnetzen. Preprint

SFB393/97 05, Technische Universit�at Chemnitz, Chemnitz, December 1997.

[14] Haase, G., Heise, B., Kuhn, M., Langer, U. (1997): Adaptive domain decomposi-

tion methods fof �nite and boundary element equations. in: Wendland, W. (ed.)

Boundary element topics. Proceedings of the conference of the priority research

program Boundary Element Methods 1989{1995 of the German Research Fonda-

tion, October 2{4, 1995 in Stuttgart, Germany. Berlin: Springer-Verlag, 121{147.

24

[15] Haase, G., Langer, U., Meyer, A. (1992): Parallelisierung und Vorkonditionierung

des CG{Verfahrens durch Gebietszerlegung. in: Bader, G., Rannacher, R., Wittum,

G. (eds.), Numerische Algorithmen auf Transputer{Systemen, Teubner-Skripten

zur Numerik, Teubner{Verlag, Stuttgart.

[16] Haase, G., Hommel, Th., Meyer, A., Pester, M. (1995): Bibliotheken zur En-

twicklung paralleler Algorithmen. Preprint SPC 95 20, Technische Universit�at

Chemnitz{Zwickau, Chemnitz.

[17] Heise, B. (1994): Analysis of a fully discrete �nite element method for a nonlinear

magnetic �eld problem. SIAM J. Numer. Anal. 31(3), 745{759.

[18] Matsokin, A.M., Nepomnyaschikh, S.V. (1993): The �ctitious domain method and

explicit continuation operators. Zh. Vychisl. Mat. Mat. Fiz. 33, 45{59.

[19] Meyer, A. (1990): A parallel preconditioned conjugate gradient method using do-

main decomposition and inexact solvers on each subdomain. Computing 45, 217{

234.

[20] Meyer, A., Pester, M. (1994): Verarbeitung von Sparse-Matrizen in Kompakt-

speicherform KLZ/KZU. Preprint SPC 94 12, Technische Universit�at Chemnitz-

Zwickau, Chemnitz.

[21] Nepomnyaschikh, S.V. (1991): Method of splitting into subspaces for solving el-

liptic boundary value problems in complex-form-domains. Sov. J. Numer. Anal.

Math. Model. 6(2), 151{168.

[22] Nepomnyaschikh, S.V. (1991): Mesh theorems of traces, normalization of function

traces and their inversion. Sov. J. Numer. Anal. Math. Model. 6(3), 223{242.

[23] Nepomnyaschikh, S.V. (1995): Fictitious space method on unstructured meshes.

East{West J. Numer. Math. 3(1), 71{79.

[24] Nepomnyaschikh, S.V. (1996): Preconditioning operators on unstructured grids.

in: Nelson, N.D., Manteu�el, T.A., McCormick, S.F., Douglas, C.C. (eds.), Pro-

ceedings of the Seventh Copper Mountain Conference on Multigrid Methods, no.

3339 in NASA-Conference Publication, 607{621.

[25] Oganesyan, L.A., Ruchovets, L.A. (1979): Variational Di�erence Methods for Solv-

ing Elliptic Equations. Izdat. Akad. Nauk Arm. SSR, Erevan, (Russian).

[26] Oswald, P (1994): Multilevel Finite Element Approximation: Theory and Appli-

cations. Teubner Skripten zur Numerik. B. G. Teubner Stuttgart.

[27] Queck, W. (ed.), (1993): FEMGP (Finite Element Multigrid Package). Programm-

dokumentation, Technologieberatungszentrum Parallele Informationsverarbeitung

GmbH (TBZ*PARIV), Bernsdorfers Str. 210{212, D{09126 Chemnitz.

[28] Rjasanow, S. (1986): Dokumentation und theoretische Grundlagen zum Programm

SOLKLZ. Preprint Nr. 15, Sektion Mathematik, Technische Universit�at Karl-Marx-

Stadt.

[29] Xu, J. (1992): Iterative methods by space decomposition and subspace correction.

SIAM Review 34(4), 581{613.

[30] Xu, J. (1996): The auxiliary space method and optimal multigrid preconditioning

techniques for unstructured grids. Computing 56(3), 215{235.

[31] Yakovlev, G.N. (1967): On traces of piecewise smooth surfaces of functions from

the space W

l

p

. Mat. Sbornik 74, 526{543.

[32] Yserentant, H. (1986): On the multi{level splitting of �nite element spaces. Numer.

Math. 49, 379{412.

25

Other titles in the SFB393 series:

96-01 V. Mehrmann, H. Xu. Chosing poles so that the single-input pole placement problem is

well-conditioned. Januar 1996.

96-02 T. Penzl. Numerical solution of generalized Lyapunov equations. January 1996.

96-03 M. Scherzer, A. Meyer. Zur Berechnung von Spannungs- und Deformationsfeldern an

Interface-Ecken im nichtlinearen Deformationsbereich auf Parallelrechnern.

March 1996.

96-04 Th. Frank, E. Wassen. Parallel solution algorithms for Lagrangian simulation of disperse

multiphase
ows. Proc. of 2nd Int. Symposium on Numerical Methods for Multiphase

Flows, ASME Fluids Engineering Division Summer Meeting, July 7-11, 1996, San Diego,

CA, USA. June 1996.

96-05 P. Benner, V. Mehrmann, H. Xu. A numerically stable, structure preserving method for

computing the eigenvalues of real Hamiltonian or symplectic pencils. April 1996.

96-06 P. Benner, R. Byers, E. Barth. HAMEV and SQRED: Fortran 77 Subroutines for Comput-

ing the Eigenvalues of Hamiltonian Matrices Using Van Loans's Square Reduced Method.

May 1996.

96-07 W. Rehm (Ed.). Portierbare numerische Simulation auf parallelen Architekturen. April

1996.

96-08 J. Weickert. Navier-Stokes equations as a di�erential-algebraic system. August 1996.

96-09 R. Byers, C. He, V. Mehrmann. Where is the nearest non-regular pencil? August 1996.

96-10 Th. Apel. A note on anisotropic interpolation error estimates for isoparametric quadri-

lateral �nite elements. November 1996.

96-11 Th. Apel, G. Lube. Anisotropic mesh re�nement for singularly perturbed reaction di�u-

sion problems. November 1996.

96-12 B. Heise, M. Jung. Scalability, e�ciency, and robustness of parallel multilevel solvers for

nonlinear equations. September 1996.

96-13 F. Milde, R. A. R�omer, M. Schreiber. Multifractal analysis of the metal-insulator transi-

tion in anisotropic systems. October 1996.

96-14 R. Schneider, P. L. Levin, M. Spasojevi�c. Multiscale compression of BEM equations for

electrostatic systems. October 1996.

96-15 M. Spasojevi�c, R. Schneider, P. L. Levin. On the creation of sparse Boundary Element

matrices for two dimensional electrostatics problems using the orthogonal Haar wavelet.

October 1996.

96-16 S. Dahlke, W. Dahmen, R. Hochmuth, R. Schneider. Stable multiscale bases and local

error estimation for elliptic problems. October 1996.

96-17 B. H. Kleemann, A. Rathsfeld, R. Schneider. Multiscale methods for Boundary Integral

Equations and their application to boundary value problems in scattering theory and

geodesy. October 1996.

96-18 U. Reichel. Partitionierung von Finite-Elemente-Netzen. November 1996.

96-19 W. Dahmen, R. Schneider. Composite wavelet bases for operator equations. November

1996.

96-20 R. A. R�omer, M. Schreiber. No enhancement of the localization length for two interacting

particles in a random potential. December 1996. to appear in: Phys. Rev. Lett., March

1997

96-21 G. Windisch. Two-point boundary value problems with piecewise constant coe�cients:

weak solution and exact discretization. December 1996.

96-22 M. Jung, S. V. Nepomnyaschikh. Variable preconditioning procedures for elliptic prob-

lems. December 1996.

97-01 P. Benner, V. Mehrmann, H. Xu. A new method for computing the stable invariant

subspace of a real Hamiltonian matrix or Breaking Van Loan's curse? January 1997.

97-02 B. Benhammouda. Rank-revealing 'top-down' ULV factorizations. January 1997.

97-03 U. Schrader. Convergence of Asynchronous Jacobi-Newton-Iterations. January 1997.

97-04 U.-J. G�orke, R. Krei�ig. Ein
u�faktoren bei der Identi�kation von Materialparametern

elastisch-plastischer Deformationsgesetze aus inhomogenen Verschiebungsfeldern. March

1997.

97-05 U. Groh. FEM auf irregul�aren hierarchischen Dreiecksnetzen. March 1997.

97-06 Th. Apel. Interpolation of non-smooth functions on anisotropic �nite element meshes.

March 1997

97-07 Th. Apel, S. Nicaise. The �nite element method with anisotropic mesh grading for elliptic

problems in domains with corners and edges.

97-08 L. Grabowsky, Th. Ermer, J. Werner. Nutzung von MPI f�ur parallele FEM-Systeme.

March 1997.

97-09 T. Wappler, Th. Vojta, M. Schreiber. Monte-Carlo simulations of the dynamical behavior

of the Coulomb glass. March 1997.

97-10 M. Pester. Behandlung gekr�ummter Ober
�achen in einem 3D-FEM-Programm f�ur Paral-

lelrechner. April 1997.

97-11 G. Globisch, S. V. Nepomnyaschikh. The hierarchical preconditioning having unstructured

grids. April 1997.

97-12 R. V. Pai, A. Punnoose, R. A. R�omer. The Mott-Anderson transition in the disordered

one-dimensional Hubbard model. April 1997.

97-13 M. Thess. Parallel Multilevel Preconditioners for Problems of Thin Smooth Shells. May

1997.

97-14 A. Eilmes, R. A. R�omer, M. Schreiber. The two-dimensional Anderson model of localiza-

tion with random hopping. June 1997.

97-15 M. Jung, J. F. Maitre. Some remarks on the constant in the strengthened C.B.S. in-

equality: Application to h- and p-hierarchical �nite element discretizations of elasticity

problems. July 1997.

97-16 G. Kunert. Error estimation for anisotropic tetrahedral and triangular �nite element

meshes. August 1997.

97-17 L. Grabowsky. MPI-basierte Koppelrandkommunikation und Ein
u� der Partitionierung

im 3D-Fall. August 1997.

97-18 R. A. R�omer, M. Schreiber. Weak delocalization dueto long-range interaction for two

electrons in a random potential chain. August 1997.

97-19 A. Eilmes, R. A. R�omer, M. Schreiber. Critical behavior in the two-dimensional Anderson

model of localization with random hopping. August 1997.

97-20 M. Meisel, A. Meyer. Hierarchically preconditioned parallel CG-solvers with and without

coarse-matrix-solvers inside FEAP. September 1997.

97-21 J. X. Zhong, U. Grimm, R. A. R�omer, M. Schreiber. Level-Spacing Distributions of Planar

Quasiperiodic Tight-Binding Models. October 1997.

97-22 W. Rehm (Ed.). Ausgew�ahlte Beitr�age zum 1. Workshop Cluster-Computing. TU Chem-

nitz, 6./7. November 1997.

97-23 P. Benner, Enrique S. Quintana-Ort��. Solving stable generalized Lyapunov equations with

the matrix sign function. October 1997

97-24 T. Penzl. A Multi-Grid Method for Generalized Lyapunow Equations. October 1997

97-25 G. Globisch. The hierarchical preconditioning having unstructured threedimensional grids.

December 1997

97-26 G. Ammar, C. Mehl, V. Mehrmann. Schur-like forms for matrix Lie groups, Lie algebras

and Jordan algebras. November 1997

97-27 U. Elsner. Graph partitioning - a survey. December 1997.

97-28 W. Dahmen, R. Schneider. Composite Wavelet Bases for Operator Equations. December

1997.

97-29 P. L. Levin, M. Spasojevi�c, R. Schneider. Creation of Sparse Boundary Element Matrices

for 2-D and Axi-symmetric Electrostatics Problems Using the Bi-orthogonal HaarWavelet.

December 1997.

97-30 W. Dahmen, R. Schneider. Wavelets on Manifolds I: Construction and Domain Decom-

position. December 1997.

97-31 U. Elsner, V. Mehrmann, F. Milde, R. A. R�omer, M. Schreiber. The Anderson Model of

Localization: A Challenge for Modern Eigenvalue Methods. December 1997.

98-01 B. Heinrich, S. Nicaise, B. Weber. Elliptic interface problems in axisymmetric domains.

Part II: The Fourier-�nite-element approximation of non-tensorial singularities. January

1998.

98-02 T. Vojta, R. A. R�omer, M. Schreiber. Two interfacing particles in a random potential:

The random model revisited. February 1998.

98-03 B. Mehlig, K. M�uller. Non-universal properties of a complex quantum spectrum. February

1998.

98-04 B. Mehlig, K. M�uller, B. Eckhardt. Phase-space localization and matrix element distri-

butions in systems with mixed classical phase space. February 1998.

98-05 M. Bollh�ofer, V. Mehrmann. Nested divide and conquer concepts for the solution of large

sparse linear systems. March 1998.

98-06 T. Penzl. A cyclic low rank Smith method for large, sparse Lyapunov equations with

applications in model reduction and optimal control. March 1998.

98-07 V. Mehrmann, H. Xu. Canonical forms for Hamiltonian and symplectic matrices and

pencils. March 1998.

98-08 C. Mehl. Condensed forms for skew-Hamiltonian/Hamiltonian pencils. March 1998.

98-09 M. Meyer. Der objektorientierte hierarchische Netzgenerator Netgen69-C++. April 1998.

98-10 T. Ermer. Mappingstrategien f�ur Kommunikatoren. April 1998.

98-11 D. Lohse. Ein Standard-File f�ur 3D-Gebietsbeschreibungen. { De�nition des Fileformats

V 2.1 {. April 1998.

98-13 L. Grabowsky, T. Ermer. Objektorientierte Implementation eines PPCG-Verfahrens.

April 1998.

98-14 M. Konik, R. Schneider. Object-oriented implementation of multiscale methods for bound-

ary integral equations. May 1998.

98-15 W. Dahmen, R. Schneider. Wavelets with complementary boundary conditions - Function

spaces on the cube. May 1998.

98-16 P. Hr. Petkov, M. M. Konstantinov, V. Mehrmann. DGRSVX and DMSRIC: Fortran 77

subroutines for solving continuous-time matrix algebraic Riccati equations with condition

and accuracy estimates. May 1998.

98-17 D. Lohse. Ein Standard-File f�ur 3D-Gebietsbeschreibungen. - Datenbasis und Programm-

schnittstelle data read. April 1998.

98-18 A. Fachat, K. H. Ho�mann. Blocking vs. Non-blocking Communication under MPI on a

Master-Worker Problem. June 1998.

98-19 W. Dahmen, R. Schneider, Y. Xu. Nonlinear Functionals of Wavelet Expansions - Adap-

tive Reconstruction and Fast Evaluation. June 1998.

98-20 M. Leadbeater, R. A. R�omer, M. Schreiber. Interaction-dependent enhancement of the

localisation length for two interacting particles in a one-dimensional random potential.

June 1998.

98-21 M. Leadbeater, R. A. R�omer, M. Schreiber. Formation of electron-hole pairs in a one-

dimensional random environment. June 1998.

98-22 A. Eilmes, U. Grimm, R. A. R�omer, M. Schreiber. Two interacting particles at the metal-

insulator transition. August 1998.

98-23 M. Leadbeater, R. A. R�omer, M. Schreiber. Scaling the localisation lengths for two

interacting particles in one-dimensional random potentials. July 1998.

98-24 M. Schreiber, U. Grimm, R. A. R�omer, J. X. Zhong. Energy levels of quasi-periodic

Hamiltonians, spectral unfolding, and random matrix theory. July 1998.

98-25 V. Mehrmann, H. Xu. Lagrangian invariant subspaces of Hamiltonian matrices. August

1998.

98-26 B. Nkemzi, B. Heinrich. Partial Fourier approximation of the Lam�e equations in axisym-

metric domains. September 1998.

98-27 V. Uski, B. Mehlig, R. A. R�omer, M. Schreiber. Smoothed universal correlations in the

two-dimensional Anderson model. September 1998.

98-28 D. Michael, M. Meisel. Some remarks to large deformation elasto-plasticity (continuum

formulation). September 1998.

98-29 V. Mehrmann, H. Xu. Structured Jordan Canonical Forms for Structured Matrices that

are Hermitian, skew Hermitian or unitary with respect to inde�nite inner products. Oc-

tober 1998.

The complete list of current and former preprints is available via

http://www.tu-chemnitz.de/sfb393/preprints.html.

