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PARTIAL FOURIER APPROXIMATION OF THE LAME EQUATIONS IN
AXISYMMETRIC DOMAINS

Boniface Nkemzi* and Bernd Heinrich!

Abstract

In this paper, we study the partial Fourier method for treating the Lamé equations in three-
dimensional axisymmetric domains subjected to nonaxisymmetric loads. We consider the mixed bound-
ary value problem of the linear theory of elasticity with the displacement i, the body force fe (L2)3
and homogeneous Dirichlet and Neumann boundary conditions. The partial Fourier decomposition
reduces, without any error, the three-dimensional boundary value problem to an infinite sequence of
two-dimensional boundary value problems, whose solutions @, (n = 0,1,2,---) are the Fourier coeffi-
cients of @i. This process of dimension reduction is described, and appropriate function spaces are given
to characterize the reduced problems in two dimensions. The trace properties of these spaces on the
rotational axis and some properties of the Fourier coefficients i1, are proved, which are important for
further numerical treatment, e.g. by the finite-element method. Moreover, generalized completeness
relations are described for the variational equation, the stresses and the strains. The properties of the
resulting system of two-dimensional problems are characterized. Particularly, a priori estimates of the
Fourier coefficients @15, and of the error of the partial Fourier approximation are given.

1 Introduction

The finite-element method has proved to be a very efficient and flexible numerical method for
solving approximately problems in engineering and physics based on variational principles,
see e.g. [1, 6, 21] . However, the application of the finite-element method for approximating
three-dimensional boundary value problems (BVP), particularly in the theory of elasticity,
involves the discretization of complex structures and the solution of large system of equations
for which the cost, despite the advanced computational possibilities, may be extremly high.
It is therefore still important to analyse approaches which simplify the solution process of
three-dimensional problems, reduce the cost or admit an effective parallelization.
Considerable computational advantages can be achieved, if special geometrical and material
properties of the elastic body are given and taken into account, as e.g. for axisymmetric
solids subjected to nonaxisymmetric loads. Here, a dimension reduction can be obtained by
applying partial Fourier analysis, which relies on the Fourier series expansion with respect
to the rotational angle . By this means, the three-dimensional boundary value problem can
be reduced to a sequence of two-dimensional boundary value problems, which do not depend
on the rotational angle ¢.

For the Lamé operator in three-dimensional axisymmetric domains with homogeneous and
isotropic material properties, the reduced boundary value problems in two dimensions are
posed on the meridian of the domain; they are decoupled and can be solved in parallel. In
general, for boundary value problems in two dimensions, standard tools for pre- and post-
processing as well as finite element algorithms and solvers are available and can be applied
more easily than in three dimensions.

The application of the partial Fourier approximation (truncated partial Fourier series) for
the dimension reduction, as a first step, and the subsequent discretization of the finite num-
ber of reduced problems by the finite-element method, as the second step, yields to the
so-called Fourier-finite-element method. This method is often applied in engineering to ap-
proximate the solutions of boundary value problems in the theory of elasticity and in heat
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conduction, see e.g. [1, 3, 7, 9, 10, 12, 15, 16, 17, 18]; see also [4, 5, 11] for the approximat-
ing Fourier method. The mathematical framework of the Fourier-finite-element method for
solving the Poisson equation and related problems is studied in [2, 8, 9, 10, 12, 18], with
some extension to the Lamé equations in [14]. In papers of the engineering literature about
the Fourier-finite-element method for the boundary value problems in the theory of elastic-
ity (see e.g. [1, 3, 7, 15, 16, 17, 19, 20]) one finds mainly the practical implementation and
experimental demonstration of the method. Particularly, further work is necessary to give
some mathematical framework of the method also in the case of the Lamé equations.

In this paper, we consider the following model problem

—pAu(x) — (A4 p)grad div a(x) = f(x) in £,
fix) = 0 on Ip, (1.1)

3
Z&ij(ﬁ(x))ﬁj = 0 (:=1,2,3) on T,
=1

where 1 is the displacement vector, f the body force, A and p are the Lamé-coefficients, I'p
and ['y are disjoint parts of the boundary I' of € with Dirichlet and Neumann conditions,
respectively, 6;;(11) are the components of the stress tensor, and ; the components of the
unit outer normal on fN.

The main objective of this paper is to give the analytical framework of the partial Fourier
decomposition and approximation for studying the boundary value problems of the lin-
ear theory of elasticity in three-dimensional axisymmetric domains with nonaxisymmetric
data. Here, we describe the approach and define appropriate function spaces on the two-
dimensional meridian domain Q, (€2, generates the three-dimensional axisymmetric domain
QC R?) needed for the two-dimensional boundary value problems. Especially in the case
where the boundary 9Q, of Q, satisfies 9Q, N {r = 0} # 0 (i.e. Q contains the rotational
axis), these spaces are weighted Sobolev spaces, where the powers of the radial coordinate r
play the role of the weights.

In [3, 7, 15, 16] the trace properties of the Fourier coefficients on the rotational axis have
been derived by mechanical considerations. In this paper, we shall confirm the assertions
and give a rigorous mathematical proof for it.

Furthermore, functions over the three-dimensional domain Q) are characterized by their
Fourier coefficients via the generalized Parseval equations. The same is done for the func-
tionals connected with the boundary value problem. Here we shall also give completeness
relations which clarify the decomposition of function spaces related to € into function spaces
connected with the meridian domain €, and which are needed to describe the behaviour
of the Fourier coefficients. The properties of the two-dimensional boundary value problems
determining the Fourier coefficients are studied, a priori estimates of the Fourier coefficients
and of the error of the partial Fourier approximation are given, for f € (Ly())3 and without
further regularity assumptions on the solution .

The paper is divided into four Sections. In Section 2, the boundary value problem, its vari-
ational formulation as well as the corresponding function spaces are given, also in terms of
cylindrical coordinates r, ¢, z. In Section 3, the partial Fourier analysis is discussed and the
corresponding function spaces on the plane meridian domain €2, of the axisymmetric domain
Q) are defined to characterize the two-dimensional problems for the Fourier coefficients. The
trace properties of the solutions on the rotational axis are proved. Completeness relations
are given to characterize the functions defined on Q by their Fourier coefficients on €,. In
Section 4, the dimension reduction of the three-dimensional problem as well as the associate
boundary value problems in two dimensions are investigated and, finally, a priori estimates
of their solutions and of the truncation error are given.



2 The variational formulation of the boundary value problem

Let © C R® be a bounded domain, with Lipschitz continuous and piecewise twice contin-
uously differentiable boundary [ := 90 (F € CO N PC?), and let I'p and T'y denote two
disjoint open subsets of I such that T = T'p UTx and meas(I'p) > 0 (Lebesgue measure of
FD) Let (961, x3, w3) be the Cartesian coordinates of the point z € R®. We assume that
the domain € is axisymmetric with respect to the zz-axis, and that Q \ Ty is generated by
rotation of a plane meridian domain €2, about the x3-axis, where I'g is the part of the z3-axis
contained in Q. Define 'y := 09, \ Ty (Lo: closure of T'g) and suppose, for simplicity, that
['g and I, form right angles at the points P = [oN T, (i = 1,2), and that I, is straight-line
in some neighbourhood of Py and Py, see Figure 1. Thus, edges on 9 are admitted, but
conical points of the domain Q are excluded.

y4

Py

Lo

Figure 1

Let WQI“A(Q) (k=0,1,..; W3 = L) denote the usual Sobolev spaces, and let W () be defined
by W(9) = (W1 (@),

The variational solution of the boundary value problem (1.1) (cf. [6]) will be obtained by
looking for @t € V{(2) such that

b(a,v) = f(v) forany v e Vp(Q), (2.1)
where
~ 3 ~
b(u,v) = /{/\ (diva)(divv) + 2p Z ei;()e;; (v }dw = /Zfzﬁzdx (2.2)
7,5=1 Qi:l
and
Vo) = {$eW( @) :v=0 on Ipl (2.3)

The components of the linearized strain tensor (deformation) are derived from the displace-
ment vector field @ by

. 1,04; 0u;
eij (B) = 5(8$ 8$]'
7 7

)7 i?j:17273'

The corresponding components of the linearized stress tensor are, according to Hooke’s law,

(32']‘(11) = /\(Z ekk(fl))(sw + Q;Leij(fl), ) =1,2,3, (2.4)



where §;; denotes the Kronecker symbol, and A, pu (A, 1o > 0) are the Lamé coefficients.
For the proof of the existence and uniqueness of the variational solution @ € V5 (2) of (2.1),
one employs Korn’s inequality (cf. [13]),

/ Z €;;(V)e(V)de > CHVH for ¥ € Vo(Q). (2.5)
1,5=1
Remark 2.1. For measI'p > 0, the mapping

/Zm ) '

1,5=1

defines a norm on Vo(€2) which is equivalent to the norm |[9]|¢ &y = V|1 ane, cf- [6].
Vo () (W ()
That is, there are constants €'y and C5 such that the following inequalities hold,
01’ Vo(Q) < HVH < CQ’ Vo(Q) for v € Vo(Q) (2.6)

It is easy to prove that the bilinear and the linear forms defined by (2.2) are continuous over
Vo(2) x Vo() and Vo(Q),respectively. To prove the Vp(Q)-ellipticity of the bilinear form,
one uses Korn’s inequality and relation (2.6). As a consequence of the Lax-Milgram lemma
(see e.g. [6]), there is a unique solution @ € V5(Q) of the variational problem (2.1). Thus,
the following theorem holds.

Theorem 2.1

Let f € (L(Q))® and measT'p > 0 be satisfied. Further, let g > 0 and A > 0 be fulfilled.
Then, there exists a unique solution @ € V5(€2) of the variational problem (2.1). Moreover,
the following a priori estimate holds,

u

Vo < Clfll, (2.7)

Proof: See e.g. [13].

Let r, ¢, z denote the cylindrical coordinates, i.e. 1 = rcosp, 23 = rsing, 3 = z. The
domain € \ [y is transformed by the corresponding one-to-one mapping into the domain
Q = Q, x (—w, 7], with cylindrical coordinates (r,z) € Q, and ¢ € (—m,7]. We now
assume that ['p and [y are such that they can be represented via the given mapping by
I'p == I'up x (=7, 7] and I'y := ['yy X (=7, 7], i.e. I'yp and I'yn are that parts of the
boundary I', of €2, which produce I'p and fN, respectively, by rotation about the z3-axis.
Consequently, for each function a(z), = € Q\ I'g, some function u(r, ¢, z) on Q is defined
uniquely by

u(r, ¢, z) == 4(rcos e, rsin ¢, z), (2.8)

and each vector field a(z) = (i1 (), @a(z), 43(x))T, = € Q\ T, is transformed uniquely into
a vector field u = (u,(r, ¢, 2), u,(r, ¢, 2), u.(r, ¢, 2))T on Q by (cf. [13])

u, = 1y cose—+ Uysin g,
w, = —uysinp+ g cos g, (2.9)
U, = ?AL3.



Accordingly, mappings La(Q\ To) — XF_(Q) and W(Q\ Ty) — W(Q) are defined, with

1/2
X?,,(Q) and W(Q) given by (2.11). Hence we have (see e.g. [8, 12, 13])

1/2
L3(Q) = {v=v(r,¢2): / |v|2drdpdz < oo, 2r-periodic with respect to ¢},
Q
XPp(Q) = fv=v(r e 2): 00 e L3(Q),
dv, 0Ov, 0Ov, Jv
[ — 0 3. r © z r
W(Q) = {v=(vr,0,,0:) € (X])5(Q))": 5 o B 8. (2.10)

dv, dv, 10dv, 1 1dv, 1 1 v, 0
07 02" v 0p 1 v o T vy € N

W) = {veW(Q):v|r, =0}

The norms in the above spaces are derived from the norms of the corresponding Sobolev
spaces by using Cartesian coordinates. We get

1/2

Ov, 12 |0v, 12  |0v. 2 10v, 12 |Ovy, |2

_ 2 2 2 r @ = r @

HVHW(Q) N {/Q(|Ur| ool + o] +‘8r + or + or 0z 0z
dv, 2 |1 v, 2 1 ,0v, 2 (10v, 2 1/2
R e )
HVHVQ(Q) = HVHW(Q) for VEV()(Q). (211)

Further, the strain tensor ¢(u) = (srr,eww,ezz,'ym,'yw,'yw)T can be expressed in terms of
the displacement vector field u in © by

_ % 0 0
[ e ] L 19

c r r dp 0

(ad ] U
€2z 0 0 3z " . .
= 5 5 w, |, orin matrix form by ¢=Du. (2.12)

P)/T’Z E 0 E uZ

Yer 10 2 _1

Yz rde Or r
) ) 0 2 19

L oz r dp |

The stress tensor a(u) = (0, Opps Oszy Tras Tors Tw)T is given according to Hooke’s law by

Opr 1—v v v 0 0 0 Epp
Ty v 1—-v v 0 0 0 Epp
Cas E v v 1—v 0 0 0 €42
T | (I+)1-20)| 0 0 0 L-v 0 0 .. | 1Y
Tor 0 0 0 0 L-v 0 Yor
| T L0 0 0 0 0 2-v ][ v

or in matrix form by ¢ = Ee, where F is Young’s modulus of elasticity and v is Poisson’s
ratio. The Lamé cofficients A and p can be expressed in terms of £ and v as follows (see e.g.

[13]):

Fv F

COrane Ay

(2.14)



One easily observes that the relations A > 0, u > 0 correspond to IV > 0,0 < v < %

The variational solution of the boundary value problem (1.1) in cylindrical coordinates is
obtained as follows (see e.g. [13, 15]). Find u € V{,(£2) such that

b(u,v) = f(v) forany v € Vp(Q), (2.15)

b(u,v) = /Q(e(u))TU(V)rdrdcpdz, f(v) :/QfTvrdrdcpdz. (2.16)

3 Partial Fourier decomposition of the solution

Let us consider the domain Q := Q, X (—x, 7], which is obtained from the axisymmetric
domain Q (or more precisely: Q\ I'g) by transformation in cylindrical coordinates. The
system of trigonometric functions

1,8in @, cosg, ..., cosny, sin ne, ... (3.1)

is orthogonal and complete in Ly(—m, 7). Any function w = w(p), w € La(—7,n) and
w being periodic with the period 2w, can be represented by a converging Fourier series
with respect to the system (3.1). Let u(r, ¢, 2) € X?/Q(Q). Then, the function u(r, ¢, 2) is,
?/Q(Q), 2r-periodic with respect to o, and r!/2y is square
integrable on Q = Q, x (—m, 7]. It follows that u is square integrable on (—7, 7) with respect
to ¢ for almost any (r,z) € Q,. Consequently, u(r, ¢, z) can be represented by a Fourier
series converging in Lo(—7,7) for almost any (r, z) € Q,. For the components u,, u,, u, of
the displacement vector field u we define the Fourier series as proposed in the engineering
literature (see e.g. [1, 3, 7, 15, 17, 20]):

according to the definition of X

U pr2) = (U (r, ) cosnp -+ ul (1, 2) sinnp),
n=0

uy(r,p,z) = Z(ufpn(r, z)(—sinny) + uzn(r, z) cosnep), (3.2)
n=0

u(ryp,2) = Y (ul,(r, ) cosng + ul, (r, 2) sinng),

n=0

with the symmetric and antisymmetric Fourier coefficients defined by (use N := {1,2,3,...}):

1 /7 1 r7
ujy = By w(ry o, 2)de,  ug, = —/ u(ryp, z)cosnp dp, neN, t=r,z,
TJ x )
a a 1 T M
ufy = 0, uf, = ;/ w(r, @, z)sinng do, neN, t=r,z, (3.3)
S 0 s 1 /7’[‘ ( ) . d E N
u = ul o= —— u,(r, v, z)sinn n
0 s wn ), o\ Py ¥ ap, s
a _ 1 T d a _ 1 T d
ugo = oo B u,(r, @, 2)dep, ug,, = ;/_W wy(r, ¢, 2) cosne dp, n € N.

We note that the modified expansion of u, as given by (3.2) leads to a convenient decoupling
of the two-dimensional problems. For u = (u,(r, ¢, 2), u,(r, ¢, 2), u(r, ¢, 2))T € W(Q), it is



not evident from the definition of W (£2) that the partial derivatives of the components of u
with respect to the coordinate variable ¢ are elements of the space X?/Q(Q). Neverthelesss,
we have

Lemma 3.1. Let u = (u,(r, ¢, 2), uu(r, ¢, 2), u.(r, 0, 2))T € W(Q) be satisfied. Then rela-
tion %—1‘; € X?/Q(Q) holds for t = r, ¢, z.
Proof: First, we show 88% € X?9,,(Q). Using rpax := max{r: (r,z) € Q,} and the definition

1/2
of W () we obtain

1 ou,
Tihax /ﬂ‘ do

2 1 du, 2
rdrdpdz = r%qax/ﬁ‘ o - u@—l-uw‘ rdrdedz

IA

1 /0u, 2 2
2/9‘;(899 — u@)‘ rdrdpdz + rrznax/g|uw|2rdrdcpdz< 0.

0

1/2(9) is fulfilled. The remaining assertions can be proved similarly. ®

Consequently, 88% eX
Jur Quy Odug

3 B e (t =r, ¢, z) of the components of the function

Thus, the first order derivatives

u € W(Q) can be represented by converging Fourier series according to (3.2). If (%)S,

(%)a, ... are the Fourier coefficients of the derivatives %, ..., then we have fort =r, z
8Ut > ((8%75)5 <8Ut)a . )
. nZ:% ar ). cosny + ar ). sin ne |,
8Ut > 8Ut 5 + ¢
o Z:: M ncosm,o—l— (E)nsm mp) ,

8Ut

-y

%L;p = > %) (—smmp)—l—(a—w) Cosm,o)7 (3.4)
n=0 n n

Jue _ 3 ﬂ)s(_ )+(ﬂ)“ )

5, = 5. ) (-sinng L) cosne ),

0
8@% = Z ((%)ncosmp—l— (%)nsinmp) ,
where the coefficients are given by (n € N)

n_ﬂ'

(%)s _ i/” 8Ut(7‘79972)d99 (%)s 1 /7r du(r, ¢, 2)
0 27 J_»n 0¢ ' 0¢ —r o
(% “ 0 (%)“ _1 /7r duy(r, ¢, 2)
; ¢

cosnp do,

iy o€ sinng dp, &=r,z,

)

)n i o sin nyp de,
)

)

s 1 /7r du(r, ¢, 2)

cosnp dp, t=r,z, (3.5)

a 1 /7r du(r, ¢, 2)

(
&) = =L 7%
(2

A St

85 n_ ; - 85



(G)e = 5 [ 2 (547 =0 for 1=

(3%)2 %/_7; 3%(575% z)

(au@)s 1 /7r du(r, ¢, 2)

cosny dp, &=r,z,

n TJ_x dy

n_ﬂ'

%)a — 1 /7r 8ut(r79972)

cos ny de, ( 9z » g sin ne de.

Here and in the following, the notation u** means that some relation holds for u® as well as

ul.

Lemma 3.2. Let u € W(Q) be satisfied and the Fourier coefficients of the series (3.2) and
(3.4) be defined according to (3.3) and (3.5), respectively. Then the following relations are
satiesfied:

s/a s/a s/a s/a
() (8%5) - %7 (1) <%) - O for t=r,¢,2z, né& Ny,

ar /), ar 0z /, 0z

dug\ nuf/a : t=r,z, meN,
(7’”) a = s/a

¢/, —nu,, 1 b=, n e N,

where u;éa (t =r, ¢, z) are defined by (3.3), with No := {0, 1,2,---}.
Proof: Let v(r, z) € C§°(Q2,) (space of infinitely differentiable functions with compact sup-
port in Q,). Then, owing to the definition of the Fourier coefficients and to the integration

by parts, we get for ¢t = r or ¢t = z the relations

s dv(r, z) 1 g du(r, z)
/Qa ug, (r, ) 87‘ drdz —/a(/ u(r, p, z) cosne dc,o) a drdz

T -
1 i 8ut
= —;/a (/_7r &, o8N dc,o)v(r, z)drdz
8Ut s
= —/Qa (W)nv(r, z)drdz, n € N. (3.6)
Similarly, we get a corresponding relation for n = 0,

s dv(r, z) B Jug s

/a ugy(r, Z)T drdz = — /Qa (W)Ov(r, z) drdz. (3.7)

Taking into consideration the definition of the generalized first order derivative, we obtain
8 S
from (3.6) and (3.7) the relation ag% = (%)n for t = r,z and n € Ngy. By analogous
Uy

. . Ful 50 \ @ A 5 s/a
argumentation one proves the relations i = (8—;) and —2- = (8—;) fort = r,z,
n n

Fuile 3 s/a Fuile 3 s/a
furthermore %“;" = ( ;f)n and == — ( auj)n , n € No.

Applying integration by parts and the periodicity condition wu;|—r = wu|r (t = r, ¢, z), which
holds for almost any (r, z) € Q,, we get the relations

<8Ut)a 1 /7r 8Ut d n /7r ( ) . d a
— = — —— oSN = — ug(r, @, 2) sinn = nu
899 . ). 899 pap ). t\r @, pay tn)
Ju \* 1 o 4
(ﬁ) = ——/ I in nedp = z/ ug cos npdy = nuy,, t=r,2, (3.8)
de /), T J_r Op g
0 s 1 (70 4
(%)n = ;/_T GL;COS nedp = %/_W Uy sin npdp = —nug,,,
0 1 (™0 T
(ﬂ) = —/ 9% Gin nedp = —ﬁ/ u, cos npdp = —nug,,, n € N,
Y/ n TSz 8%‘9 T J—n



and assertion (i¢i) is proved too. m

For the characterization of the Fourier coeflicients, employ the following spaces of functions
on £, (see e.g. [8, 12]), with real a:

L3 (Q) = {w=w(rz): /Q |w|*drdz < oo},
Lyo(Ry) == {w=w(rz): rwe Ly(Qy)},
WI2(Q) = {w € Ly (Q): aaw 88;” Lon(Q0)}, (3.9)

Pw Pw Pw

2,2 — 1,2 .
WI/Q(QG,) = {w € WI/Q(Q ) . 87‘2 s 822 s 87‘82 € L271/2(Qa)}7
X11}22(Qa) = {we Wll/g(Q )y orlwe Ly 1/2()}.

These spaces are equipped with the norms

1/2
w|?drdz ,  ||w / rw drdz ,
[ wldrdz} ™ e, = { ] 1w

lwlLy0.) =
1/2
lelhyeog, = {HwH%Q,a( o e L N
Y230
|w|W12/§(Q) - {H Loq/2(R H 072 Loq/2(R HGT‘GZ‘LN/? )} 7 ( )
/
lellwzz @, = {|w|Wf;§<ﬂa>+”””Wﬁi<ﬂa>} ’
{ w }1/2
HwHXllfz(Qa) - HT“Lzl/z( H Lon/2(82 H 0z 1Ly, 122 ‘

In [12] it was shown that these spaces are suitable for the analysis of the Fourier coefficients
of the solutions of boundary value problems of heat conduction in axisymmetric domains.
However, for vector functions u € W (€2), whose Fourier coeflicients are also vector functions
defined on €2,, the function spaces introduced previously are not sufficient to study their
properties. For the mathematical analysis of the partial Fourier method for problems in
elasticity further function spaces are needed.

Definition 3.1. Using w = (wy(r, 2), wa(r, 2), wa(r, 2))T, we introduce the following sets of

functions:
3
Vi) = {w = (wr,wa,ws)T € (W) 1 r 7w, 17w € Ly pa(Qa)},
a T 1,2 3
W Q,) = {w=(wy,we,ws)" € (WI/Q(QG)) :
rHwy — wy), 1 ws € Lya/2(8)}, (3.11)
Vi(Q,) = {weViQ,): w=0 on I,p},
W5(Q,) = {weW*(Q,): w=0 on [,p}.

It can easily be verified that these spaces are linear spaces.

Definition 3.2. In V*(Q,), W*(Q,), V' (Q,) and W (€,) we introduce the norms

. — 2 2 2 1/2
IWlyeio,) = (g, + ol g, + lusle g, 12

9



HWHVOa(Qa) = HWHVUL( ) for WEVOG(QG)

HWHW‘I(QG) = {ZszH 12 H (wl—wz

HWHWS(QG) = HWHWa(Qa) for WEWS(QG).

S
Lajppa(Q Lajppa(Q '

It is not difficult to show that the functionals given in (3.12) are indeed norms in the corre-
sponding linear spaces. Now we state that these normed spaces are complete.

Lemma 3.3. The normed linear spaces V*(£,) and W*(€,) are Banach spaces.

Proof. Here, we have to show that any fundamental sequence (Cauchy sequence) in V*(,)
and W*(§2,), repectively, converges. We will prove this assertion only for W*(€,), the proof
for V*(€2,) can be done likewise.

Let {w, = (win(r, 2), won(r, 2), w3, (r, 2)) T 122 1| be any fundamental sequence in W*(,).
We associate with {w, } another sequence {v"}>2, in W(Q) and show that this is a funda-
mental sequence in W (), and thus Convergent7 since W (€2) is a Banach space. We define
v"™ by

Vo= (08 e 2), O e 2), (e, 2)) T
= (win(r, 2) sing, wa, (1, 2) cosp, ws,(r,z)sing)?, n e N. (3.12)

Using Fubini’s theorem and the relation w,, = (w1, wan, ws,) € W*(2,), n € N, it can be
shown that v € W(Q) for every n € N. For example, we get

HU?’@?/Q(Q) = /Q /_ |wy, (7, 2) sinp|*rdrdedz = 7THw1ﬂH%2,l/2(Qa) < 00. (3.13)

In the same way, we derive that the XI/Q(Q)—norm of the rest of the terms in the definition
of W(Q) (see (2.11)) are bounded.
Let € and N () be such that ||w, — Wm”%/l/“(Q ) <e/(2m) for n,m > N(¢) holds. Then we

also get ||[v™ — Vm”%/‘/(g) < e for n,m > N(e). Using the definition of || - HW(Q)’ expressions
of the type (3.13) and the triangle inequality, one easily proves the relation

3
1 2
no_ mi2 J— [p— : 2 - -
V" ="l @) = ”{; i = il g,y + 70 = o) Lo j2(S0)
1 1 ?
+ QHF[((wln - w?n) - ;(wlm - w2m)]‘ L271/2(Qa)}
< 2llwa = walljpe(q,y S & for mym>N(e). (3.14)

It follows from (3.14) that the sequence {v"}°, is a Cauchy sequence in W(Q) and thus
convergent. Let us denote by v = (w1 (r, ) sin c,o, wsy(r, 2) cos @, ws(r, 2) sin )T its limit. In
what follows we show that the fundamental sequence {w,} 2, in W?(Q,) converges to-
wards w = (wy (r, 2), wa(r, 2), wa(r, 2))T and that w € W*(,) holds. Using the definition of
HHW(Q) and HHW“(Qa) one easily deduces the inequalities HWH%/V“(QUL) < lHVH%/V(Q) < 00
and ||w, — WH%/VG(QG) < v — VH%/V(Q) < oo. This implies w,, - w € W?(Q,), and the
assertion is proved. m

In the following, we characterize functions u € W(€2) by means of their Fourier coefficients
and some completeness relations.

10



Lemma 3.4. Let uf = (uf,,u%,, 3, )" and u? = (uf,,us,, u%)? (cf. (3.3)) represent the
symmetric and the antisymmetric parts of the Fourier coefficients of the function u € W(Q).
For t = r, o, z, we get the completeness relations

s @) = 2mlluiollE, .o +w2(uumuw VFu8l3, L ) < 20,(3.15)

moreover,
2 . 9 5 ,
HUHW(Q) = QT{HuiOHWf/’z(Qa) + HuzOHWf/i(Qa) + HUZOHWf/’i(Qa)
1 2 1
+ H_us "‘H }+7T {u 2
r 0 Lo 1/2(Ra) r @ Ly 1/2( ;:166%:&} H rnH 12

bl T 5l ) + [0 = ns,)|
uwn W11/2 Uzn W12 ) , Uy, nuwn L271/2(Qa)
1 e e 2 2 1 e 2
T HF(WM = Uon) Ly 1/2(Qa) o HFUZ”HMM(%)} < ©0, (3.16)

where 3¢, ;3 means summation over s and a. Furthermore, the inequality

Il () 2 259812 ) + I )+ 7 A g + g, ) 317
holds.
Proof: Starting from

1 ™
ul, = —/ ur(r, , z) cosnede, n € N,

T )y

and using the Cauchy-Schwarz inequality, we get the expression

Kis

1 /7 1
|uin|2 S p |u7’(r79‘97 )|2d99 |COS7”LQO| d@‘o - _/ |u7’(r79‘972)|2d9@7 ne N7 (3'18)

—T —T
and similarly one deduces the relation

i
|u,,0|

1 ™
<o [ lwtienPe [ de= o [ ez P, (3.19)

27

Multiplying the expressions (3.18) and (3.19) respectively with r (r > 0), integrating by
parts over €, and applying the theorem of Fubini, we get the inequality

CHUinH%M/Q(QQ) < Hur!@m(g) < 00, (3.20)

with ¢' = 27 for n = 0 and C = 7 for n € N. In the same way, one verifies the relation

sfa  s/a

C'Hu,,nHL2 (e ) < Hu,,Hg(?/z)(Q) < 0o and similar relations for ujy, , uz , i.e. we have
C|lu S/aHL21/2( < HutHg(?p(Q) <oo, m€Ng, for t=r 0z (3.21)

This implies u%a,ufp/na,u% € L31/2(2,). For the system of functions (3.1) we get the
completeness relation

| it )P = 2l ) 4 7 3k, (ry2) P+ g (1, 2)F) < o0 (= r0,2),

- n=1
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which holds for almost every (r, z) € Q, (see e.g. [4]). Multiplying both sides of this equa-
tion with r (r > 0) and integrating over €, we prove by applying the well-known theorems
of Fubini and Lebesgue the identity (3.15). For u € W(Q), we get u,, uy,, u,, 88%, agf,
5, r(aw ), (55 - up), p 5, G, e, G € X7)5(Q) (cf. (2.11)). Therefore, the
Fourier coefficients of these functions fulfil relations of the form (3.20) and (3.21). Moreover,
for each term quoted previously completeness relations of the type (3.15) can be shown.

The relation (3.16) follows from the definition of HUHW(Q) (cf. (2.11)) and Lemma 3.2. In-

equality (3.17) follows immediately from the identity (3.16) and the definition of the norms
HHV“( 0,) and HHW“(Q ) taking into consideration the relations u$ = (u2,, 0, u3y)? and

uf = (0, uly, 0)7. m

Previously, it was proved that by Definition 3.1 complete normed spaces are given. How-
ever, to show that these spaces are appropriate for the analysis of the Fourier coefficients

uy/® , n € Ng (cf. (3.3)), of the solution u € V() of the three-dimensional boundary value
problem (2.15), we still have to prove that the Fourier coefficients are contained in these
spaces. Moreover, these spaces contain additional weights of the form r~! and in the case
where I'g # () (see Figure 1), it is important to investigate the behaviour of u, % for r = 0,in
particular in view of the numerical solution of the boundary value problems determining the
Fourier coeflicients on the meridian plane £2,. The engineers derived the trace properties of
the Fourier coefficients uf/a on the part I'g of the rotational axis by mechanical considera-
tions (see e.g. [3, 7, 15, 16]). Mercier/Raugel (cf. [12]) gave a basic assertion for functions
wE XI/Q(Q ), which is formulated in Lemma 3.5.

Lemma 3.5. Let XI/Q(Q ) be defined as in (3.9), with 'y # (. Then, there is a continu-

ous linear mapping 7 : XI/Q(QG) — L3(I'g) such that for all w € XI/Q(QG) the relation
yw = w(0,z) = 0 holds in Ly(I'y).

Proof: See [12] Proposition 4.1. m
s/a

In the following, we prove some assertions on the traces of the Fourier coefficients uy ™ of u,
n c No.

Lemma 3.6. Let u € Vy(Q) be satisfied and let uf = (uf,, u5,, u3,)7 and uf =
(Uhy UG 23T, n € Ny, respectively denote the symmetric and antisymmetric Fourier

coefficients defined according to (3.3). Then the following relations are fulfilled:

(73

(i) u, ud € Vi (), ud, ul € WH(Q,), neN,

n7

(i) wh'=ull=0 on Iy, (3.22)
(vi7) ui{a_u;/la and us/a_O on Ig,

ug{la:us/a:us/“—o on ['g, forn > 2.

Proof: (i) It follows from the definition of the Fourier coefficients of u (see (3.3)) that
ug = (usg, 0,use)T and ud = (0, U, 0)T. With the help of completeness relation (3.16) and
the definition of V*(£2,), we obtain ug, uj € V*(Q,). Moreover, identity (3.16) also implies
the relations %(u%a — S/n ), i(num/1 — ufp/n) € L271/2(Qa), n € N. Since %(uﬁé nufp/ﬁl) +

(nu%a — ufp/ﬁl) = (n+ 1) (u%a — ufp/ﬁl) holds, we also have ;(u%a — ufp/ﬁl) € L271/2(Qa) for
n € N. Together with ;uZ7/1 € La1/2(8), we get uy, ul € W*(€2,), n € N. The boundary
condition u?} =u? =0on [';p (n € Ny) follows fromu=0o0n I'p =',p x (=7, 7] (see the
definition of V((Q)).

(ii) Assertion (ii) obviously follows from (i), the definition of V*(€,) and Lemma 3.5.

(iii) In the following, we show that the relations ui{a — u;/la, uz{a € XI/Q(Q ), and for

12



n € N\ {1}, u%a, ufp/ﬁ, ullt e XI/Q(QG) are satisfied. Owing to (3.16) and (i), the terms

a a a

8’“’@0/" aurn

8u¢/n and ( s/a s/a) dupl® _au;/,f ourl _

s/a sfay  Ou;
F (e —mudn'), S —n =, S — Nrn = Ugn )y N5, ar " a;
Hull? .
52— are elements of the function space L ;/5(€2,). Moreover, repeating arguments from

(i), we see that uﬁé — nuw/ﬁl, nuiéa - 5/a € XI/Q(QG) holds. According to Lemma 3.5 the
s/a

. .o, B a S/ia .
identities um/1 — nugn, =0, num/1 - u@/n =0 on I'g, for n € N, are obvious. From here, one

easily sees that the relations ur{a = u;/la on I'g and um/f = u%a =0onlyforn=2,3,4,...

are satisfied. For the components u% , n € N, one again uses (3.16) and Lemma 3.5 to
complete the proof. m

4 Partial Fourier decomposition of the BVP

In the previous section, we were mainly concerned with the analysis of the partial Fourier
series expansion and with the study of the properties of the Fourier coefficients of the solution
u € W(Q) of the three-dimensional boundary value problem. The aim of this section consists
in decomposing the three-dimensional variational problem (2.15) into a sequence of two-
dimensional variational problems on the meridian plane 2, using partial Fourier analysis.
Moreover, we show that there are unique solutions of the two-dimensional boundary value
problems and that these solutions are the Fourier coefficients of the solution u € W(2) of
(2.15). For simplicity, we introduce the following notations:

w/t = () (r,2), wt(r,2), ()"
B = (), S ), S )
sl = (s efin e v v T
s/a s/a s/a s/a s/a s/a s/a T
Un/ = ( rln? ap{mw UZén? Trz/n7 T(p{’n? Tzaén) ’ (41)
R} = diag[cosnp, —sinny, cosnygl,
R! = diag[sinne, cosne, sinng),
Q) = diag[cosny, cosnp, cosny, cosnp, —sinng, —sinng|,
QY = diag[sin np, sinne, sin ng, sinne, cosne, cosngl,
— 8 -
5: 0 0
- 0
0 0o £
oz
D =
n o) o)
R
n o) 1
v oo 0
Lo £ oz

Here, Rf/a and Qf/a are diagonal matrices with the given diagonal elements.

Theorem 4.1. Let u,v € W(Q) and f € (X 1/2(9))3 be satisfied, and let the strain  and the
stress tensors o be defined as in (2.12) and (2.13), respectively. Then the following assertions
are satisfied:

(i) The strain and stress tensors can be represented by converging Fourier series of the form

ST(Qier +Qiet), with £/ =D u¥/", (4.2)
n=0
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Z(QZO‘Z—I—QZO‘Z), with ¢2/* =E<¥/* and E from (2.13). (4.3)

(i) The strain tensor ¢ and its Fourier coefficients ei/a satisfy the completeness relation
9 S/ s\|12 a/ a2
(v = 2m9|lej(v + |leglv
E UEBOBIE, o+ IBODIE, )
o - 2 + 1€ (v)])? <oo. (44
Z{H H /2(Qa))6 H ( )H(L271/2(Qa))6} ( )

(iii) The bilinear form b(u, v) and the linear functional f(v) from (2.16) can be represented
in the form

b(u,v) = 2m{bo(ug, vg) + bo(ug, v5)} + 7 i{bn(u% Vi) + bn(ug, v}, (4.5)
f(v) = 2r{f5(vo) + 5 (vo) }+7TZ{fS )+ (V)] (4.6)

sfa __sla fs/a s/a

The bilinear forms b, (u;/ ", v,/ ") and the linear functionals f,"" (v "), n € Ny, from (4.5)
and (4.6), in particular with u§ = (usy, 0, u%y)? and u§ = (0, u%,, 0)7, are given by

T
ot/ vilY) = [ (ez/%uz/“)) o3l (vl yrdrd:
Qa

s/a s/a 2
8u7’n 8U n_us/avs/a

B (1+y )(1—2v) /{ or  rzoenoen

s/a s/a
s/avs/a _ s/avs/a_l_ius/avs/a Juzp vz
2 Upp, Urn 2 Uphy Ugn p2orn trn Oz Oz

1 8ui7/1a sja T 8u5/a Iurn_sa L 8ui7/1a 81};/;1

r Or Urn r or *" dar 0z

+ 1/[
s/a 81}7’7/1 _ z s/a 81}27/1& 1 s/a 81]75’7/1& 1 s/a 81}27/1&
r Uen ar r 9" 0z r " Or r "0z
oul" vl n oul’ sja 1 oul’ oo/
+ - Uon + = Uy
dz Or r 0z % r 0z
1-2v 8ufp/na dv Sé L n@us/a sfa 1 8u@/n pola 4 s/ 81}%{1

+ 2 Jr  Or roar T p g en TRt Ty
sja_ . s/a sja_ . s/a Saa/vwéz‘ nSaSa sja_ . s/a
+ 2 7’7/1 Um/z - 2 7’7/1 apé - ruap/n or - r_zuap/n Um/z + = r2 ap/n apé
N ouslt ovil" N ouslt ovsl N duslt ovil" L O L sfaysa
dar  Or ar 0z dz  Or dz 0z pz zn Ve
s/a s/a s/a s/a
n s/aavwn ﬁauwn s/a auwn 8”%
+ SUan' = + "5, Uen + — 9, }} drdz, (4.7)
£/0(vi/Y) = fs/“ 5/“rdrd2_/ {feleosle fs/a S0 et rdrdz. (4.8)
Qa
Proof: (i) Since u = (u,, u,, u,)T € W(Q) is satisfied, the functions u,, u,, u, as

well as their first order partial derivatives are contained in XI/Q(Q) (cf. (2.11) and Lemma
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3.1). Consequently, the components of the strain and stress tensors can be expressed by
converging Fourier series using the series (3.2) and (3.4). Finally, using the relations given
by Lemma 3.2, the definition of ei/a and Uf/a and the notations (4.1), one easily shows that
the expressions (4.2) and (4.3), respectively, represent the Fourier series expansion of ¢ and
o with respect to the system of trigonometric functions (3.1).

(ii) The proof of (4.4) is analogous to the proof of (iii) given next.

(iii) Let b(u, v) be defined as in (2.16). Using the relations (4.2) and (4.3) we get by applying
the results of the theorems of Lebesgue and Fubini the following identities:

b(u,v) = /Q(e(u))TU(V)rdrdcpdz

-/ {i (@25 (us)” + (Quet (u2)] ﬂ;i[ s 05, (v2) + Q2 (v brdrdiod

= 23 [ [T el Qo) + ) ey Qe (vi)
n=0m=0 as =T
+ (5w QT Qo (Vi) + (5 (wh) " QiT Q00 (v,) bderdrdz

= Y% [ e [ aledeai)
+ @) [ Qs deatvi) + )’ [ Qi Qs deat(vi)
)’ [ Qe doos, (v, prdrds. (49)

The integrals [7 Q3T Q;.de, [T, Qi QR de, [T Q7 Qf dp, and [T QiTQ; dy

contain expressions of the type (see (4.1))

0 : n#m

/ cosnp cosmedy = T n=m#0
- 27t n=m=0
- 0 n#m
/ sin ngsin medye = T n=m%#0 (4.10)
- 0 n=m=0

/ sin nipcosnpdpy = 0, n € Np.

—T

It follows from (4.9) and (4.10) that
) = 3 [ {ewn! [ aras denn)
) [ QT Qn dpon(vi) frdrds
= o {(ebin " i vi) + () b (vE) frard=
i i [ apiv2) + )" (v v
= 2 {boluby vE) + bo(ul, vE)) + 7 3 (ba(u, v3) + b (u, v},

n=1
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Similarly, using for f Fourier series expansion of the type (3.2), (3.3) and the notation in
(4.1), one gets the relations

flv) = /fTvrdrdcpdz
Q

—T

- / 7 [ RTR: dpvy+ £ / " RITRS dpvi }rdrd
n=0"{a -r
= 277{/9 fOSTVSrdrdz—l—/Q fSTVSrdrdz}
S fsT 5 rdrd / faT @0 drd
—I—ﬂ'?;{/ganvnrrz—l— Qanvnrrz}

RSV + (V) w4 £} m

n=1

In Theorem 4.1 it is proved above all that the symmetric bilinear form b(u, v) and the linear
functional f(v) in three dimensions can be represented by converging series. For n € Ny,
the terms bn(uf/a,vf/a) are obviously symmetric bilinear forms, and the terms fé/a(vf/a),
n € Ny, are linear forms in the corresponding function spaces on ,. Moreover, from the rep-
resentation of b(u, v) and f(v) in Theorem 4.1 one can derive a sequence of two-dimensional
variational problems, which are totally decoupled and can be solved independently from each

other.

Theorem 4.2. Let u; and u} be the Fourier coefficients of the solution u € V() of the
three-dimensional variational problem (2.15). Then u? and u?, n € Ny, are unique solutions
of the following two-dimensional variational problems.

Find functions

)T7 ugy = (0, ug O)T € Vi'(Q,) and

_ s s
Uy — (ur0707u20 @0

P W wS) Ty wh = (uf g ul, )T € W), neN,

u;, = (u ont Yzn

n

satisfying the equations

bo(ug, w) = f3(w), (4.11)
bo(ud, w) = fi(w) for weVy(Qa), (4.12)
bp(uy, w) = fi(w), (4.13)
by(un,w) = fi(w) for weWg(Q,), neN, (4.14)

where the bilinear forms bn(uf/a,w) and the linear forms fﬁ/a(w)7 n € Ny, are defined by
(4.7) and (4.8), respectively.

Proof: We consider the variational equation (2.15), with b(u, v) and f(v) according to the
completeness relations (4.5) and (4.6). For proving the decoupling, we define some special
test functions as follows:

vO = (w,(r,2), 0, wa(r,2)T € VE(Q),
v = (we(r, 2) cosng, wyu(r, 2)(—sinng), w.(r, z) cosng)T for ne N, (4.15)
with  (w,(r, 2), w(r, 2), w.(r, 2))T € W (Qy).

It is clear that v(") € Vu(Q) for all n € Ny, with V5(Q) from (2.11). For these functions,
Fourier series expansion of the type (3.2) can be proved and their corresponding Fourier
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coeflicients are given according to (3.3) by

(VO), = (wnlrea). 0wl )T oo, (vO); =0, ke N
(v<n>)z = (we(r, 2), wo(r, 2), wa(r, 2))T S, (V<n>)z —0, k€N, neN,

where 4, is the Kronecker symbol. We get the equations (4.11) and (4.13) by inserting
these test functions in (2.15) and (2.16), and by taking into consideration the completeness
relations (4.5) and (4.6). On the other hand, the equations (4.12) and (4.14) are derived by
using the test functions

V(O) — (07 ww(r7 2)7 O)T 6 Voa(Qa)7
v = (w,(r, ) sinng, w,(r, 2) cosng, w.(r,2)sinng)?  for n € N,

with (w,(r, 2), w,(r, 2), w.(r,2))T € WE(Qu), (4.16)

n (2.15) and (2.16), together with the representation (4.5) and (4.6).

Subsequently, we show that the equations (4.11) — (4.14) have unique solutions, which are
the Fourier coefficients of the three-dimensional solution. To do this, we have to prove that
the assumptions of the lemma of Lax-Milgram (see e.g. [6]) are fulfilled.

The continuity of the linear forms fé/a() follows immediately from the Cauchy-Schwarz
inequality and further estimates, viz.

V=] 8" Swrdrdz| U6z, o WL o)y

< O g i 1wy (o) for w e Ve'() (4.17)
gl = | ] <8N o s

< E N oo Wl () for w e We (), neN,  (4.18)

with some positive constant C'. From Korn’s inequality (2.5), we get the relation

IVl ) < KIEMIE, e for v € Vo(@), with K > 0. (4.19)
1/2

Inserting the test functions defined by (4.15) and (4.16) in (4.19), and taking into con-
sideration the inequality (3.17) and the completeness relation (4.4), we derive the a priori
estimates

5112 “ < K s s\ |12 al|2 “ < K a ay|(2 4.20
il o, € KISODIE, o Mol o, < KISOOIE, oo (420
s?a < K s S\ |12 7 a2a < K a ay|2 7 E:N-7
Vilye, < KIS, oo Wilpgga,) < KIS, o

where v2,v? (n € Ng) are the Fourier coefficients of v("), n € Ny. It follows from (2.6) (see

Remark 2.1), the definition of || - HV@(Q)’ Il - HVOG(Qa)’ [ - HW(()I(Qa) and the completeness
relation (4.4) that the following inequalities hold:

s s\ |12 5112 a ay|(2 al|2
5602, e S OVl 6O, < CINGl g,y (420
s sY|12 52 a ay||2 all2
Hgn(vn)H( 6 S CanHW(()I(Qa)7 Hgn(vn)H(LZl ))6 S CanHW(()I(Qa)7 nc N7

L2,1/2(Qa)) /2
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whith some C' > 0. Denoting by A; the largest eigenvalue of the matrix E from (2.13) and
using (4.7) as well as the Cauchy-Schwarz inequality, we get

T
by (w/®, vl )| = \/ (=i (us/™)) " B3l (vil*)rdrdz|
< Ml () o[/ (v )| n € Ny. (4.22)

(L2,1/2(Qa))67

(L2,1/2(Qa))

Finally, the continuity of b,(.,.) follows from (4.22) and (4.21). If Ay denotes the smallest
eigenvalue of E, we get the Vi§ — and W3 —ellipticity condition, respectively, by considering

T
bt/ sl = [ (5 (uil) B sl il rdrdz > Aslle (/)

o, (4.23
Qa B (L2,1/2(Qa)) ( )

where n € Ny, together with relation (4.20). Thus, it is proved that the assumptions of the
Lax-Milgram lemma are satisfied. The uniqueness of the solutions of the variational problems

(4.11) — (4.14) implies that ui/a, n € Ny, are the Fourier coefficients of the solution u of the
three-dimensional variational problem (2.15). m

Theorem 4.3. Let uf/a = (u%a7 ufp/ﬁ, u%a) and fs/a (f%a7 Z{f, Zséa)T, n € Ny, be
the Fourier coefficients of u and f from (2.15). Then, for us/* we get the following a priori
estimates:

I g, < KI5, o < CIRTIRL (4.24)
I Wi,y < KU @I S U, pae n N, (125
g, < M B+ 0|0 s )

< Hfs/“HL21/2 auy forn>2, (4.26)

with some positive constants C', K and M.

Proof: For brevity, we utilize in the following C' as a generic positive constant; i. e., C
has different values at different places, but C is independent of n and of the corresponding
Fourier coefficients. By analogy to (4.17), (4.18), we get

o] < CIE s e 196 s () (1.27)
B < I8 s a0 e o,)) 7 € N (4.28)

Starting from (4.11)—(4.14) for w = u*/¢ and using (4.23), the relations

> Naller /M, o

£ )

6, n € N, (4.29)

hold. Combining (4.27), (4.28) and (4.29), one derives the inequalities

151,y S CUB s @yl “llvg o, (4:30)
I1E, cr\fs/ar\L21/2 el g ) mEN. (4:31)
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Using (4.23) and (4.20), we get

sfa _sfa s/ay2 sfa .. sla s/a)|2
bo(ug' " ug' ) > Clug HVO“(QG)’ by (wy/®, wy/?) > C'fjuy HWS(Qa)’ neN. (4.32)
Finally, owing to (4.27), (4.28) and (4.32), we derive the relations
boug" ui/ ") = £ (05 < CIE N1 i 19 e ) (1.33)
bzl wsl) = 0wl < O, HW o) n €N, (1.3

Taking into account (4.30), (4.33) and (4.31), (4.34), respectively, we derive the relations

s/ay2 s/a
Hgn H(L271/2(Qa))6 < CHf H (Lo j2(Ra))% n € Ng. (435)
Finally, the assertions (4.24) and (4.25) follow from (4.20) and (4.35).

In order to show assertion (4.26), we first of all prove the following equivalence for some
norm terms:

G AR Fh L2,1/2<Qa>}
< gt =l + et = el
< ¢{n H usl L21/2(QG)—|—n Hr wlel? - } forn>2. (4.36)
Obviously, for n > 2 the inequality
n? < 19—6(n - %)2 (4.37)

holds, and from

s/a
(=)™ = (Buste = Susfe) = = (Fusle = g,

one obtains the inequality

s/a 9

152 Urn sfa sfa 2 sfa sfa
(n—-) ‘ < QH usle — @/ 2H wsle = Lystal’ .(4.38)
n r Ly 12(0 r Ly1/2(8a)  mnollr r Loy2(
Similarly, one shows the relation
u@/n 2 1
O T I e LY T
Lo y2(8 r r Lajppa(Q r 2,172 (9

The first inequality of (4.36) follows from (4.37), (4.38) and (4.39). The application of the
triangle inequality leads to the second one.

Taking the definition of the norm of W§(€,), inequality (4.19), and the completeness rela-
tions (4.4) and (3.16), we derive the estimate

1
s/ay2 s/a 2,8l _ 5/“
I g,y € O Wz + sl = St
n s/a_ s/a 5/“
T H plrn T ten L21/2(Qa )+n Hr 7L 12(Qa)
< Ollesl (w2 ) 4.40
< Cller/*(uy )H(L271/2(Qa))6 (4.40)

19



Furthermore, using (4.36), (4.29) and (4.40), we get

s/a)|2 < s/a S/U'
Wy, < CU e o w*"H <ummmJ
sfa(ys/ay||2 s/a s/a
< Ced* (u? )”(L2J/2<Q ) S CUE N (L 1o 202 10 (10 (200)°
1
< Clpsta 1 s/ - 4.41
L (CRVACRIE et PR )
By means of the inequality 2ab < a?/n? + n2b?, for n > 2 the relation
s/a 1..s/a sfa 2 2| 1,,5/a
. " . 2|t (442
|| || L2 1/2 )) r (L2)1/2(Qa))3 { || || L2 1/2 )) r (L2)1/2( ))3} ( )

is obvious. Taking (4.42) and (4.41), we get the completion of the proof by

Hufz/a 2 < c s/a

g, = 2l s o0y ™ (4.43)

We now consider a finite number of two-dimensional problems (4.11)—(4.14), here for n =
0,1, ..., V, and their solutions which are the corresponding Fourier coefficients uf/a of u. By

means of RY/” from (4.1), the solution u = (u,, uy, u,)? of the three-dimensional boundary
value problem (2.15) and its partial Fourier approximation (truncated partial Fourier series)
uy = (UN, UpN, uzN)T can be written as follows:

0 N
u= Z (Riu} + Riul) and un= Z (Riul + Riu). (4.44)
n=0 n=0

It is well-known that the approximation of functions in Ly(—7,7) by means of the trigono-
metric functions {1,...,sin Ny, cos Ny} leads to the corresponding truncated Fourier series
of the order N, see e. g. [4, 5, 11], with the obvious extension to partial Fourier series. Now
we shall estimate the norm of the error u — uy in the space W ().

Theorem 4.4. Let u € V() be the solution of the variational problem (2.15), with
fe(X 1/2(9))37 and uy its Fourier approximation defined by (4.44). Then there is a con-
stant C' independent of N and f such that the following estimate holds:

[u = unllyy o) < CNTIEN for N >1. (4.45)

(x0, @)

Proof: Using (4.44), the completeness relation (3.16), the triangle inequality and the a
priori estimate (4.26), we get the inequalities

-l € ON Y Y n{ Iy o e

n=N+1ec{s,a}

2
(Lz 1/2(8 ))3}

<CN2§ g f62 < CN72|f|? ) 4.46
n=2c€{s, a}H H 2(Qa))3 H H( 1/2(0))3 ( )
and, thus, Theorem 4.4 is proved. m

Obviously, the error estimate (4.45) is valid without additional smoothness requirements
like &t € (W3(€2))®. This is due to the refined a priori estimate (4.26) which indicates some
additional regularity of u with respect to the angle .
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