
Application of random matrix theory to

quasiperiodic systems

Michael Schreiber

a

, Uwe Grimm

a

, Rudolf A. R�omer

a

and

Jian-Xin Zhong

a;b

a

Institut f�ur Physik, Technische Universit�at, D{09107 Chemnitz, Germany

b

Department of Physics, Xiangtan University, Xiangtan 411105, P. R. China

Abstract

We study statistical properties of energy spectra of a tight-binding model on the two-

dimensional quasiperiodic Ammann-Beenker tiling. Taking into account the sym-

metries of �nite approximants, we �nd that the underlying universal level-spacing

distribution is given by the Gaussian orthogonal random matrix ensemble, and thus

di�ers from the critical level-spacing distribution observed at the metal-insulator

transition in the three-dimensional Anderson model of disorder. Our data allow us

to see the di�erence to the Wigner surmise.

In a recent paper [1], we investigated energy spectra of quasiperiodic tight-

binding models, concentrating on the case of the octagonal Ammann-Beenker

tiling [2] shown in Fig. 1. The Hamiltonian is restricted to constant hopping

matrix elements along the edges of the tiles in Fig. 1. Previous studies of

the same model had led to diverging results on the level statistics: For peri-

odic approximants, level repulsion was observed [3,4], and the level-spacing

distribution P (s) was argued to follow a log-normal distribution [4]. On the

other hand, for octagonal patches with an exact eightfold symmetry and free

boundary conditions, level clustering was found [5]. On the basis of our nu-

merical results for P (s) and the spectral rigidity �

3

[6], compiled in Ref. [1],

we concluded that the underlying universal level-spacing distribution of this

system is given by the Gaussion orthogonal random matrix ensemble (GOE)

[6,7]. Concerning the contradictory results of previous investigations, we at-

tribute these to the non-trivial symmetry properties of the octagonal tiling.

The periodic approximants studied in Refs. [3,4] show, besides an exact re-

ection symmetry, an \almost symmetry" under rotation by 90 degrees which

may inuence the level statistics [6], whereas the octagonal patches used in

Ref. [5] possess the full D

8

-symmetry of the regular octagon. Hence the level

statistics observed in this case is that of a superposition of seven completely

independent subspectra, and therefore rather close to a Poisson law.
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Fig. 1. Octagonal cluster of the Ammann-Beenker tiling with 833 vertices and exact

D

8

symmetry around the central vertex as indicated by the solid and dashed lines.

Shadings indicate successive ination steps of the central octagon.

To arrive at this conclusion, we considered in Ref. [1] di�erent patches that ap-

proximate the in�nite quasiperiodic tiling, both with free and periodic bound-

ary conditions. Exact symmetries were either exploited to block-diagonalize

the Hamiltonian, thus splitting the spectrum into its irreducible parts, or

avoided altogether by choosing patches without any symmetries.

Here, we concentrate on the D

8

-symmetric octagonal patch shown in Fig. 1.

For this case, the Hamiltonian matrix splits into ten blocks according to the
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Fig. 2. IDOS (inset) for the D

8

-symmetric patch with N = 157369 vertices, and

P (s) averaged over the three largest sectors. The smooth line denotes P

GOE

(s).
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Fig. 3. Small- and large-s behaviour of P (s) of Fig. 2, compared to P

GOE

(s) (solid

line) and P

W

(s) (dashed line).

irreducible representations of the dihedral group D

8

, resulting in seven di�er-

ent independent subspectra as there are three pairs of identical spectra. In

Fig. 2, we show the integrated density of states (IDOS) for a patch, which

contains N = 157369 vertices and corresponds to three more ination steps

performed on the patch of Fig. 1. Apparently, the IDOS is rather smooth, and

the only prominent feature that shows up, apart from a few small gaps, is

the huge fraction (13077 of 157369, hence about 8.3%) of exactly degenerate

eigenvalues in the band center. For the level-spacing distribution P (s), these

do not matter as they would only contribute to P (0), wherefore we can neglect

them completely. The IDOS shown in Fig. 2 is �tted to a cubic spline which

is then used to \unfold" the spectrum [8], i.e., to correct for the non-constant

density of states, what is necessary if we want to compare to results of random

matrix theory.

The level-spacing distribution P (s) for the unfolded spectra is shown in Figs. 2

and 3, measured in units of the mean level spacing. Here, we averaged over the

three largest subspectra, each of which contains 18043 levels after removing

the degenerate states in the band center. The resulting histogram is compared

to the GOE distribution P

GOE

(s) (solid lines in Figs. 2 and 3) and, focusing on

the small- and large-s behaviour, also to the Wigner surmise P

W

(s) (dashed

lines in Fig. 3). Apparently, the level-spacing distribution of the quasiperiodic

Hamiltonian is well described by random matrix theory, and one can clearly

see that P

GOE

(s) �ts the numerical data even better than P

W

(s).

Fig. 4 shows the corresponding �

2

statistics [6], compared to the exact GOE

result. The �

2

statistics measures the uctuation in the number of energy levels

n in an energy range L, i.e., �

2

= hn

2

i � hni

2

where h:i denotes the spectral

average. Again, the agreement with our numerical results is good, supporting

the conclusion that the underlying universal level statistics is described by the
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Fig. 4. �

2

statistics for the seven independent subspectra of the D

8

-symmetric oc-

tagonal patch with 157369 vertices. The lines indicate the GOE (solid) and Poisson

(dashed) behaviour.

GOE. Because typical eigenstates in our model are expected to be multifractal,

one might have expected that one �nds a \critical" level-spacing distribution as

observed at the metal-insulator transition in the three-dimensional Anderson

model of disorder [9] | however, this is clearly not the case.
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