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Abstract

Using a numerical decimation method, we compute the localisation length �

2

for

two onsite interacting particles (TIP) in a one-dimensional random potential. We

show that an interaction U > 0 does lead to �

2

(U) > �

2

(0) for not too large U and

test the validity of various proposed �t functions for �

2

(U). Finite-size scaling allows

us to obtain in�nite sample size estimates �

2

(U) and we �nd that �

2

(U) � �

2

(0)

�(U)

with �(U) varying between �(0) � 1 and �(1) � 1:5. We observe that all �

2

(U)

data can be made to coalesce onto a single scaling curve. We also present results for

the problem of TIP in two di�erent random potentials corresponding to interacting

electron-hole pairs.

In two recent articles [1,2], we studied as a simple and tractable approach to

the problem of interacting electrons in disordered materials the case of only two

interacting particles (TIP) in 1D random potentials. Previous considerations

[3] had led to the idea that attractive as well as repulsive interactions between

TIP give rise to the formation of particle pairs whose localisation length �

2

is

much larger than the single-particle (SP) localisation length �

1

� 105=W

2

,

�

2

� U

2

�

2

1

(1)

at two-particle energy E = 0, with U the Hubbard interaction strength. Al-

though many papers have numerically investigated the TIP e�ect [3{9], an

unambiguous reproduction of Eq. (1) is still lacking. However, it appears well

established that some TIP delocalisation such as �

2

> �

1

does indeed exist

due to the interaction. Recently, a duality in the spectral statistics for U and

p

24=U has been proposed [11] for small and very large jU j.
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Fig. 1. �

2

(U) for TIP as a function of jU j (solid lines) and

p

24=jU j (dashed lines)

at E = 0 for disorders W = 3 (+), 4 (�), and 5 (�) and M = 201. The data are

averaged over 100 samples. The lines (symbols) indicate data for U > 0 (U < 0).

In Refs. [1,2], we have employed a numerical decimation method [10], i.e.,

we replaced the full Hamiltonian by an e�ective Hamiltonian for the doubly-

occupied sites only. In [1], we considered the case of TIP with n, m corre-

sponding to the positions of each particle on a chain of length M and random

potentials �

1

n

= �

2

n

2 [�W=2;W=2]. In [2], we studied the case where �

1

n

and

�

2

n

are chosen independently from the interval [�W=2;W=2], which may be

viewed as corresponding to an electron and a hole on the same chain (IEH).

Via a simple inversion, we then obtained the Green function matrix elements

h1; 1jG

2

jM;Mi between doubly-occupied sites (1; 1) and (M;M) and focused

on the localisation length �

2

obtained from the decay of the transmission

probability from one end of the system to the other, i.e.,

1

�

2

= �

1

jM � 1j

ln jh1; 1jG

2

jM;Mij: (2)

In Fig. 1 we present data for �

2

(U) obtained for three di�erent disorders for

system sizes M = 201 at E = 0. In agreement with the previous arguments

and calculations [6,7,11], we �nd that the enhancement is symmetric in U and

decreases for large jU j. In [11] is has been argued that at least for �

1

� M ,

there exists a critical U

c

= 24

1=4

� 2:21, which should be independent of W ,

at which the enhancement is maximal. We �nd that in the present case with

�

1

< M the maximum of �

2

(U) depends somewhat on the speci�c value of

disorder used. The data in Fig. 1 may be compatible with the duality of Ref.

[11], but only for the large disorder W = 5. For the smaller disorders and for

the range of interactions shown, we do not observe the duality. We emphasize

that the duality observed in [11] is for spectral statistics and need not apply

to quantities such as the localisation length �

2

.
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In order to reduce the possible in
uence of the �niteness of the chain length,

we constructed �nite-size-scaling (FSS) curves for 11 interaction values U =

0; 0:1; : : : ; 1 from the �

2

data for 26 disorder valuesW between 0:5 and 9, for 24

system sizesM between 51 and 251, averaging over 1000 samples in each case.

In Fig. 2 we show the in�nite-size localisation lengths (scaling parameters) �

2

obtained from these 11 FSS curves. A simple power-law �t �

2

/ W

�2�

in the
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Fig. 2. Left panel: TIP localisation lengths �

2

after FSS. The dashed lines repre-

sent power-law �ts. Inset: Exponent � obtained by the power-law �ts. Right panel:

Scaling plot according to [5] with TIP localisation lengths �

2

(U) for W 2 [1; 5]. The

solid line indicates a slope of 1/4, the dashed line the value of �

2

W

2:1

in the limit

U = 0.

disorder range W 2 [1; 5] yields an exponent � which increases with increasing

U as shown in the inset of Fig. 2, e.g., � = 1:55 for U = 1 and � = 1:1 for

U = 0. Because of the latter, in the following we will compare �

2

(U 6= 0) with

�

2

(0) when trying to identify an enhancement of the localisation lengths due

to interaction.

Song and Kim [5] suggested that the TIP localisation data may be described

by a scaling form �

2

= W

��

0

g(jU j=W

�

) with g a scaling function. They obtain

� = 4 by �tting the data. Our data can be best described when �

0

is related

to the disorder dependence of �

2

as (� � �

0

)=� � 1=4. As shown in Fig. 2,

the scaling is only good for W 2 [1; 5] and U � 0:3. We note that assuming

an interaction dependent exponent �(U), we still do not obtain a good �t to

the scaling function with the data for all U .

In Fig. 3, we show that a much better scaling can be obtained when plotting

�

2

(U) � �

2

(0) = ~g [f(U)�

2

(0)] (3)

with f(U) determined by FSS. Now the scaling is valid for all U and W 2

[0:6; 9]. As indicated by the straight lines, we observe a crossover from a slope

3



2 to a slope 3=2. There are some deviations from scaling, but these occur

for large and very small values of �

2

(U) and are most likely due to numerical

inaccuracy [1]. In the inset of Fig. 3, we show the behavior of f(U). For U � 0:3

a linear behavior f(U) / U appears to be valid which translates into a U

2

(U

3=2

) dependence of �

2

(U)� �

2

(0) in the regions of Fig. 3 with slope 2 (3=2).

For U � 0:5, we have f(U) /

p

U which yields �

2

(U) � �

2

(0) / U (U

3=4

).
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Fig. 3. Left panel: Scaling plot of Eq. (3) for TIP with W 2 [0:6; 9]. The solid

(broken) line indicates the slope 2 (1.5). Inset: The values of f(U) needed to make

the data collapse onto the U = 0:1 curve. Right panel: IEH localisation length scaled

as in the left panel. The solid line indicates slope 1.61 and W 2 [1; 7].

Thus in summary it appears that our data cannot be described by a simple

power-law behavior with a single exponent as in Eq. (1) neither as function of

W , nor as function of �

2

(0) [1], nor after scaling the data onto a single scaling

curve.

As for TIP we computed [2] the IEH localisation lengths by the DM along the

diagonal using 100 realizations for each (U;M;W ). We �nd that the data for

IEH are very similar to the case of TIP. We again perform FSS and observe that

the in�nite-size estimates �

2

(U) are well characterized by an exponent �(U).

We can again scale the �(U) data for IEH onto a single curve as shown in Fig.

3. However, here the crossover from slope 2 to 3=2 is much less prominent and

the data can be described reasonably well by a single slope of 1:61. Also, the

crossover behavior in f(U) is suppressed. We remark that these di�erences

may be due to the smaller number of samples used for IEH.

In conclusion, we observe an enhancement of the two-particle localisation

length due to onsite interaction both for TIP and IEH. This enhancement

persists, unlike for TMM [6,8,9], in the limit of large system size and after

constructing in�nite-sample-size estimates from the FSS curves. We remark

that the IEH case is of relevance for a proposed experimental test of the TIP

e�ect [12].
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