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Abstract

We study the formation of electron-hole pairs for disordered systems in the

limit of weak electron-hole interactions. We �nd that both attractive and

repulsive interactions lead to electron-hole pair states with large localization

length �

2

even when we are in this non-excitonic limit. Using a numerical

decimation method to calculate the decay of the Green function along the

diagonal of �nite samples, we investigate the dependence of �

2

(U) on disorder,

interaction strength U and system size. In�nite sample size estimates �

2

(U)

are obtained by �nite-size scaling. The results show a great similarity to

the problem of two interacting electrons in the same random one-dimensional

potential.
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It is well-known that randomness leads to localization of non-interacting electrons and

holes. This e�ect is especially strong in one-dimensional (1D) systems [1,2] leading to com-

plete localization even for very small disorder [3]. On the other hand, in the limit of strong

attractive Coulomb interaction, electrons and holes will pair into excitons with large life-

times. In the present work, we concentrate on the intermediate problem of weakly interacting

electrons and holes (IEH) in a random environment. The energy scales are such that the

band width is larger than the disorderW which in turn is larger than the interaction strength

U and so we do not have bound excitons, but rather electron-hole pairs. Such a problem

is relevant for the proposed experimental veri�cation of the two-interacting particle (TIP)

e�ect by optical experiments in semiconductors [4]. The TIP problem has recently attracted

a lot of attention after Shepelyansky [5,6] argued that attractive as well as repulsive on-

site interactions between two bosons or fermions in a single random potential lead to the

formation of particle pairs whose localization length �

2

/ U

2

�

2

1

is much larger than the

single-particle (SP) localization length �

1

. His major prediction is that in the limit of weak

disorder a pair of particles will travel much further than a SP even for repulsive interaction

U > 0.

Here, we consider the e�ect of onsite interaction on a single electron-hole pair, modelled

by TIP in two di�erent 1D random potentials. The Hamiltonian we consider is

H = �t

X

n;m

(jn;mihn + 1;mj+ jn;mihn;m+ 1j + h:c:)

+

X

n;m

jn;mi

�

�

1

n

+ �

2

m

+ U�

nm

�

hn;mj (1)

where for the case of TIP in di�erent potentials, e.g. two electrons on neighboring chains,

or an electron and a hole on the same chain, we have �

1

n

6= �

2

n

. For simplicity, both �

1

n

and �

2

n

are chosen randomly from the interval [�W=2;W=2]. In the following we call this

situation the IEH case. We will show that the results for IEH are similar to the (standard)

TIP problem when both particles are in the same potential �

1

n

= �

2

n

. In both cases U is the

on-site interaction between the two particles. We use hard-wall boundary conditions and the

hopping element t � 1 sets the energy scale. We note that this Hamiltonian corresponds to
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the 2D Anderson model if we replace �

1

n

+�

2

m

in (1) by ~�

nm

and choose ~�

nm

2 [�W=2;W=2]. In

this case U is an added on-site potential. This has been recently used to test our numerical

method by comparing with more established methods valid for this model [7].

To obtain our results we use a decimation method (DM) [7,8]. This involves replacing

the full Hamiltonian by an e�ective Hamiltonian for the doubly-occupied sites only. It

should be stressed that this method is exact and no approximations have to be made in the

decimation process. It is then possible, via a simple inversion, to obtain the Green function

matrix elements h1; 1jG

2

jM;Mi between doubly-occupied sites. We shall be focusing on the

IEH localization length �

2

obtained from the decay of the transmission probability of IEH

from one end of the system to the other. This is de�ned [9] by

1

�

2

= �

1

jM � 1j

ln jh1; 1jG

2

jM;Mij: (2)

In order to reduce possible boundary e�ects, we compute �

2

by considering the decay between

sites slightly inside the sample. We present results for the band centre, i.e., energy E = 0

for 14 disorder values W between 0:5 and 7, for 21 system sizesM between 51 and 251, and

11 interactions strengths U = 0; 0:1; : : : ; 1:0. For each triplet of parameters (W;M;U) we

average the localization lengths �

2

computed from the Green function according to Eq. (2)

over 100 samples.

In Fig. 1, we show the IEH results for M = 201. Let us �rst turn our attention to the

case U = 0. As pointed out previously [10], the TIP Green function G

2

at E = 0 is given

by a convolution of two SP Green functions G

1

at energies E

1

and �E

1

. This implies that

�

2

� �

1

=2. We have therefore included data for �

1

=2 in Fig. 1 which we have computed

by a transfer matrix method (TMM) [11] in 1D with 0:1% accuracy. Comparing these

results to the localization lengths �

2

obtained from the DM, we �nd that for 1 � W � 6,

the agreement between �

2

(U = 0) and �

1

=2 is rather good and, contrary to TMM results

[12{14], there is no large arti�cial enhancement at U = 0. For smaller disorders W < 1,

we have �

2

�M=2 so that it is not surprising that the Green function becomes altered due

to the �niteness of the chains [15]. This results in reduced values of �

2

. It is noticeable
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from these results, however, that the values of �

2

(U = 0) are still slightly larger than �

1

=2.

This is similar to TIP results [10] and to a numerical convolution of the SP Green functions

calculated by exact diagonalisation [7]. For U between 0:1 and 1 and W � 1:2 we have

found that the localization lengths �

2

(U) are increased by the onsite interaction as shown in

Fig. 1. For U � 1, it is well-known that the interaction will split the single TIP band into

upper and lower Hubbard bands and, hence, we expect that for large U the enhancement of

the localization length at E = 0 will vanish. In Fig. 2 we present data for �

2

(U)=�

2

(0) for

U = �4; : : : ; 4. We �rst observe that at the band centre the enhancement is symmetric in

U . This is why we usually only consider U > 0 in agreement with the previous arguments

and calculations for the TIP case [7,9,10,12{17]. We have checked that away from the band

centre the enhancement is asymmetric in U . For small jU j, we see from Fig. 2 that the

localization length increases nearly linearly in jU j with a slope that is larger for smaller W

and we do not see any U

2

behavior as argued in Refs. [5,6,18]. At large jU j the enhancement

starts to decrease again. For TIP, it has been suggested [17] that there exists a duality for

U and

p

24=U for very large jU j. The crossover between the two asymptotic regimes should

accor at U

c

= 24

1=4

. For IEH, we �nd that within the accuracy of our data, we can argue for

an agreement with the duality. As for our TIP data [7], we observe the best IEH agreement

with duality for W = 5 but the maximum enhancement max

U

[�

2

(U)=�

2

(0)] still seems to

depend upon the disorder.

In order to overcome the problems with the �nite chain lengths, we construct �nite-size

scaling (FSS) curves for each U and compute from these scaling parameters which are the

in�nite-sample localization lengths �

2

(U). This method has been proven very useful for the

non-interacting case [19] and recently for TIP studies [7,10]. In Fig. 3 we show the raw data

of the reduced IEH localization lengths �

2

=M which are to be scaled just as in the standard

TMM [19]. Note that data for small W are rather noisy and will thus most likely not give

very accurate scaling. In order to set an absolute scale in the FSS procedure, one usually �ts

the smallest localization lengths of the largest systems to �

2

=M = �

2

=M + b(�

2

=M)

2

with b

small [19]. Due to numerical problems of estimating a small localization length of the order
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of 1 in a large system by Eq. (2) we instead �t for each U to the localization length at W = 3

and adjust the absolute scale of �

2

accordingly. In Fig. 4 we show the resulting scaling curves

�

2

=M = f(�

2

=M) for U = 0, 0:2 and 1. The above mentioned numerical errors in the data

at large M and W are visible only in very small upward deviations from the expected 1=M

behavior. The results are very similar to the TIP problem. It is interesting to note that it

is even possible to scale the present IEH data together with the data previously obtained

for the TIP case [7]. From this more accurate scaling we compute the scaling parameters

�

2

which we show in Fig. 5. The power-law �ts �

2

/ W

�2�

to the data with W 2 [1; 5]

yield an exponent � which increases with increasing U as shown in the inset of Fig. 5, e.g.,

� � 1:1 for U = 0 and � � 1:5 for U = 1. Thus, although in Fig. 1 the �

2

data at M = 201

nicely follows �

1

=2 for U = 0, we nevertheless �nd that after FSS with data from all system

sizes, �

2

(0) as against �

1

=2 still gives a slight enhancement. Because of this we will in the

following compare �

2

(U > 0) with �

2

(0) when trying to identify an enhancement of the

localization lengths due to interaction. For comparison, the exponents obtained from the

same �t applied to the TIP problem [7] are also shown. Note that, as expected from Fig. 3,

FSS is not very accurate for smallW . Therefore, in what follows we shall only use �

2

values

obtained for W � 1. For data corresponding to W < 1, we actually used the extrapolated

values of �

2

from the power-law �t to continue the FSS curves of Fig. 4 to W < 1.

We now compare our IEH results with various �ts proposed for TIP. From an e�ective

random matrix model [5,15,16] �

2

/ �

�

1

was obtained for large values of �

1

. To correct for

smaller values of �

1

a more accurate expression was suggested [16] to be �

2

/ �

�

1

(1+ c=�

1

).

It is important that � in this work depends on U and ranges from 1 at small U and very

large U to nearly 2 for U � t. As discussed above we translate this �t function into

�

2

(U) / �

2

(0)

�

�

1 +

c

�

2

(0)

�

. In Fig. 6 we show respective data for disorders W 2 [1; 6]. The

�ts are good and reect in particular the deviations from a simple power-law �

2

(U) / �

2

(0)

�

for small localization lengths. In the inset we present the dependence of � on U : we �nd

� < 1:5 for all U values considered unlike Ref. [16]. The values obtained for the TIP case

[7] are shown for comparison.
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In Ref. [9] the functional dependence of the TIP localization lengths �

2

= �

1

=2 + cjU j�

2

1

has been suggested. Taking instead of �

1

=2 the more suitable �

2

(0) this can be translated as

�

2

(U)� �

2

(0) / jU j�

2

(0)

2

. In Fig. 7 we plot [�

2

(U)� �

2

(0)]=jU j vs. g(U)�

2

(0) for U 2 [0:1; 1]

where we have chosen g(U) so that the data for di�erent U can be placed on top of the

U = 0:1 data. In the inset of Fig. 7 we show that g(U) starts to deviate from 1 already for

U � 0:4. Thus we see that the linear behavior in jU j found in Ref. [9] holds only for very

small U in agreement with TIP. We obtain a good �t to [�

2

(U) � �

2

(0)]=jU j with a single

exponent � = 1:6� 0:1 instead of 2. This is somewhat di�erent from the �ts for TIP which

give � � 2 for small �

2

(0) < 10 and � � 3=2 for larger �

2

(0) [7]. The reduction of the slope

below � = 2 may be due to insu�cient disorder averaging and thus an underestimation of

the FSS results.

In conclusion, we have presented detailed results for the localization lengths of electron-

hole pair states which may be realized in the non-excitonic limit of optically excited semicon-

ductor heterostructures [4]. We observe an increase of the two-particle localization length

due to onsite interaction in the band centre. This suggests the formation of an electron-hole

pair with possibly enhanced transport properties. We emphasize that our results apply to

the non-excitonic limit with bandwidth larger than W > U . We have �tted our data to var-

ious suggested models with varying success. The results are all similar to the standard TIP

problem in a single random potential and thus we conclude that the case of an interacting

electron-hole pair is very close to the TIP problem [7].
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FIG. 1. Localization length �

2

at energy E = 0 for system size M = 201 and di�erent interac-

tion strengths. The thick solid line represents data for �

1

=2.
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FIG. 2. Enhancement �

2

(U)=�

2

(0) as a function of interaction strength U at E = 0 for disorder

W = 3 (+), 4 (�), and 5 (�) and M = 201. The thick (thin) lines indicate data for U > 0 (U < 0),

full (open) circles denote the maximum for each disorder. The dashed line marks U

c

= 24

1=4

.
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FIG. 3. Reduced localization lengths �

2

=M for U = 0 (left) and U = 1 (right) for 14 disorders

between 0:5 (A) and 7 (N) as in Fig. 1.
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FIG. 4. Finite-size scaling plot of the reduced localization lengths �

2

=M for various U . The

data for U = 0:2 (1) have been divided by 2 (4) for clarity. Data corresponding to W = 1 are

indicated by �lled symbols.
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FIG. 5. Localization lengths �

2

after FSS for various U . The solid line represents �

1

=2, the

dashed lines indicate power-law �ts. Inset: Exponent � obtained by �tting �

2

/ W

�2�

to the

data for each U (�lled symbols). The result for the standard TIP problem is also shown (open

triangles).
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FIG. 6. �

2

(U) after FSS for various U plotted versus �

2

(0). The lines are �ts

�

2

(U) / �

2

(0)

�

[1 + c=�

2

(0)]. Inset: Exponent � from the �ts (�lled symbols) and for the stan-

dard TIP problem (open triangles).
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2

(0)]=jU j plotted forW 2 [1; 7] versus
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2

(0) where g(U) was obtained by a mean-least-squares �t procedure to make all the data

compatible with g(0:1) = 1. The straight line is the curve �

2

(U) = �

2
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Inset: Behaviour of g(U) for IEH (�lled symbols) and for TIP [7] (open triangles).
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