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Abstract

We present calculations of the localisation length, �

2

, for two interacting par-

ticles (TIP) in a one-dimensional random potential, presenting its dependence

on disorder, interaction strength U and system size. �

2

(U) is computed by

a decimation method from the decay of the Green function along the diag-

onal of �nite samples. In�nite sample size estimates �

2

(U) are obtained by

�nite-size scaling. For U = 0 we reproduce approximately the well-known

dependence of the one-particle localisation length on disorder while for �nite

U , we �nd that �

2

(U) � �

2

(0)

�(U)

with �(U) varying between �(0) = 1 and

�(1) � 1:5. We test the validity of various other proposed �t functions and

also study the problem of TIP in two di�erent random potentials correspond-

ing to interacting electron-hole pairs. As a check of our method and data, we

also reproduce well-known results for the two-dimensional Anderson model

without interaction.
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I. INTRODUCTION

The interplay between disorder and many-body interactions in electronic systems has

been studied intensively over the last two decades [1] and still continues to receive much

attention. Unlike the case of non-interacting electrons, where the \scaling hypothesis of

localisation" [2] can reliably predict the results of many experimental and numerical stud-

ies, there is no equally successful approach to localisation when many-particle interactions

become important [1]. Recently, experimental studies of persistent currents in mesoscopic

rings and the discovery of a metal-insulator transition in certain two-dimensional (2D) elec-

tron gases at zero magnetic �eld [3] have shown that the presence of interactions can indeed

give rise to both quantitatively and qualitatively unexpected phenomena.

A simple and tractable approach to the problem of interacting electrons in disordered

materials is the case of only two interacting particles (TIP) in a random potential in one

dimension. For a Hubbard on-site interaction this problem has recently attracted a lot of

attention after Shepelyansky [4,5] argued that attractive as well as repulsive interactions

between the two particles (bosons or fermions) lead to the formation of particle pairs whose

localisation length �

2

is much larger than the single-particle (SP) localisation length �

1

[6,7].

Based on a mapping of the TIP Hamiltonian onto an e�ective random matrix model (RMM)

he predicted

�

2

� (U=t)

2

�

2

1

(1)

at two-particle energy E = 0, with t the nearest-neighbor hopping matrix element and U

the Hubbard interaction strength. Shortly afterwards, Imry [8] used a Thouless-type block-

scaling picture (BSP) in support of this. The major prediction of this work is that in the

limit of weak disorder a particle pair will travel much further than a SP. This should be

contrasted with renormalization group studies of the 1D Hubbard model at �nite particle

density which indicate that a repulsive onsite interaction leads to a strongly localised ground

state [9].
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The preferred numerical method for accurately computing localisation lengths in disor-

dered quantum systems is the transfer matrix method (TMM) [10]. Thus it was natural that

the �rst numerical studies devoted to the TIP problem also used the TMM to investigate

the proposed enhancement of the pair localisation length �

2

[4,11]. Other direct numerical

approaches to the TIP problem have been based on the time evolution of wave packets [4,12],

exact diagonalization [13], or Green function approaches [14,15]. In these investigations usu-

ally an enhancement of �

2

compared to �

1

has been found but the quantitative results tend

to di�er both from the analytical prediction in Eq. (1), and from each other. Furthermore, a

check of the functional dependence of �

2

on �

1

is numerically very expensive since it requires

very large system sizes.

Following the approach of Ref. [11], two of us studied the TIP problem by a di�erent

TMM [16] at large system size M and found that (i) the enhancement �

2

=�

1

decreases with

increasing M , (ii) the behavior of �

2

for U = 0 is equal to �

1

in the limitM !1 only, and

(iii) for U 6= 0 the enhancement �

2

=�

1

also vanishes completely in this limit. Therefore we

concluded [16] that the TMM applied to the TIP problem in 1D measures an enhancement

of the localisation length which is due to the �niteness of the systems considered. The main

problem with this approach is that the enhanced localisation length �

2

is expected to appear

along the diagonal sites of the TIP Hamiltonian, whereas the TMMs of Refs. [11,16] proceed

along a SP coordinate. Various new TMM approaches have been developed to take this into

account [11,16{18], but still all TMMs share a common problem: in general the U = 0 result

for �

2

does not equal the value of �

1

=2 which is expected for non-interacting particles as

explained below. Rather, they show localisation lengths �

2

(U = 0) which are much larger

than �

1

=2 and very close to �

2

(U � 1).

The obvious failure of the TMM approach to the TIP problem in a random potential

has lead us to search for and apply another well-tested method of computing localisation

lengths for disordered system: the decimation method (DM) [19]. Furthermore, instead of

simply considering localization lengths �

2

(U) obtained for �nite systems [11,13{15], or by

simple extrapolations to large M [16], we will construct �nite-size scaling (FSS) curves and
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compute from these curves scaling parameters which are the in�nite-sample-size estimates

of the localization lengths �

2

(U). We �nd that onsite interaction indeed leads to a TIP

localisation length which is larger than the SP localisation length at E = 0 and for not too

large U . However, the actual functional dependence is not simply given by Eq. (1). In fact

our data allow us to see �

2

(U) � �

2

(0)

�

with an exponent � which increases with increasing

jU j at E = 0.

The paper is organized as follows: In section II we introduce the numerical DM used

to compute the localisation lengths. In section III, we investigate the numerical reliability

of the DM by studying the Anderson model in 2D. We then apply the method to the case

of TIP in section IV and use FSS in order to construct in�nite-sample-size estimates in

section V. We �t our data with various functional forms for �

2

put forward in the literature.

In section VI we also study the problem of two interacting particles in di�erent random

potentials. In section VII, we study the related problem of a SP in a 2D random potential

with additional barriers. We conclude in section VIII.

II. THE DECIMATION METHOD

We shall be considering properties of Hamiltonians of the form

H = �t

X

n;m

(jn;mihn+ 1;mj+ jn;mihn;m+ 1j + h:c:)

+

X

n;m

jn;mi

�

�

1

n

+ �

2

m

+ U(n)�

nm

�

hn;mj (2)

where the choice of �

1

n

, �

2

m

and the de�nition of U(n) depends on the speci�c problem

considered. For the case of TIP in 1D the indices n and m correspond to the positions of

each particle on a 1D chain of length M and �

1

n

= �

2

n

2 [�W=2;W=2]. We shall also present

results for the case of �

1

n

6= �

2

n

which corresponds to two interacting particles in di�erent 1D

random potentials, e.g., two electrons on neighboring chains, or an electron and a hole on the

same chain. In these cases U(n) = U is the interaction between the two particles. Instead of

considering TIP we can also choose M

2

uncorrelated random numbers ~�

nm

2 [�W=2;W=2]
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and replace �

1

n

+ �

2

m

in (2) by ~�

nm

. Then the Hamiltonian (2) corresponds to the standard

Anderson model for a single particle in 2D with an additional potential U(n) along the

diagonal of the 2D square. In all cases we use hard-wall boundary conditions and t � 1 sets

the energy scale.

We now proceed to construct an e�ective Hamiltonian along the diagonal of the M �M

lattice by using the DM [19]. If we writeA(E) = E1�H, the de�ning equationA(E)G(E) =

1 for the Green function G(E) can be written as

N�1

X

j=1

A

ij

(E)G

jk

(E) +A

iN

(E)G

Nk

(E) = �

ik

(3)

where N = M

2

is the total number of sites in the system and the indices i; j; k = 1; : : : ; N

represent multi-indices for the M

2

states jn;mi. From this we can see by choosing i = N

that

G

Nk

(E) =

�

Nk

A

NN

(E)

�

N�1

X

j=1

A

Nj

(E)

A

NN

(E)

G

jk

(E): (4)

Substituting into (3) gives for all k 6= N

N�1

X

j=1

�

A

ij

(E)�

A

iN

(E)A

Nj

(E)

A

NN

(E)

�

G

jk

(E) = �

ik

: (5)

In this way we have obtained an e�ective HamiltonianH

0

(E) with matrix elementsH

0

ij

(E) =

H

ij

+

H

iN

H

Nj

E�H

NN

whose Green function is identical to that of the full Hamiltonian on all non-

decimated sites. This process is repeated until we are left with an e�ective Hamiltonian for

the doubly-occupied sites only. We remark that due to cpu-time considerations it turned

out to be useful to split the Hamiltonian into two halves along the diagonal and to start the

decimation process from the outer corner of the triangular half and then decimate in slices

towards the diagonal. The procedure is shown pictorially in Fig. 1. Furthermore, for the

case of TIP we only need to decimate one half and can use the symmetry of the spatial part

of the wave function for the other half.

We shall now focus our attention upon the TIP localisation length �

2

obtained from the

decay of the transmission probability of TIP from one end of the system to the other. In
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accordance with the SP case [10], �

2

is de�ned by the TIP Green function, G

2

(E). More

precisely [14]

1

�

2

= �

1

jM � 1j

ln jh1; 1jG

2

jM;Mij: (6)

The Green function matrix elements h1; 1jG

2

jM;Mi are computed by inverting the matrix

~

A(E) = E1�

~

H(E) obtained from the e�ective Hamiltonian

~

H(E) for the doubly occupied

sites. We remark that in order to reduce possible boundary e�ects, we compute �

2

by

considering the decay between sites slightly inside the sample instead of the boundary sites

(M;M).

III. TESTING THE DECIMATION METHOD

As mentioned in the introduction, one of the surprises of the TIP problem is the apparent

inapplicability of the TMM approach, which leads to large enhancement of the localisation

lengths even in the absence of interaction (U = 0). Thus it appears necessary that before

using the DM for the case of TIP, we should also check that by restricting ourselves to

the decay of the Green function along the diagonal, we do not encounter similar arti�cial

enhancements of �

2

(U = 0). As a �rst test, we have therefore studied the decay of the

Green function along the diagonal for the usual 2D Anderson model at various disorders

W = 0:65; : : : ; 20 and system sizes M = 51; : : : ; 261. For comparison, estimates of �

1

were

computed by the standard TMM [10] in 2D. We then use FSS as in [10] and compute the

localisation lengths �

1

(W ) valid at in�nite system size for both sets of data.

In Fig. 2 we show the resulting localisation lengths �

1

obtained by TMM with 1% ac-

curacy and DM averaged over 100 samples for each W and M . When we are considering

a 2D system, to obtain the correct value of the localisation length we have to multiply the

localisation length obtained from Eq. (6) by

p

2 to take account of the fact that we are

studying the decay along the diagonal. As shown in Fig. 2, the agreement is good down to

W = 4:5 where the FSS becomes unreliable. We clearly see that using the DM to calculate
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the Green function along the diagonal reproduces the well-known results of Ref. [10] up

to a geometrical factor which is easily understood. Furthermore, the deviations from the

TMM results for �

1

show that our method underestimates the in�nite system size results.

Therefore the above mentioned problem of the TMM giving rise to too large a value for

the TIP-localisation lengths �

2

due to small system size should not appear. We emphasize

that the FSS procedure is more than an extrapolation to the in�nite system size [10] and it

allows us to identify the disorders at which FSS breaks down as shown in Fig. 2.

Before proceeding to the case of TIP, we need to discuss an important di�erence between

the data obtained from TMM and DM. The TMM proceeds by multiplying transfer matrices

for 2D strips (3D bars) of �nite size M (M �M) many times until convergence is achieved.

The localisation lengths are then computed as eigenvalues of the resulting product matrix

[10]. However, in the present case of DM (or any other Green function method applied to

TIP), the localisation lengths are estimated by assuming an exponential decay as in Eq.

(6). Such a simple functional form, however, will no longer be reliably observable when

�

1

� M and we will start to measure the oscillations in the Green function underlying the

exponential envelope (6). Looking at Fig. 2, we indeed see that the deviations from the

TMM result start at �

1

� 250, that is, just at the largest system sizes used. Increasing the

number of samples will reduce this e�ect, but this quickly becomes prohibitive due to the

immense computational e�ort. With this in mind, we now continue to the case of TIP.

IV. THE TIP PROBLEM AT FIXED SYSTEM SIZE

We now compute the Green function at E = 0 for 26 disorder values W between 0:5

and 9 indicated in Fig. 3, for 24 system sizes M between 51 and 251, and 11 interactions

strengths U = 0; 0:1; : : : ; 1:0. For each such triplet of parameters (W;M;U) we average the

inverse localisation lengths 1=�

2

computed from the Green function according to Eq. (6)

over 1000 samples.

In Fig. 3, we show the results for M = 201. Let us �rst turn our attention to the case
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U = 0. As pointed out previously [15], the TIP Green function G

2

at E = 0 is given by a

convolution of two SP Green functions G

1

at energies E

1

and �E

1

as

h1; 1jG

2

(0)jM;Mi �

Z

dE

0

h1jG

1

(E

0

)jMih1jG

1

(�E

0

)jMi: (7)

Assuming that h1jG

1

(E)jMi / exp [�jM � 1j=�

1

(E)], where �

1

(E) is the SP localisation

length of states in the 1D Anderson model [7], one expects that the largest localisation

lengths dominate the integral. Since �

1

(0) � �

1

(E), this implies that h1; 1jG

2

(0)jM;Mi �

exp [�2jM � 1j=�

1

(0)]. Applying Eq. (6), we get �

2

= �

1

=2 [20]. Therefore we have also

included data for �

1

=2 in Fig. 3. Since �

1

deviates from the simple power-law prediction [7]

�

1

� 104=W

2

at E = 0 for �

1

. 4 (W & 5), we have computed �

1

by TMM [6] in 1D with

0:1% accuracy.

Comparing these results with the TIP localisation lengths obtained from the DM, we

�nd that for 1 � W � 6, the agreement between �

2

(U = 0) and �

1

=2 is rather good and,

contrary to the TMM results, there is no large arti�cial enhancement at U = 0. For smaller

disorders W < 1, we have �

2

� M=2 so that it is not surprising that the Green function

becomes altered due to the �niteness of the chains [21]. This results in reduced values of �

2

.

For large disorders W > 6, we see a slight upward shift of the computed �

2

values compared

to �

1

=2. This e�ect is due to a numerical problem, since straightforward application of Eq.

(6) is numerically unreliable for values of �

1

as small as 1.

It is noticeable from these results, however, that the values of �

2

(U = 0) are still slightly

larger than �

1

=2. In order to explain this behavior, we have computed h1jG

1

(E)jMi by exact

diagonalization of the SP Hamiltonian for at least 100 samples at many di�erent energies

inside the band and then integrated as in Eq. (7). Plotting the resulting localisation lengths

in Fig. 3 we see that indeed the agreement with �

2

(U = 0) is better than with �

1

=2. Thus

the corresponding conjecture of Ref. [15] is shown to be true.

For U between 0:1 and 1 we have found that the localisation lengths are increased by the

onsite interaction (cp. Fig. 3). We have also seen that for W > 1:4 the localisation lengths

�

2

(U) increase with increasing U . For smaller W we have �

2

(U) � M=2 and, as discussed
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above, the data become unreliable for �xed system size.

Up to now we have been mostly concerned with the behavior of �

2

as function of disorder

for U 2 [0; 1]. However, for large U , it is well-known that the interaction splits the single TIP

band into upper and lower Hubbard bands. Thus we expect that for large U the enhancement

of the TIP localisation length vanishes. In Fig. 4 we present data for �

2

(U)=�

2

(0) obtained

for three di�erent disorders for system sizes M = 201 at E = 0. In agreement with the

previous arguments and calculations [16,22,23], we �nd that the enhancement is symmetric

in U and decreases for large jU j. For small jU j, we see that the localisation length increases

nearly linearly in jU j with a slope that is larger for smaller W . We do not �nd any U

2

behavior as in Refs. [4,5,8]. In Ref. [23] is has been argued that at least for �

1

� M ,

there exists a critical U

c

= 24

1=4

, which is independent of W , at which the enhancement

is maximal. We �nd that in the present case with �

1

< M the maximum enhancement

max

U

[�

2

(U)=�

2

(0)] depends on the speci�c value of disorder used. Another observation of

Ref. [23] is the duality in U and

p

24=U for very large jU j (small 1=jU j). The data in Fig. 4

are only compatible with this duality for the large disorder W = 5. For the smaller disorders

and for the range of interactions shown, we do not observe the duality. We emphasize that

this may be due to restricting ourselves to values U � 4.

For E 6= 0, the independence of the enhancement on the sign of the interaction U is

no longer valid. In Fig. 5 we show �

2

(U)=�

2

(0) for the same disorders as before, but now

at energies E = �1. We �nd that the enhancement for U = 1 is larger at E = 1 than at

E = �1, whereas exactly the opposite is true for U = �1. Thus we see that for positive

(negative) U the energies of TIP states are shifted towards higher (lower) values, eventually

leading to the formation of the aforementioned Hubbard bands. In Fig. 6 we show the

localisation lengths at several values of E for W = 4. As expected from the discussion above

the localisation lengths are always smaller than at the band center. The enhancements,

however, which are shown in Fig. 5, can be equally large for E = 0 and E 6= 0.
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V. FSS APPLIED TO THE TIP PROBLEM

In order to overcome the problems with the �nite chain lengths, we now proceed to use

the FSS technique and construct FSS curves for each U = 0; 0:1; : : : ; 1. In Fig. 7 we show

the data for the reduced localisation lengths �

2

=M which is to be rescaled just as in the

standard TMM [10] to obtain the localisation length �

2

for the in�nite system. Note that

data for small W is rather noisy and will thus most likely not give very accurate scaling.

Furthermore, in Fig. 8 we show �

2

for W = 3 and W = 9 and all interaction strengths

U = 0; 0:1; : : : 1:0. We see that whereas for W = 3 the values of �

2

for U = 0 show only

small variations for large M , the W = 9 data shows a rapid increase of �

2

as M increases.

This is due to the numerical problem of estimating a small localisation length of the order

of 1 in a large system by Eq. (6). It is most pronounced for small U where the localisation

lengths are the smallest. Going back to Fig. 7, we see that this does not inuence the

reduced localisation lengths �

2

=M very much and thus is not expected to deteriorate the

FSS procedure. However, in order to set an absolute scale in the FSS procedure, one usually

�ts the smallest localisation lengths of the largest systems to �

2

=M = �

2

=M+b(�

2

=M)

2

with

b small [10]. In the present case this would mean taking the unreliable data for W = 9.

Therefore, for each U we �t to the localisation length atW = 3 and adjust the absolute scale

of �

2

accordingly. In Fig. 9 we show the resulting scaling curves �

2

=M = f(�

2

=M) for U = 0,

0:2 and 1:0. Note that, as expected from Fig. 7, FSS is not very accurate for small W .

The previously discussed unreliable data for large W are visible only in very small upward

deviations from the expected 1=M behavior. In Fig. 10 we show the scaling parameters �

2

obtained from the FSS curves of Fig. 9.

A simple power-law �t �

2

/W

�2�

in the disorder range W 2 [1; 5] yields an exponent �

which increases with increasing U as shown in the inset of Fig. 10, e.g., � = 1:1 for U = 0

and � = 1:55 for U = 1. Thus, although in Fig. 3 the �

2

data at M = 200 nicely follows �

1

=2

for U = 0, we nevertheless �nd that after FSS with data from all system sizes, �

2

(0) still

gives a slight enhancement. Because of this in the following we will compare �

2

(U > 0) with
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�

2

(0) when trying to identify an enhancement of the localisation lengths due to interaction.

We emphasize that the slight dip in the �(U) curve around U = 0:7 has also been observed

in Ref. [15].

The derivation of Eq. (1) is based on a mapping of the TIP Hamiltonian onto an e�ective

random matrix model while assuming uncorrelated interaction matrix elements [4]. In Refs.

[21] and [22] a more accurate estimate of the matrix elements of the interaction in the basis of

SP states was calculated showing that the original estimates of Ref. [4] were oversimpli�ed.

The authors of Ref. [22] then considered a more appropriate e�ective random matrix model

and obtained �

2

/ �

�

1

for large values of �

1

. To correct for smaller values of �

1

they

suggested a more accurate expression should be �

2

/ �

�

1

(1+c=�

1

). An important prediction

of this work is that � is U -dependent with � ranging from 1 at small U and very large U

to nearly 2 for intermediate values U / t. Using our data obtained from FSS, we translate

this �t function into

�

2

(U) / �

2

(0)

�

�

1 +

c

�

2

(0)

�

: (8)

We remark that the actual least-squares �t is performed with the numerically more stable

�t function y = a + �x+ c � exp(�x) with y = ln[�

2

(U)] and x = ln[�

2

(0)]. In Fig. 11 we

show results for disorders W 2 [1; 6] and various U . As can be seen easily, the �t is rather

good and does indeed capture the deviations from a simple power-law �

2

(U) / �

2

(0)

�

for

small localisation lengths. In the inset of Fig. 11 we show the variations of � with U for

both the simple power-law and the �t according to Eq. (8). We note that contrary to Ref.

[22], we �nd � < 1:5 for all U values considered.

In Ref. [14] is has been suggested that a more suitable functional dependence of the TIP

localisation lengths is given by �

2

= �

1

=2 + cjU j�

2

1

. Using the �

2

data and taking instead of

�

1

=2 the more suitable �

2

(0) we translate this proposed �t as

�

2

(U)� �

2

(0) / �

2

(0)

�

: (9)

In Fig. 12 we plot �

2

(U) � �

2

(0) vs. �

2

(0) for U -values 0:2 and 1. We �nd that instead of

being able to �t the data with a single �, it appears that for small �

2

(0) < 10 we have � � 2,
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whereas for larger �

2

(0) we �nd � � 3=2. Note that a crossover from the functional form

(9) with � = 2 to � = 3=2 has been suggested previously [24]. However, in that work, the

exponent 3=2 is supposed to be relevant for larger disorders, opposite to what we see here.

As pointed out previously, our FSS may give rise to arti�cially small values of �

2

(U) close

to the largest system size, and one might want to argue that the reduction in slope is due to

this e�ect. However, we emphasize that the crossover observed in Fig. 12 occurs at W = 2:5

where FSS appears to be still reliable. We remark that an exponent close to 1:5 for small

W has also been found in Ref. [25] from a multifractal analysis.

The most recent suggestion of how to describe the TIP localisation data is due to Song

and Kim [15]. They assume a scaling form

�

2

= W

��

0

g(jU j=W

�

) (10)

with g a scaling function and obtain � = 4 by �tting the data. Choosing the same value for

� we �nd that our data can be best described when �

0

is related to the disorder dependence

of �

2

as (� � �

0

)=� � 1=4. However, the scaling is only good for W 2 [1; 5] and U � 0:3.

Unfortunately, even using our varying exponent �(U), we have not been able to obtain a

good �t to the scaling function with the data for all U . We emphasize that the �

2

values for

U � 0:2 are smaller than for U � 0:3 and thus numerically quite reliable.

A much better scaling can be obtained when plotting

�

2

(U)� �

2

(0) = ~g [f(U)�

2

(0)] (11)

with f(U) determined by FSS. In Fig. 13 we show the resulting scaling curves and scaling

parameters f(U). Note that the scaling is valid for U = 0:1; 0:2; : : : 1:0 and most disorders

W 2 [0:6; 9]. Again we see the crossover from a slope 2 to a slope 3/2. Deviations from

scaling occur for large and very small values of �

2

(U) and are most likely due to numerical

inaccuracy as discussed before. The behavior of f(U) as shown in the inset indicates that

for U � 0:3 a linear behavior f(U) / U may be valid which then translates into U

2

(U

3=2

)

dependence of �

2

(U) � �

2

(0) in the regions of Fig. 13 with slope 2 (3/2). However, for
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U � 0:5, one could also argue that f(U) /

p

U which would give �

2

(U) � �

2

(0) / U (U

3=4

)

in these regions. We note that a crossover from U to U

2

behavior had been proposed in Ref.

[24], but it should appear at larger values of U and also be W dependent. We observe that

the best �t to the f(U) data is obtained by a logarithmic U -dependence as indicated in the

inset.

Thus in summary it appears that our data cannot be described by a simple power-law

behavior with a single exponent neither as function of W , nor as function of �

2

(0), nor after

scaling the data onto a single scaling curve. The best power-law �t is obtained in Fig. 11

with an exponent �(U), whereas after scaling of �

2

(U) � �

2

(0) onto a single curve we need

at least two powers to describe the scaling curve as shown in Fig. 13. Lacking a convincing

explanation as to what �t function should be correct, we must at present be content with

letting the reader decide for himself.

VI. THE INTERACTING ELECTRON-HOLE PROBLEM

Let us now consider what happens when the two particles are in di�erent random poten-

tials such that in general �

1

n

6= �

2

n

. Such a problem is relevant for the proposed experimental

veri�cation of the TIP e�ect by optical experiments in semiconductors [26]. In these ex-

periments, the electron will be in a random potential di�erent from that of the hole. Thus

this choice of random potential models the case of interacting electron-hole pairs (IEH).

Again, we will mostly be concerned with the case of repulsive interactions. In the experi-

mental situation, of course, the interaction is attractive. As shown in Fig. 14 we again have

�

2

(�U) = �

2

(U) for E = 0 and thus our results apply also to the case U < 0. For simplicity,

we also take the width of the disorder distribution to be the same for both particles.

As for TIP we compute the IEH localisation lengths by the DM along the diagonal.

Comparing with the results presented in the previous sections, we �nd that the results for

IEH are very similar to the case of TIP. FSS is possible and again the best �t is obtained by

using Eq. (8) as shown in Fig. 15 for U = 0, 0:1, 0:2, 0:5 and 1:0. The values of the power

13



�(U) shown in the inset of Fig. 15 are also much as before. Thus we can conclude that the

case of IEH is very close to the TIP problem.

VII. THE 2D ANDERSON MODEL WITH AN ADDITIONAL DIAGONAL

POTENTIAL

In Ref. [21], two of us argued that straightforward application of the random matrix

models (RMM) [4] and the block-scaling picture (BSP) [8] gives rise to an erroneous en-

hancement of the SP localisation length �

1

in a 2D Anderson model with additional random

perturbing potential U(n) 2 [�U;U ] along the diagonal. In fact, the same is true if the

potential along the diagonal is taken to be constant, i.e. U(n) = U . Although it appears

obvious that no such SP enhancement should exist, we have checked it here with the DM.

In Fig. 16 we show examples of the resulting SP localisation lengths �

1

obtained as before

from FSS of SP localisation lengths �

1

calculated for various system sizes M = 51; : : : ; 261,

disorders W and potentials U = 0; 0:1; : : : ; 1. As expected, we �nd that for large disorders

W > 5, the data is well described by the 2D TMM results already presented in section III.

There are only small changes due to the additional random potential, all of which tend to

decrease the localisation lengths as they should. This is in contrast to the straightforward

application of the RMM and the BSP [21] which therefore fail for the 2D SP Anderson model

with additional random potential along the diagonal. Of course this does not mean that

these methods also have to fail for TIP, where, as we have shown in the previous sections,

a tendency towards delocalisation due to interaction de�nitely exists.

VIII. CONCLUSIONS

In conclusion, we have presented detailed results for the localization lengths of pair

states of two interacting particles in 1D random potentials. By using the DM to calculate

the Green function along the diagonal it is possible to consider the 2D Anderson model and

the problem of two interacting particles in 1D within the same numerical formalism. We
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have checked that for the 2D Anderson model without interaction the in�nite system size

results obtained via FSS from the DM data are in good agreement with results obtained

from the standard TMM especially for localisation lengths up to the largest system sizes we

have considered. It is also apparent that the DM data deviate from the TMM only towards

smaller localisation lengths and hence no arti�cial enhancement of localisation lengths due

to the DM approach is expected.

For TIP in 1D we observe an enhancement of the two-particle localisation length up to

75% due to onsite interaction. This enhancement persists, unlike for TMM, in the limit of

large system size and after constructing in�nite-sample-size estimates from the FSS curves.

We have tried to �t our results to various suggested models. The best �t was obtained with

Eq. (8) in which the enhancement �

2

(U)=�

2

(0) depends on an exponent � which is a function

of the interaction strength U . Such a U -dependent exponent had been previously predicted

in Ref. [22] for interaction strengths up to U = 1 with � up to 2. However, we �nd that �

reaches at most 1:5 for U = 1. Thus we do not see a behavior as in Eq. (1) with exponent

2 when using the �t function of Ref. [22]. On the other hand, after scaling the data onto a

single scaling curve and using the �t function (9) as proposed with � = 2 in Ref. [14], we

�nd indeed � = 2 for not too small disorder strength, e.g., W � 2:5 for U = 1, but observe

a crossover to a behavior with � = 3=2 for smaller W . For values of U & 1:5 we observe

that the enhancement decreases again; the position of the maximumdepends upon W . Very

similar results are produced by placing the two particles in di�erent potentials which is of

relevance for a proposed experimental test of the TIP e�ect [26].

As a �nal check on our results we consider the e�ect of an additional on-site potential

(both random and uniform) on the results for the SP 2D Anderson model. As one may

expect for the case of an additional random potential one observes only a small decrease in

the localisation length while for an additional uniform potential there is a small change in

�

1

towards decreasing localization lengths for positive U .
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FIG. 1. The decimation process: (a) The lattice is split into two parts. (b) Each half is then

`decimated' independently. (c,d) Sites (�) and nearest-neighbor hops (�) in the original lattice are

replaced successively by e�ective long-range hops (� � ��) between the e�ective sites (�). (e) This

decimation continues until (f) the diagonal is reached. (g) Finally, the two halfs are recombined.
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FIG. 2. Small symbols (with left and bottom axis) denote the FSS curve used to compute the

�

1

values. Large symbols (with right and top axis) indicate SP localisation lengths

p

2 �

1

obtained

by DM along the diagonal (�) and �

1

computed by TMM of quasi-1D strips (dashed line) after

FSS. The �lled symbols correspond to a disorder at which FSS appears to be unreliable.

20



1 10
W

10
0

10
1

10
2

λ

FIG. 3. Two-particle localisation length �

2

at energy E = 0 for system size M = 201 and

interaction strength U = 0 (), U = 0:2 (3) and U = 1 (2). The thick solid line represents 1D

TMM data for SP localisation length �

1

=2, the dashed line is computed from the convolution of

SP Green functions in Eq. (7). The thin line is the perturbative result �

1

=2 � 52=W

2

.
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FIG. 4. Enhancement �

2

(U)=�

2

(0) for TIP as a function of interaction strength U at E = 0

for disorder W = 3 (+), W = 4 (�), and W = 5 (�) and M = 201. The data are averaged over

100 samples. The thick (thin) lines indicate data for U > 0 (U < 0), full (open) circles denote the

maximum for each disorder.
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FIG. 5. Enhancement �

2

(U)=�

2

(0) for TIP as a function of interaction strength U at E = �1

for disorder W = 3 (+), W = 4 (�), and W = 5 (�) and M = 201. The thick (thin) lines indicate

data for E = 1 (E = �1).
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FIG. 6. TIP localisation length �

2

as a function of interaction strength U atW = 4 for E = �2

(/), E = �1 (O), E = 0 (�), E = 1 (4), and E = 2 (.) and M = 201. The thick (thin) lines

indicate data for E � 0 (E < 0).
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FIG. 7. Reduced TIP localisation lengths �

2

=M for U = 0 (left) and U = 1 (right) for all

disorders W and system sizes M obtained by averaging 1000 samples for each triple (U;W;M).

Di�erent letters indicate di�erent disorders.
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FIG. 8. TIP localisation lengths �

2

for W = 3 (left) and W = 9 (right) for U = 0; 0:1; : : : ; 1

from bottom to top. We remark that we have taken the same set of random numbers for all U to

increase the numerical e�ciency. This is probably the reason why for di�erent U the uctuations

in the dependence of �

2

on M are similar.
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FIG. 9. Finite-size scaling plot of the reduced TIP localisation lengths �

2

=M for U = 0 (),

U = 0:2 (3) and U = 1 (2). The data for U = 0:2 (U = 1) have been divided by 2 (4) for clarity.

Data corresponding to W = 1 are indicated by �lled symbols. The two curves at the bottom show

the data for U = 0:2 and 1 and W < 2:5, shifted downward by one order of magnitude for clarity,

but with the data W < 1 �tted with scaling parameters obtained from the �t in Fig. 11.
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FIG. 10. TIP localisation lengths �

2

after FSS for U = 0 (), U = 0:2 (3) and U = 1 (2).

The solid line represents 1D TMM data for SP localisation lengths �

1

=2, the dashed lines indicate

power-law �ts. Inset: Exponent � obtained by the �t of �

2

/ W

�2�

to the data for U = 0; 0:1; : : : ; 1.
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FIG. 11. TIP localisation lengths �

2

(U) after FSS for U = 0 (), U = 0:1 (4), U = 0:2 (3),

U = 0:5 (�) and U = 1 (2) plotted versus �

2

(0). The data are for W 2 [1; 6]. The dashed lines

show �ts according to Eq. (8), the solid line sets the reference for U = 0. Inset: Exponent �

obtained by the �t of Eq. (8) to the data for U = 0; 0:1; : : : ; 1. The open symbols correspond to

the �t with c = 0.
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FIG. 12. TIP localisation lengths �

2

plotted according to Eq. (9) for U = 0:2 (3) and U = 1

(2). The solid line indicates a slope 2, the dashed line a slope 3=2. The �lled symbols correspond

to W = 1.
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FIG. 13. Scaling plot of Eq. (11) with TIP localisation lengths �

2

for all U and W 2 [0:6; 9].

The solid line indicates a slope 2, the dashed line a slope 3/2. Inset: The values of f(U) needed

to make the data collapse onto the U = 0:1 curve. Solid, dashed and dot-dashed lines are �ts of

f(U) for U � 0:3, U � 0:5, and all U , respectively.
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FIG. 14. Enhancement �
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(U)=�

2

(0) for IEH as a function of interaction strength U at E = 0

for disorder W = 3 (+), W = 4 (�), and W = 5 (�) and M = 201. The data are averaged over

100 samples. The thick (thin) lines indicate data for U > 0 (U < 0).
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FIG. 15. IEH localisation lengths �

2

(U) after FSS for U = 0 (), U = 0:1 (4), U = 0:2 (3),

U = 0:5 (�) and U = 1 (2) plotted versus �

2

(0). The lines are �ts as in Fig. 11. Inset: Exponent

� obtained by �tting Eq. (8) to the data for U = 0; 0:1; : : : ; 1.
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FIG. 16. SP localisation lengths as in Fig. 2 for U = 0 ({ {,) and
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obtained by DM for

U = 1 with additional random (2) or constant (�) potential energies along the diagonal.
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