
Blocking vs. Non-blocking Communication under

MPI on a Master-Worker Problem

Andr�e Fachat, Karl Heinz Ho�mann

Institut f�ur Physik

TU Chemnitz

D-09107 Chemnitz

Germany

e-mail: fachat@physik.tu-chemnitz.de

Phone: ++49-371-531-3550

Fax: ++49-371-531-3233

June 5, 1998

Abstract

In this report we describe the conversion of a simple Master-Worker

parallel program from global blocking communications to non-blocking

communications. The program is MPI-based and has been run on

di�erent computer architectures. By moving the communication to the

background the processors can use the former waiting time for computa-

tion. However we �nd that the computing time increases by the time the

communication time decreases in the used MPICH implementation on a

cluster of workstations. Also using non-global communication instead of

the global communication slows the algorithm down on computers with

optimized global communication routines like the Cray T3D.

Keywords: MPI, MPICH, blocking communication, non-blocking com-

munication

1 Introduction

The available computing power has vastly increased since the invention of the

microprocessor. Moore's law even says that the increase in computing power

per processor goes exponentially in time. However, the price for the custom

processors with the best performance often is prohibitivly larger than for o�-

the-shelf processors. And the need for computing power is increasing faster than

the processor development can keep up with.

1



This led to parallel computers, where several, sometimes up to thousands of

cheap, o�-the-shelf processors are coupled to one large multprocessing machine.

In this machine all processors run in parallel, thus increasing the power by the

factor N , the number of processors. However, most programs are written to be

run on one processor, not many. Therefore the programs have to be rewritten

[1].

There are two major parallel programming doctrines. The �rst is to let the

compiler automatically parallelize a given serial program. But the compiler can-

not know all parts of the program that can be parallelized. More e�ective is the

second way, to explicitly code parallelism into the algorithm. This is normally

done with message-passing libraries (There are shared-memory machines but we

do not handle them here). These libraries are subroutines that provide means

of communication between processors to the program. In this paper we use the

Message Passing Interface MPI [2, 3]. It is a successor to PVM and is sup-

ported by all major vendors of parallel computers. There are implementations

for systems from Linux workstation clusters up the Cray T3E for example.

If, in a parallel program, one processor wants to tell another processor some-

thing the processor has to send a message. For this the processor sets up a

message bu�er, stores the message in the bu�er and calls the send subroutines.

Then the bu�er is given to the operating system's communication routines, and

sent to the other processor(s). The receiving processor then delivers the message

to a receive call.

One important point is when the sending process returns from the send

call. Blocking communication lets the sender return from the call only when

the receiving process has taken over the bu�er. Non-blocking communication

immediately returns from the send call, but the communication bu�er is still

in use because the message has not been sent already. Therefore the sending

process has to check if it can release the send bu�er with an extra library call.

The time between those calls can be used for other computations for example.

Another important point is if the communication involves more than two

communicating processes. MPI allows, with one library call, to send data from

one to all processors, or gather data from all processes or even more complex

operations. Operations where all processors are involved are called global com-

munication operations. Two-process communication is called non-global or also

point-to-point communication.

In this paper we will investigate the timing behaviour of a speci�c MPI

master-worker application with global blocking communication compared to

non-blocking non-global communication.

2 Our test problem

The test problem we used is our simulated annealing [4, 5] production code.

The code is described in more detail in [6]. The main goal is to �nd the global

minimumof an objective function with many local minima in a high-dimensional

parameter space.

2



Master

Workers

Master

gather ensemble information

distribute Schedule

ti
m

e

Figure 1: The original implementation with global, blocking communication.

The simulated annealing algorithm is a stochastic algortihm. A random

state is generated as a starting point. This state is then randomly modi�ed in a

certain way to get a new state. If the objective function of the modi�ed state is

lower than the objective function of the original state, it is used as a new starting

point. If the objective function is higher then the modi�ed state is only used

with a certain probability. This simulation is often called a `random walker'.

An important variable is the so-called Temperature T . It gives a measure for

how often a new state with higher energy is accepted and is reduced during

the run to freeze the walker in a low-lying minimum. The way to lower this

temperature, i.e. the series T

i

for i = 0; 1; :: is called the Schedule. Here a �xed

number of walker steps are done at the same temperature, before T is changed

again.

To increase the sampled area in the state space an ensemble approach is

used. This means that a large number of random walkers are simulated in

parallel [7]. All walkers use the same temperature. Using an ensemble also

means that certain statistic information is now available. This information is

used to compute a new temperature for the next simulation step.

Now the algorithm has to be parallelized. An overview on parallelization

techniques has been written by Greening [8]. The parallelization of the used

algorithm is simple, the ensemble members are distributed among the di�erent

processors. One processor is designated as `master'. It computes the schedule.

This schedule is then sent to all `worker' processors with a broadcast operation.

All workers then do a �xed number of simulation steps on their part of the

ensemble. After that the statistic information is sent back from the workers to

the masters with a gather operation. Then the new schedule is computed and

sent back to the workers.

The schedule sent to the workers consists of one double and two int values.

This is the (integer) number of steps to do at the (double) temperature that

is also sent. Also an integer 
ag is sent to control load balancing for example.

The statistical information sent back consists of 4 double and one int. The

workers sent the sum of all energies of their part of the ensemble, the sum of

the energies squared, the time needed for the simulation and the best energy

3



ti
m

e Master

Worker

gather ensemble information 
asynchronously, worker
estimates new schedule

worker gets real schedule

Figure 2: The algorithm using non-blocking communication and estimated

schedule. The workers do a �xed number of steps between sending the statistic

to the master. After sending they estimate their schedule and use this until the

master sends the real schedule.

reached so far. Also the total number of accepted moves accross the local part

of the ensemble is sent. The message size is independent of the ensemble size.

The approach with a master and several workers is also called master-worker

approach. Our implementation, however, allows the master to be a worker

between the schedule computations as well.

3 Non-blocking communication

During the development of our stochastic optimization code we found that in

our workstation cluster the program needs about 5-20% of the time for the

communication subroutines. In order to improve performance we wanted to

know whether putting the communication into the background with the non-

blocking communication would improve the performance.

This has several implications. First and most important is that the workers

need something to do during the time that is now saved. They need the infor-

mation from the master (the schedule) to do the simulation. This information

is derived from an ensemble statistics. But, if a worker has several ensemble

members, it can derive such an ensemble statistics for the local ensemble mem-

bers. This can be used as an estimate until the real schedule arrives from the

master.

This of course changes the character of the whole algorithm, as the com-

munication time directly in
uences the schedule: It is not `exact' in the sense

that the schedule used is not the globally valid schedule for the whole ensemble.

Instead a certain fraction of the simulation time the locally estimated schedule

is used. Furthermore it is not `reproducable', as factors outside program control

{ network latency and load, each CPU load { in
uence the schedule by changing

the time where the estimated schedule is used.

The second implication is that it is not possible to use global communication

routines anymore, as in MPI they are available as blocking only. The global

4



Setup computation communication worker comp. worker comm.

time [s] time [s] time [s] time [s]

original 307.6 60.3 312.6 56.7

estimated 326.3 41.0 320.9 49.2

decoupled 300.4 0.0 296.2 0.0

Table 1: Typical result, with times for a master and a worker. When using non-

blocking communication the time saved during the communication routines is

added to the computation time. Sometimes the communication time is even

reduced to 1% of the original time, but the computing time is increased by that

amount again.

routines have therefore been broken up into the available non-blocking point-

to-point operations. This does not matter much on a workstation cluster. But,

as it is shown later, it does matter on the Cray T3D with its highly optimized

global communication routines that are now not used anymore.

The resulting work
ow can be seen in �gure 2.

4 Results

The results are in general presented for three di�erent scenarios. The �rst is

the original implementation with global schedule. The second is the described

non-global communication algorithmwith partly estimated schedule. As a com-

parision to that there is a third scenario where the communication is completely

disabled. Each processor computes its local schedule from the statistics of its

local part of the ensemble, so it is a parallel run of several simulations with

smaller ensemble size each. The three scenarios are called `original', `estimated'

and `decoupled' resp.

Simulations have been carried out on a four processor workstation cluster

(Intel Pentium Pro 200 with Linux 2.0, connected with a 10 MBit Ethernet)

as well as the Cray T3D at the Edinburgh Parallel Computing Center EPCC

[9]. The Cray had a larger ensemble size than the Cluster, though. The MPI

implementation used on the cluster is MPICH [3], that uses standard Unix

networking and is available for many platforms that can interoperate. The

Cray MPI version is a proprietary, optimized MPI implementation, that cannot

interoperate with processors outside the T3D.

Several simulations have been run. A typical result for a run on our work-

station cluster is shown in �gure 3 and table 1. In other con�guration or test

(simulated annealing) problems the numbers vary, but they have one thing in

common. It can be seen that using non-blocking communication does not give

an improved performance. Instead the time that is saved with not waiting in the

blocking communication routines seems to be added to the computation time.

By comparing the decoupled results with the original and estimated results one

can see the amount of time used for communication.

The situation on the Cray T3D for example is di�erent. Here we have special

5



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 50 100 150 200 250 300 350 400

si
m

ul
at

io
n 

st
ep

s

time [s]

original
decoupled
estimated

Figure 3: Timing results for a cluster of four workstations. The plots show the

number of simulation steps over time.

0

100000

200000

300000

400000

500000

600000

700000

800000

0 100 200 300 400 500 600 700 800 900

si
m

ul
at

io
n 

st
ep

s

time [s]

original 32 proc.
estimated 32 proc.

decoupled 32 proc.
original 128 proc.

estimated 128 proc.
decoupled 128 proc.

Figure 4: Timing results for a run on the Cray T3D. The plots show the number

of simulation steps over time.

6



hardware dedicated to the fast communication between the processors. Figure

4 shows the timing for the Cray T3D. It can be seen that for a small number of

processors (32) the hardware can transfer the message in parallel to the compu-

tation, the non-blocking communication gives a (small) performance increase.

However, with a large number of processors (128) another e�ect takes over. The

global (blocking) MPI routines in the Cray MPI implementation are highly opti-

mized and use the geometry of the machine's communication topography. The

non-blocking communication routines are point-to-point communication rou-

tines and are not optimized for the Cray. Here the global comunication routines

are faster than the non-blocking routines.

A drawback is that the estimated schedule used in the non-blocking com-

munication slightly reduces the quality of the optimization result.

5 Conclusions

In this paper we discussed the transition of a production code from global

blocking communication to non-blocking point-to-point communication. Also

we compared the performance of the two algorithms. We found that in a com-

monly used MPI implementation (MPICH) the communication has a high CPU-

usage. Using non-blocking communication does not reduce this CPU-usage but

only moves it to the background. This increases the real time measured for

the computation, as the CPU is time-shared with the computation. On other

architectures this can be di�erent, as has been seen with the Cray T3D. A low

number of processors can indeed pro�t from non-blocking communication, be-

cause the hardware can send the message with less CPU usage. However, with

a large number of processors the master-worker model is better equipped with

the highly optimized global communication routines.

6 Acknowledgements

We acknowledge the support of the german national science foundation (DFG)

for the Sonderforschungsbereich 393, \Numerische Simulation auf massiv par-

allelen Rechnern". Acknowledgements also go to the European Union, for pro-

viding access to the Cray T3D at the Edinburgh Parallel Computing Center

by the means of the TRACS programme (Training and Research on Advanced

Computer Systems). Further we thank the TRACS sta� from EPCC, and esp.

Stephen S. Booth from the EPCC support for dicussions about random number

generators and for optimized random number generation code for the Cray T3D.

References

[1] B. Monien, R. Diekmann, R. Feldmann, R. Klasing, R. L�uling, K. Menzel,

T. R�omke, and U.-P. Schroeder. E�cient Use of Parallel & Distributed

Systems: From Theory to Practice. Springer-Verlag, 1995.

7



[2] Message passing interface (mpi) standard. http://www.mpi-forum.org.

[3] Mpich homepage. http://www.mcs.anl.gov/mpi/mpich/.

[4] V.

�

Cerny. Thermodynamical approach to the travelling salesman problem:

An e�cient simulation algorithm. Journal of Optimization, Theory and

Application, 45:41{51, 1985.

[5] S. Kirkpatrick, C.D. Gelatti, and M.P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671{680, 1983.

[6] A. Fachat and K.H. Ho�mann. Implementation of ensemble based simulated

annealing with dynamic load balancing under mpi. Comp. Phys. Comm,

107:49{53, 1997.

[7] K.H. Ho�mann, P. Sibani, J.M. Pedersen, and P. Salamon. Optimal ensem-

ble size for parallel implementations of simulated annealing. Appl. Math.

Lett., 3(3):53{56, 1990.

[8] D.R. Greening. Parallel simulated annealing techniques. Physica D, 42:293{

306, 1990.

[9] Edinburgh parallel computing center (epcc) homepage.

http://www.epcc.ed.ac.uk.

8


