
Technische Universit�at Chemnitz

Sonderforschungsbereich 393

Numerische Simulation auf massiv parallelen Rechnern

P. Hr. Petkov M. M. Konstantinov V. Mehrmann

DGRSVX and DMSRIC: Fortran 77

subroutines for solving continuous{time

matrix algebraic Riccati equations with

condition and accuracy estimates

Preprint SFB393/98-16

Preprint-Reihe des Chemnitzer SFB 393

SFB393/98-16 May 1998



Authors:

P.Hr. Petkov

Dept. of Automatics

Technical Univ. of So�a

1756 So�a, Bulgaria

E-mail: <php@mbox.digsys.bg>

M.M. Konstantinov

Univ. of Arch. & Civil Eng.

1 Hr. Smirnenski Blv.

1421 So�a, Bulgaria

E-mail: <mmk fte@uacg.acad.bg>

V. Mehrmann

Fakult�at f�ur Mathematik

Technische Universit�at Chemnitz

D-09107 Chemnitz, Germany

E-mail: <mehrmann@mathematik.tu-chemnitz.de>



DGRSVX and DMSRIC: Fortran 77 subroutines for solving
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Abstract

We present new Fortran 77 subroutines which implement the Schur method and the

matrix sign function method for the solution of the continuous-time matrix algebraic

Riccati equation on the basis of LAPACK subroutines. In order to avoid some of

the well-known di�culties with these methods due to a loss of accuracy, we combine

the implementations with block scalings as well as condition estimates and forward

error estimates. Results of numerical experiments comparing the performance of both

methods for more than one hundred well- and ill-conditioned Riccati equations of order

up to 150 are given. It is demonstrated that there exist several classes of examples for

which the matrix sign function approach performs more reliably and more accurately

than the Schur method. In all cases the forward error estimates allow to obtain a reliable

bound on the accuracy of the computed solution.

1 Introduction

In this report we present a set of Fortran 77 subroutines for the solution of continuous{

time matrix algebraic Riccati equations. The following functionalities are provided by these

programs:

� An implementation of the Schur method [39, 40] with a block{scaling which increases

the numerical reliability.

� An implementation of the matrix sign function method [15, 19, 24, 38, 37] with the

same scaling.

� Both implementations are accompanied with the computation of condition estimates

and forward error estimates which allow to estimate the sensitivity of the problem

and the accuracy of the solution.

� Both implementations use LAPACK [2] and BLAS [41, 22, 21] subroutines for the

e�cient solution of the corresponding numerical linear algebra subproblems.

�
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The following notation is used in the paper.

� R { the �eld of real numbers;

� R

m�n

{ the space of m� n matrices A = [a

ij

] over R;

� A

T

{ the transpose of a matrix A;

� �

max

(A) and �

min

(A) { the maximum and minimum singular value of A;

� kAk

1

{ the matrix 1-norm of the matrix A;

� kAk

2

= �

max

(A) { the spectral norm of the matrix A;

� kAk

F

= (

P

ja

ij

j

2

)

1=2

) { the Frobenius norm;

� I

n

{ the n � n identity matrix;

� A 
B { the Kronecker product of matrices A and B;

� Vec(A) { the vector, obtained by stacking the columns of A in one vector;

� " { the roundo� unit of the machine arithmetic.

Consider the continuous{time matrix algebraic Riccati equation

A

T

X +XA+ C �XDX = 0 (1)

where A 2 R

n�n

and the matrices C; D; X 2 R

n�n

are symmetric. We assume that

there exists a non{negative de�nite solution X which stabilises A�DX . This includes, for

instance, the case when C and D are non{negative de�nite with the pair (A;D) stabilizable

and the pair (C;A) detectable. The described programs, however, may be used also in the

case when the matrices C and D are symmetric inde�nite, as for example in the solution of

H

1

optimisation problems [29].

The numerical solution of a matrix Riccati equation as most other numerical problems

may face serious di�culties. First of all, the equation may be ill-conditioned, i.e., small per-

turbations in the coe�cient matrices A; C; D may lead to large variations in the solution.

As is well known, the conditioning of a problem depends neither on the use method nor

on the properties of the computer architecture. So, it is necessary to have a quantitative

characterisation of the conditioning in order to estimate the accuracy of solution obtained.

Another di�culty is connected with the stability of the numerical method and the

robustness of its implementation. In general we can do a backward error analysis and

estimate the backward error. In the case of Riccati equations one of the possible factors

that leads to numerical instability is the scaling of the Hamiltonian matrix associated with

the Riccati equation.

In the solution of the Riccati equation, the situation is even more complicated, since

a mixup between the conditioning and the instability of the method may happen. This is

due to the fact that the Riccati solution is determined in essentially two steps, for example

in the Schur method �rst a computation of the Schur form of the Hamiltonian matrix is

performed and then from the invariant subspaces the Riccati solution is determined via the

solution of a linear system. In such a situation it may happen that, although the solution of

the Riccati equation is a well-conditioned problem, one of the intermediate problems may be
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drastically more ill-conditioned than the other. This can be viewed as an ill-conditioning of

the problem or as an instability of the method. In the case of the Schur method this means

that, although we use the QR-algorithm to obtain the ordered Schur form and a numerically

stable linear system solver to obtain the Riccati solution from the invariant subspace, the

solution may be very inaccurate, see the examples below. Thus we may either conclude that

the combined numerical method is unstable, although it consists of stable components or

we may conclude that the solution of the problem is ill-conditioned, since it is a composition

of two mappings one of which may be ill-conditioned. Either point of view is justi�ed, since

the ill-conditioning of the problem and the instability of the method is mixed up in this case

and a careful analysis is needed. Some of these di�culties are resolved by using a proper

scaling of the Riccati equation.

The paper is organised as follows. In Section 2 we discuss di�erent approaches to

the condition estimation for continuous-time Riccati equations. We present an e�cient

method for estimating the condition number which is based on the matrix norm estimator,

implemented in LAPACK [2]. In Section 3 we brie
y describe the Schur method and the

matrix sign function method and discuss their numerical properties.

Based on the results of earlier experiments, two cheap block-scaling schemes are pre-

sented in Section 4, which enhance the accuracy of the Riccati solvers [12, 47]. In Section 5

we propose a residual based forward error estimate which is based on the LAPACK norm

estimator and may be used in combination with any method for solving the Riccati equa-

tion. In Section 6 we describe the software implementation of both methods, which is based

entirely on modules from LAPACK and BLAS. Finally, in Section 7 we present the results

of several numerical experiments comparing the performance of the Schur method and the

sign function methods for more than one hundred well- and ill-conditioned Riccati equations

of order 150. We demonstrate the loss of accuracy of the un-scaled Schur and matrix sign

function methods in the solution of well-conditioned equations and show the improvement

of the accuracy due to both types of scaling. We also show that there exist several classes

of examples for which the matrix sign function method performs more reliably than the

Schur method. In all cases the forward error estimate allows to obtain a reliable bound on

the accuracy of the solution computed.

2 Conditioning and condition estimation

Let the coe�cient matrices A; C; D in (1) be subject to perturbations �A; �C; �D,

respectively, so that instead of the initial data we have the matrices

~

A = A + �A,

~

C =

C + �C,

~

D = D + �D. The aim of the perturbation analysis of (1) is to investigate

the variation �X in the solution

~

X = X + �X due to the perturbations �A; �C; �D.

If small perturbations in the data lead to small variations in the solution we say that the

Riccati equation is well-conditioned and if these perturbations lead to large variations in the

solution this equation is ill-conditioned. In the perturbation analysis of the Riccati equation

it is supposed that the perturbations preserve the symmetric structure of the equation, i.e.,

the perturbations �C and �D are symmetric. If k�Ak, k�Ck and k�Dk are su�ciently

small, then the perturbed solution

~

X = X +�X is well de�ned [34, 23].

The condition number of the Riccati equation is de�ned as (see [17])

K = lim

�!0

sup

�

k�Xk

�kXk

: k�Ak � �kAk; k�Ck � �kCk; k�Dk � �kDk

�

:

3



For su�ciently small � we have (within �rst order terms)

k�Xk

kXk

� K�:

Let

�

X be the solution of the Riccati equation computed by a numerical method in �nite

arithmetic with relative precision ". If the method is backward stable, then we can estimate

the error in the solution error

k

�

X �Xk

kXk

� p(n)K"

with some low{order polynomial p(n) of n. This shows the importance of the condition

number in the numerical solution of Riccati equation. Consider the perturbed Riccati

equation

(A+�A)

T

(X+�X)+(X+�X)(A+�A)+C+�C�(X+�X)(D+�D)(X+�X) = 0 (2)

and set A

c

= A � DX . Subtracting (1) from (2) and neglecting the second{ and higher{

order terms in �X (i.e., using a �rst{order perturbation analysis) we obtain a Lyapunov

equation in �X :

A

T

c

�X +�XA

c

= ��C � (�A

T

X +X�A) +X�DX = 0: (3)

Using the vectorized version of the equation, we obatin that

kVec(M)k

2

= kMk

F

and equation (3) can be written as

(I

n


 A

T

c

+A

T

c


 I

n

)Vec(�X) = �Vec(�C)�

(I

n


X + (X 
 I

n

)W )Vec(�A) + (4)

(X 
X)Vec(�D));

where we use the representations

Vec(�A

T

) = WVec(�A)

Vec(MZN) = (N

T


M)Vec(Z)

and W is the so called vec{permutation matrix, such that Vec(M

T

) = WVec(M), [28].

Since the matrix A

c

is stable, the matrix I

n


A

T

c

+A

T

c


 I

n

is nonsingular and we have

that

Vec(�X) = (I

n


 A

T

c

+ A

T

c


 I

n

)

�1

(�Vec(�C)�

(I

n


X + (X 
 I

n

)W )Vec(�A) + (5)

(X 
X)Vec(�D))

Equation (5) can be written as

Vec(�X) = �[P

�1

; Q; �S]

2

6

4

Vec(�C)

Vec(�A)

Vec(�D)

3

7

5

; (6)
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where

P = I

n


A

T

c

+ A

T

c


 I

n

;

Q = P

�1

(I

n


X + (X 
 I

n

)W );

S = P

�1

(X 
X):

If we set

� = max fk�Ak

F

=kAk

F

; k�Ck

F

=kCk

F

; k�Dk

F

=kDk

F

g ;

then it follows from (6) that

k�Xk

F

=kXk

F

�

p

3K

F

�;

where

K

F

= k

h

P

�1

; Q; S

i

k

2

=kXk

F

is the condition number of (1) using Frobenius norms. The computation of K

F

requires

the construction and manipulation of n

2

� n

2

matrices which is not practical for large n.

Furthermore, the computation of the condition number of the Riccati equation involves the

solution matrix X , so that the condition number can be determined only after solving the

equation.

In Appendix 1 we give the MATLAB

1

m-�le cndricc.m for the computation of the

condition number K

F

.

Since the computation of the exact condition number is a di�cult task, it is useful to

derive approximations of K that can be obtained cheaply.

Rewrite equation (3) as

�X = �


�1

(�C)��(�A) + �(�D); (7)

where


(Z) = A

T

c

Z + ZA

c

;

�(Z) = 


�1

(Z

T

X +XZ);

�(Z) = 


�1

(XZX)

are linear operators in the space of n � n matrices, which determine the sensitivity of X

with respect to the perturbations in C; A; D; respectively. Based on (7) it was suggested

in [17] to use the approximate condition number

K

B

:=

k


�1

kkCk+ k�kkAk+ k�kkDk

kXk

; (8)

where

k


�1

k = max

Z 6=0

k


�1

(Z)k

kZk

k�k = max

Z 6=0

k�(Z)k

kZk

k�k = max

Z 6=0

k�(Z)k

kZk

are the corresponding induced operator norms. Note that the quantity

k


�1

k

F

= max

Z 6=0

kZk

F

kA

T

c

Z + ZA

c

k

F

=

1

sep

F

(A

T

c

;�A

c

)

1

MATLAB is a trademark of The Mathworks, Inc

5



where

sep

F

(A

T

c

;�A

c

) := min

Z 6=0

kA

T

c

Z + ZA

c

k

F

kZk

F

= �

min

(I

n


 A

T

c

+ A

T

c


 I

n

)

is connected to the sensitivity of the Lyapunov equation

A

T

c

X +XA

c

= �C

(see [30]).

Comparing (5) and (7) we obtain that

k


�1

k

F

= kP

�1

k

2

;

k�k

F

= kQk

2

; (9)

k�k

F

= kSk

2

:

Cheap approximations of k


�1

k

2

; k�k

2

and k�k

2

can be computed in the following

way [34]. Let H

k

be the solution of the Lyapunov equation

A

T

c

H

k

+H

k

A

c

= �X

k

for k = 0; 1; 2. Then

k


�1

k

2

= kH

0

k

2

; k�k

2

= kH

2

k

2

;

2kH

1

k

2

� k�k

2

� 2kH

0

k

1=2

2

kH

2

k

1=2

:

This result allows to estimate K

B

by solving three Lyapunov equations with the same

matrix A

c

but with di�erent right{hand sides. As it is shown, however, in [34], there exist

some cases when the quantity 2kH

0

k

1=2

2

kH

2

k

1=2

may be much larger than k�k

2

, which may

lead to a large overestimation of K

B

.

The quantities k


�1

k

1

; k�k

1

; k�k

1

can be e�ciently estimated by using the norm es-

timator, proposed in [27, 32] which estimates the norm kTk

1

of a linear operator T , given

the ability to compute Tv and T

T

w quickly for arbitrary v and w. This estimator is imple-

mented in the LAPACK subroutine xLACON [2], which is called via a reverse communication

interface, providing the products Tv and T

T

w. With respect to the computation of

k


�1

k

F

= kP

�1

k

2

=

1

sep

F

(A

T

c

;�A

c

)

the use of xLACON means to solve the linear equations

Py = v; P

T

z = v;

where

P = I

n


A

T

c

+ A

T

c


 I

n

; P

T

= I

n


A

c

+A

c


 I

n

;

v being determined by xLACON. This is equivalent to the solution of the Lyapunov equations

A

T

c

Y + Y A

c

= V

A

c

Z + ZA

T

c

= V

Vec(V ) = v;Vec(Y ) = y;Vec(Z) = z;

(10)

see [6] for a similar approach in estimating the sensitivity of invariant subspaces. The

solution of Lyapunov equations can be obtained in a numerically reliable way using the

Bartels{Stewart algorithm [10], which �rst reduces the matrix A

c

to Schur triangular form

6



via orthogonal similarity transformations and then solves recursively the triangular Lya-

punov equation. Note that in (10) the matrix V is symmetric, which allows a reduction in

complexity by operating on vectors v of length n(n + 1)=2 instead of n

2

.

An estimate of k�k

1

can be obtained in a similar way by solving the Lyapunov equations

A

T

c

Y + Y A

c

= V

T

X +XV

A

c

Z + ZA

T

c

= V

T

X +XV:

(11)

To estimate k�k

1

via xLACON, it is necessary to solve the equations

A

T

c

Y + Y A

c

= XVX

A

c

Z + ZA

T

c

= XVX;

(12)

where the matrix V is again symmetric and we can again work with shorter vectors.

The accuracy of the estimates that we obtain via this approach depends on the ability

of xLACON to �nd a right{hand side vector v which maximises the ratios

kyk

kvk

;

kzk

kvk

:

when solving the equations

Py = v; P

T

z = v:

As in the case of other condition estimators it is always possible to �nd special examples

when the value produced by xLACON underestimates the true value of the corresponding norm

by an arbitrary factor. Note, however, that this may happen only in rare circumstances.

Consider �nally the condition estimation for the dual Riccati equation

AX +XA

T

+ C �XDX = 0; (13)

where A 2 R

n�n

and the matrices C 2 R

n�n

, D 2 R

n�n

are symmetric. In this case the

approximate condition number K

B

of the equation is determined again by (8) where the

operators 
;�;� are given by


(Z) = A

c

Z + ZA

T

c

;

�(Z) = 


�1

(ZX +XZ

T

);

�(Z) = 


�1

(XZX);

with

A

c

= A�XD:

The norms of these operators may be estimated by xLACON as shown above for equation (1)

which allows to use the same software in estimating the conditioning of (1) and (13).

The following table summarizes the Lyapunov equations which we need to solve in

estimating k


�1

k

1

; k�k

1

and k�k

1

.

Equation (1) Equation (13)

k


�1

k

1

A

T

c

Y + Y A

c

= V A

c

Y + Y A

T

c

= V

A

c

Z + ZA

T

c

= V A

T

c

Z + ZA

c

= V

k�k

1

A

T

c

Y + Y A

c

= V

T

X +XV A

c

Y + Y A

T

c

= V X +XV

T

A

c

Z + ZA

T

c

= V

T

X +XV A

T

c

Z + ZA

c

= V X +XV

T

k�k

1

A

T

c

Y + Y A

c

= XVX A

c

Y + Y A

T

c

= XVX

A

c

Z + ZA

T

c

= XVX A

T

c

Z + ZA

c

= XVX

7



3 Numerical algorithms

There are di�erent methods for the numerical solution of the continuous{time Riccati equa-

tion, see for exmaple [1, 14, 16, 40, 43, 46]. While the new methods in [1, 14] are speci�cally

designed to make use of the Hamiltonian structure and promise to be the most accurate

methods, they have not yet been completely implemented as production software. On the

other hand, the Schur method and the matrix sign function method have already been used

for many years successfully. They do not make use of the speci�c structure and have been

integrated already in several sofware environments, like the MATLAB control toolbox [42]

or the SLICOT library [13]. In this report we discuss only the latter two methods, since

their current implementations are widely available.

The Schur method [39, 40] is based on the computation of an orthonormal basis of the

invariant subspace associated with the stable eigenvalues of the Hamiltonian matrix

H =

"

A �D

�C �A

T

#

: (14)

This may be done without too much extra work using the high{quality routines from LA-

PACK which implement the QR method for the reduction to Schur form followed by ap-

propriate reordering of this form.

Suppose that H has no eigenvalues on the imaginary axis and let U 2 R

2n�2n

be an

orthogonal transformation matrix that reduces H to real Schur form

T = U

T

HU =

"

T

11

T

12

0 T

22

#

;

where T

ij

2 R

n�n

and T

11

; T

22

are quasi upper-triangular with 1 � 1 or 2 � 2 diagonal

blocks. It is always possible to �nd an additional orthogonal transformation which arranges

the diagonal blocks of T , such that all eigenvalues of T

11

have negative real parts [7].

Partitioning U accordingly into four n� n blocks,

U =

"

U

11

U

12

U

21

U

22

#

;

we obtain the unique non{negative de�nite solution of the continuous-time Riccati equation

as the solution of the linear system XU

11

= U

21

, i.e.,

X = U

21

U

�1

11

: (15)

The numerical properties of the Schur method are well analysed [45, 36, 12]. The

method essentially consists of two parts, the transfomation to Schur form, which via the

use of the QR-algorithm can be implemented in a numerically backward stable way and the

solution of linear system (15). First of all it should be noted that, since the Schur method

does not respect the Hamiltonian structure, it is not strongly backwards stable, i.e., the

resulting invariant subspace is only the invariant subspace of a nearby matrix which is not

Hamiltonian.

Furthermore, even if the solution of the Riccati equation is well-conditioned, the solution

of the Hamiltonian eigenvalue problem or the solution of the linear system may be ill-

conditioned. This was demonstrated in [45] by given some well-conditioned, low order

examples of Riccati equations, for which the Schur method does not give accurate results.

8



Speci�cally, the analysis done in [45] shows that if

� = sep

F

(T

11

; T

22

)� c(n)"kHk

2

� 0

and

c(n)"kHk

2

2

(1 + c(n)") �

1

4

�

2

;

where c(n) is some low order polynomial in n, then the solution

�

X of the Riccati equation

computed by the Schur method satis�es

k

�

X �Xk

2

kXk

2

�

2c(n)"

�

�

1 +

1

kXk

2

�

kHk

2

k

�

U

�1

11

k

2

+

k

�

X �X

0

k

2

kXk

2

; (16)

where

X

0

=

�

U

21

�

U

�1

11

is the exact result computed from the computed orthonormal basis of the stable invariant

subspace of H . It may happen that the linear system is ill-conditioned or it may happen

that the computation of the stable invariant subspace is an ill-conditioned problem, even if

the solution is Riccati equation is a well-condtioned problem. The bound (16) shows that

the error in

�

X will be large if k

�

U

�1

11

k is large.This may happen, even for well conditioned

examples, when, for instance, kDk << kCk and small perturbations in the Hamiltonian

matrix correspond to large perturbations in the original data. We present such examples in

Section 7. As was shown in [36] this di�culty can be avoided by an appropriate scaling of

the coe�cient matrices which ensures that kXk

2

= 1.

The other widely used method for the solution of (1) is the sign function method,

[48, 19, 38, 24, 49, 50]. Suppose again that the matrix Hamiltonian matrix (14) associated

with the Riccati equation has no eigenvalues on the imaginary axis and let

H = V

"

J

�

0

0 J

+

#

V

�1

be the Jordan decomposition of H , where the eigenvalues of the n � n submatrix J

�

are

the stable eigenvalues of H . The matrix sign function of H is then de�ned as

sign(H) = V

"

�I

n

0

0 I

n

#

V

�1

: (17)

Then the matrix

P

�

=

1

2

(I

2n

� sign(H))

is the spectral projector on the invariant subspace corresponding to the stable eigenvalues

of H and, since we have assumed that H has exactly n eigenvalues with negative real part,

it follows that P

�

is a real matrix whose rank is equal to n.

Let P

�

= QR� be the rank revealing QR decomposition of P

�

[26], where Q is orthog-

onal, R is upper triangular , and � is a permutation matrix chosen so that the leading n

columns of Q span the image of P

�

. Then Q yields the spectral decomposition [5]

Q

T

HQ =

"

H

11

H

12

0 H

22

#

(18)

9



where the eigenvalues of the matrix H

11

have negative real parts. Also we have that

Q

T

sign(H)Q =

"

�I

n

Y

0 I

n

#

;

where Y is the (unique) solution of the Sylvester equation

H

11

Y � Y H

22

= �2H

12

:

If the matrix Q is partitioned as

Q �

"

Q

11

Q

12

Q

21

Q

22

#

;

where each block Q

ij

is of dimension n � n, then the columns of

"

Q

11

Q

21

#

span the stable

invariant subspace of H and the non{negative solution of the Riccati equation is given by

the solution of the linear system XQ

11

= Q

21

, i.e.,

X = Q

21

Q

�1

11

:

Due to rounding errors, instead of (18) in �nite arithmetic one obtains

Q

T

HQ =

"

H

11

H

12

E

21

H

22

#

; (19)

where the quantity kE

21

k=kHk measures the backward error in the computed spectral

decomposition.

The matrix sign function of H may be computed e�ciently using the following simple

Newton iteration [19, 35].

Set S

0

= H ;

For j = 0; 1; : : : until convergence or j > j

max

do

S

j+1

=

1

2

(
S

j

+

1




S

�1

j

)

if kS

j+1

� S

j

k

1

� tolkS

j

k

1

, exit

End

Here tol is the stopping criterion for the iteration (say, tol = 100n"), and j

max

limits the

maximum number of iterations (say j

max

= 50). The scaling factor 
 is chosen to accelerate

the convergence of the iteration [9, 8, 35]. The computation of the matrix S

�1

j

may be

reduced to the inversion of a symmetric matrix using the properties of the Hamiltonian

matrix [15, 19, 37].

The Newton iteration is globally and ultimately quadratic convergent [37] but the initial

convergence may be slow. Di�erent types of scalings which accelerate the convergence are

investigated in [35].

The matrix sign function method has the advantage that it is easily constructed from

a small set of highly parallelizable matrix building blocks, including matrix multiplication,

QR decomposition and matrix inversion. This makes it preferable to the other methods

in the parallel solution of high order Riccati equations. The numerical properties of the

10



matrix sign function are studied in [18, 20, 4]. As was shown in [20], the matrix sign

function and the projector P

�

may be signi�cantly more ill-conditioned than the stable

invariant subspace of H and the stable invariant subspace of sign(H) is never signi�cantly

more ill-conditioned than the corresponding invariant subspace of H . This is con�rmed by

the numerical experiments described in Section 7.

The analysis of [4] is based on the expectation that the computed matrix sign function is

of half the possible precision so that the backward error kE

21

k=kHk is of order

p

"ksign(H)k.

We note that in all our experiments involving computation of the matrix sign function of

matrices of order 300, the relative backward error did not exceed the value 50" which does

not con�rm the expectations on the backward error. The error analysis for the Newton

iteration suggests [18, 20] that this iteration may be inaccurate when the matrix S

j

is ill-

conditioned. To overcome this di�culty the Newton iteration can be carried out with a

shift along the imaginary line [20].

To summarize the discussion on the two most widely used methods for the solution of

the continuous-time algebraic Riccati equation, we have seen that both methods may face

some numerical di�culties and a possible loss in accuracy in speci�c examples even when the

solution of the Riccati equation is a well-conditioned problem. It is therefore necessary to

develop new methods which overcome these di�culties, and although signi�cant progress

towards this goal has been made in recent years [1, 14] the problem is not completely

solved yet. Another possibility is to combine the implementations of the Schur and matrix

sign function method with condition and accuracy estimates and appropriate scalings to

guarantee that possible failures like a signi�cant loss of accuracy is minimized and it is

detected when it happens. In the next section we discuss these scaling techniques.

4 Block scaling

Consider a similarity transformation of the Hamiltonian matrix (14) with a matrix

T =

"

pI

n

0

0 qI

n

#

; p 6= 0; q 6= 0:

As a result one obtains

�

H = T

�1

HT =

"

A ��D

�C=� �A

T

#

where � = q=p.

In terms of the Riccati equation (1) this transformation leads to the scaled equation

A

T

�

X +

�

XA+ C �

�

XD

�

X = 0 (20)

where

�

X = X=�. It has been shown in [36] that this scaling does not change the conditioning

of Riccati equation. Depending on the choice of � we may scale the solution of (20) in

di�erent ways. If, for instance, � = kXk, then k

�

Xk = 1 and it has been shown in [36] that

this is the \optimal scaling" which ensures backward stability of the Schur method, since

it guarantees that none of the two subproblems is signi�cantly more ill-conditioned than

the other and than the original problem. A disadvantage of this scaling, however, is the

necessity to know kXk which requires to solve �rst the unscaled equation.

Another approach to the scaling of Riccati equation is taken in [44]. It is based on

the observation that if kCk is large and kDk is small, then the implementation of the QR-

11



method for �nding the Schur form of the Hamiltonian matrix leads to large errors in

�

U

11

and

�

U

12

which may yield to a signi�cant loss in accuracy in the solution. For this reason it

was proposed in [44] to use

� =

kCk

kDk

(21)

i.e., p = kCk; q = kDk, which means that kC=�k= kDk and k�Dk = kCk.

The advantage of the \norm-ratio scaling" (21) is that it is cheap to compute, but this

scaling will obviously be meaningful only if kCk > kDk. If, however, kCk < kDk then this

scaling leads to even larger errors in comparison with the unscaled equation. For this reason

the following modi�cation of this scaling was proposed in [47].

� = 1 if kCk � kDk;

� =

kCk

kDk

if kCk > kDk: (22)

This scaling guarantees that kC=�k � k�Dk, which improves the numerical properties of

both Schur and matrix sign function method. This scaling, of course, may give worse

results than the optimal scaling, but in many cases it gives satisfactory results with much

less computational e�ort. On the other hand, several experiments have shown that the

scaling (22) may lead to large norms of the scaled Hamiltonian matrix and failure of the

QR-algorithm in computing the Schur decomposition. For this reason it was suggested in

[12] to use another modi�cation of this scaling as

� = 1 if kCk � kDk;

� =

s

kCk

kDk

if kCk > kDk: (23)

Other types of scaling may be found in [12, 24].

5 Error estimation

A posteriori error bounds for the computed solution of Riccati equation may be obtained in

several ways, see for instance [25, 51]. One of the most e�cient and reliable ways to get an

estimate of the solution error is to use practical error bounds, similar to the case of solving

linear systems of equations [3, 2] and matrix Sylvester equations [31].

Let

R = A

T

�

X +

�

XA+ C �

�

XD

�

X

be the exact residual matrix associated with the computed solution

�

X. Setting

�

X :=

X +�X , where X is the exact solution and �X is the absolute error in the solution, one

obtains

R = (A�D

�

X)

T

�X + �X(A�D

�

X) + �XD�X:

If we neglect the second order term in �X , we obtain the linear system of equations

�

PVec(�X) = Vec(R);

where

�

P = I

n




�

A

T

c

+

�

A

T

c


 I

n

;

�

A

c

= A�D

�

X. In this way we have

kVec(X �

�

X)k

1

= k

�

P

�1

Vec(R)k

1

� k j

�

P

�1

j jVec(R)j k

1

:

12



As it is known [3] this bound is optimal if we ignore the signs in the elements of

�

P

�1

and

Vec(R).

In order to take into account the rounding errors in forming the residual matrix, instead

of R we use

�

R = fl(C � A

T

�

X �

�

XA�

�

XD

�

X) = R+ �R;

where

j�Rj � "(4jCj+ (n+ 4)(jA

T

j j

�

Xj+ j

�

Xj jAj) + 2(n+ 1)j

�

Xj jDj j

�

Xj) =: R

"

:

Here we made use of the well known error bounds for matrix addition and matrix multipli-

cation [33].

In this way we have obtained the overall bound

kX �

�

Xk

M

k

�

Xk

M

�

k jP

�1

j (jVec(

�

R)j+ Vec(R

"

))k

1

k

�

X)k

M

; (24)

where kXk

M

= max

i;j

jx

ij

j.

The numerator in the right hand side of (24) is of the form k jP

�1

jrk

1

, and as in [3, 31]

we have

k j

�

P

�1

jr k

1

= k j

�

P

�1

jD

R

ek

1

= k j

�

P

�1

D

R

jek

1

= k j

�

P

�1

D

R

j k

1

= k

�

P

�1

D

R

k

1

where D

R

= diag(r) and e = (1; 1; :::; 1)

T

. This shows that k jP

�1

jrk

1

can be e�ciently

estimated using the norm estimator xLACON in LAPACK, which estimates kZk

1

at the

cost of computing a few matrix-vector products involving Z and Z

T

. This means that for

Z =

�

P

�1

D

R

we have to solve a few linear systems involving

�

P = I

n




�

A

T

c

+

�

A

T

c


 I

n

and

�

P

T

= I

n




�

A

c

+

�

A

c


 I

n

or, in other words, we have to solve several Lyapunov equations

�

A

T

c

X +X

�

A

c

= V and

�

A

c

X +

�

A

T

c

= W . Note that the Schur form of

�

A

c

is already available

from the condition estimation of the Riccati equation, so that the solution of the Lyapunov

equations can be obtained e�ciently via the Bartels-Stewart algorithm. Also, due to the

symmetry of the matrices

�

R and R

"

, we only need the upper (or lower) part of the solution

of this Lyapunov equations which allows to reduce the complexity by manipulating only

vectors of length n(n+ 1)=2 instead of n

2

.

The error estimation in the solution of (13) is obtained in a similar way.

6 Software implementation

In this section we discuss some of the implementation issues in the solution of the Riccati

equation

op(A

T

)X +Xop(A) + C �XDX = 0

where op(A) = A or A

T

.

The implementation of the Schur method with condition and accuracy estimates is done

by the Fortran 77 double precision driver subroutine DGRSVX whose calling sequence is given

in Appendix 2. It makes use of the LAPACK subroutines DGEESX to reduce the Hamiltonian

matrix to upper Schur form and DGESVX to solve the linear system XU

11

= U

21

.

The transformed Lyapunov equation op(A

T

c

)X +Xop(A

c

) = C arising in the condition

estimation of the Riccati equation in which A

c

is in Schur form is solved by the subroutine

DTRLYP and the auxiliary routine DLALY2.

13



To avoid over
ows, instead of estimating the condition number K

B

an estimate of the

reciprocal condition number

1

~

K

B

=

g

sep

1

(

�

A

T

c

;�

�

A

c

)k

�

Xk

1

kCk

1

+

g

sep

1

(

�

A

T

c

;�

�

A

c

)(k

~

�k

1

kAk

1

+ k

~

�k

1

kDk

1

)

is determined. Here

�

A

c

is the computed matrix A

c

and the estimated quantities are denoted

by ~.

The forward error bound is obtained as described in Section 5, where the corresponding

triangular Lyapunov equations are solved by the subroutine DTRLYP.

The subroutine DGRSVX requires storage space proportional to 9n

2

+ 10n .

The solution of the Riccati equation by the matrix sign function method is carried out by

the Fortran 77 double precision driver subroutine DMSRIC whose calling sequence is given in

Appendix 2. Instead of the nonsymmetric Newton iteration described in Section 3, DMSRIC

implements the equivalent symmetric iteration [37]

Z

0

= JH

Z

j+1

=

1

2

(
Z

j

+

1




JZ

�1

j

J)

where

J =

"

0 I

n

�I

n

0

#

:

In this case it su�ces to compute the upper triangular part of Z

j+1

. The sign function is

recovered at the end from sign(H) = �JZ. The inversion of the symmetric matrix Z

j

is

performed by the LAPACK subroutines DSYTRF and DSYTRI. The scaling factor is chosen

as


 =

q

kZ

�1

j

k

F

=kZ

j

k

F

which gives nearly optimal performance on a wide range of problems [37].

The condition and forward error estimates are determined as in the subroutine DGRSVX

which requires an additional Schur decomposition of the n � n matrix A

c

. This part of

DMSRIC is di�cult to parallelize and reduces to some extent the e�ciency in using the matrix

sign function method. In principle, the solution of the n{th order Lyapunov equations

related to condition and forward error estimation can be performed also by using a sign

function of order 2n, but this is ine�cient in comparison to the using of triangular Lyapunov

equations, obtained via the Schur decomposition.

The subroutine DMSRIC requires storage space proportional to 9n

2

+7n, which is slightly

less than the space used by DGRSVX.

7 Numerical experiments

In this section we present the results of several numerical experiments which show the

behaviour of the Schur method and the sign function method in the solution of several well-

and ill-conditioned Riccati equations up to order n = 150. All experiments were carried

out on an HP 715/33 workstation with relative machine precision " = 2:22� 10

�16

. In all

cases the matrix sign function is computed with tolerance tol = n", the maximum number

of iterations being set to 60.
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In order to have a closed form solution, the test matrices in the Riccati equation are

chosen as

A = ZA

0

Z

�1

;

C = Z

�T

C

0

Z

�1

;

D = ZD

0

Z

T

;

where A

0

; C

0

; D

0

are diagonal matrices and Z is a nonsingular transformation matrix.

The solution of (1) is then given by

X = Z

�T

X

0

Z

�1

where X

0

is a diagonal matrix whose elements are determined simply from the elements of

A

0

; C

0

; D

0

. To avoid large rounding errors in constructing and inverting T this matrix is

chosen as [11]

Z = H

2

SH

1

where H

1

and H

2

are elementary re
ectors and S is a diagonal matrix,

H

1

= I

n

� 2ee

T

=n; e = [1; 1; :::; 1]

T

H

2

= I

n

� 2ff

T

=n; f = [1;�1; 1; :::; (�1)

n�1

]

T

;

S = diag(1; s; s

2

; :::; s

n�1

); s > 1:

Using di�erent values of the scalar s, it is possible to change the condition number of

the matrix Z with respect to inversion,

cond

2

(Z) = s

n�1

:

Taking into account the form of Z we obtain that

A = H

2

SH

1

A

0

H

1

S

�1

H

2

;

C = H

2

S

�1

H

1

C

0

H

1

S

�1

H

2

;

D = H

2

SH

1

D

0

H

1

SH

2

:

These matrices are computed easily with relative precision of order ". Apart from the

simplicity of these Riccati equations, their numerical solution presents a di�cult task for

both the Schur and the sign function method, since the diagonal structure of the equations

is not recognized by both methods. On the other hand, the use of such equations in testing

the corresponding numerical methods allows to check easily the solution accuracy.

Example 1 The aim of this example is to illustrate the accuracy of condition estimates.

For this purpose we computed the quantities related to the exact condition number K

F

, by

using the m{�le cndricc.m in MATLAB and compared them with the estimates obtained by

the subroutine DGRSVX. Since the computation of the exact quantities k


�1

k

2

; k�k

2

; k�k

2

requires large amount of space, we used in this example equations of order 15. (The corre-

sponding Kronecker matrix products have dimensions 225�225 in this case.) The equations

are constructed as described above with

A

0

= diag(A

1

; A

1

; A

1

; A

1

; A

1

);

C

0

= diag(C

1

; C

1

; C

1

; C

1

; C

1

);

D

0

= diag(D

1

; D

1

; D

1

; D

1

; D

1

);

15



where

A

1

= diag(�1� 10

�k

;�2;�3� 10

k

);

C

1

= diag(3� 10

�k

; 5; 7� 10

k

);

D

1

= diag(10

�k

; 1; 10

�k

);

X

1

= diag(1; 1; 1):

The solution is given by

X

0

= diag(X

1

; X

1

; X

1

; X

1

; X

1

):

The conditioning of these equations deteriorates with the increase of k.

The results for di�erent k and s = 1 are shown in Table 1. It is seen that the exact and

the estimated quantities are of the same order for each k.
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Table 1

Accuracy of condition estimates for Example 1

k 1=k
k

1

1=k

~


k

1

k�k

1

k

~

�k

1

0 2:76� 10

0

1:65� 10

0

7:26� 10

�1

5:92� 10

�1

1 1:44� 10

�1

2:41� 10

�1

1:39� 10

1

7:14� 10

0

2 1:36� 10

�2

2:83� 10

�2

1:47� 10

2

6:24� 10

1

3 1:35� 10

�3

2:84� 10

�3

1:48� 10

3

6:24� 10

2

4 1:35� 10

�4

2:84� 10

�4

1:48� 10

4

6:24� 10

3

5 1:35� 10

�5

2:84� 10

�5

1:48� 10

5

6:24� 10

4

6 1:35� 10

�6

2:84� 10

�6

1:48� 10

6

6:23� 10

5

k k�k

1

k

~

�k

1

K

F

~

K

B

0 3:63� 10

�1

4:70� 10

�1

1:72� 10

0

8:52� 10

0

1 6:95� 10

0

4:14� 10

0

1:34� 10

2

9:21� 10

2

2 7:37� 10

1

3:54� 10

1

1:34� 10

4

8:08� 10

4

3 7:41� 10

2

3:53� 10

2

1:34� 10

6

8:08� 10

6

4 7:42� 10

3

3:53� 10

3

1:34� 10

8

8:08� 10

8

5 7:42� 10

4

3:53� 10

4

1:34� 10

10

8:08� 10

10

6 7:42� 10

5

3:52� 10

5

1:34� 10

12

8:07� 10

12

Example 2 Consider the solution of well-conditioned Riccati equations of order n = 150

constructed, such that the matrices A

0

; C

0

; D

0

consist of 50 copies of diagonal blocks

A

1

= diag(1� 10

k

; 2� 10

k

; 3� 10

k

);

C

1

= diag(1� 10

�k

; 1; 1� 10

k

);

D

1

= diag(10

�k

; 10

�k

; 10

�k

):

The solution X

0

also consists also of 50 copies of diagonal blocks given by

X

1

= diag(x

1

; x

2

; x

3

);

x

i

= (a

ii

+

q

a

2

ii

+ c

ii

d

ii

)=d

ii

where a

ii

; c

ii

; d

ii

; i = 1; 2; 3 are the corresponding diagonal elements of A

1

; C

1

; D

1

, respec-

tively. Note that the corresponding third order Riccati equation with matrices obtained by

using A

0

; C

0

; D

0

was used in [45] to reveal the loss of accuracy of the unscaled version

of the Schur method. This equation is very well conditioned (K

B

is of order 1) but in the

unscaled version of the Schur method the di�erence between the norms of the blocks of

Hamiltonian matrix increases quickly with k which introduces large errors in the solution.

In Table 2 we show the estimate

~

K

B

of K

B

, the estimate ferr of the relative forward

error and the actual relative error err in the solution for the unscaled Schur method for

s = 1 and di�erent values of k. In Table 3 we show the corresponding values produced by

the matrix sign function method (iter is the number of iterations performed). The accuracy

of both methods is compared in Figure 1.
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Table 2

Accuracy of unscaled Schur method for Example 2

k

~

K

B

ferr err

0 3:87� 10

0

1:11� 10

�13

3:52� 10

�15

1 3:70� 10

0

9:75� 10

�13

3:86� 10

�13

2 3:80� 10

0

1:11� 10

�13

8:23� 10

�11

3 4:00� 10

0

5:94� 10

�8

2:56� 10

�9

4 4:15� 10

0

7:07� 10

�7

3:16� 10

�7

5 3:00� 10

0

1:65� 10

�4

7:63� 10

�5

6 3:81� 10

0

1:21� 10

�2

5:36� 10

�3

Table 3

Accuracy of unscaled matrix sign function method for Example 2

k

~

K

B

iter ferr err

0 4:60� 10

0

5 2:21� 10

�13

7:18� 10

�15

1 3:01� 10

0

6 2:49� 10

�13

4:03� 10

�14

2 3:80� 10

0

6 9:63� 10

�12

4:57� 10

�12

3 3:80� 10

0

6 9:79� 10

�10

4:19� 10

�10

4 3:61� 10

0

6 3:18� 10

�8

1:38� 10

�8

5 4:40� 10

0

6 7:52� 10

�6

3:67� 10

�6

6 3:80� 10

0

6 1:21� 10

�3

5:77� 10

�4
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10

−16

10
−14
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−12
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Accuracy of unscaled Schur and matrix sign function methods, n = 150

+   Schur method

*   Matrix sign function method

Figure 1: Accuracy of un{scaled Schur and matrix sign function methods

We see from these examples which have condition numbers of order 1 for all k, that

the Schur method for the Riccati equation (as a combination of two methods for two sub-

18



problems) as well as the sign function method are unstable, or in other words, the splitting

of the problem into the computation of the invariant subspace follwed by the solution of

a linear system, rewrites a well-conditioned problem as a composition of two subproblems,

one of which is ill-conditioned. It is interesting to note that the same inaccuracy occurs

if one uses the m{�les from [35], which implement the optimal scaling (with respect to

the convergence speed) of the matrix sign function method. We note that in this case the

matrix sign function converges rapidly for all k but the accuracy of the solution is low for

large values of k. The next experiments con�rm the observation that the convergence of

the matrix sign function method and the accuracy of the obtained solution are not directly

connected.

The accuracy of the Schur method for the same example in cases of scaling with � =

p

kCk

1

=kDk

1

and � = kCk

1

=kDk

1

is shown in Table 4 and the corresponding results for

the scaled matrix sign function method are given in Table 5.

Table 4

Accuracy of scaled Schur method for Example 2

� =

p

kCk

1

=kDk

1

� = kCk

1

=kDk

1

k ferr err ferr err

0 1:11� 10

�13

3:52� 10

�15

1:11� 10

�13

3:52� 10

�15

1 1:45� 10

�13

1:72� 10

�14

1:19� 10

�13

4:44� 10

�15

2 5:39� 10

�13

1:92� 10

�13

1:28� 10

�13

7:53� 10

�15

3 3:69� 10

�12

1:47� 10

�12

1:21� 10

�13

6:01� 10

�15

4 3:64� 10

�11

1:54� 10

�11

1:24� 10

�13

6:88� 10

�15

5 3:55� 10

�10

1:32� 10

�10

1:21� 10

�13

5:57� 10

�15

6 3:79� 10

�9

1:53� 10

�9

1:22� 10

�13

5:80� 10

�15

Table 5

Accuracy of scaled matrix sign function method for Example 2

� =

p

kCk

1

=kDk

1

� = kCk

1

=kDk

1

k iter ferr err iter ferr err

0 5 2:21� 10

�13

7:18� 10

�15

5 2:21� 10

�13

7:18� 10

�15

1 6 2:37� 10

�13

7:91� 10

�15

6 2:42� 10

�13

1:08� 10

�14

2 6 2:48� 10

�13

3:60� 10

�14

6 2:37� 10

�13

1:21� 10

�14

3 6 6:13� 10

�13

2:72� 10

�13

6 2:26� 10

�13

5:37� 10

�15

4 6 4:60� 10

�12

2:19� 10

�12

6 2:30� 10

�13

7:69� 10

�15

5 6 5:66� 10

�11

2:73� 10

�11

6 2:28� 10

�13

5:44� 10

�15

6 6 4:58� 10

�10

2:18� 10

�10

6 2:33� 10

�13

7:46� 10

�15

The accuracy of both methods for both types of scaling is presented in Figures 2 and

3. For both methods the full accuracy is obtained by scaling with � = kCk

1

=kDk

1

, which

ensures the norm of the scaled solution to be near to one. As it is well-known [36], such scal-

ing removes the ill-conditioning of one of the subproblems and leads to numerical stability

in the combined Schur method. It is interesting that the same scaling also leads to better

numerical stability in matrix sign function method, which demonstrates again the close

connection between both methods. For these example the scaling with � =

p

kCk

1

=kDk

1

does not lead to the full possible accuracy. Note that for both the unscaled and scaled
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Figure 2: Accuracy of scaled Schur and matrix sign function methods, � =

p

kCk

1

=kDk

1
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Figure 3: Accuracy of scaled Schur and matrix sign function methods, � = kCk

1

=kDk

1

versions of the methods the accuracy estimate, as given by the corresponding value of the

quantity ferr, is close to the actual value of the solution error.

In Figure 4 we show of the error in matrix sign function versus the number of iterations

in the case of scaling with � = kCk

1

=kDk

1

. It is necessary to point out that for the same

number of iterations as in the unscaled matrix sign function method, this scaling allows to

obtain solutions whose error for k = 6 is 10

10

times smaller.

Example 3 Consider a family of Riccati equations of order n = 150 obtained for

matrices A

0

; C

0

; D

0

whose diagonal blocks are chosen as

20
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Figure 4: Convergence of the matrix sign function for Example 2, � = kCk

1

=kDk

1

A

1

= diag(1� 10

�k

; 2; 3� 10

k

);

C

1

= diag(1� 10

k

; 4� 10

2k

; 8� 10

�k

);

D

1

= diag(10

�k

; 1; 10

�k

):

These equations become ill-conditioned with the increase of k due to an increase of kXk

resulting in large values of k�k and especially k�k.

The accuracy of the scaled Schur and matrix sign function method is shown in Tables

6 and 7, respectively, for s = 1. It is seen that for both scalings the Schur method failed

to produce a solution for k = 6 and it failed also for k = 5 in the case of the �rst type

of scaling. In the case of the �rst scaling the failure of the Schur method is due to the

non-convergence QR-method, while in the case of the second scaling some of the leading

eigenvalues in the Schur decomposition of the Hamiltonian matrix changed their signs after

reordering the decomposition. In all these cases the matrix sign function method produced

solutions whose accuracy was close to the accuracy predicted by the sensitivity analysis.

Table 6

Accuracy of Schur method for Example 3
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� =

p

kCk

1

=kDk

1

� = kCk

1

=kDk

1

k

~

K

B

ferr err

~

K

B

ferr err

0 3:28� 10

0

1:04� 10

�13

3:17� 10

�15

4:43� 10

0

1:06� 10

�13

4:57� 10

�15

1 6:54� 10

1

8:01� 10

�13

1:81� 10

�14

6:14� 10

1

7:68� 10

�13

6:48� 10

�15

2 4:05� 10

2

6:07� 10

�11

1:73� 10

�13

1:00� 10

3

1:89� 10

�10

3:82� 10

�13

3 4:04� 10

3

1:92� 10

�8

1:93� 10

�12

1:26� 10

3

3:20� 10

�8

3:46� 10

�11

4 4:04� 10

4

1:18� 10

�6

1:74� 10

�11

1:25� 10

4

1:14� 10

�6

6:82� 10

�9

5 � � � 1:25� 10

5

1:09� 10

�3

4:27� 10

�7

6 � � � �� �� ��

� QR-algorithm failure

�� Reordering error

Table 7

Accuracy of matrix sign function method for Example 3

� =

p

kCk

1

=kDk

1

k iter

~

K

B

ferr err

0 6 3:71� 10

0

2:11� 10

�13

7:11� 10

�15

1 6 6:64� 10

1

3:49� 10

�12

1:83� 10

�14

2 6 4:05� 10

2

3:81� 10

�10

1:39� 10

�13

3 6 6:70� 10

3

1:15� 10

�8

4:22� 10

�13

4 6 4:04� 10

4

3:83� 10

�6

5:34� 10

�12

5 6 4:04� 10

5

2:29� 10

�4

4:39� 10

�11

6 6 4:04� 10

6

3:83� 10

�2

7:54� 10

�10

� = kCk

1

=kDk

1

k iter

~

K

B

ferr err

0 6 5:34� 10

0

2:23� 10

�13

1:28� 10

�14

1 7 9:68� 10

1

1:56� 10

�12

3:65� 10

�14

2 7 1:00� 10

3

3:82� 10

�10

7:36� 10

�14

3 7 1:01� 10

4

2:28� 10

�8

8:04� 10

�13

4 60 6:08� 10

4

1:16� 10

�6

5:73� 10

�12

5 60 1:01� 10

6

2:29� 10

�4

4:80� 10

�11

6 60 1:01� 10

7

6:48� 10

�2

3:38� 10

�10

The convergence of the matrix sign function for � = kCk

1

=kDk

1

is shown in Figure 5.

It is shown that the the stopping criterion is not satis�ed for k = 4; 5; 6 but nevertheless

the obtained accuracy is the maximum possible.

In Figures 6 and 7 we compare the accuracy of Schur and matrix sign function method

for both types of scalings. Clearly, for the given example the scaling with � =

p

kCk

1

=kDk

1

gives better results, in contrast to Example 2. For all k the matrix sign function method

performed better than the Schur method. The detailed comparison of both methods shows

that for the scaling � = kCk

1

=kDk

1

that for the scaling � = kCk

1

=kDk

1

the quantity

sep

F

(T

11

; T

22

), characterizing the separation between the blocks T

11

and T

22

of the Schur

form of H , decreases with the increase of k, while the corresponding quantity for the Schur

form of the matrix sign function remains approximately equal to 2. This leads to the
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Figure 5: Convergence of the matrix sign function for Example 3
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Figure 6: Accuracy of Schur and matrix sign function methods for Example 3, � =

p

kCk

1

=kDk

1

conjecture that the orthonormal basis for the stable invariant subspace is computed more

accurately by the sign function method in the given case, which was con�rmed experimen-

taly by computing the gap between the subspaces spaned by the corresponding columns

of the orthogonal matrices involved in both methods. In Table 8 we show the values of

sep

F

(T

11

; T

22

) and sep

F

(S

11

; S

22

) (S

ij

being the corresponding blocks of the Schur form

Q

T

sign(H)Q of the matrix sign function) for some larger k for which the Schur method
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Figure 7: Accuracy of Schur and matrix sign function methods for Example 3, � =

kCk

1

=kDk

1

was able to produce a result, along with the gap kP

1

� P

2

k

2

between the computed stable

invariant subspaces by both methods. Here P

1

; P

2

are the spectral projectors on the in-

variant subspaces computed by the Schur and matrix sign function methods, respectively.

In all cases when the Schur method produced a solution with large error the gap is large,

which means that the QR-method failed to produce an accurate orthonormal basis, in con-

trast to the matrix sign function. It should be pointed out that in all cases both Schur

decompositions of H arising from the Schur method and the matrix sign function method

were computed with relative backward errors which were of order ". Note that for k = 5:76

and k = 6:05 the matrix sign function method produced a solution for which the error was

10

10

times smaller than the error in the solution produced by the Schur method.

Table 8

Accuracy of stable invariant subspace computation for Example 3, � = kCk

1

=kDk

1

Schur method Matrix sign function method

k ~sep

1

(T

11

; T

22

) err ~sep

1

(S

11

; S

22

) err kP

1

� P

2

k

2

5:70 1:63� 10

�6

2:52� 10

�4

2:00� 10

0

2:76� 10

�10

1:76� 10

�4

5:73 1:86� 10

�10

4:45� 10

�1

2:00� 10

0

2:67� 10

�10

9:75� 10

�1

5:76 1:98� 10

�7

7:70� 10

�5

2:00� 10

0

2:18� 10

�10

5:83� 10

�4

5:85 1:36� 10

�10

3:06� 10

�1

1:99� 10

0

3:04� 10

�10

9:15� 10

�1

6:05 1:31� 10

�9

1:00� 10

0

1:99� 10

0

3:74� 10

�10

9:95� 10

�1

6:40 1:65� 10

�8

1:30� 10

�1

1:86� 10

0

1:38� 10

�9

7:81� 10

�1

6:50 6:94� 10

�9

1:01� 10

0

1:90� 10

0

1:40� 10

�9

9:97� 10

�1

Example 4 Consider �nally a family of Riccati equations with n = 150 for which the

diagonal blocks are chosen as in Example 1 as

A

1

= diag(�1� 10

�k

;�2;�3� 10

k

);
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C

1

= diag(3� 10

�k

; 5; 7� 10

k

);

D

1

= diag(10

�k

; 1; 10

k

):

As in Example 3 these equations become ill-conditioned with increasing k, but this time

the ill-conditioning is due to the decrease of the quantity sep

F

(A

T

c

;�A

c

).
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Figure 8: Convergence of the matrix sign function for Example 4

In Tables 9 and 10 we show the results obtained by both methods and both type of

scalings for di�erent values of k and s = 1. The Schur method failed to produce solutions

for k = 2 and k = 6 in case of scaling with � = kCk

1

=kDk

1

. Note that the condition number

of the Riccati equation for k = 2 is of order only 10

5

. The matrix sign function method

produced again reliable solutions for all k, although it did not converge for k = 6 (see Figure

8). The accuracy of both methods is compared in Figures 9 and 10. For this example the

scaling with � =

p

kCk

1

=kDk

1

gives better results, similarly to the case of Example 3.

Table 9

Accuracy of Schur method for Example 4
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� =

p

kCk

1

=kDk

1

k

~

K

B

ferr err

0 8:49� 10

0

6:54� 10

�14

6:43� 10

�15

1 1:30� 10

3

2:56� 10

�13

8:91� 10

�14

2 1:32� 10

5

1:34� 10

�10

3:41� 10

�11

3 1:27� 10

7

1:41� 10

�8

2:91� 10

�9

4 1:27� 10

9

4:04� 10

�6

7:17� 10

�7

5 1:26� 10

11

1:47� 10

�3

3:15� 10

�4

6 6:41� 10

12

5:13� 10

�1

9:97� 10

�2

� = kCk

1

=kDk

1

k

~

K

B

ferr err

0 1:54� 10

1

9:31� 10

�14

2:31� 10

�14

1 2:81� 10

3

8:09� 10

�13

5:62� 10

�13

2 � � �

3 3:01� 10

7

1:98� 10

�6

4:47� 10

�7

4 3:01� 10

9

2:87� 10

�3

6:25� 10

�4

5 1:50� 10

13

1:00� 10

0

1:00� 10

0

6 �� �� ��

� QR-algorithm failure

�� Reordering error
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Table 10

Accuracy of matrix sign function method for Example 4

� =

p

kCk

1

=kDk

1

k iter

~

K

B

ferr err

0 5 7:56� 10

0

1:39� 10

�13

2:31� 10

�14

1 8 1:31� 10

3

1:09� 10

�12

1:76� 10

�14

2 10 1:33� 10

5

1:24� 10

�10

1:84� 10

�12

3 12 1:28� 10

7

9:44� 10

�9

1:42� 10

�10

4 13 1:27� 10

9

2:61� 10

�7

2:49� 10

�9

5 15 1:26� 10

11

5:05� 10

�4

1:01� 10

�6

6 16 1:26� 10

13

1:40� 10

�1

1:52� 10

�4

� = kCk

1

=kDk

1

k iter

~

K

B

ferr err

0 6 1:28� 10

1

1:35� 10

�13

1:69� 10

�14

1 10 3:79� 10

3

3:76� 10

�13

2:22� 10

�14

2 13 2:95� 10

5

2:80� 10

�10

1:94� 10

�11

3 16 3:01� 10

7

1:12� 10

�6

1:23� 10

�8

4 19 2:05� 10

9

5:49� 10

�4

1:16� 10

�5

5 23 2:94� 10

11

3:82� 10

�1

9:96� 10

�3

6 60 1:95� 10

13

1:00� 10

0

9:96� 10

�1
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Figure 9: Accuracy of Schur and matrix sign function methods for Example 4, � =

p

kCk

1

=kDk

1
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Figure 10: Accuracy of Schur and matrix sign function methods for Example 4, � =

kCk

1

=kDk

1

8 Conclusions

The analysis that we have presented and also the numerical experiments lead to the following

conclusions.

� The convergence of the matrix sign function method is not related directly to the

accuracy of the Riccati equation solution. There exist well-conditioned examples for

which the matrix sign function method converges rapidly but the solution of the

Riccati equation is far from the exact solution and there are ill-conditioned examples

for which the matrix sign function method converges with an error much larger than "

and nevertheless the solution of the Riccati equation is found with accuracy predicted

by the sensitivity analysis. However, the conditioning of the Riccati equation clearly

a�ects the convergence of the matrix sign function.

� In some cases the Schur method did not produce an answer even for some moderately

ill-conditioned Riccati equations due to convergence problems with the QR-method

and di�culties related to the ordering of the Schur form, independently on the used

scaling scheme used. None of the scaling techniques always produces the best answer,

so that the best scaling of the Riccati equation in the Schur method remains an open

problem. In contrast to the Schur method, the matrix sign function method always

produced reliable solution for all examples studied in this report and in many cases

this solution is more accurate than the solution obtained by the Schur method. This

con�rms the conjecture in [20] that the use of matrix sign function does not produce

worse results in computing the invariant subspaces than the QR-method. The very

accurate results obtained by using the matrix sign function in several cases do not

con�rm the proposition stated in [4] that the sign function always yields solutions

with an accuracy of half the machine precision.
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On the basis of these conclusions it is di�cult to recommend one of the used scal-

ing schemes. In our code we implemented the scaling with � =

p

kCk

1

=kDk

1

, since it

tends to produce Hamiltonian matrices with smaller norm and performs better in some

ill-conditioned cases.
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Appendix 1. MATLAB m-�le for determining the exact con-

dition number of continuos{time Riccati equation

function [cond,Omega,Theta,Pi] = cndricc(A,C,D,X);

%CNDRICC Quantities related to the conditioning of the

% continuous-time matrix algebraic Riccati equation

% A'*X + X*A + C - X*D*X = 0.

% The condition number of Riccati equation is given by

% cond = norm([Theta*norm(A,'fro'), Omega*norm(C,'fro'),

% Pi*norm(D,'fro')])/norm(X,'fro')

% where Omega, Theta and Pi are defined by

% Omega = inv(kron(Ac',eye(n)) + kron(eye(n),Ac')),

% Theta = Omega*(kron(eye(n),X) + kron(X,eye(n))*W),

% Pi = Omega*kron(X,X), Ac = A-D*X

% and W is the vec-permutation matrix.

%

% 31.03.1998

%

n = max(size(A));

nora = norm(A,'fro');

norc = norm(C,'fro');

nord = norm(D,'fro');

Ac = A - D*X;

M = kron(Ac',eye(n)) + kron(eye(n),Ac');

Omega = inv(M);

W = 0*eye(n*n);

for i = 1:n,

for j = 1:n,

W(j+(i-1)*n,i+(j-1)*n) = 1.;

end

end

Theta = M\(kron(eye(n),X) + kron(X,eye(n))*W);

Pi = M\kron(X,X);

D1 = norc*Omega;

D2 = nora*Theta;

D3 = nord*Pi;

cond = norm([D1, D2, -D3]) / norm(X,'fro');
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Appendix 2. Fortran 77 suboutines

DGRSVX - Driver subroutine for solving the continous{time matrix algebraic Riccati

equation by the Schur method with condition and accuracy estimates

SELNEG - Logical function used to select eigenvalues with negative real parts

DMSRIC - Driver subroutine for solving the continuous-time matrix algebraic Riccati

- equation by the matrix sign function method with condition and accuracy

- estimates

DTRLYP - Subroutines for solving the triangular continuous{time matrix Lyapunov

DLALY2 - equation used in the condition and accuracy estimation
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SUBROUTINE DGRSVX( TRANA, N, A, LDA, UPLO, C, LDC, D, LDD, X,

$ LDX, WR, WI, RCOND, FERR, WORK, LWORK,

$ IWORK, BWORK, INFO )

*

* Tech. University of Sofia and Tech. University of Chemnitz

* March 31, 1998

*

* .. Scalar Arguments ..

CHARACTER TRANA, UPLO

INTEGER INFO, LDA, LDC, LDD, LDX, LWORK, N

DOUBLE PRECISION FERR, RCOND

* ..

* .. Array Arguments ..

LOGICAL BWORK( * )

INTEGER IWORK( * )

DOUBLE PRECISION A( LDA, * ), C( LDC, * ), D( LDD, * ),

$ X( LDX, * ), WI( * ), WORK( * ), WR( * )

* ..

*

* Purpose

* =======

*

* DGRSVX solves the real matrix algebraic Riccati equation

*

* transpose(op(A))*X + X*op(A) + C - X*D*X = 0

*

* where op(A) = A or A**T and C, D are symmetric (C = C**T, D = D**T) .

* The matrices A, C and D are N-by-N and the solution X is N-by-N .

*

* Error bound on the solution and a condition estimate are also

* provided.

*

* It is assumed that the matrices A, C and D are such that the

* corresponding Hamiltonian matrix has N eigenvalues with negative

* real parts.

*

* Arguments

* =========

*

* TRANA (input) CHARACTER*1

* Specifies the option op(A):

* = 'N': op(A) = A (No transpose)

* = 'T': op(A) = A**T (Transpose)

* = 'C': op(A) = A**T (Conjugate transpose = Transpose)

*

* N (input) INTEGER

* The order of the matrix A, and the order of the

* matrices C, D and X. N >= 0.
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*

* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* The N-by-N matrix A.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* UPLO (input) CHARACTER*1

* = 'U': Upper triangles of C and D are stored;

* = 'L': Lower triangles of C and D are stored.

*

* C (input) DOUBLE PRECISION array, dimension (LDC,N)

* If UPLO = 'U', the leading N-by-N upper triangular part of C

* contains the upper triangular part of the matrix C.

* If UPLO = 'L', the leading N-by-N lower triangular part of C

* contains the lower triangular part of the matrix C.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= max(1,N)

*

* D (input) DOUBLE PRECISION array, dimension (LDD,N)

* If UPLO = 'U', the leading N-by-N upper triangular part of D

* contains the upper triangular part of the matrix D.

* If UPLO = 'L', the leading N-by-N lower triangular part of D

* contains the lower triangular part of the matrix D.

*

* LDD (input) INTEGER

* The leading dimension of the array D. LDD >= max(1,N)

*

* WR (output) DOUBLE PRECISION array, dimension (N)

* WI (output) DOUBLE PRECISION array, dimension (N)

* If TRANA = 'N', WR and WI contain the real and imaginary

* parts, respectively, of the eigenvalues of A - D*X.

* If TRANA = 'T' or 'C', WR and WI contain the real and

* imaginary parts, respectively, of the eigenvalues of A - X*D.

*

* RCOND (output) DOUBLE PRECISION

* The estimate of the reciprocal condition number of the

* Riccati equation.

*

* FERR (output) DOUBLE PRECISION

* The estimated forward error bound for the solution X.

* If XTRUE is the true solution, FERR bounds the magnitude

* of the largest entry in (X - XTRUE) divided by the magnitude

* of the largest entry in X.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

* On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
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*

* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 9*N*N + 4*N +

* max(1,6*N).

* For good performance, LWORK must generally be larger.

*

* IWORK (workspace) INTEGER array, dimension max(2*N,N*N)

*

* BWORK (workspace) LOGICAL array, dimension (2*N)

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* = 1: the QR algorithm failed to compute the eigenvalues of

* the Hamiltonian matrix

* = 2: the eigenvalues of the Hamiltonian matrix could not be

* reordered because some eigenvalues were too close to

* separate

* = 3: after reordering, roundoff changed values of some

* complex eigenvalues so that leading eigenvalues in

* the Schur form have no longer negative real parts

* = 4: the system of linear equations for the solution is

* singular to working precision

* = 5: the matrix A-D*X (or A-X*D) can not be reduced to Schur

* canonical form and condition number estimate and

* forward error estimate are not computed

*

* Further Details

* ===============

*

* The Riccati equation is solved by the Schur approach [1] implementing

* a scaling which enhances the numerical stability [4].

*

* The condition number of the Riccati equation is estimated as

*

* cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(C) +

* norm(Pi)*norm(D) ) / norm(X)

*

* where Omega, Theta and Pi are linear operators defined by

*

* Omega(Z) = transpose(op(A))*Z + Z*op(A),

* Theta(Z) = inv(Omega(transpose(op(Z))*X + X*op(Z))),

* Pi(Z) = inv(Omega(X*Z*X)).

*

* The program estimates the quantities

*

* sep(op(A),-transpose(op(A)) = 1 / norm(inv(Omega)),

*
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* norm(Theta) and norm(Pi) using 1-norm condition estimator.

*

* The forward error bound is estimated using a practical error bound

* similar to the one proposed in [3].

*

* References

* ==========

*

* [1] A.J. Laub. A Schur method for solving algebraic Riccati

* equations. IEEE Trans. Autom. Control, vol. 24, pp. 913-921,

* 1979.

* [2] A.R. Ghavimi and A.J. Laub. Backward error, sensitivity, and

* refinment of computed solutions of algebraic Riccati equations.

* Numerical Linear Algebra with Applications, vol. 2, pp. 29-49,

* 1995.

* [3] N.J. Higham. Perturbation theory and backward error for AX-XB=C,

* BIT, vol. 33, pp. 124-136, 1993.
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* =====================================================================

LOGICAL FUNCTION SELNEG( WR, WI )

*

* Tech. University of Sofia and Tech. University of Chemnitz

* March 31, 1998

*

* .. Scalar Arguments ..

DOUBLE PRECISION WR, WI

* ..

*

* Purpose

* =======

*

* SELNEG is used to select eigenvalues with negative real parts

* to sort to the top left of the Schur form of the Hamiltonian

* matrix in solving matrix algebraic Riccati equations

*
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SUBROUTINE DMSRIC( TRANA, N, A, LDA, UPLO, C, LDC, D, LDD, X,

$ LDX, WR, WI, RCOND, FERR, WORK, LWORK, IWORK,

$ INFO )

*

* Tech. University of Sofia and Tech. University of Chemnitz

* March 31, 1998

*

* .. Scalar Arguments ..

CHARACTER TRANA, UPLO

INTEGER INFO, LDA, LDC, LDD, LDX, LWORK, N

DOUBLE PRECISION FERR, RCOND

* ..

* .. Array Arguments ..

INTEGER IWORK( * )

DOUBLE PRECISION A( LDA, * ), C( LDC, * ), D( LDD, * ),

$ X( LDX, * ), WI( * ), WORK( * ), WR( * )

* ..

*

* Purpose

* =======

*

* DMSRIC solves the real matrix algebraic Riccati equation

*

* transpose(op(A))*X + X*op(A) + C - X*D*X = 0

*

* where op(A) = A or A**T and C, D are symmetric (C = C**T, D = D**T) .

* The matrices A, C and D are N-by-N and the solution X is N-by-N .

*

* Error bound on the solution and a condition estimate are also

* provided.

*

* It is assumed that the matrices A, C and D are such that the

* corresponding Hamiltonian matrix has N eigenvalues with negative

* real parts.

*

* Arguments

* =========

*

* TRANA (input) CHARACTER*1

* Specifies the option op(A):

* = 'N': op(A) = A (No transpose)

* = 'T': op(A) = A**T (Transpose)

* = 'C': op(A) = A**T (Conjugate transpose = Transpose)

*

* N (input) INTEGER

* The order of the matrix A, and the order of the

* matrices C, D and X. N >= 0.

*
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* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* The N-by-N matrix A.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* UPLO (input) CHARACTER*1

* = 'U': Upper triangles of C and D are stored;

* = 'L': Lower triangles of C and D are stored.

*

* C (input) DOUBLE PRECISION array, dimension (LDC,N)

* If UPLO = 'U', the leading N-by-N upper triangular part of C

* contains the upper triangular part of the matrix C.

* If UPLO = 'L', the leading N-by-N lower triangular part of C

* contains the lower triangular part of the matrix C.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= max(1,N)

*

* D (input) DOUBLE PRECISION array, dimension (LDD,N)

* If UPLO = 'U', the leading N-by-N upper triangular part of D

* contains the upper triangular part of the matrix D.

* If UPLO = 'L', the leading N-by-N lower triangular part of D

* contains the lower triangular part of the matrix D.

*

* LDD (input) INTEGER

* The leading dimension of the array D. LDD >= max(1,N)

*

* WR (output) DOUBLE PRECISION array, dimension (N)

* WI (output) DOUBLE PRECISION array, dimension (N)

* If TRANA = 'N', WR and WI contain the real and imaginary

* parts, respectively, of the eigenvalues of A - D*X ;

* if TRANA = 'T' or 'C', WR and WI contain the real and

* imaginery parts, respectively, of the eigenvalues of A - X*D.

*

* RCOND (output) DOUBLE PRECISION

* The estimate of the reciprocal condition number of the

* Riccati equation.

*

* FERR (output) DOUBLE PRECISION

* The estimated forward error bound for the solution X.

* If XTRUE is the true solution, FERR bounds the magnitude

* of the largest entry in (X - XTRUE) divided by the magnitude

* of the largest entry in X.

*

* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)

* On exit, if INFO = 0, WORK(1) contains the optimal LWORK.

*
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* LWORK (input) INTEGER

* The dimension of the array WORK. LWORK >= 9*N*N + 7*N.

* For good performance, LWORK must generally be larger.

*

* IWORK (workspace) INTEGER array, dimension max(2*N,N*N)

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* = 1: the Hamiltonian matrix has eigenvalues on the imaginary

* axis, so the solution and error bounds could not be

* computed

* = 2: the iteration for the matrix sign function failed to

* converge after 60 iterations, but an approximate

* solution and error bounds have been computed

* = 3: the system of linear equations for the solution is

* singular to working precision, so the solution and

* error bounds could not be computed

* = 4: the matrix A-D*X (or A-X*D) can not be reduced to Schur

* canonical form and condition number estimate and

* forward error estimate have not been computed.

*

* Further Details

* ===============

*

* The Riccati equation is solved by the matrix sign function approach

* [1], [2] implementing a scaling which enhances the numerical

* stability [4].

*

* The condition number of the Riccati equation is estimated as

*

* cond = ( norm(Theta)*norm(A) + norm(inv(Omega))*norm(C) +

* norm(Pi)*norm(D) ) / norm(X)

*

* where Omega, Theta and Pi are linear operators defined by

*

* Omega(Z) = transpose(op(A))*Z + Z*op(A),

* Theta(Z) = inv(Omega(transpose(op(Z))*X + X*op(Z))),

* Pi(Z) = inv(Omega(X*Z*X)).

*

* The program estimates the quantities

*

* sep(op(A),-transpose(op(A)) = 1 / norm(inv(Omega)),

*

* norm(Theta) and norm(Pi) using 1-norm condition estimator.

*

* The forward error bound is estimated using a practical error bound

* similar to the one proposed in [3].
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SUBROUTINE DTRLYP( TRANA, N, A, LDA, C, LDC, SCALE, INFO )

*

* Tech. University of Sofia and Tech. University of Chemnitz

* March 31, 1998

*

* .. Scalar Arguments ..

CHARACTER TRANA

INTEGER INFO, LDA, LDC, N

DOUBLE PRECISION SCALE

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( LDA, * ), C( LDC, * )

* ..

*

* Purpose

* =======

*

* DTRLYP solves the real Lyapunov matrix equation:

*

* transpose(op(A))*X + X*op(A) = scale*C

*

* where op(A) = A or A**T, A is upper quasi-triangular and C is

* symmetric (C = C**T). A is N-by-N, the right hand side C and the

* solution X are N-by-N, and scale is an output scale factor,

* set <= 1 to avoid overflow in X.

*

* A must be in Schur canonical form (as returned by DHSEQR), that is,

* block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;

* each 2-by-2 diagonal block has its diagonal elements equal and its

* off-diagonal elements of opposite sign.

*

* Arguments

* =========

*

* TRANA (input) CHARACTER*1

* Specifies the option op(A):

* = 'N': op(A) = A (No transpose)

* = 'T': op(A) = A**T (Transpose)

* = 'C': op(A) = A**H (Conjugate transpose = Transpose)

*

* N (input) INTEGER

* The order of the matrix A, and the order of the

* matrices X and C. N >= 0.

*

* A (input) DOUBLE PRECISION array, dimension (LDA,N)

* The upper quasi-triangular matrix A, in Schur canonical form.

*

* LDA (input) INTEGER
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* The leading dimension of the array A. LDA >= max(1,N).

*

* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)

* On entry, the symmetric N-by-N right hand side matrix C.

* On exit, C is overwritten by the solution matrix X.

*

* LDC (input) INTEGER

* The leading dimension of the array C. LDC >= max(1,N)

*

* SCALE (output) DOUBLE PRECISION

* The scale factor, scale, set <= 1 to avoid overflow in X.

*

* INFO (output) INTEGER

* = 0: successful exit

* < 0: if INFO = -i, the i-th argument had an illegal value

* = 1: A and -A have common or very close eigenvalues;

* perturbed values were used to solve the equation

* (but the matrix A is unchanged).

*

* =====================================================================

SUBROUTINE DLALY2( LTRAN, T, LDT, B, LDB, SCALE,

$ X, LDX, XNORM, INFO )

*

* Tech. University of Sofia and Tech. University of Chemnitz

* March 31, 1998

*

* .. Scalar Arguments ..

LOGICAL LTRAN

INTEGER INFO, LDB, LDT, LDX

DOUBLE PRECISION SCALE, XNORM

* ..

* .. Array Arguments ..

DOUBLE PRECISION B( LDB, * ), T( LDT, * ), X( LDX, * )

* ..

*

* Purpose

* =======

*

* DLALY2 solves for the 2 by 2 symmetric matrix X in

*

* op(T')*X + X*op(T) = SCALE*B,

*

* where T is 2 by 2, B is symmetric 2 by 2, and op(T) = T or T',

* where T' denotes the transpose of T.
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*

* Arguments

* =========

*

* LTRAN (input) LOGICAL

* On entry, LTRAN specifies the op(T):

* = .FALSE., op(T) = T,

* = .TRUE., op(T) = T'.

*

* T (input) DOUBLE PRECISION array, dimension (LDT,2)

* On entry, T contains an 2 by 2 matrix.

*

* LDT (input) INTEGER

* The leading dimension of the matrix T. LDT >= 2.

*

* B (input) DOUBLE PRECISION array, dimension (LDB,2)

* On entry, the 2 by 2 matrix B contains the symmetric

* right-hand side of the equation.

*

* LDB (input) INTEGER

* The leading dimension of the matrix B. LDB >= 2.

*

* SCALE (output) DOUBLE PRECISION

* On exit, SCALE contains the scale factor. SCALE is chosen

* less than or equal to 1 to prevent the solution overflowing.

*

* X (output) DOUBLE PRECISION array, dimension (LDX,2)

* On exit, X contains the 2 by 2 symmetric solution.

*

* LDX (input) INTEGER

* The leading dimension of the matrix X. LDX >= 2.

*

* XNORM (output) DOUBLE PRECISION

* On exit, XNORM is the infinity-norm of the solution.

*

* INFO (output) INTEGER

* On exit, INFO is set to

* 0: successful exit.

* 1: T and -T have too close eigenvalues, so T

* is perturbed to get a nonsingular equation.

* NOTE: In the interests of speed, this routine does not

* check the inputs for errors.

*

* =====================================================================
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