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Abstract

We study canonical forms for Hamiltonian and symplectic matrices or pencils

under equivalence transformations which keep the class invariant. In contrast to other

canonical forms our forms are as close as possible to a triangular structure in the same

class. We give necessary and su�cient conditions for the existence of Hamiltonian

and symplectic triangular Jordan, Kronecker and Schur forms. The presented results

generalize results of Lin and Ho [17] and simplify the proofs presented there.

Keywords. eigenvalue problem, Hamiltonian pencil (matrix), symplectic pencil (matrix),

linear quadratic control, Jordan canonical form, Kronecker canonical form, algebraic Ric-

cati equation
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1 Introduction

In this paper we study canonical (Jordan and Kronecker) and condensed (Schur) forms

for matrices and matrix pencils with a special structure under equivalence transformations

that keep this structure invariant. Let us �rst introduce the algebraic structures that we

consider.

Let J

n

:=

"

0 I

n

�I

n

0

#

, where I

n

is the n� n identity matrix. We will just use J if the

size is clear from the context. The superscripts T , H represent the transpose and conjugate

transpose, respectively.

�

This work was supported by Deutsche Forschungsgemeinschaft, Research Grant Me 790/7-2
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De�nition 1

1. A matrix H 2 C

2n�2n

is called Hamiltonian if HJ

n

= (HJ

n

)

H

. Every Hamiltonian

matrix can be expressed as

H =

"

A D

G �A

H

#

; (1)

where D = D

H

and G = G

H

.

2. A matrix H 2 C

2n�2n

is Hamiltonian triangular if H is Hamiltonian and in the block

form (1), with G = 0 and where A is upper triangular or quasi upper triangular if H

is real.

3. A matrix S 2 C

2n�2n

is called symplectic if S

H

J

n

S = J

n

.

4. A matrix S 2 C

2n�2n

is symplectic triangular if it is symplectic and has the block

form S =

"

S

1

S

2

0 S

�H

1

#

, where S

1

is upper triangular or quasi upper triangular if S

is real.

5. A matrix pencilM

h

��L

h

2 C

2n�2n

is called Hamiltonian ifM

h

J

n

L

H

h

= �L

h

J

n

M

H

h

.

6. A matrix pencil M

h

� �L

h

2 C

2n�2n

is Hamiltonian triangular if it is Hamilto-

nian, M

h

=

"

M

1

M

3

0 M

2

#

and L

h

=

"

L

1

L

3

0 L

2

#

, where M

1

;M

H

2

; L

1

; L

H

2

are upper

triangular. If the pencil is real then M

1

;M

H

2

are quasi upper triangular.

7. A matrix pencil M

s

� �L

s

2 C

2n�2n

is called symplectic if M

s

J

n

M

H

s

= L

s

J

n

L

H

s

.

8. A matrix pencilM

s

��L

s

2 C

2n�2n

is symplectic triangular if it is symplectic,M

s

=

"

M

1

M

3

0 M

2

#

and L

s

=

"

L

1

L

3

0 L

2

#

, where M

1

;M

H

2

; L

1

; L

H

2

are upper triangular. If

the pencil is real then M

1

;M

H

2

are quasi upper triangular.

9. A matrix Q 2 C

2n�2n

is unitary symplectic if Q

H

Q = I

2n

and Q

H

J

n

Q = J

n

.

Matrices and pencils with the structures introduced in De�nition 1 occur in a large number

of applications. Classical applications are the solution of linear quadratic optimal control

problems, where the matrices or matrix pencils associated with the two point boundary

value problems of Euler-Lagrangian equations have these structures [18], the solution of

H

1

control problems [8], eigenvalue problems in quantum mechanics [20] or the solution

of algebraic Riccati equations [2, 15]. While the Hamiltonian matrices form a Lie Algebra,

the symplectic matrices form the corresponding Lie group.

Our interest in canonical and condensed forms is multifold. First of all we would like

to have a complete picture of all the invariants under structure preserving similarity or
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equivalence transformations. For matrices these results are well-known, see [16, 6]. We

extend these results to pencils. Second we would like to have canonical forms as well as

condensed forms that are closely related, like the Jordan canonical form under similarity

and the Schur form under unitary similarity. Both these classical forms are upper triangular

and display eigenvalues and invariant subspaces. The reason why we like to have forms

of a similar structure is that the computation of the Jordan canonical form is usually

an ill-conditioned problem for �nite precision computation, while the computation of the

Schur form is not. From the Schur form, however, some of the extra information of the

Jordan form can be computed also in �nite precision, e.g. [11]. If we obtain a triangular

Jordan-like form and a similar Schur form, then the latter may lead us to a computational

method from which also part of the Jordan structure can be determined.

The third motivation arises from applications in control theory. Since the solution of

linear quadratic optimal control problems and algebraic Riccati equations can be obtained

via the computation of special (Lagrangian) invariant subspaces, we would like to obtain

these subspaces from the canonical and condensed forms, e.g. [4, 18, 1]. But in general

it is not clear whether such Lagrangian subspaces exist. Most results (see e.g. [15]) give

only su�cient conditions, which are usually not necessary. So we would like to be able

to diagnose from the canonical and condensed form whether the solutions exist and are

unique. To do this in a similar fashion theoretically and computationally, we need to have

forms which are at least partly accessible numerically, and from which we can read o� the

Lagrangian subspaces.

These questions and the construction of canonical or condensed forms for the described

structured pencils or matrices is the topic of an enormous number of publications in the last

40 years, since it was recognized that these structures play an important role in the analysis

and solution of control problems. For a discussion of these applications and previous results,

we refer the reader to the monographs [18, 2, 15] and the references given therein.

To describe the general ideas in our approach let us consider the Hamiltonian matrix

case. The discussion for the other cases is similar. The global goal is to determine a

symplectic matrix U , such that

U

�1

HU =

"

A D

0 �A

H

#

is Hamiltonian triangular, as condensed as possible, and displays all the invariants under

symplectic similarity transformation. Again as mentioned before there are several reasons

for this goal. The algebraic structure of the matrix usually re
ects physical properties of

the underlying practical problem and thus it should be also re
ected in the analysis as

well as in the computational methods. The triangular structure is the structure that we

expect to obtain from numerical methods, since from this structure we can easily read o�

eigenvalues and invariant subspaces. The maximal condensation, as in the standard Jordan

canonical form, will give us the information about the invariants like the sizes of Jordan

blocks and the eigen- and principal vectors.

There are many di�erent approaches that one can take to derive canonical and condensed

forms for Hamiltonian matrices. For the problems studied here, which are matrices from
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classical Lie and Jordan algebras a complete survey was given in [6], describing all the

types of invariants that may occur. In this general framework, however, only the types of

invariants are described, but not triangular forms or Schur forms.

Another very simple approach to obtain a canonical form is the idea to express the

Hamiltonian matrix H as a matrix pencil �J�JH, i.e., a pencil where one of the matrices

is skew Hermitian and the other is Hermitian. Using congruence transformations U

H

(�J�

JH)U , we obtain a canonical form via classical results for such pencils, see e.g., [22, 23].

In view of our goals, however, this is not quite what we want, since in general these forms

do not give that U

H

JU = J , hence they do not lead to the structured form that we are

interested in. The other disadvantage of this approach is that it will not display directly

the Lagrangian subspaces, since it is not a triangular from.

Another classical approach is to use the pencil �iJ � JH, which is now a Hermitian

pencil. Since iJ de�nes an inde�nite scalar product, the elaborate theory of matrices

in spaces with inde�nite scalar products, e.g., [7] can be employed and the associated

canonical forms can be obtained. This approach has been used successfully in the analysis

of the algebraic Riccati equation [15] but shares the disadvantages with the approach via

the pencil �J�JH. Another di�culty is that for real problems the problem is turned into

a complex problem due to the multiplication with i.

A canonical form under symplectic similarity directly for the Hamiltonian matrix was

�rst obtained in [16], but it has a very unusual structure which is not triangular or even

near triangular and it also cannot be used to determine the Lagrangian subspaces in a

simple way.

A condensed form under unitary symplectic similarity transformations for Hamiltonian

matrices was �rst considered in [21]. These results were extended later in [17]. Other

studies concerning canonical and condensed forms were given in [25, 26, 9].

The main motivation for our research arose from an unpublished technical report of Lin

and Ho on the existence of Hamiltonian Schur forms [17]. The results given there (for which

the proofs are very hard to follow) are obtained as simple corollaries to our canonical form.

Particular emphasis in this paper is placed on the analysis of the eigenstructure associated

to eigenvalues on the imaginary axis in the Hamiltonian case, or on the unit circle in the

symplectic case, since this is where previous results did not give the complete analysis.

Furthermore we derive our results from classical non-structured canonical forms.

The paper is structured as follows. In Section 2, we introduce the notation and give

some preliminary results. Section 3 gives some technical results which are needed for the

construction of the canonical forms in the Hamiltonian case. Complex and real Hamiltonian

Jordan forms are then presented in Section 4. The analogous results for Hamiltonian pencils

are presented in Section 5. In Section 6 we present again some technical results to deal

with the symplectic case. These results are then used to derive the canonical froms for

symplectic pencils in Section 7 and symplectic matrices in Section 8. The paper is written

in such a way that the sections containing the canonical forms are essentially self contained

and can be read without going through the technical lemmas in Sections 3 and 6.
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� 2 �(H) Complex Hamiltonian Real Hamiltonian

General Hamiltonian triangular General Hamiltonian triangular

Re� 6= 0 �

�

� �

�

�

�

�;�

�

�;��

�

�;�

�

�;��

Re� = 0

� 6= 0

even ��(=

�

�) �;�� even

� = 0 even even even

Table 1: Eigenvalues of Hamiltonian matrices

2 Notation and preliminaries

In this section we introduce the notation and give some preliminary results.

De�nition 2

1. A k�dimensional subspace U � C

n

is called (right) invariant subspace for A 2 C

n�n

if for a matrix U whose columns span U, there exists a matrix C 2 C

k�k

such that

AU = UC. It is called left invariant subspace for A 2 C

n�n

if it is an invariant

subspace for A

H

.

2. A k�dimensional subspace U � C

n

is called (right) de
ating subspace for a pencil

A � �B 2 C

n�n

if for a matrix U whose columns span U, there exist matrices

V 2 C

n�k

, C

1

; C

2

2 C

k�k

, such that AU = V C

1

, BU = V C

2

. It is called left

de
ating subspace for A��B 2 C

n�n

if it is a right de
ating subspace for A

H

��B

H

.

3. A k�dimensional subspace U � C

2n

is called isotropic if x

H

J

n

y = 0 for all x; y 2 U.

4. A subspace U � C

2n

is called Lagrangian subspace if it is isotropic and is not con-

tained in a larger isotropic subspace. A Lagrangian subspace always has dimension

n.

5. A subspace U � C

2n

is called Lagrangian invariant subspace of a matrix A 2 C

n�n

if it is a (right) invariant subspace of A and is Lagrangian.

6. A subspace U � C

2n�2n

is called Lagrangian de
ating subspace of the matrix pair

A� �B if it is a (right) de
ating subspace of A� �B and is Lagrangian.

The eigenvalues of Hamiltonian and symplectic matrices have certain symmetries. Al-

though these properties are well-known, see e.g., [18], we list them following tables 1{4. We

will use �(A) and �(A;B) to denote the spectrum and generalized spectrum of a square

matrix A and a matrix pencil A� �B, respectively. In the following tables the word even

denotes the fact that the algebraic multiplicity of an eigenvalue is even.

We will frequently use the following well-known properties of Hamiltonian and symplectic

matrices and pencils, see e.g., [18].
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� 2 �(M

h

;L

h

) Complex Hamiltonian Real Hamiltonian

General Hamiltonian triangular General Hamiltonian triangular

Re� 6= 0 �

�

� �

�

�

�

�;�

�

�;��

�

�;�

�

�;��

Re� = 0

� 6= 0

even ��(=

�

�) �;�� even

� = 0 even even even

� =1 even even even

Table 2: Eigenvalues of Hamiltonian pencils

� 2 �(S) Complex symplectic Real symplectic

General Symplectic triangular General Symplectic triangular

j�j 6= 1

�

�

�1

�

�

�1

�

�;

�

�

�1

; �

�1

�

�;

�

�

�1

; �

�1

j�j = 1

� 6= �1

even

�

� �;

�

� even

� = �1 even even even

Table 3: Eigenvalues of symplectic matrices

� 2 �(M

s

;L

s

) Complex symplectic Real symplectic

General Symplectic triangular General Symplectic triangular

j�j 6= 1; 0;1

�

�

�1

�

�

�1

�

�;

�

�

�1

; �

�1

�

�;

�

�

�1

; �

�1

� = 0; (1) 1; (0) 0;1 even 0;1 even

j�j = 1

� 6= �1

even

�

� �;

�

� even

� = �1 even even even

Table 4: Eigenvalues of symplectic pencils
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Proposition 1

1. If A is Hamiltonian (symplectic) and U is symplectic, then U

�1

AU is still Hamilto-

nian (symplectic).

2. If M� �L is Hamiltonian (symplectic), Y is nonsingular and U is symplectic, then

Y(M� �L)U is Hamiltonian (symplectic).

Finally let us introduce two triangular factorizations that will be used frequently in the

following.

Lemma 3

1. For every matrix Z 2 C

2n�2n

there exists a unitary matrix Q 2 C

2n�2n

, such that

Z =

"

R

1;1

R

1;2

0 R

2;2

#

Q, with R

1;1

, R

H

2;2

upper triangular.

2. For every symplectic matrix S 2 C

2n�2n

there exists a unitary symplectic matrix

Q 2 C

2n�2n

, such that S = Q

"

R

1;1

R

1;2

0 R

�H

1;1

#

, with R

1;1

upper triangular.

For real matrices there are corresponding real factorizations.

Proof. The �rst part is a slight variation of the usual QL decomposition for Z

H

, see e.g.,

[11] and the second part was proved in [3].

For completeness we also list the following well-known property of invariant subspaces,

which follows directly from the Jordan canonical form, e.g. [10].

Proposition 2 Let A 2 C

n�n

, let the columns of U span the left invariant subspace of

A corresponding to �

1

2 �(A) and let the columns of V span the right invariant subspace

corresponding to �

2

2 �(A). If �

1

6= �

2

then U

H

V = 0. If �

1

= �

2

then det(U

H

V ) 6= 0:

Every Hermitian matrix A is congruent to its inertia matrix diag(I

p(A)

;�I

n(A)

; 0

z(A)

),

where p(A); n(A); z(A) denote the number of positive, negative and zero eigenvalues of A.

By Ind(A) we denote the tuple (1; : : : ; 1

| {z }

p(A)

;�1; : : : ;�1

| {z }

n(A)

; 0; : : : ; 0

| {z }

z(A)

) associated with the inertia

matrix of A. We will also use the same notation for skew Hermitian matrices, i.e., for

a skew Hermitian matrix A we denote by Ind(A) the tuple (i; : : : ; i

| {z }

p(A)

;�i; : : : ;�i

| {z }

n(A)

; 0; : : : ; 0

| {z }

z(A)

),

where p(A); n(A); z(A) are the number of eigenvalues of A with positive, negative and zero

imaginary parts.
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3 Technical lemmas for the Hamiltonian case

In this section we consider several technical results that are needed to derive the (Jordan)

canonical form of a given Hamiltonian matrix H under symplectic similarity transforma-

tions.

The goal is to determine a symplectic matrix U , such that

U

�1

HU =

"

A D

0 �A

H

#

(2)

is Hamiltonian triangular, as condensed as possible, and displays all the invariants under

symplectic similarity transformation.

Lemma 4 Let H be symplectically similar to a Hamiltonian triangular matrix. Then there

exists a symplectic matrix U , such that

U

�1

HU =

"

~

A

~

D

0 �

~

A

H

#

; (3)

where

~

A = diag(R

1

; : : : ; R

�

; P

1

; : : : ; P

�

) and

~

D = diag(0; : : : ; 0; D

1

; : : : ; D

�

) are partitioned

conformally. The blocks P

j

are associated with the pairwise di�erent purely imaginary

eigenvalues and the blocks R

j

are associated with the pairwise di�erent eigenvalues with

nonzero real part, i.e., each block P

j

has only one single purely imaginary eigenvalue i�

j

and �

j

6= �

k

for j 6= k; analogously each block R

j

has only one eigenvalue �

j

and �

j

6= �

k

for j 6= k.

Proof. By hypothesis there exists a symplectic matrix U

1

such that

U

�1

1

HU

1

=

"

A D

0 �A

H

#

:

Using the Jordan canonical form of A, there exists a nonsingular matrix T , such that

~

A := T

�1

AT = diag(R

1

; : : : ; R

�

; P

1

; : : : ; P

�

) as desired. Then

"

T

�1

0

0 T

H

#

U

�1

1

HU

1

"

T 0

0 T

�H

#

=

"

~

A T

�1

DT

�H

0 �

~

A

H

#

:

Using a sequence of symplectic similarity transformations with matrices of the form

"

I X

j

0 I

#

,

where X

j

is Hermitian, we can bring T

�1

DT

�H

to the desired block diagonal form

~

D, see

e.g., [18].

It follows that we can restrict the analysis of the Jordan and Schur forms for Hamilto-

nian matrices to matrices with one single eigenvalue. In this way, we immediately obtain

necessary conditions for the invariant subspaces. The following result appeared �rst in an

unpublished paper [17]. We will give a di�erent proof.
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Proposition 3 Let H be a Hamiltonian matrix, let i�

1

; : : : ; i�

�

be its pairwise di�erent

purely imaginary eigenvalues and let U

k

, k = 1; : : : ; � be matrices whose columns span

the associated invariant subspaces. Analogously let �

1

; : : : ; �

�

, �

�

�

1

; : : : ;�

�

�

�

be the pair-

wise di�erent eigenvalues with nonzero real parts and let V

k

,

~

V

k

, k = 1; : : : ; � be matrices

whose columns span the associated invariant subspaces. If H is symplectically similar to a

Hamiltonian triangular matrix, then for all k = 1; : : : ; �, we have

V

H

k

JV

k

= 0;

~

V

H

k

J

~

V

k

= 0; det(

~

V

H

k

JV

k

) 6= 0; (4)

and for all k = 1; : : : ; �, U

H

k

JU

k

is congruent to J

l

k

for some integer l

k

.

Proof. By hypothesis we have (3). Partition the columns of U conformally with (3), i.e.,

U = [V

1

: : : ; V

�

; U

1;1

; : : : ; U

1;�

;

~

V

1

; : : : ;

~

V

�

; U

2;1

; : : : ; U

2;�

]:

Obviously the columns of U

k

:= [U

1;k

; U

2;k

], k = 1; : : : ; � span the invariant subspaces

corresponding to i�

k

, k = 1; : : : ; � and the columns of V

k

,

~

V

k

span the invariant subspaces

corresponding to �(R

k

) and �(�R

H

k

), respectively. The assertion then follows since U is

symplectic.

For the eigenvalues with nonzero real parts, as the following Lemma shows, the asso-

ciated invariant subspaces always satisfy the necessary condition (4). Recall that for a

Hamiltonian matrix H if � 2 �(H) and Re� 6= 0 then �

�

� 2 �(H) and clearly �

�

� 6= �.

Lemma 5 Let � be an eigenvalue with nonzero real part of a Hamiltonian matrix H. Let

the columns of the full rank matrices V ,

~

V span the invariant subspaces corresponding to �

and �

�

�, respectively, i.e., HV = V T

1

, H

~

V =

~

V T

2

and �(T

1

) = f�g, �(T

2

) = f�

�

�g. Then

V

H

JV =

~

V

H

J

~

V = 0; det(V

H

J

~

V ) 6= 0:

Moreover, V;

~

V can be chosen such that

[V;

~

V ]

H

J [V;

~

V ] = J; H[V;

~

V ] = [V;

~

V ] diag(T;�T

H

);

where �(T ) = f�g and T is in Jordan canonical form.

Proof. Since H = �J

H

H

H

J , we have

V

H

JH = �T

H

1

V

H

J;

~

V

H

JH = �T

H

2

~

V

H

J;

and since �(�T

H

1

) = f�

�

�g, �(�T

H

2

) = f�g, it follows that the columns of J

H

V , J

H

~

V span

the left invariant subspaces corresponding to �

�

� and �, respectively. It is also immediate

that the algebraic and geometric multiplicities of �

�

� and � are equal. Employing Propo-

sition 2 we get that V

H

JV =

~

V

H

J

~

V = 0, and det(V

H

J

~

V ) 6= 0. Since V

H

JH = �T

H

1

V

H

J

and H

~

V =

~

V T

2

, it follows that �T

H

1

(V

H

J

~

V ) = V

H

J

~

V T

2

. With

^

V :=

~

V (V

H

J

~

V )

�1

we

then have H

^

V = �

^

V T

H

1

and [V;

^

V ]

H

J [V;

^

V ] = J , H[V;

^

V ] = [V;

^

V ] diag(T

1

;�T

H

1

). Clearly

T

1

can be chosen to be in Jordan canonical form.

For the invariant subspaces corresponding to the purely imaginary eigenvalues the situ-

ation is more complicated.
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Example 1 Consider the Hamiltonian matrix J

1

=

"

0 1

�1 0

#

with eigenvalues i;�i.

The invariant subspaces associated with both eigenvalues have dimension one. Thus, by

Proposition 3, J

1

is not symplectically similar to a Hamiltonian triangular form.

If a Hamiltonian matrix H 2 C

2n�2n

has a purely imaginary eigenvalue i�, then there

exists a full rank matrix U 2 C

2n�m

whose columns span the corresponding invariant

subspace such that

HU = U(i�I

m

+M); (5)

where M is a nilpotent matrix in Jordan canonical form, i.e.,

M = diag(M

1

; : : : ;M

s

); (6)

with

M

k

:= N

(r

k

;m

k

)

:= diag(N

r

k

; : : : ; N

r

k

| {z }

m

k

); (7)

where

N

r

k

:=

2

6

6

6

6

6

4

0 1

.

.

.

.

.

.

.

.

.

1

0

3

7

7

7

7

7

5

2 C

r

k

�r

k

: (8)

Since H is Hamiltonian, we have U

H

JH = (i�I

m

�M

H

)U

H

J and

U

H

JHU = U

H

JU(i�I

m

+M) = (i�I

m

�M

H

)U

H

JU;

which implies that

U

H

JUM +M

H

U

H

JU = 0:

Since the columns of U and J

H

U span the right and left invariant subspaces of H corre-

sponding to i�, respectively, Proposition 2 implies that K := U

H

JU is nonsingular. Thus,

we have that

KM +M

H

K = 0; K = �K

H

; detK 6= 0: (9)

These properties are preserved under similarity transformations toM , since for an arbitrary

nonsingular matrix X, (9) implies that

(X

H

KX)(X

�1

MX) + (X

�1

MX)

H

(X

H

KX) = 0; X

H

KX = �(X

H

KX)

H

: (10)

For the original Hamiltonian matrix this means that

HUX = UX(X

�1

(i�I

m

+M)X): (11)

We will now use a sequence of such similarity transformations to condense K = U

H

JU

and H as much as possible. This condensation process consists of two parts. First we

will use similarity transformations that commute with M . This means that we re-arrange

the chains of principal vectors while keeping the relation (5). In the second step we then

transform U and M simultaneously to approach the maximally condensed forms. This

process is quite technical and uses a variety of technical lemmas that we present in the

following subsections.
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3.1 Matrices that commute with nilpotent Jordan matrices

In this section we recall some well-known results on matrices that commute with nilpotent

matrices in Jordan canonical form. We also present some technical lemmas.

Denote the set of all matrices that commute with a given nilpotent matrix N by G(N).

This set is well studied, e.g., [12]. We recall a few results.

Proposition 4 Let N

r

be as in (8) and let

P

r

=

2

6

6

6

4

0 �1

(�1)

2

�

(�1)

r

0

3

7

7

7

5

: (12)

Then

1. P

�1

r

= P

H

r

= (�1)

r�1

P

r

;

2. P

�1

r

N

H

r

P

r

= �N

r

:

The similarity transformations that we consider are related to upper triangular Toeplitz

matrices of the form

T :=

2

6

6

6

6

6

4

�

0

�

1

: : : �

r�1

.

.

.

.

.

.

.

.

.

.

.

.

�

1

0 �

0

3

7

7

7

7

7

5

=

r�1

X

k=0

�

k

N

k

r

: (13)

The diagonal element of such a matrix is denoted by �(T ) := �

0

. We have the following

well-known Lemma, see Lemma 4.4.11 in [12].

Lemma 6 Let N

j

, N

k

be as in (8). A matrix E 2 C

j�k

satis�es N

j

E = EN

k

if and only

if E has the form

E =

8

>

>

>

>

<

>

>

>

>

:

T j = k;

h

0 T

i

j < k;

"

T

0

#

j > k;

(14)

where T has the form (13).

For more complicated nilpotent matrices in Jordan form we have the following well-known

Lemma, see [10, 12]. In the following we denote the set of j�k rectangular upper triangular

Toeplitz matrices E as in (14) by G

j�k

.

Lemma 7 Let

N = diag(N

r

1

; : : : N

r

s

); (15)

where each N

r

k

is of the form (8). A matrix E commutes with N if and only if E has the

block structure E = [E

i;j

]

s�s

, where each E

i;j

2 C

r

i

�r

j

is a rectangular upper triangular

Toeplitz matrix of the form (14).

11



For the nilpotent matrix N

(r;m)

as in (7), it follows that E 2 G(N

(r;m)

) if and only if E has

the block structure E = [E

i;j

]

m�m

, partitioned conformally with N

(r;m)

, where E

i;j

2 G

r�r

.

Collecting the diagonal elements of each of the blocks in one matrix we obtain an m�m

matrix

�(E) :=

2

6

6

4

�(E

1;1

) : : : �(E

1;m

)

.

.

.

.

.

.

.

.

.

�(E

m;1

) : : : �(E

m;m

)

3

7

7

5

;

which we call the main submatrix of E.

Lemma 8

1) If E

1

; E

2

2 G

j�k

, then E

1

+ E

2

2 G

j�k

.

2) If E

1

2 G

j�k

and E

2

2 G

k�l

, then E

1

E

2

2 G

j�l

. E

1

E

2

is of full rank if and only if

E

1

, E

2

both have full row rank (if j < l) or full column rank (if j � l). Moreover,

E

1

E

2

is nonsingular if and only if E

1

and E

2

are square and nonsingular.

Proof. The �rst part is trivial. For the second part we only consider the case j � l. The

case j < l can be obtained in a similar way.

We have three subcases. If j < k then E

1

=

h

0 T

1

i

, E

2

=

"

T

2

0

#

, where T

1

2 C

j�j

,

T

2

2 C

l�l

are upper triangular Toeplitz matrices. If k � j + l, then we have E

1

E

2

= 0. If

k < j + l then E

1

E

2

=

"

T

3

0

#

, where T

3

=

"

k � j j + l � k

j + l � k 0

^

T

3

k � l 0 0

#

; and

^

T

3

is upper

triangular Toeplitz. Note that �(

^

T

3

) = �(T

1

)�(T

2

).

If j � k � l, then E

1

=

"

T

1

0

#

, E

2

=

"

T

2

0

#

, where T

1

2 C

k�k

, T

2

2 C

l�l

are upper

triangular Toeplitz. We then have E

1

E

2

=

"

T

3

0

#

, where T

3

2 C

l�l

is upper triangular

Toeplitz and �(T

3

) = �(T

1

)�(T

2

).

If k < l, then E

1

=

"

T

1

0

#

, E

2

=

h

0 T

2

i

, where T

1

2 C

k�k

, T

2

2 C

k�k

. We then obtain

E

1

E

2

=

"

T

3

0

#

, where T

3

=

"

l � k k

k 0

^

T

3

l � k 0 0

#

;

^

T

3

2 C

k�k

is upper triangular Toeplitz

and �(

^

T

3

) = �(T

1

)�(T

2

). Hence in all subcases E

1

E

2

2 G

j�l

and only in the second subcase

it is possible to have rank(E

1

E

2

) = l. So we need that j � k � l and �(T

1

); �(T

2

) 6= 0.

Therefore, rank(E

1

) = k, rank(E

2

) = l. The reverse direction is obvious.

Lemma 9 Let E 2 G(N) for N given in (15) and let P = diag(P

r

1

; : : : ; P

r

s

):

1. If F 2 G(N), then FE;EF 2 G(N).
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2. If E is nonsingular, then E

�1

2 G(N).

3. P

�1

E

H

P 2 G(N).

Proof. By Lemma 7 we have EN = NE.

1. Since FN = NF , we have EFN = ENF = NEF and by Lemma 7, EF 2 G(N).

Similarly we obtain FE 2 G(N).

2. Since E is nonsingular, from EN = NE we have E

�1

N = NE

�1

and thus E

�1

2

G(N).

3. By Proposition 4, P

�1

N

H

P = �N . Applying similarity transformations with P to

(EN)

H

= (NE)

H

we obtain (P

�1

E

H

P )N = N(P

�1

E

H

P ) and hence P

�1

E

H

P 2

G(N).

De�ning


 := [e

1

; e

r+1

; : : : ; e

(m�1)r+1

; e

2

; e

r+2

; : : : ; e

(m�1)r+2

; : : : ; e

r

; e

2r

; : : : ; e

mr

];

where e

k

is the k-th unit vector, we have for each E 2 G(N

(r;m)

), that

!(E) := 


T

E
 =

2

6

6

6

6

6

4

�(E) �

1

: : : �

r�1

.

.

.

.

.

.

.

.

.

.

.

.

�

1

0 �(E)

3

7

7

7

7

7

5

: (16)

This transformation sets up a one-to-one relationship between G(N

(r;m)

) and the set of

block upper triangular Toeplitz matrices.

We then have the following result.

Lemma 10 Let M be as in (5) with the block sizes arranged in decreasing order, r

1

>

: : : > r

s

. Let

P

M

:= diag(P

r

1

; : : : ; P

r

1

| {z }

m

1

; : : : ; P

r

s

; : : : ; P

r

s

| {z }

m

s

); (17)

with P

r

i

de�ned as in (12). Let E 2 G(M) and partition E conformally with the block

structure of M in (6), i.e., E = [E

i;j

]

s�s

and E

k;k

2 G(N(r

k

; m

k

)). Let �(E

k;k

) be the

main submatrices of the diagonal blocks E

k;k

, k = 1; : : : ; s. Then E is nonsingular if and

only if det(�(E

k;k

)) 6= 0, for all k = 1; : : : ; s.

If E is nonsingular, then there exists a matrix Y 2 G(M), such that

(P

�1

M

Y

H

P

M

)EY =

2

6

6

6

6

6

4

^

E

1;1

0

�

^

E

2;2

.

.

.

.

.

.

.

.

.

� : : : �

^

E

s;s

3

7

7

7

7

7

5

; (18)
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where

�(

^

E

k;k

) = �(E

k;k

); k = 1; : : : ; s; (19)

and where for each k, �(

^

E

k;k

) is the main submatrix of the diagonal block

^

E

k;k

2 G(N(r

k

; m

k

)).

If E is a real matrix, then Y can be chosen real as well.

Proof. First we prove the necessity. Since E is nonsingular, �(E

1;1

) must be nonsingular.

Otherwise we would have that the matrix composed by the columns 1; r

1

+ 1; : : : ; (m

1

�

1)r

1

+1 of E is rank de�cient. By (16) we obtain that det�(E

1;1

) 6= 0 implies det(E

1;1

) 6= 0.

Set Y = I�

"

I

r

1

m

1

0

#

E

�1

1;1

[0; E

1;2

; : : : ; E

1;s

]. By Lemma 8 we can verify that Y; P

�1

M

Y

H

P

M

2

G(M). Moreover, Y is block upper triangular and P

�1

M

Y

H

P

M

is block lower triangular.

Thus, we have

(P

�1

M

Y

H

P

M

)EY =

"

E

1;1

0

� E

(2)

#

;

where E

(2)

2 G(M

(2)

), M

(2)

= diag(M

2

; : : : ;M

s

). Partition E

(2)

= [E

(2)

i;j

]

(s�1)�(s�1)

con-

formally with M

(2)

. Then E

(2)

k;k

= E

k+1;k+1

� E

k+1;1

E

�1

1;1

E

1;k+1

. So each sub-block of E

(2)

k;k

is equal to the corresponding sub-block of E

k+1;k+1

plus a sum of the m

1

matrices of the

form F

1

F

2

, with F

1

2 G

r

k+1

�r

1

, F

2

2 G

r

1

�r

k+1

. Since r

1

> r

k+1

for all k = 1; : : : ; s � 1,

by Lemma 8 the main elements of all such F

1

F

2

are zero. Note that F

1

F

2

is square upper

triangular Toeplitz. It follows that �(E

(2)

k;k

) = �(E

k+1;k+1

) for k = 1; : : : ; s� 1.

Repeating the reductions on E

(2)

, after s � 1 steps we determine a matrix Y 2 G(M)

which satis�es (18) and �(E

k;k

) = �(

^

E

k;k

) are nonsingular for all k = 1; : : : ; s.

For the su�ciency observe that for det�(E

k;k

) 6= 0, k = 1; : : : ; s the factorization (18) ex-

ists. By (16) and the fact that �(E

k;k

) = �(

^

E

k;k

), we obtain that each

^

E

k;k

is nonsingular,

hence E is nonsingular.

For real E the reduction process immediately gives that Y can be chosen real.

The �nal Lemma in this subsection discusses a special case.

Lemma 11 Let E 2 G(N

(r;m)

), where N

(r;m)

is as in (7) and let

P

(r;m)

:= diag(P

r

; : : : ; P

r

| {z }

m

): (20)

If P

(r;m)

E is a nonsingular skew Hermitian matrix, then there exists a matrix Y 2 G(N

(r;m)

)

such that

Y

H

(P

(r;m)

E)Y = diag(�

1

P

r

; : : : �

m

P

r

); (21)

where (�

1

; : : : ; �

s

) = Ind(�(E)).

If E is real and if r is even then Y can be chosen real as well.

Proof. For simplicity in the proof we use P for P

(r;m)

.
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Using the linear operator ! in (16), we obtain that

^

E = !(E) is block upper triangular

Toeplitz with diagonal block �(E). Moreover, we have

^

P = !(P ) =

2

6

6

6

4

0 �I

m

(�I

m

)

2

�

(�I

m

)

r

0

3

7

7

7

5

:

Since PE is skew Hermitian, so is

^

P

^

E. Using the Kronecker product A
 B = [a

ij

B], see

[14],

^

E can be expressed as

^

E =

P

r�1

k=0

N

k

r


 E

k

, where E

0

= �(E). By symmetry if r is

even, then E

0

; E

2

; : : : ; E

r�2

are Hermitian and E

1

; E

3

; : : : ; E

r�1

are skew Hermitian, and

if r is odd, then E

0

; E

2

; : : : ; E

r�1

are skew Hermitian and E

1

; E

3

; : : : ; E

r�2

are Hermitian.

Suppose that

^

Y is a block upper triangular Toeplitz matrix with the same block structure

as

^

E. Let

^

Y =

P

r�1

k=0

N

k

r


 Y

k

. Using properties of the Kronecker product [14], we obtain

^

P

�1

^

Y

H

^

P =

r�1

X

k=0

(P

�1

r

N

H

r

P

r

)

k


 Y

H

k

=

r�1

X

k=0

(�1)

k

N

k

r


 Y

H

k

;

and hence

(

^

P

�1

^

Y

H

^

P )

^

E

^

Y =

r�1

X

k=0

N

k

r


 f

k

X

p=0

(�1)

p

Y

H

p

(

k�p

X

q=0

E

k�p�q

Y

q

)g:

Here we have used that N

k

r

= 0 for k � r. Now choose

^

Y such that

(

^

P

�1

^

Y

H

^

P )

^

E

^

Y = I

r


 �; � = diag(�

1

; : : : ; �

m

): (22)

Then we have determined matrices Y

0

; : : : ; Y

r�1

, such that for k = 1; : : : ; r � 1,

Y

H

0

E

0

Y

0

= �; (23)

Y

H

0

E

0

Y

k

+ (�1)

k

Y

H

k

E

0

Y

0

= �C

k

; (24)

with

C

k

=

2

6

6

6

6

4

Y

0

Y

1

.

.

.

Y

k�1

3

7

7

7

7

5

H

2

6

6

6

6

4

E

k

E

k�1

: : : E

1

�E

k�1

�E

k�2

: : : �E

0

.

.

.

.

.

. �

(�1)

k�1

E

1

(�1)

k�1

E

0

0

3

7

7

7

7

5

2

6

6

6

6

4

Y

0

Y

1

.

.

.

Y

k�1

3

7

7

7

7

5

:

Since E

0

= �(E), there exists a nonsingular matrix Y

0

that satis�es (23). By the structure

of E

k

, in the case that r is even, we have that if k is even then C

k

is Hermitian and if k

is odd then C

k

is skew Hermitian. In the case that r is odd, if k is even then C

k

is skew

Hermitian and if k is odd then C

k

is Hermitian. By (16), detE 6= 0 implies detE

0

6= 0. So

in any case Y

k

can be chosen subsequently as Y

k

= �

1

2

(Y

H

0

E

0

)

�1

C

k

to satisfy (24). (Note

that the choice is not unique.)

Applying the inverse transform !

�1

on (22) and setting Y = !

�1

(

^

Y ), we obtain from

(16) that Y 2 G(N

(r;m)

) and

(P

�1

Y

H

P )EY = !

�1

(I

r


 �) = diag(�

1

I

r

; : : : ; �

m

I

r

):
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Pre-multiplying by P we have (20).

If E is real and r is even, then since E

0

= �(E) is real symmetric, Y

0

, Y

k

be chosen real

in (23) and (24). Therefore

^

Y and also Y can be chosen real.

Note that �(E) is Hermitian if r is even and it is skew Hermitian if r is odd. Thus

Ind(�(E)) consists of elements +1;�1; 0 if r is even and +i;�i; 0 if r is odd.

3.2 The structure of K

In this subsection we analyze the structure of skew Hermitian matrices K that satisfy (9)

for a given nilpotent matrix M .

Lemma 12 Let M be a nilpotent matrix as in (6) and let K be as in (9). Then there

exists a matrix E 2 G(M) such that K = P

M

E with P

M

de�ned in (17).

Proof. By Proposition 4, P

�1

M

M

H

P

M

= �M . Thus KM + M

H

K = 0 implies that

(P

�1

M

K)M =M(P

�1

M

K). By Lemma 7 we then obtain P

�1

M

K 2 G(M).

Lemma 13 Let M be a nilpotent matrix as in (6) and let K be as in (9). Let E =

[E

i;j

]

s�s

2 G(M) be such that K = P

M

E, where E is partitioned conformally with M =

diag(M

1

; : : : ;M

s

). If the index of �(E

k;k

) is (�

k;1

; : : : ; �

k;m

k

) for k = 1; : : : ; s, then there

exists a nonsingular matrix Y 2 G(M) such that

Y

H

KY = diag(�

1;1

P

r

1

; : : : ; �

1;m

1

P

r

1

; : : : ; �

s;1

P

r

s

; : : : ; �

s;m

s

P

r

s

): (25)

If K is real and Y = [Y

1

; : : : ; Y

s

] is partitioned in columns conformally with M , then Y

k

can be chosen to be real for all k corresponding to an even r

k

.

Proof. Without loss of generality we may assume that r

1

> : : : > r

s

.

Lemma 12 implies that there exists a matrix E 2 G(M), such that K = P

M

E and, since

K is nonsingular, so is E. Hence we can employ Lemma 10. Since K = �K

H

, using (18),

there exists Y

1

2 G(M) so that

Y

H

1

KY

1

= P

M

(P

�1

M

Y

H

1

P

M

)EY

1

= P

M

diag(

^

E

1;1

; : : : ;

^

E

s;s

)

= diag(P

(r

1

;m

1

)

^

E

1;1

; : : : ; P

(r

s

;m

s

)

^

E

s;s

);

where P

(r

k

;m

k

)

is de�ned as in (20). Moveover, for all k = 1; : : : ; s the matrix P

(r

k

;m

k

)

^

E

k;k

is skew Hermitian. Applying Lemma 11, for each P

(r

k

;m

k

)

^

E

k;k

there exists a matrix

^

Y

k

2

G(N(r

k

; m

k

)), such that

^

Y

H

k

(P

(r

k

;m

k

)

^

E

k;k

)

^

Y

k

= diag(�

k;1

P

r

k

; : : : ; �

k;m

k

P

r

k

);

where

(�

k;1

; : : : ; �

k;m

k

) = Ind(�(

^

E

k;k

)) = Ind(�(E

k;k

)):

The last equality follows from Lemma 10.

Set Y

2

:= diag(

^

Y

1

; : : : ;

^

Y

s

) then Y

2

2 G(M) and also Y := Y

1

Y

2

2 G(M). Furthermore

Y

H

KY has the form (25).

The real case follows from the corresponding real parts in Lemmas 10 and 11.
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Remark 1 The matrices Y 2 G(M) constructed in the proof of Lemma 10 and 11 are in

general not unique.

Notice that (�

k;1

; : : : ; �

k;m

k

) is the inertia index of �(E

k;k

). But by Lemma 10, for all

k = 1; : : : ; s, �(E

k;k

) is invariant under congruence transformations with Y 2 G(M). So

all these indices are uniquely determined by the matrices K and M . Hence (25) can be

viewed as the canonical form of K under congruence transformations in G(M).

From the beginning of the construction we see that the matrices K, M contain the char-

acteristic quantities associated with the eigenvalues of i� of H, in particular the number

and sizes of Jordan blocks. Based on these quantities we set

�

k;j

:=

8

<

:

(�1)

r

k

2

�

k;j

; if r

k

is even,

(�1)

r

k

�1

2

i�

k;j

; otherwise.

(26)

Note that by construction �

k;j

2 f1;�1g.

De�nition 14 Let �

k;j

be as in (25) and �

j;k

as in (26), then the tuple

Ind

S

(i�) := (�

1;1

; : : : ; �

1;m

1

; : : : ; �

s;1

; : : : ; �

s;m

s

) (27)

is called the structure inertia index of the eigenvalue i�.

It is not surprising that certain signs associated with Jordan blocks to purely imaginary

eigenvalues will be important. These signs obviously occur in the approaches to obtain

canonical forms for Hermitian pencils as studied in [7, 22] or in the analysis of Lagrangian

subspaces [9]. These signs are sometimes called sign characteristics and they play the key

role in determining the structure of the Hamiltonian Jordan canonical form and in the

solvability theory for algebraic Riccati equations [15].

By Lemma 13 we have obtained a partition of a matrix K as in (9) into m =

P

s

k=1

m

k

submatrices of the form �

j;k

P

r

j

, where �

j;k

2 f1;�1g if r is even and �

j;k

2 fi;�ig if r is

odd. Each �

j;k

P

r

j

corresponds to a nilpotent block N

r

j

in the Jordan canonical form. In

other words, by the above construction we have obtained all chains of principal vectors U

of H corresponding to all the single Jordan blocks satisfying U

H

JU = �

j;k

P

r

j

.

3.3 Combining Jordan blocks to Hamiltonian Jordan blocks

Since the matrix pair (K;M) from (9) can be decoupled in blocks (�

j;k

P

r

j

; N

r

j

) associated

with Jordan blocks which are in general not Hamiltonian, we will now describe possibilities

to combine or split such Jordan blocks to Hamiltonian Jordan blocks.

Lemma 15

1. For a pair (�P

2r

; N

2r

), with � = (�1)

r

� and � 2 f1;�1g, let Z

e

:= diag(I

r

; �P

�1

r

).

Then

�

e

(�P

2r

; N

2r

) := (Z

H

e

(�P

2r

)Z

e

; Z

�1

e

N

2r

Z

e

)

=

 "

0 I

r

�I

r

0

#

;

"

N

r

�e

r

e

H

r

0 �N

H

r

#!

: (28)
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2. For a pair (�P

2r+1

; N

2r+1

), with � = (�1)

r+1

i� and � 2 f1;�1g, let

Z

o

(r) := diag(I

r+1

; (�P

r

)

�1

): (29)

Then

�

o

(�P

2r+1

; N

2r+1

) := (Z

o

(r)

H

(�P

2r+1

)Z

o

(r); Z

o

(r)

�1

N

2r+1

Z

o

(r))

=

0

B

@

2

6

4

0 0 I

r

0 i� 0

�I

r

0 0

3

7

5

;

2

6

4

N

r

e

r

0

0 0 i�e

H

r

0 0 �N

H

r

3

7

5

1

C

A

: (30)

Proof. We can rewrite the matrix pair (�P

2r

; N

2r

) as

 "

0 �P

r

(�1)

r

�P

r

#

;

"

N

r

e

r

e

H

1

0 N

r

#!

:

Then we obtain (28) by Proposition 4.

Similarly we can rewrite (�P

2r+1

; N

2r+1

) as

0

B

@

2

6

4

0 0 �P

r

0 i� 0

(�1)

r+1

�P

r

0 0

3

7

5

;

2

6

4

N

r

e

r

0

0 0 e

H

1

0 0 N

r

3

7

5

1

C

A

and with the given Z

o

(r) we obtain (30).

For an even size matrix pair (�P

r

; N

r

) the transformation �

e

yields a pair of the form

(J

r

; T

r

) with a Hamiltonian triangular matrix T

r

. For a single odd size matrix pair, however,

we cannot obtain such a form, since J has even size. Thus, it is a natural idea to combine

two odd size pairs associated with (possibly di�erent) purely imaginary eigenvalues i�

1

; i�

2

.

In the following we will use the notation N

k

(�) := �I +N

k

:

Lemma 16 Given two matrix pairs (�

k

P

2r

k

+1

; N

2r

k

+1

(i�

k

)) for k = 1; 2, with �

k

real,

�

k

= (�1)

r

k

+1

i�

k

and �

k

2 f1;�1g. Let

(P

c

; N

c

) :=

 "

�

1

P

2r

1

+1

0

0 �

2

P

2r

2

+1

#

;

"

N

2r

1

+1

(i�

1

) 0

0 N

2r

2

+1

(i�

2

)

#!

;

V :=

"

v

1;1

v

1;2

v

2;1

v

2;2

#

:=

p

2

2

"

�1 i�

1

�1 �i�

1

#

and

Z

c

:=

"

Z

o

(r

1

) 0

0 Z

o

(r

2

)

#

2

6

6

6

6

6

6

6

6

4

I

r

1

0 0 0 0 0

0 0 v

1;1

0 0 v

1;2

0 0 0 I

r

1

0 0

0 I

r

2

0 0 0 0

0 0 v

2;1

0 0 v

2;2

0 0 0 0 I

r

2

0

3

7

7

7

7

7

7

7

7

5

: (31)
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Then for

'

c

(P

c

; N

c

) := (Z

H

c

P

c

Z

c

; Z

�1

c

N

c

Z

c

) (32)

we obtain

Z

H

c

P

c

Z

c

=

2

6

6

6

6

6

6

6

6

4

0 0 0 I

r

1

0 0

0 0 0 0 I

r

2

0

0 0 w

1;1

0 0 w

1;2

�I

r

1

0 0 0 0

0 �I

r

2

0 0 0

0 0 w

2;1

0 0 w

2;2

3

7

7

7

7

7

7

7

7

5

;

and

Z

�1

c

N

c

Z

c

=

2

6

6

6

6

6

6

6

6

6

4

N

r

1

(i�

1

) 0 �

p

2

2

e

r

1

0 0 i

p

2

2

�

1

e

r

1

0 N

r

2

(i�

2

) �

p

2

2

e

r

2

0 0 �i

p

2

2

�

1

e

r

2

0 0 z

1;1

�i

p

2

2

�

1

e

H

r

1

�i

p

2

2

�

2

e

H

r

2

z

1;2

0 0 0 �N

r

1

(i�

1

)

H

0 0

0 0 0 0 �N

r

2

(i�

2

)

H

0

0 0 z

2;1

p

2

2

e

H

r

1

�

p

2

2

�

1

�

2

e

H

r

2

z

2;2

3

7

7

7

7

7

7

7

7

7

5

;

where

"

w

1;1

w

1;2

w

2;1

w

2;2

#

=

1

2

"

i(�

1

+ �

2

) 1� �

1

�

2

�

1

�

2

� 1 i(�

1

+ �

2

)

#

;

"

z

1;1

z

1;2

z

2;1

z

2;2

#

=

1

2

"

i(�

1

+ �

2

) �

1

(�

1

� �

2

)

��

1

(�

1

� �

2

) i(�

1

+ �

2

)

#

: (33)

Proof. The proof is clear by direct multiplication.

Corollary 17 Let (P

c

; N

c

) be as in Lemma 16. If �

1

= ��

2

, then there exists a nonsin-

gular matrix Z, such that Z

H

P

c

Z = J and Z

�1

N

c

Z is Hamiltonian triangular if and only

if �

1

= �

2

. If �

1

= �

2

, then P

c

is not congruent to J .

Proof. Let �

1

= ��

2

. If �

1

= �

2

, then the result follows immediately, since Z

H

c

P

c

Z

c

=

J

r

1

+r

2

+1

and Z

�1

c

N

c

Z

c

is Hamiltonian triangular. The converse direction, i.e., that there

does not exist a further reduction to Hamiltonian triangular form can be easily observed

from the eigenvalue properties in Table 1, since the eigenvalues of Z

�1

c

N

c

Z

c

are i�

1

and

i�

2

.

Since Ind(P

c

) = (i; : : : ; i

| {z }

r

1

+r

2

; i�

1

; i�

2

;�i; : : : ;�i

| {z }

r

1

+r

2

), P

c

is congruent to J if and only if �

1

= ��

2

.

For two blocks associated with the same eigenvalue there is also another possibility to

transform to Hamiltonian triangular form.
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Lemma 18 Given two matrix pairs (�

k

P

r

k

; N

r

k

), k = 1; 2, where r

1

; r

2

are either both

even or both odd. Let for k = 1; 2, �

k

2 f1;�1g if both r

k

are even and �

k

2 fi;�ig if both

r

k

are odd. Let

(P

c

; N

c

) :=

 "

�

1

P

r

1

0

0 �

2

P

r

2

#

;

"

N

r

1

0

0 N

r

2

#!

and d :=

jr

1

�r

2

j

2

. If �

1

= (�1)

d+1

�

2

, i.e., �

1

= ��

2

for the corresponding �

1

and �

2

, then

we have the following transformations.

1. If r

1

� r

2

then with

Z

1

:=

2

6

6

6

6

4

I

d

0 0 0

0

p

2

2

I

r

2

0 �

p

2

2

��

2

P

�1

r

2

0 0 ��

1

P

�1

d

0

0 �

p

2

2

I

r

2

0 �

p

2

2

��

2

P

�1

r

2

3

7

7

7

7

5

we obtain for '

1

(P

c

; N

c

) := (Z

H

1

P

c

Z

1

; Z

�1

1

N

c

Z

1

) that Z

H

1

P

c

Z

1

= J

r

1

+r

2

2

and

Z

�1

1

N

c

Z

1

=

2

6

6

6

6

4

N

d

p

2

2

e

d

e

H

1

0 �

p

2

2

�

2

e

d

e

H

r

2

0 N

r

2

�

p

2

2

��

2

e

r

2

e

H

d

0

0 0 �N

H

d

0

0 0 �

p

2

2

e

1

e

H

d

�N

H

r

2

3

7

7

7

7

5

: (34)

2. If r

1

< r

2

, then with

Z

2

=

2

6

6

6

6

4

p

2

2

�

1

P

r

1

0

p

2

2

I

r

1

0

0 �

2

P

d

0 0

�

p

2

2

�

1

P

r

1

0

p

2

2

I

r

1

0

0 0 0 I

d

3

7

7

7

7

5

we obtain for '

2

(P

c

; N

c

) := (Z

H

2

P

c

Z

2

; Z

�1

2

N

c

Z

2

) that Z

H

2

P

c

Z

2

= J

r

1

+r

2

2

and

Z

�1

2

N

c

Z

2

=

2

6

6

6

6

4

�N

H

r

1

0 0 �

p

2

2

�

1

e

1

e

H

1

�

p

2

2

e

1

e

H

r

1

�N

H

d

�

p

2

2

��

1

e

1

e

H

1

0

0 0 N

r

1

p

2

2

e

r

1

e

H

1

0 0 0 N

d

3

7

7

7

7

5

: (35)

Proof. The proof follows directly by multiplying out the products.

Remark 2 It is very di�cult to compare the di�erent possibilities to combine blocks to

Hamiltonian form. First of all the form (35) is not of the triangularity structure that

we want, while the from (34) is of the right triangularity structure and actually is more

condensed than the form obtained in Lemma 16.
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The invariant subspaces are also di�erent, when using transformations �

e

, �

o

, '

1

, '

2

or

'

c

. This is demonstrated in the following simple example.

Let H be a nilpotent Hamiltonian matrix with two Jordan blocks N

2r

1

and N

2r

2

, and

r

1

� r

2

. Then there exist corresponding matrices V

1

= [V

1;1

; V

1;2

; V

1;3

; V

1;4

], V

2

= [V

2;1

; V

2;2

],

where V

1;2

; V

1;3

; V

2;1

; V

2;2

2 C

2(r

1

+r

2

)�r

2

and V

1;1

; V

1;4

2 C

2(r

1

+r

2

)�(r

1

�r

2

)

, so that for k = 1; 2,

HV

k

= V

k

N

2r

k

; V

H

k

JV

k

= �

k

P

2r

k

:

Suppose that the structure inertia index associated with the eigenvalue 0 is Ind

S

(0) =

(1;�1). Then we can determine di�erent symplectic matrices U such thatHU = U

"

R D

0 �R

H

#

:

First we use �

e

of Lemma 15. Then U := [U

1

; U

2

] with U

1

=

h

[V

1;1

; V

1;2

] V

2;1

i

and

U

2

=

h

[V

1;3

; V

1;4

](�

1

P

r

1

)

�1

; V

2;2

(�

2

P

r

2

)

�1

i

.

Note that U

1

, which spans a Lagrangian invariant subspace of H, is composed from the

�rst halves of the chains of principal vectors corresponding to N

2r

1

and N

2r

2

respectively.

Using '

1

we get U

1

=

h

V

1;1

p

2

2

[V

1;2

� V

2;1

; V

1;3

� V

2;2

]

i

, which is composed from the

�rst r

1

+ r

2

principal vectors corresponding to N

2r

1

and all principal vectors corresponding

to N

2r

2

. Using '

2

we get the same subspaces.

Clearly the two related Lagrangian invariant subspaces are di�erent even for r

1

= r

2

. A

similar example can be easily constructed if H has two odd size Jordan blocks.

We will now use the construction described in Lemma 15 to Corollary 17 to characterize

a condensed form that is near to a Hamiltonian triangular form, i.e., a matrix U so that

HU = UT in (5), with �(T ) = fi�g and T is near to a Hamiltonian triangular form.

Lemma 19 Let i� be an eigenvalue of the Hamiltonian matrix H. Then there exists a

matrix U = [U

1

; U

2

; U

3

] of full column rank, such that HU = UT , where U , T satisfy

U

H

JU =

2

6

6

6

6

6

6

4

0 0 I 0 0

0 0 0 I 0

�I 0 0 0 0

0 �I 0 0 0

0 0 0 0

^

K

3

7

7

7

7

7

7

5

; T =

2

6

6

6

6

6

6

4

R

1

0 D

1

0 0

0 R

2

0 D

2

0

0 0 �R

H

1

0 0

0 0 0 �R

H

2

0

0 0 0 0 R

3

3

7

7

7

7

7

7

5

; (36)

with

^

K = diag(�

d

1

P

2t

1

+1

; : : : ; �

d

z

P

2t

z

+1

) and R

3

= diag(N

2t

1

+1

(i�); : : : ; N

2t

z

+1

(i�)). The

matrices R

1

; R

2

; D

1

; D

2

are substructured further as

R

1

= diag(N

l

1

(i�); : : : ; N

l

q

(i�)); D

1

= diag(�

e

1

e

l

1

e

H

l

1

; : : : ; �

e

q

e

l

q

e

H

l

q

);

R

2

= diag(B

1

; : : : ; B

r

); D

2

= diag(C

1

; : : : ; C

r

);

where for k = 1; : : : ; r

B

k

=

2

6

6

4

N

m

k

(i�) 0 �

p

2

2

e

m

k

N

n

k

(i�) �

p

2

2

e

n

k

i�

3

7

7

5

;
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C

k

=

p

2

2

i�

c

k

2

6

4

0 0 e

m

k

0 0 �e

n

k

�e

H

m

k

e

H

n

k

0

3

7

5

:

Furthermore the structure inertia index also consists of three parts,

Ind

S

(i�) = (Ind

e

S

(i�); Ind

c

S

(i�); Ind

d

S

(i�));

where

1. Ind

e

S

(i�) := (�

e

1

; : : : ; �

e

q

) corresponds to even size Jordan blocks N

2l

k

(i�), k = 1; : : : ; q

which are contained in

"

R

1

D

1

0 �R

H

1

#

;

2. Ind

c

S

(i�) := (�

c

1

; : : : ; �

c

r

;��

c

1

; : : : ;��

c

r

) corresponds to odd size Jordan blocks N

2m

1

+1

(i�),

: : : ; N

2m

r

+1

(i�); N

2n

1

+1

(i�); : : : ; N

2n

r

+1

(i�), which are coupled as pairs

 "

�

k

P

2m

k

+1

0

0 ((�1)

jm

k

�n

k

j+1

�

k

)P

2n

k

+1

)

#

;

"

N

2m

k

+1

(i�) 0

0 N

2n

k

+1

(i�)

#!

and contained in

"

R

2

D

2

0 �R

H

2

#

;

3. Ind

d

S

(i�) := (�

d

1

; : : : ; �

d

z

) = ((�1)

t

1

i�

d

1

; : : : ; (�1)

t

z

i�

d

z

) with �

d

1

= : : : = �

d

z

. This part

corresponds to the Jordan blocks in R

3

.

Proof. Let the columns of X span the invariant subspace of H corresponding to i�

and suppose that X satis�es (5) - (8). Applying Lemma 13 to K := X

H

JX we get a

transformation matrix Y , such that Y

H

KY has the form (25). We then perform further

transformations as in Lemma 15{Corollary 17 to the pairs of the form (�P

r

; N

r

) as they

arise in (25).

For even r we use �

e

de�ned in (28), which implies that there exists a matrix X

r

, such

that

X

H

r

JX

r

= J; HX

r

= X

r

(Z

�1

e

N

r

(i�)Z

e

):

For odd r we combine together as many pairs as possible of the form (�

1

P

2r

1

+1

; N

2r

1

+1

(i�))

together with (�

2

P

2r

2

+1

; N

2r

2

+1

(i�)), so that the corresponding �

1

and �

2

satisfy �

1

= ��

2

.

Using '

c

in (32), there exists a matrix X

r

1

;r

2

such that (note that the eigenvalues are same)

X

H

r

1

;r

2

JX

r

1

;r

2

= J; HX

r

1

;r

2

= X

r

1

;r

2

(Z

�1

c

diag(N

2r

1

+1

(i�); N

2r

2

+1

(i�))Z

c

):

Grouping the �rst half of the columns of all the X

r

and X

r

1

;r

2

together in U

1

and the

second half of the columns in U

2

, using the same order and forming U

3

by grouping all the

chains of principal vectors corresponding to the remaining odd size matrices (all having

the same sign �) we can form U := [U

1

; U

2

; U

3

] and we can easily verify (36).
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Remark 3 Note that the factorization (36) is in general not unique. If several structure

inertia indices for odd size Jordan blocks have opposite signs or if as in Lemma 18 two

matrix pairs with opposite signs of the indices are grouped then we may get a di�erent

factorization.

The non-uniqueness implies that Ind

c

S

(i�) and Ind

d

S

(i�) can be selected in many ways in

the sense that the elements can correspond to di�erent Jordan blocks with di�erent sizes.

However, by our construction all odd size pairs of indices with opposite sign are grouped

in Ind

c

S

(i�) and all remaining indices in Ind

d

S

(i�). For a given i�, Ind

c

S

(i�) always contains

the same number of 1 and �1 and Ind

d

S

(i�) contains elements with all 1 or �1. So the

number of elements and the signs of Ind

c

S

(i�) and Ind

d

S

(i�) are uniquely determined.

4 Hamiltonian Jordan canonical forms

Using the technical results from the previous section, we are now ready to derive the

canonical forms for Hamiltonian matrices under symplectic similarity transformations.

Theorem 20 (Hamiltonian Jordan canonical form) Given a complex Hamiltonian ma-

trix H, there exists a complex symplectic matrix U such that

U

�1

HU =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

R

d

D

d

0 �R

H

r

0 �R

H

e

0 �R

H

c

G

d

�R

H

d

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (37)

where the di�erent blocks have the following structures.

1. The blocks with index r are associated with the pairwise distinct eigenvalues with

nonzero real part �

1

; : : : ; �

�

;�

�

�

1

; : : : ;�

�

�

�

of H. The Jordan blocks associated with �

k

(�

�

�

k

) have the form

R

r

= diag(R

r

1

; : : : ; R

r

�

); R

r

k

= diag(N

d

k;1

(�

k

); : : : ; N

d

k;p

k

(�

k

)); k = 1; : : : ; �:

2. The blocks with indices e and c are associated with pairwise distinct purely imag-

inary eigenvalues i�

1

; : : : ; i�

�

grouped together in such a way that the structure inertia

indices satisfy Ind

e

S

(i�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

), which are associated with even sized blocks and

Ind

c

S

(i�

k

) = (�

c

k;1

; : : : ; �

c

k;r

k

;��

c

k;1

; : : : ;��

c

k;r

k

) which are associated with paired odd sized

blocks. These blocks have the following substructures.

R

e

= diag(R

e

1

; : : : ; R

e

�

); R

e

k

= diag(N

l

k;1

(i�

k

); : : : ; N

l

k;q

k

(i�

k

));

D

e

= diag(D

e

1

; : : : ; D

e

�

); D

e

k

= diag(�

e

k;1

e

l

k;1

e

H

l

k;1

; : : : ; �

e

k;q

k

e

l

k;q

k

e

H

l

k;q

k

);

R

c

= diag(R

c

1

; : : : ; R

c

�

); R

c

k

= diag(B

k;1

; : : : ; B

k;r

k

);

D

c

= diag(D

c

1

; : : : ; D

c

�

); D

c

k

= diag(C

k;1

; : : : ; C

k;r

k

);
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where for k = 1; : : : ; � and j = 1; : : : ; r

k

we have

B

k;j

=

2

6

6

4

N

m

k;j

(i�

k

) 0 �

p

2

2

e

m

k;j

0 N

n

k;j

(i�

k

) �

p

2

2

e

n

k;j

0 0 i�

k

3

7

7

5

;

C

k;j

=

p

2

2

i�

c

k;j

2

6

4

0 0 e

m

k;j

0 0 �e

n

k;j

�e

H

m

k;j

e

H

n

k;j

0

3

7

5

:

3. The blocks with index d are associated with two disjoint sets of purely imaginary eigen-

values fi


1

; : : : ; i


�

g; fi�

1

; : : : ; i�

�

g � fi�

1

; : : : ; i�

�

g, such that the corresponding structure

inertia indices are (�

d

1

; : : : ; �

d

�

), (��

d

1

; : : : ;��

d

�

) with �

d

1

= : : : = �

d

�

. The blocks have the

following substructures.

R

d

= diag(R

d

1

; : : : ; R

d

�

); D

d

= diag(D

d

1

; : : : ; D

d

�

); G

d

= diag(G

d

1

; : : : ; G

d

�

);

where for k = 1; : : : ; �

R

d

k

=

2

6

6

4

N

s

k

(i


k

) 0 �

p

2

2

e

s

k

0 N

t

k

(i�

k

) �

p

2

2

e

t

k

0 0

i

2

(


k

+ �

k

)

3

7

7

5

;

D

d

k

=

p

2

2

i�

d

k

2

6

4

0 0 e

s

k

0 0 �e

t

k

�e

H

s

k

e

H

t

k

�i

p

2

2

(


k

� �

k

)

3

7

5

;

G

d

k

= �

d

k

2

6

4

0 0 0

0 0 0

0 0 �

1

2

(


k

� �

k

)

3

7

5

:

Proof. Using Lemma 5, for each eigenvalue �

k

with nonzero real part, we can determine

a matrix Q

k

= [Q

k;1

; Q

k;2

], such that

Q

H

k

JQ

k

= J; HQ

k

= Q

k

diag(R

r

k

;�(R

r

k

)

H

);

where R

r

k

is the Jordan canonical form associated with the eigenvalue �

k

.

Using Lemma 19, for each purely imaginary eigenvalue i�

k

, we can determine a matrix

U

k

= [U

k;1

; U

k;2

; U

k;3

], such that

U

H

k

JU

k

=

2

6

4

0 I 0

�I 0 0

0 0

^

K

k

3

7

5

; HU

k

= U

k

2

6

6

6

6

6

6

4

R

e

k

0 D

e

k

0 0

0 R

c

k

0 D

c

k

0

0 0 �(R

e

k

)

H

0 0

0 0 0 �(R

c

k

)

H

0

0 0 0 0 R

k;3

3

7

7

7

7

7

7

5

;

has the structure as in (36). Moreover, in the structure inertia index Ind

d

S

(i�

k

) (corre-

sponding to

^

K

k

) all elements �

k;1

; : : : ; �

k;�

k

have the same sign.
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Let X = [Q

1

; : : : ; Q

�

; U

1

; : : : ; U

�

]. Since the columns of each of the blocks span invariant

subspaces of distinct eigenvalues, X is nonsingular, and hence Ind(X

H

JX) has the same

number of elements i and �i.

By Lemmas 5, 15 and 16, each of the inertias Ind(Q

H

k

JQ

k

), Ind([U

k;1

; U

k;2

]

H

J [U

k;1

; U

k;2

])

contains the same numbers of elements i and �i. Also for each U

k;3

, Ind(U

H

k;3

JU

k;3

) contains

the same numbers of elements i and �i and the additional elements are i�

k;1

,. . . , i�

k;�

k

.

Note that

X

H

JX = diag(J

n

r

1

; : : : ; J

n

r

�

; J

n

e

1

; J

n

c

1

;

^

K

1

; : : : ; J

n

e

�

; J

n

c

�

;

^

K

�

);

where n

r

k

=

P

p

k

j=1

d

k;j

, n

e

k

=

P

q

k

j=k

l

k;j

and n

c

k

=

P

r

k

j=1

(m

k;j

+ n

k;j

+ 1), for k = 1; : : : ; �.

Taking all the i�

k;j

, j = 1; : : : ; �

k

, k = 1; : : : ; � together, there must be an equal number

of elements i and �i. This implies that we can group all the pairs (

^

K

k

; R

k;3

) in couples of

two with opposite structure inertia indices. Applying '

c

as in Lemma 16 to these couples

we can determine matrices W

k

= [W

k;1

;W

k;2

], such that

W

H

k

JW

k

= J; HW

k

=W

k

"

R

d

k

D

d

k

G

d

k

�(R

d

k

)

H

#

:

Partition U

k;1

= [V

k;1

; V

k;2

], U

k;2

= [

~

V

k;1

;

~

V

k;2

] in columns according to the block sizes of

R

e

k

and R

c

k

, respectively and set

U = [Q

1

;V

e

1

;V

c

1

;W

1

;Q

2

;V

e

2

;V

c

2

;W

2

];

where

Q

1

= [Q

1;1

; : : : ; Q

�;1

]; V

e

1

= [V

1;1

; : : : ; V

�;1

];

V

c

1

= [

~

V

1;1

; : : : ;

~

V

�;1

]; W

1

= [W

1;1

; : : : ;W

�;1

];

Q

2

= [Q

1;2

; : : : ; Q

�;2

]; V

e

2

= [V

1;2

; : : : ; V

�;2

];

V

c

= [

~

V

1;2

; : : : ;

~

V

�;2

]; W

2

= [W

1;2

; : : : ;W

�;2

]:

Then by Proposition 2, U is symplectic and U

�1

HU has the form (37).

For a real Hamiltonian matrix H, we would like to have a real canonical form. As for the

classical Jordan canonical form, we combine eigenvectors and principals vectors associated

with complex conjugate pairs. Introducing the matrices

	

2r

= [e

1

; e

r+1

; e

2

; e

r+2

; : : : ; e

r

; e

2r

]; �

2r

= diag(�

2

;�

2

; : : : ;�

2

| {z }

r

); (38)

where

�

2

=

p

2

2

"

1 �i

1 i

#

;

we have the following trivial lemma.
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Lemma 21

1. Let A = [a

i;j

] be a complex r � r matrix. Then

(	

2r

�

2r

)

H

"

A 0

0

�

A

#

(	

2r

�

2r

) := [B

i;j

];

is a real block matrix with 2� 2 blocks

B

i;j

=

"

Re a

ij;

Im a

i;j

� Im a

i;j

Re a

i;j

#

; i; j = 1; : : : ; r:

2. If U is a complex n� r matrix, then [U;

�

U ]	

2r

�

2r

is real.

To simplify the notation in the real Jordan canonical form, we set in the following

N

r

(�) =

2

6

6

6

6

6

4

� I 0

.

.

.

.

.

.

.

.

.

I

0 �

3

7

7

7

7

7

5

; (39)

where either � is a real scalar and the identity matrices have size 1� 1 or � =

"

a b

�b a

#

with a; b real and the identity matrices have size 2� 2.

Theorem 22 (Real Hamiltonian Jordan canonical form) Given a real Hamiltonian

matrix H, there exists a real symplectic matrix U such that

U

�1

HU =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

R

0

D

0

R

d

D

d

0 �R

T

r

0 �R

T

e

0 �R

T

c

0 �R

T

0

G

d

�R

T

d

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (40)

where the di�erent blocks have the following structures.

1. The blocks with index r are associated with the pairwise distinct eigenvalues with

nonzero real part. The diagonal blocks have the form �

k

, where either �

k

is a nonzero real

number, or �

k

=

"

a

k

b

k

�b

k

a

k

#

; a

k

; b

k

real and nonzero. In the �rst case �

k

and ��

k

are

both nonzero real eigenvalues of H, with sizes of Jordan blocks d

k;1

; : : : ; d

k;p

k

. In the second
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case �

k

= a

k

+ ib

k

, together with

�

�

k

, �

�

�

k

,��

k

, are the eigenvalues of H and each has the

same sizes of Jordan blocks d

k;1

; : : : ; d

k;p

k

. We have

R

r

= diag(R

r

1

; : : : ; R

r

�

);

R

r

k

= diag(N

d

k;1

(�

k

); : : : ; N

d

k;p

k

(�

k

)); k = 1; : : : ; �:

2. The blocks with indices e; c; d are associated with the pairwise distinct, nonzero, purely

imaginary eigenvalues i�

k

, �i�

k

, k = 1; : : : ; �. For each k = 1; : : : ; � the associated

structure inertia indices are

Ind

e

S

(i�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

);

Ind

c

S

(i�

k

) = (�

c

k;1

; : : : ; �

c

k;r

k

;��

c

k;1

; : : : ;��

c

k;r

k

);

Ind

d

S

(i�

k

) = (�

d

k

; : : : ; �

d

k

| {z }

s

k

);

Ind

e

S

(�i�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

);

Ind

c

S

(�i�

k

) = (��

c

k;1

; : : : ;��

c

k;r

k

; �

c

k;1

; : : : ; �

c

k;r

k

);

Ind

d

S

(�i�

k

) = (��

d

k

; : : : ;��

d

k

| {z }

s

k

);

and (with the notation �

k

=

"

0 �

k

��

k

0

#

, �

k

6= 0,) for k = 1; : : : ; � the substructures are

R

e

= diag(R

e

1

; : : : ; R

e

�

); D

e

= diag(D

e

1

; : : : ; D

e

�

);

R

e

k

= diag(N

l

k;1

(�

k

); : : : ; N

l

k;q

k

(�

k

));

D

e

k

= diag(�

e

k;1

"

0 0

0 I

2

#

2l

k;1

�2l

k;1

; : : : ; �

e

k;q

k

"

0 0

0 I

2

#

2l

k;q

k

�2l

k;q

k

);

R

c

= diag(R

c

1

; : : : ; R

c

�

); D

c

= diag(D

c

1

; : : : ; D

c

�

);

R

c

k

= diag(B

k;1

; : : : ; B

k;r

k

); D

c

k

= diag(C

k;1

; : : : ; C

k;r

k

);

R

d

= diag(R

d

1

; : : : ; R

d

�

); D

d

= diag(D

d

1

; : : : ; D

d

�

); G

d

= diag(G

d

1

; : : : ; G

d

�

);

R

d

k

= diag(

~

R

k;1

; : : : ;

~

R

k;s

k

); D

d

k

= diag(

~

D

k;1

; : : : ;

~

D

k;s

k

); G

d

k

= diag(

~

G

k;1

; : : : ;

~

G

k;s

k

);

where for k = 1; : : : ; � and j = 1; : : : ; r

k

B

k;j

=

2

6

6

6

6

6

6

4

N

m

k;j

(�

k

) 0

"

0

�

p

2

2

I

2

#

0 N

n

k;j

(�

k

)

"

0

�

p

2

2

I

2

#

0 0 �

k

3

7

7

7

7

7

7

5

;
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C

k;j

=

p

2

2

�

c

k;j

2

6

6

6

6

6

6

6

4

0 0

"

0

J

1

#

0 0

"

0

�J

1

#

h

0 �J

1

i h

0 J

1

i

0

3

7

7

7

7

7

7

7

5

;

and for j = 1; : : : ; s

k

~

R

k;j

=

"

N

t

k;j

(�

k

) �e

2t

k;j

�1

0 0

#

;

~

D

k;j

= �

d

k

"

0 �e

2t

k;j

�e

T

2t

k;j

�

k

#

;

~

G

d

k;j

= �

d

k

"

0 0

0 ��

k

#

:

3. The blocks with index 0 are associated with the eigenvalue zero, which has the structure

inertia indices Ind

e

S

(0) = (�

e

1

; : : : ; �

e

q

0

) and Ind

c

S

(0) = (�

c

0

; : : : ; �

c

0

| {z }

r

0

;��

c

0

; : : : ;��

c

0

| {z }

r

0

). The

substructure of the blocks is

R

0

= diag(R

e

0

; R

c

0

); D

0

= diag(D

e

0

; D

c

0

);

R

e

0

= diag(N

u

1

(0); : : : ; N

u

q

0

(0)); D

e

0

= diag(�

e

1

e

u

1

e

T

u

1

; : : : ; �

e

q

0

e

u

q

0

e

T

u

q

0

);

R

c

0

= diag(

"

N

v

1

(0

2

) �e

2v

1

�1

0 0

#

; : : : ;

"

N

v

r

0

(0

2

) �e

2v

r

0

�1

0 0

#

);

D

c

0

= ��

c

0

diag(

"

0 e

2v

1

e

T

2v

1

0

#

; : : : ;

"

0 e

2v

r

0

e

T

2v

r

0

0

#

):

Proof. For every eigenvalue �

k

:= a

k

+ ib

k

with nonzero real part, by Lemma 5, there

exists a matrix

^

U

k

= [

^

U

k;1

;

^

U

k;2

], such that

H

^

U

k

=

^

U

k

"

^

R

r

k

0

0 �(

^

R

r

k

)

H

#

:=

^

U

k

^

R

k

;

^

U

H

k

J

^

U

k

= J:

If b

k

= 0, i.e., �

k

is real, Lemma 5 yields that

^

U

k

can be chosen real and we then set

U

k

:= [U

k;1

; U

k;2

] := [

^

U

k;1

;

^

U

k;2

]: If b

k

6= 0, since H is real, we also have

H

�

^

U

k

=

�

^

U

k

�

^

R

k

;

^

U

T

k

J

�

^

U

k

= J: (41)

Set

~

U

k

= [

^

U

k;1

;

�

^

U

k;1

;

^

U

k;2

;

�

^

U

k;2

]. Then

H

~

U

k

=

~

U

k

diag(

"

^

R

r

k

0

0

�

^

R

r

k

#

;

"

�(

^

R

r

k

)

H

0

0 �(

^

R

r

k

)

T

#

) =:

~

U

k

~

R

k

:

By Lemma 21, there exists Z = diag(	�;	�) of appropriate size, such that

U

k

:= [U

k;1

; U

k;2

] =

~

U

k

Z
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and R

k

:= Z

�1

~

R

k

Z =:

"

R

r

k

0

0 �(R

r

k

)

T

#

are both real and R

r

k

is in the block form described

in (40). It remains to prove that U

T

k

JU

k

= J . From (41) we get that the columns of J

H

�

^

U

k;1

,

J

H

�

^

U

k;2

form the left invariant subspaces corresponding to ��

k

, and

�

�

k

, respectively. Since

the four eigenvalues �

k

,

�

�

k

, ��

k

and �

�

�

k

are pairwise distinct, we get

^

U

T

k;j

J

^

U

k;l

= 0 for

j; l = 1; 2, i.e.,

^

U

T

k

J

^

U

k

= 0. Using this fact and that

^

U

H

k

J

^

U

k

= J , we obtain

~

U

H

k

J

~

U

k

= J .

Note that Z is symplectic and since U

k

is real, we obtain U

T

k

JU

k

= J . Setting

U := [U

1

; U

2

] = [U

1;1

; : : : ; U

�;1

; U

1;2

; : : : ; U

�;2

];

we have that U is real, U

T

JU = J and HU = U

"

R

r

0

0 �R

T

r

#

:

Since H is real, it follows for the blocks in

"

R

e

D

e

0 �R

T

e

#

and

"

R

c

D

c

0 �R

T

c

#

correspond-

ing to the nonzero purely imaginary eigenvalues i�

1

; : : : ; i�

�

that also �i�

1

; : : : ;�i�

�

are

eigenvalues of H. For any block associated with an eigenvalue i�

k

let V

k

be such that

V

H

k

JV

k

= J; HV

k

= V

k

"

^

R

k

^

D

k

0 �

^

R

H

k

#

= V

k

^

R;

where

^

R contains the Jordan blocks corresponding to Ind

e

S

(i�

k

) and Ind

c

S

(i�

k

). Conjugat-

ing this equation we obtain the analogous equation for �i�. Using again Lemma 21, as

before, we obtain a real matrix V = [V

1

; V

2

], such that V

T

JV = J and

HV = V

2

6

6

6

4

R

e

0 D

e

0

0 R

c

0 D

c

0 0 �R

T

e

0

0 0 0 �R

T

c

3

7

7

7

5

:

The next step will be the construction of a real matrix W = [W

1

;W

2

], such that

W

T

JW = J and HW = W

"

R

d

D

d

G

d

�R

T

d

#

. Unlike the complex case we have some re-

strictions on how to group the matrix pairs, which a�ects the choice of the couples cor-

responding to Ind

c

S

(i�). Note that since H is real, if (�P

2r+1

; N

2r+1

(i�)) is a matrix pair

with the corresponding index (�1)

r

i� = � 2 Ind

d

S

(i�), then (��P

2r+1

; N

2r+1

(�i�)) is a

matrix pair with �� 2 Ind

d

S

(�i�). Let X = [X

1

; X

2

; X

3

], where X

1

; X

3

have r columns

and X

2

is a vector, such that HX = XN

2r+1

(i�) and X

H

JX = �P

2r+1

. Set

^

X = [X;

�

X],

P

c

:= diag(�P

2r+1

; ��P

2r+1

), N

c

:= diag(N

2r+1

(i�); N

2r+1

(�i�)). Then by Lemma 16

'

c

(P

c

; N

c

) =: (Z

H

c

P

c

Z

c

; Z

�1

c

N

c

Z

c

)
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=

0

B

B

B

B

B

B

B

B

B

@

J

2r+1

;

2

6

6

6

6

6

6

6

6

6

4

N

r

(i�) 0 �

p

2

2

e

r

0 0 i

p

2

2

�e

r

0 N

r

(�i�) �

p

2

2

e

r

0 0 �i

p

2

2

�e

r

0 0 0 �i

p

2

2

�e

H

r

i

p

2

2

�e

H

r

��

0 0 0 �N

r

(i�)

H

0 0

0 0 0 0 �N

r

(�i�)

H

0

0 0 ���

p

2

2

e

H

r

p

2

2

e

H

r

0

3

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

A

;

and

^

XZ

c

= [X

1

;

�

X

1

;�

p

2ReX

2

; Y

3

;

�

Y

3

;��

p

2 ImX

2

];

where Y

3

= X

3

(�P

r

)

�1

. Let Z = diag(	

2r

�

2r

; 1;	

2r

�

2r

; 1) and � =

"

0 �

�� 0

#

. By

Lemma 21 we have that Z

H

Z

H

c

P

c

Z

c

Z = J and

Z

�1

Z

�1

c

N

c

Z

c

Z =

2

6

6

6

4

N

r

(�) �e

2r�1

0 ��e

2r

0 0 ��e

T

2r

��

0 0 �N

r

(�)

T

0

0 ��� e

T

2r�1

0

3

7

7

7

5

is real. Furthermore

~

X :=

^

XZ

c

Z is also real and

~

X

T

J

~

X = J . By properly arranging the

columns we obtain a real matrix W = [W

1

;W

2

] such that W

T

JW = J and

HW = W

"

R

d

D

d

G

d

�R

T

d

#

:

Note that this construction is also valid for � = 0, since Z

H

c

^

P

c

Z

c

= J implies that the

columns of X and

�

X are linearly independent, i.e., if H has a Jordan block N

2r+1

(0) with a

chain of principal vectors given by the columns of the matrix X, it must have an additional

Jordan block of the same size with a chain of principal vectors given by the columns

�

X.

For even size Jordan blocks corresponding to the eigenvalue 0 we still need to �nd a real

matrix V

0

with V

T

0

JV

0

= J and HV

0

= V

0

"

R

e

0

D

e

0

0 �(R

e

0

)

T

#

. Such a matrix is obtained via

Lemma 13 and �

e

in Lemma 15 by initially choosing a real chains of principal vectors. Hence

there also exists a matrix V

0

= [V

0

1

; V

0

2

], such that V

T

0

JV

0

= J andHV

0

= V

0

"

R

0

D

0

0 �R

T

0

#

:

Setting U = [U

1

; V

1

; V

0

1

;W

1

; U

2

; V

2

; V

0

2

;W

2

], it follows by Proposition 2 that U is real

symplectic and we have obtained (40).

Note that for a given Hamiltonian matrix not all types of blocks associated with a purely

imaginary have to appear in the forms (37) and (40). We clearly allow all the occurring

blocks to have dimension zero in which case the associated structure inertia index is void,

too.

Remark 4 Usually the terminology canonical form refers to a form which displays all

the invariants of an equivalence relation, is essentially unique, and gives the most simple
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representative of every equivalence class. A typical example is the Jordan canonical form

which is the canonical form under similarity. If we use plain similarity then the classical

Jordan canonical form is also the canonical form for Hamiltonian matrices. But it usually

does not represent a Hamiltonian matrix again. Thus we have derived the forms (37) and

(40) which are condensed forms under symplectic similarity. They are more complicated

than the classical Jordan canonical forms and they are not really canonical in the usual

sense, since there is some nonuniqueness in the combination of blocks in the construction

of those parts with index c and d. However, all the eigenvalues, the number of blocks and

the block sizes and also the structure inertia indices are displayed. But, since the matrix is

not block diagonal, not all eigenvectores and principal vectors are displayed directly. From

every classical Jordan block only half of the principal vectors can be obtained directly from

the transformation matrix, but the remaining ones are easily constructed. We nevertheless

call (37) and (40) Hamiltonian Jordan canonical forms.

Remark 5 The eigenvalue 0 leads to some further nonuniqueness for a real Hamiltonian

matrix. There are many di�erent ways to couple the odd size Jordan blocks corresponding

to Ind

c

S

(0). When coming from the complex case and treating 0 as a complex purely

imaginary eigenvalue, we have obtained the real form from a coupling of matrix pairs

(�P

2r+1

; N

2r+1

) and (��P

2r+1

; N

2r+1

). But we can also use di�erent combinations and

the transformations '

1

or '

2

to get a real form. Using '

1

(or '

2

) for above coupled

matrix pairs the �nal Hamiltonian structure would be diag(N

2v

k

+1

;�N

T

2v

k

+1

) which looks

somewhat simpler than what we have given in the Theorem.

As we have already discussed in the introduction we are interested in Hamiltonian trian-

gular forms under symplectic similarity transformations, since from these we can read o�

the eigenvalues and the associated Lagrangian invariant subspaces. We will now present

necessary and su�cient conditions for the existence of Hamiltonian triangular forms. In

some situations, where such triangular forms do not exist, there exist Hamiltonian trian-

gular forms under nonsymplectic similarity transformations. We will also give necessary

and su�cient conditions for this case. Our �rst two results give necessary and su�cient

conditions for the existence of Hamiltonian triangular forms. The equivalence of parts ii)

and iii) in the following two theorems was �rst stated and proved in [17]. Here they are

obtained as simple corollaries of our canonical forms.

Theorem 23 (Hamiltonian triangular Jordan canonical form)

Let H be a complex Hamiltonian matrix, let i�

1

; : : : ; i�

�

be its pairwise disjoint purely

imaginary eigenvalues and let the columns of U

k

, k = 1; : : : ; �, span the associated invariant

subspaces. Then the following are equivalent.

i) There exists a symplectic matrix U , such that U

�1

HU is Hamiltonian triangular.

ii) There exists a unitary symplectic matrix U , such that U

H

HU is Hamiltonian trian-

gular.

iii) U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �.
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iv) Ind

d

S

(i�

k

) is void for all k = 1; : : : ; �.

Moreover, if any of the equivalent conditions holds, then the symplectic matrix U can be

chosen such that U

�1

HU is in Hamiltonian triangular Jordan canonical form

2

6

6

6

6

6

6

6

6

4

R

r

0 0 0 0 0

0 R

e

0 0 D

e

0

0 0 R

c

0 0 D

c

0 0 0 �R

H

r

0 0

0 0 0 0 �R

H

e

0

0 0 0 0 0 �R

H

c

3

7

7

7

7

7

7

7

7

5

; (42)

where the blocks are de�ned as in (37).

Proof. i) ) ii) follows directly from Lemma 3. ii) ) iii) follows from Proposition 3.

iii) ) iv) follows from the relation between the inertia index of U

H

k

JU

k

and the structure

inertia index Ind

S

(i�

k

) discussed in the proof of Theorem 20. iv) ) i) follows directly

from Theorem 20.

We also have the analogous result for the real case.

Theorem 24 (Real Hamiltonian triangular Jordan canonical form)

Let H be a real Hamiltonian matrix, let i�

1

; : : : ; i�

�

be its pairwise distinct nonzero purely

imaginary eigenvalues and let U

k

, k = 1; : : : ; �, be the associated invariant subspaces. Then

the following are equivalent.

i) There exists a real symplectic matrix U such that U

�1

HU is real Hamiltonian trian-

gular.

ii) There exists a real orthogonal symplectic matrix U such that U

T

HU is real Hamilto-

nian triangular.

iii) U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �.

iv) Ind

d

S

(i�

k

) is void for all k = 1; : : : ; �.

Moreover, if any of the equivalent conditions holds, then the real symplectic matrix U can

be chosen so that U

�1

HU is in real Hamiltonian triangular Jordan canonical form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0 0 0 0 0 0 0

0 R

e

0 0 0 D

e

0 0

0 0 R

c

0 0 0 D

c

0

0 0 0 R

0

0 0 0 D

0

0 0 0 0 �R

T

r

0 0 0

0 0 0 0 0 �R

T

e

0 0

0 0 0 0 0 0 �R

T

c

0

0 0 0 0 0 0 0 �R

T

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (43)

where the blocks are de�ned as in (40).
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Proof. The proof is analogous to the proof Theorem 23, using Lemma 3, Proposition 3

and Theorem 22. For ii) ) iii) we observe that H is orthogonal symplectically similar

to a real Hamiltonian triangular form hence it is also unitary symplectically similar to a

complex Hamiltonian triangular form.

Remark 6 Using the properties of the inertia indices, conditions iii) and iv) in Theorem 23

can be relaxed to hold for ��1 purely imaginary eigenvalues. Using the fact that eigenvalues

appear in complex conjugate pairs conditions iii) and iv) in Theorem 24 can be relaxed to

hold only for half the number of the non-zero purely imaginary eigenvalues.

Similar remarks hold for Hamiltonian and symplectic pencils below.

We have shown that a Hamiltonian matrix is symplectically similar to Hamiltonian tri-

angular form if and only if Ind

d

S

(i�) is void for all purely imaginary eigenvalues. But there

are Hamiltonian matrices for which this structure inertia index is not void and there exists

a nonsymplectic similarity transformations to Hamiltonian triangular form. A simple class

of such matrices are the matrices J

2p

. Unitary symplectic similarity transformations do

not change these matrices. (Hence J

2p

has no Hamiltonian triangular form under symplec-

tic similarity transformations.) But J

2p

is similar to a Hamiltonian triangular canonical

form under nonsymplectic transformations. As an example set V = [e

1

; e

3

; e

2

; e

4

], then

V

H

J

2

V = diag(

"

0 1

�1 0

#

;

"

0 1

�1 0

#

) is Hamiltonian triangular.

In general we have the following necessary and su�cient condition.

Theorem 25 A Hamiltonian matrix H is similar to a Hamiltonian triangular Jordan

canonical form if and only if the algebraic multiplicities of all purely imaginary eigenvalues

are even.

If H is real, then it is similar to a real Hamiltonian triangular Jordan canonical form

if and only if the algebraic multiplicities of all purely imaginary eigenvalues with positive

imaginary parts are even.

Proof. We prove only the complex case. The real case can be obtained from the complex

case by using the same transformations as in the proof of Theorem 22.

The necessity follows directly from the eigenvalue properties of a Hamiltonian triangular

matrix listed in Table 1. So we only need to prove the su�ciency. An eigenvalue has even

algebraic multiplicity if and only if it has an even number of odd size Jordan blocks. So

for a purely imaginary eigenvalue i� its even size Jordan blocks can be transformed to

a Hamiltonian triangular forms with �

e

, and its odd size Jordan blocks can be pairwise

coupled and then be transformed to Hamiltonian triangular forms with '

c

or '

1

, '

2

. For the

eigenvalues with nonzero real part, by Lemma 5, we always have the Hamiltonian triangular

form. With an appropriate arrangement of columns as in the proof of Theorem 20 we obtain

the Hamiltonian triangular Jordan canonical form.

Note that a similar trick was used in [17] to derive Hamiltonian triangular forms.
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5 Hamiltonian Kronecker canonical forms

In this section we generalize the results for Hamiltonian Jordan canonical forms to the

case of Hamiltonian pencils. We always assume that the pencils we consider are regu-

lar. A treatment of singular pencils is currently under investigation and is not possible in

this already very long paper. Since the pencils are assumed to be regular, the appropriate

canonical forms should be called Hamiltonian Weierstra� canonical forms, since Weierstra�

[24] was the �rst to derive the canonical forms for regular pencils. The form for general

pencils was developed �rst by Kronecker [13]. Nevertheless we will call our form Hamilto-

nian Kronecker canonical form in order to avoid confusion when generalizing these results

at a later stage to singular Hamiltonian pencils.

As shown in Table 2 for a regular Hamiltonian pencil M

h

� �L

h

we have similar sym-

metries in the �nite spectrum. So most of the analysis in this section has to be devoted to

the part of the canonical form associated with in�nite eigenvalues.

Let us �rst recall the Weierstra� canonical form for regular pencils, e.g. [10]. For an

arbitrary regular matrix pencil M� �L, there exist nonsingular matrices X , Y, such that

[10]

Y(M� �L)X =

"

H 0

0 I

#

� �

"

I 0

0 N

#

;

where H is in Jordan canonical form and is associated with the �nite eigenvalues ofM��L.

N is a nilpotent matrix in Jordan canonical form and associated with the eigenvalue in�nity.

If M� �L is Hamiltonian, i.e., MJL

H

= �LJM

H

, then we obtain

"

H 0

0 I

#

K

"

I 0

0 N

H

#

= �

"

I 0

0 N

#

K

"

H

H

0

0 I

#

;

where K = X

�1

JX

�H

. If we partition K conformally as a block matrix

"

K

1;1

K

1;2

K

2;1

K

2;2

#

,

then we have

HK

1;1

+K

1;1

H

H

= 0; HK

1;2

N

H

+K

1;2

= 0; K

2;2

N

H

+NK

2;2

= 0:

Since N is nilpotent, from the second equation we have K

1;2

= 0, see e.g., [5]. Since K

is skew Hermitian we obtain that it is block diagonal. If we partition X conformally as

X = [X

1

; X

2

] then

MX

1

= LX

1

H; MX

2

N = LX

2

; (44)

i.e., rangeX

1

and rangeX

2

are the de
ating subspaces corresponding to the �nite and

in�nite eigenvalues, respectively. Moreover, since X

H

JX = �K

�1

= � diag(K

�1

1;1

; K

�1

2;2

),

we have

(X

H

1

JX

1

)H +H

H

(X

H

1

JX

1

) = 0; (X

H

2

JX

2

)N +N

H

(X

H

2

JX

2

) = 0:

These two equations have the same form as (9). It follows that for the eigenvalue in�nity,

we also have a structure inertia index Ind

S

(1), which can be analogously divided into
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three parts

Ind

e

S

(1) = (�

1;e

1

; : : : ; �

1;e

�

);

Ind

c

S

(1) = (�

1;c

1

; : : : ; �

1;c

�

;��

1;c

1

; : : : ;��

1;c

�

);

Ind

d

S

(1) = (�

1;d

1

; : : : ; �

1;d

 

); �

1;d

1

= : : : = �

1;d

 

(= �1):

The analysis for the eigenvalue in�nity can be carried out analogous to the analysis for the

purely imaginary �nite eigenvalues. We can choose an appropriate matrix X

2

, such that

X

H

2

JX

2

is block diagonal with diagonal blocks �P

r

corresponding to a nilpotent matrix

N

r

, which is one of the blocks in N .

As in matrix case there is no problem to transform the matrix pairs (�P

r

; N

r

) correspond-

ing to the indices in Ind

e

S

(1) and Ind

c

S

(1) to appropriate Hamiltonian triangular forms.

The di�culty arises for the pairs associated with indices in Ind

d

S

(1). In order to obtain

a Hamiltonian canonical form, these pairs have to be combined with pairs associated with

�nite eigenvalues. Since Ind(X

H

JX ) has the same number of elements i and �i and since

Ind(X

H

JX ) consists of the elements of Ind(X

H

1

JX

1

) followed by those of Ind(X

H

2

JX

2

),

such a coupling is always possible.

For �nite eigenvalues we do the reductions in the same way as in the matrix case. The de-


ating subspaces corresponding to the eigenvalues with nonzero real parts are still isotropic.

So the matrix pairs that we couple with the pairs associated with the eigenvalue in�nity

must have purely imaginary eigenvalues.

It follows that we obtain the following Hamiltonian Kronecker canonical form for a regular

complex Hamiltonian pencil.

Theorem 26 (Hamiltonian Kronecker canonical form)

Given a regular complex Hamiltonian pencil M

h

� �L

h

. Then there exist a nonsingular

matrix Y and a symplectic matrix U such that

Y(M

h

� �L

h

)U =

"

M

11

M

12

M

21

M

22

#

� �

"

L

11

L

12

L

21

L

22

#

; (45)

with

M

11

� �L

11

=

2

6

6

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

d

� �I

R

M

� �R

L

I � �R

1

3

7

7

7

7

7

7

7

7

5

;

M

21

� �L

21

=

2

6

6

6

6

6

6

6

6

4

0

0

0

G

d

G

M

� �G

L

0

3

7

7

7

7

7

7

7

7

5

;
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M

12

� �L

12

=

2

6

6

6

6

6

6

6

6

4

0

D

e

D

c

D

d

D

M

� �D

L

��D

1

3

7

7

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

6

6

4

�R

H

r

� �I

�R

H

e

� �I

�R

H

c

� �I

�R

H

d

� �I

H

M

� �H

L

I + �R

H

1

3

7

7

7

7

7

7

7

7

5

;

and where R

r

, R

e

, D

e

, R

c

, D

c

, R

d

, D

d

, G

d

are as in (37). The other blocks have the

structures

R

M

= diag(R

M

1

; : : : ; R

M

 

); D

M

= diag(D

M

1

; : : : ; D

M

 

);

H

M

= diag(H

M

1

; : : : ; H

M

 

); G

M

= diag(G

M

1

; : : : ; G

M

 

);

R

L

= diag(R

L

1

; : : : ; R

L

 

); D

L

= diag(D

L

1

; : : : ; D

L

 

);

H

L

= diag(H

L

1

; : : : ; H

L

 

); G

L

= diag(G

L

1

; : : : ; G

L

 

);

where for k = 1; : : : ;  

R

M

k

=

2

6

4

N

u

k

(i�

k

) 0 �

p

2

2

e

u

k

I

v

k

0

1

2

(i�

k

+ 1)

3

7

5

; D

M

k

=

p

2

2

i�

1

d

2

6

4

0 0 �e

u

k

0 0 0

e

H

u

k

0

p

2

2

(i�

k

� 1)

3

7

5

;

H

M

k

=

2

6

4

�N

u

k

(i�

k

)

H

0 I

v

k

p

2

2

e

H

u

k

0

1

2

(i�

k

+ 1)

3

7

5

; G

M

k

= i�

1

d

2

6

4

0 0 0

0 0 0

0 0 �

1

2

(i�

k

� 1)

3

7

5

;

R

L

k

=

2

6

4

I

u

k

0 0

N

v

k

�

p

2

2

e

v

k

1

2

3

7

5

; D

L

k

=

p

2

2

i�

1

d

2

6

4

0 0 0

0 0 e

v

k

0 �e

H

v

k

p

2

2

3

7

5

;

H

L

k

=

2

6

4

I

u

k

0 �N

H

v

k

0

p

2

2

e

H

v

k

1

2

3

7

5

; G

L

k

= i�

1

d

2

6

4

0 0 0

0 0 0

0 0 �

1

2

3

7

5

:

The remaining blocks have the structure

R

1

= diag(R

1;e

; R

1;c

); D

1

= diag(D

1;e

; D

1;c

);

R

1;e

= diag(N

x

1

; : : : ; N

x

�

); D

1;e

= diag(�

1;e

1

e

x

1

e

H

x

1

; : : : ; �

1;e

�

e

x

�

e

H

x

�

);

R

1;c

= diag(B

1

1

; : : : ; B

1

�

); D

1;c

= diag(C

1

1

; : : : ; C

1

�

);
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where for k = 1; : : : ; �

B

1

k

=

2

6

6

4

N

y

k

0 �

p

2

2

e

y

k

N

z

k

�

p

2

2

e

z

k

0

3

7

7

5

; C

1

k

= i

p

2

2

�

1;c

k

2

6

4

0 0 e

y

k

0 0 �e

z

k

�e

H

y

k

e

H

z

k

0

3

7

5

:

We see that M

h

� �L

h

has � Kronecker blocks associated with the eigenvalue in�nity cor-

responding to the structure inertia indices in Ind

e

S

(1) = (�

1;e

1

; : : : ; �

1;e

�

). It has 2� Kro-

necker blocks corresponding to the indices in Ind

c

S

(1) = (�

1;c

1

; : : : ; �

1;c

�

;��

1;c

1

; : : : ;��

1;c

�

);

and  blocks corresponding to the indices in Ind

d

S

(1) = (�

1

d

; : : : ; �

1

d

| {z }

 

): The remaining

blocks are associated with  purely imaginary eigenvalues i�

1

; : : : ; i�

 

2 fi�

1

; : : : ; i�

�

g.

The associated matrix pair has the corresponding index in Ind

d

S

(i�

k

) and is the part that is

left over after the coupling in

"

R

d

D

d

G

d

�R

H

d

#

.

Proof. The analysis that we have given already covers most of the blocks. It remains to

show how we get the blocks in

"

R

M

D

M

G

M

H

M

#

� �

"

R

L

D

L

G

L

H

L

#

:

Suppose that (�P

2v+1

; N

2v+1

) is a matrix pair with the corresponding structure inertia index

� 2 Ind

d

S

(1). By our analysis there exists a matrix pair (�

1

P

2u+1

; N

2u+1

(i�)) associated

with an index of opposite sign. For an in�nite eigenvalue in the pencil case the pairs

are actually (�P

2v+1

; I � �N

2v+1

) and (�

1

P

2u+1

; N

2u+1

(i�) � �I). A transformation on

the direct sum of these two pairs is equivalent to a congruence transformation on P

c

=

diag(�

1

P

2u+1

; �P

2v+1

) and an equivalence transformation on the pencil

N

c

� �L

c

:= diag(N

2u+1

(i�); I)� � diag(I; N

2v+1

):

If we use the transformation '

c

, then we get that Z

H

c

P

c

Z

c

= J , Z

�1

c

(N

c

� �L

c

)Z

c

is in the

desired form.

Remark 7 As we see from Theorem 26 the canonical form has several parts, a Hamiltonian

triangular part associated with �nite eigenvalues, a Hamiltonian part, also associated with

�nite eigenvalues, that cannot be made triangular by transformations with symplectic U

and nonsingular Y, a Hamiltonian triangular part associated with the eigenvalue in�nity

"

R

1

D

1

0 �R

H

1

#

and one part which results from a mixture of blocks associated with �nite

and in�nite eigenvalues.

For a real Hamiltonian pencil the real Hamiltonian Kronecker canonical form is simpler,

since there is no part resulting from mixing blocks to �nite and in�nite eigenvalues. The
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reason is that in the real caseX

2

as in (44), the basis of the de
ating subspace corresponding

to eigenvalue in�nity can be chosen real, i.e., Ind(X

H

2

JX

2

) has an equal number of elements

i and �i. So we can use the same trick that we have used to deal with zero eigenvalues

in the matrix case in the proof of Theorem 22 to get the triangular block for the in�nite

eigenvalue.

Theorem 27 (Real Hamiltonian Kronecker canonical form)

Given a real regular Hamiltonian pencil M

h

� �L

h

. Then there exist a real nonsingular

matrix Y and a real symplectic matrix U , such that

Y(M

h

� �L

h

)U =

"

M

11

M

12

M

21

M

22

#

� �

"

L

11

L

12

L

21

L

22

#

; (46)

with

M

11

� �L

11

=

2

6

6

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

0

� �I

R

d

� �I

I � �R

1

3

7

7

7

7

7

7

7

7

5

;

M

21

� �L

21

=

2

6

6

6

6

6

6

6

6

4

0

0

0

0

G

d

0

3

7

7

7

7

7

7

7

7

5

;

M

12

� �L

12

=

2

6

6

6

6

6

6

6

6

4

0

D

e

D

c

D

0

D

d

��D

1

3

7

7

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

6

6

4

�R

T

r

� �I

�R

T

e

� �I

�R

T

c

� �I

�R

T

0

� �I

�R

T

d

� �I

I + �R

T

1

3

7

7

7

7

7

7

7

7

5

;

and where R

r

, R

e

, D

e

, R

c

, D

c

, R

0

, D

0

, R

d

, D

d

, G

d

are as in (40). The blocks associated

with the eigenvalue in�nity are

R

1

= diag(R

1;e

; R

1;c

); D

1

= diag(D

1;e

; D

1;c

);
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R

1;e

= diag(N

x

1

; : : : ; N

x

�

); D

1;e

= diag(�

1;e

1

e

x

1

e

T

x

1

; : : : �

1;e

�

e

x

�

e

T

x

�

);

R

1;c

= diag(B

1

1

; : : : ; B

1

�

); D

1;c

= diag(C

1

1

; : : : ; C

1

�

);

where for k = 1; : : : ; �

B

1

k

=

2

6

4

N

y

k

(

"

0 0

0 0

#

) �e

2y

k

�1

0 0

3

7

5

; C

1

k

= ��

1

c

"

0 e

2y

k

e

T

2y

k

0

#

:

The subpencil I � �

"

R

1

D

1

0 �R

T

1

#

is the canonical form corresponding to the eigenvalue

in�nity. Ind

e

S

(1) = (�

1;e

1

; : : : ; �

1;e

�

) is the structure inertia index for even size Kronecker

blocks and Ind

c

S

(1) = (�

1

c

; : : : ; �

1

c

| {z }

�

;��

1

c

; : : : ;��

1

c

| {z }

�

), is the structure inertia index for odd

size Kronecker blocks. The index Ind

d

S

(1) is void.

Proof. The proof is obtained analogous to that of Theorem 22.

Analogous to the matrix case we also have necessary and su�cient conditions for the

existence of a Hamiltonian triangular Kronecker canonical form. To obtain such a form we

need the following lemma.

Lemma 28 Given a regular Hamiltonian pencilM

h

��L

h

. Let i�

1

; : : : ; i�

�

be its pairwise

distinct purely imaginary eigenvalues and let the columns of U

k

span the corresponding

de
ating subspaces. Let furthermore the columns of U

1

span the de
ating subspace to the

eigenvalue 1. Suppose there exists a nonsingular matrix

^

Y and a symplectic matrix

^

U

such that

^

Y(M

h

� �L

h

)

^

U is Hamiltonian triangular. Then for all k = 1; : : : ; �, U

H

k

JU

k

is

congruent to J , and U

H

1

JU

1

is also congruent to J .

Proof. By hypothesis there is a nonsingular matrix

^

Y and a symplectic matrix

^

U such

that

^

Y(M

h

� �L

h

)

^

U =

"

M

1

M

3

0 M

2

#

� �

"

L

1

L

3

0 L

2

#

is in Hamiltonian triangular form. Since M

h

� �L

h

is regular, M

1

� �L

1

and M

2

� �L

2

are both regular. For the �rst subpencil there exist nonsingular Y

1

and Z

1

so that

Y

1

(M

1

� �L

1

)Z

1

=

"

A 0

0 I

#

� �

"

I 0

0 B

#

is in Kronecker canonical form. Let X

1

be nonsingular, such that X

1

M

2

Z

�H

1

is lower

triangular, (this is a QL factorization, see [11]), and set Y

1

= diag(Y

1

; X

1

)

^

Y, U

1

=

^

U diag(Z

1

; Z

�H

1

). Then U

1

is symplectic and

Y

1

(M� �L)Z

1

=

2

6

6

6

4

A 0 M

1;3

M

1;4

0 I M

2;3

M

2;4

0 0 M

3;3

0

0 0 M

4;3

M

4;4

3

7

7

7

5

� �

2

6

6

6

4

I 0 L

1;3

L

1;4

0 B L

2;3

L

2;4

0 0 L

3;3

L

3;4

0 0 L

4;3

L

4;4

3

7

7

7

5

:
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Using the Hamiltonian property, we get

"

A 0

0 I

# "

L

3;3

L

3;4

L

4;3

L

4;4

#

H

+

"

I 0

0 B

# "

M

3;3

0

M

4;3

M

4;4

#

H

= 0:

Comparing the blocks on both sides, we have L

3;4

= 0, and

AL

H

3;3

+M

H

3;3

= 0; L

H

4;4

+BM

H

4;4

= 0; AL

H

4;3

+M

H

4;3

= 0: (47)

By the regularity of the pencil L

3;3

, M

4;4

must be nonsingular. Set

Y

2

= diag(I;

"

L

�1

3;3

0

�M

�1

4;4

L

4;3

L

�1

3;3

M

�1

4;4

#

)Y

1

;

then by (47) it follows that

Y

2

(M� �L)U

1

=

2

6

6

6

4

A 0 M

1;3

M

1;4

0 I M

2;3

M

2;4

0 0 �A

H

0

0 0 0 I

3

7

7

7

5

� �

2

6

6

6

4

I 0 L

1;3

L

1;4

0 B L

2;3

L

2;4

0 0 I 0

0 0 0 �B

H

3

7

7

7

5

:

Since B is nilpotent �(B; I) \ �(I;�A

H

) = ;. So the matrix equation

BX + Y = L

2;3

; X � Y A

H

=M

2;3

has unique solutions X

2

; Y

2

, see [5].

Set

Y

3

=

2

6

6

6

4

I 0 0 AX

H

2

�M

1;4

0 I �Y

2

0

0 0 I 0

0 0 0 I

3

7

7

7

5

Y

2

; U = U

1

2

6

6

6

4

I 0 0 �X

H

2

0 I �X

2

0

0 0 I 0

0 0 0 I

3

7

7

7

5

:

Then U

2

is symplectic and we can easily verify that

Y

3

(M� �L)U =

2

6

6

6

4

A 0 M

1;3

0

0 I 0 M

2;4

0 0 �A

H

0

0 0 0 I

3

7

7

7

5

� �

2

6

6

6

4

I 0 L

1;3

0

0 B 0 L

2;4

0 0 I 0

0 0 0 �B

H

3

7

7

7

5

:

Finally setting

Y =

2

6

6

6

4

I 0 �L

1;3

0

0 I 0 �M

2;4

0 0 I 0

0 0 0 I

3

7

7

7

5

Y

3

;
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we obtain

Y(M� �L)U =

2

6

6

6

4

A 0 D

A

0

0 I 0 0

0 0 �A

H

0

0 0 0 I

3

7

7

7

5

� �

2

6

6

6

4

I 0 0 0

0 B 0 D

B

0 0 I 0

0 0 0 �B

H

3

7

7

7

5

:

and clearly D

A

, D

B

are Hermitian.

Partition

U = [U

1;1

; U

1;2

; U

2;1

; U

2;2

]

conformally. Then V

1

= [U

1;1

; U

2;1

] and V

2

= [U

1;2

; U

2;2

] are the bases of the de
ating

subspaces corresponding to the �nite eigenvalues and eigenvalue in�nity, respectively. Since

U is symplectic, V

H

k

JV

k

= J for k = 1; 2. Moreover,

M

h

V

1

= L

h

V

1

"

A D

A

0 �A

H

#

=: L

h

V

1

H

A

; M

h

V

2

H

B

:=M

h

V

2

"

B D

B

0 �B

H

#

= L

h

V

2

:

Since H

A

is Hamiltonian triangular, by Proposition 3 and V

H

1

JV

1

= J we have that

U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �. Since H

B

is also Hamiltonian triangular and

nilpotent, by exchanging the roles ofM

h

and L

h

in the pencil we get that U

H

1

JU

1

is also

congruent to J .

Theorem 29 (Hamiltonian triangular Kronecker canonical form)

Let M

h

� �L

h

be a regular complex Hamiltonian pencil , let i�

1

; : : : ; i�

�

be its pairwise

distinct purely imaginary eigenvalues and let the columns of U

k

span the corresponding

de
ating subspaces. Let furthermore the columns of U

1

span the de
ating subspace to the

eigenvalue 1. Then the following are equivalent.

i) There exist a nonsingular matrix Y and a symplectic matrix U such that Y(M

h

�

�L

h

)U is Hamiltonian triangular.

ii) There exist a unitary matrix Y and a unitary symplectic matrix U such that Y(M

h

�

�L

h

)U is Hamiltonian triangular.

iii) For all k = 1; : : : ; �, U

H

k

JU

k

is congruent to J and U

H

1

JU

1

is also congruent to J .

iv) For all k = 1; : : : ; � the structure inertia indices Ind

d

S

(i�

k

) and Ind

d

S

(1) are void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen

so that Y(M

h

� �L

h

)U is in Hamiltonian triangular Kronecker canonical form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

� �I 0

R

e

� �I D

e

R

c

� �I D

c

I � �R

1

��D

1

0 �R

H

r

� �I

0 �R

H

e

� �I

0 �R

H

c

� �I

0 I + �R

H

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
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where the blocks are as in (45).

Proof. i) ) ii) follows directly from Lemma 3. ii) ) iii) follows from Lemma 28. iii)

) iv) follows from the relation between the inertia index of U

H

k

JU

k

and U

H

1

JU

1

, and the

associated structure inertia index. iv) ) i) follows directly from Theorem 26.

Theorem 30 (Real Hamiltonian triangular Kronecker canonical form)

LetM

h

��L

h

be a regular real Hamiltonian pencil, let i�

1

; : : : ; i�

�

be its pairwise distinct,

nonzero, purely imaginary eigenvalues and let the columns of U

k

span the corresponding

de
ating subspaces. Then the following are equivalent.

i) There exist a real nonsingular matrix Y and a real symplectic matrix U such that

Y(M

h

� �L

h

)U is Hamiltonian triangular.

ii) There exist a real orthogonal matrix Y and a real orthogonal symplectic matrix U

such that Y(M

h

� �L

h

)U is Hamiltonian triangular.

iii) For all k = 1; : : : ; �, U

H

k

JU

k

is congruent to J .

iv) For all k = 1; : : : ; � the structure inertia indices Ind

d

S

(i�

k

) are void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen

so that

Y(M

h

� �L

h

)U =

"

M

11

M

12

0 M

22

#

� �

"

L

11

L

12

0 L

22

#

;

with

M

11

� �L

11

=

2

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

0

� �I

I � �R

1

3

7

7

7

7

7

7

5

;

M

12

� �L

12

=

2

6

6

6

6

6

6

4

0

D

e

D

c

D

0

��D

1

3

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

4

�R

T

r

� �I

�R

T

e

� �I

�R

T

c

� �I

�R

T

0

� �I

I + �R

T

1

3

7

7

7

7

7

7

5

;

and where the blocks R

r

, R

e

, R

c

, R

0

, D

e

, D

c

, D

0

are as in (42) and R

1

and D

1

are as

in (46).
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Proof. The proof is similar to the proof of Theorem 29, using Lemma 3, Lemma 28 and

Theorem 27.

We also have the corresponding result on the Hamiltonian triangular Kronecker canonical

form under nonsymplectic transformations.

Theorem 31 A regular Hamiltonian pencilM

h

��L

h

has a Hamiltonian triangular Kro-

necker canonical form if and only if the algebraic multiplicities of all purely imaginary

eigenvalues are even.

If M

h

� �L

h

is real it has a real Hamiltonian triangular Kronecker canonical form if

and only if the algebraic multiplicities of all purely imaginary eigenvalues with positive

imaginary parts are even.

Proof. The proof is similar to the proof of Theorem 25. Note that the condition that all

�nite eigenvalues have even algebraic multiplicities implies that the algebraic multiplicity

for the eigenvalue in�nity is also even. The canonical form for the in�nite eigenvalue can

be constructed in the same way as that for the eigenvalue zero by exchanging the roles of

L

h

and M

h

.

In this section we have shown that there exist canonical forms analogous to the matrix

case for Hamiltonian pencils. In the next sections we will use the generalized Cayley

transformation, to obtain similar results also for symplectic matrices and pencils.

6 Technical lemmas for the symplectic case

In this section we now present some technical results that are needed to derive the canonical

forms for symplectic pencils. The �rst tool that we will make use of is a generalization of

the Cayley transformation, see [19].

Proposition 5 A matrix pencil M

h

� �L

h

is Hamiltonian if and only if the pencil

�(M

h

� �L

h

) := (M

h

+ L

h

)� �(M

h

� L

h

) =:M

s

� �L

s

is symplectic. M

h

� �L

h

is regular if and only if M

s

� �L

s

is regular.

The generalized Cayley transformation relates the spectrum of a Hamiltonian pencil �(M

h

;L

h

)

and the spectrum of the associated symplectic pencil M

s

� �L

s

as shown in Table 5. The

structure of the associated Jordan blocks and de
ating subspaces, however, is not altered

by the generalized Cayley transformation, since for any matrix pencil A � �B we have

�(Y (A� �B)U) = Y (�(A� �B))U .

We may apply the generalized Cayley transformation directly to the canonical forms (45)

and (46) and we will obtain an analogous block structure. Unfortunately the Cayley trans-

formation does not produce a form that is as condensed, so some further transformations

are needed. To do this construction we need some more technical lemmas.
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�

Re� < 0

� 6= �1

Re� = 0

� 6= 0

Re� > 0

� 6= 1

� = 0 � =1 � = �1 � = 1

� =

�+1

��1

0 < j�j < 1

j�j = 1

� 6= �1

1 < j�j <1 � = �1 � = 1 � = 0 � =1

Table 5: Eigenvalue relation under Cayley transformation

Lemma 32 Let T =

2

6

6

6

6

6

4

0 �

1

: : : �

r�1

.

.

.

.

.

.

.

.

.

.

.

.

�

1

0

3

7

7

7

7

7

5

be a strictly upper triangular Toeplitz matrix

and �

1

6= 0. Then there exists a nonsingular upper triangular matrix X such that XTX

�1

=

N

r

.

Proof. It is clear that rankT = r�1 so T is similar to N

r

andX exists. UsingXT = N

r

X

the assertion follows by induction.

Lemma 33 Given N

r

(�) with � 6= 1. Set � =

�+1

��1

. Then there exists a nonsingular upper

triangular matrix X

r

, such that

X

�1

r

(N

r

(�) + I)(N

r

(�)� I)

�1

X

r

= N

r

(�): (48)

Proof. With # :=

1

��1

=

1

2

(� � 1) we obtain that

^

N

r

(�) := (N

r

(�) + I)(N

r

(�)� I)

�1

= (�I + #N

r

)

r�1

X

k=0

(�#)

k

N

k

r

= �I � 2

r�1

X

k=1

(�#)

k+1

N

k

r

:

Thus

^

N

r

(�) � �I is a nilpotent upper triangular Toeplitz matrix, and since # 6= 0 by

Lemma 32 there exists a nonsingular upper triangularX

r

, such that X

�1

r

^

N

r

(�)X

r

= N

r

(�).

Lemma 34 Given a vector x = [x

1

; : : : ; x

r

]

T

with x

r

6= 0, there exists an upper triangular

Toeplitz matrix T such that T

�1

x = e

r

.

Proof. Set T =

2

6

6

6

6

6

4

x

r

x

r�1

: : : x

1

.

.

.

.

.

.

.

.

.

.

.

.

x

r�1

x

r

3

7

7

7

7

7

5

. Since x

r

6= 0, detT 6= 0. It is obvious that

Te

r

= x. Therefore T

�1

x = e

r

.
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We will use these lemmas now to transform the pencils that we obtain form the Cayley

transformation applied to the separate blocks in the Hamiltonian Kronecker canonical form.

In the following � will be an eigenvalue of M

s

� �L

s

.

1. j�j 6= 0; 1;1: By Table 5, � corresponds to an eigenvalue � of the corresponding

Hamiltonian pencilM

h

��L

h

(= �

�1

(M

s

��L

s

)) and we have � 6= �1;1; 0 and Re � 6= 0.

For such an eigenvalue from (45) the corresponding subblock in the Hamiltonian Kronecker

canonical form has the form

H

�

� �I =:

"

R

�

0

0 �R

H

�

#

� �I;

where R

�

= diag(N

r

1

(�); : : : ; N

r

p

(�)). The Cayley transformation leads to a block

M

�

� �L

�

= (H

�

+ I)� �(H

�

� I)

in M

s

� �L

s

.

If we multiply from the left by (H

�

� I)

�1

(which exists by assumption) we get a block

^

S

�

� �I =

"

^

R 0

0

^

R

�H

#

� �I;

where

^

R = (R

�

+ I)(R

�

� I)

�1

= diag(

^

N

r

1

(�); : : : ;

^

N

r

p

(�)) and

^

N

r

k

(�) = (N

r

k

(�) +

I)(N

r

k

(�)� I)

�1

. Applying (48) to each of these blocks, we obtain a symplectic matrix

U = diag(X

r

1

; : : :X

r

p

; X

�H

r

1

; : : : ; X

�H

r

p

)

and

S

�

� �I := U

�1

(

^

S

�

� �I)U =

"

R

�

0

0 R

�H

�

#

� �I;

with R

�

= diag(N

r

1

(�); : : : ; N

r

p

(�)).

2. � = 0;1. The associated eigenvalues in M

h

� �L

h

are �1, and the corresponding

subpencil is

H

1

� �I =

"

R

1

0

0 �R

H

1

#

� �I;

where we may assume without loss of generality that R

1

= diag(N

r

1

(�1); : : : ; N

r

p

(�1)).

Applying the generalized Cayley transformation the corresponding subpencil inM

s

��L

s

is

~

M

1

��

~

L

1

= (H

1

+I)��(H

1

�I) =

"

R

1

+ I 0

0 �(R

1

� I)

H

#

��

"

R

1

� I 0

0 �(R

1

+ I)

H

#

:

Multiplying from the left by diag((R

1

� I)

�1

;�(R

1

� I)

�H

) we obtain

^

M

1

� �

^

L

1

=

"

^

R

0

0

0 I

#

� �

"

I 0

0

^

R

H

0

#

:
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Then let U = diag(X;X

�H

) and X

�1

^

R

0

X = R

0

, where R

0

= diag(N

r

1

; : : : ; N

r

p

). It follows

that U is symplectic and

M

1

� �L

1

:= U

�1

(

^

M

1

� �

^

L

1

)U =

"

R

0

0

0 I

#

� �

"

I 0

0 R

H

0

#

:

3. j�j = 1 and � 6= 1. In this case the corresponding eigenvalue in the Hamiltonian pencil

is i� with � real. We will go back to the construction of the blocks in the Hamiltonian case.

Consider a pair associated with �P

r

and the pencil N

r

(i�)� �I. The corresponding pair

for the symplectic pencil is (�P

r

; (N

r

(i�)+ I)��(N

r

(i�)� I)). Multiplying the associated

subpencil from the left with (N

r

(i�) � I)

�1

(note that �P

r

is not a�ected) we obtain an

associated pair (�P

r

;

^

N

r

(�)), where

^

N

r

(�) = (N

r

(i�) + I)(N

r

(i�)� I)

�1

:

We now use the transformations �

e

in (28) and �

o

in (30).

i) For an even size matrix pair the matrix

^

N

2r

(�) can be rewritten as

^

N

2r

(�) =

"

^

N

r

(�)

1

2

(I �

^

N

r

(�))e

r

e

H

1

(

^

N

r

(�)� I)

0

^

N

r

(�)

#

:

Here we have used the fact that (N

r

(i�) � I)

�1

=

1

2

(

^

N

r

(�) � I), which follows from the

de�nition of

^

N

r

(�). Then �

e

(�P

2r

;

^

N

2r

) = (J;

^

S); where

^

S =

"

^

N

r

(�)

�

2

(I �

^

N

r

(�))e

r

e

H

r

(

^

N

r

(�)

�H

� I)

0

^

N

r

(�)

�H

#

and � = (�1)

r

�. By Lemma 33 there exists a nonsingular upper triangular matrix X

r

such

thatX

�1

r

^

N

r

(�)X

r

= N

r

(�). Since I�

^

N

r

(�) commutes with

^

N

r

(�), with V = (I�

^

N

r

(�))X

r

and U

1

= diag(V; V

�H

) we obtain

U

�1

1

^

SU

1

=

"

N

r

(�)

�

2

tt

H

N

r

(�)

�H

0 N

r

(�)

�H

#

;

where t = X

�1

r

e

r

. By the triangular structure of X

r

the last component of t is nonzero

and by Lemma 34 there exists an upper triangular Toeplitz matrix T , such that T

�1

t = e

r

.

Set U = U

1

diag(T; T

�H

) which is symplectic. Since N

r

(�) commutes with all triangular

Toeplitz matrices of the same size, we �nally get

S = U

�1

^

SU =

"

N

r

(�)

�

2

e

r

e

H

r

N

r

(�)

�H

0 N

r

(�)

�H

#

:

In summary, we obtain a transformation �̂

e

similar to �

e

by replacing Z

e

by

^

Z

e

= diag(I; (�P

r

)

�1

)U = diag(V T; ((V T )

H

�P

r

)

�1

);
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which transforms (�P

2r

;

^

N

2r

(�)) to (J; S).

ii) For an odd sized pair (�P

2r+1

;

^

N

2r+1

(�)), we set V =

1���

2

(I �

^

N

r

(�))X

r

T , where X

r

and T are de�ned as in the even case and

^

Z

o

:= diag(V; 1; (�V

H

P

r

)

�1

):

Then one can easily verify that

�̂

o

(�P

2r+1

;

^

N

2r+1

(�)) = (

^

Z

H

o

(�P

2r+1

)

^

Z

o

;

^

Z

�1

o

^

N

2r+1

(�)

^

Z

o

) =

=

0

B

@

2

6

4

0 0 I

0 i� 0

�I 0 0

3

7

5

;

2

6

4

N

r

(�) �e

r

�

��1

i�e

r

e

H

r

N

r

(�)

�H

0 � i�e

H

r

N

r

(�)

�H

0 0 N

r

(�)

�H

3

7

5

1

C

A

;

where � = (�1)

r

i�.

4. � = 1. Then the corresponding eigenvalue in M

h

� �L

h

is in�nity and the pair is

constructed from �P

r

and I��N

r

which leads to the pair �P

r

and (I +N

r

)��(I�N

r

) in

M

s

��L

s

. In matrix form the associated pair is (�P

r

;

^

N

r

(1)), where

^

N

r

(1) := (I+N

r

)(I�

N

r

)

�1

: (Note that the form of

^

N

r

(1) is slightly di�erent from that of

^

N

r

(�) for � 6= 1).

We still have a nonsingular upper triangular matrix

^

X

r

, such that

^

X

�1

r

^

N

r

(1)

^

X

r

= N

r

(1).

Using this

^

X

r

to replace X

r

above and changing T appropriately, we get for even size pairs

�̂

e

(�P

2r

;

^

N

2r

(1)) =

 

J;

"

N

r

(1)

�

2

e

r

e

H

r

N

r

(1)

�H

0 N

r

(1)

�H

#!

which is the same as in the case � 6= 1. For odd size pairs we obtain

�̂

o

(�P

2r+1

;

^

N

2r+1

(1)) =

0

B

@

2

6

4

0 0 I

0 i� 0

�I 0 0

3

7

5

;

2

6

4

N

r

(1) e

r

i�

2

e

r

e

H

r

N

r

(1)

�H

0 1 i�e

H

r

N

r

(1)

�H

0 0 N

r

(1)

�H

3

7

5

1

C

A

:

For even size matrix pairs the condensed form already is in symplectic triangular canon-

ical form. It remains to perform a coupling for the odd size pairs. Similar to the Hamil-

tonian case we construct a transformation '̂

c

, just using

^

Z

o

instead of Z

o

, and apply it to

(P

c

; N

c

), where P

c

= diag(�

1

P

2r

1

+1

; �

2

P

2r

2

+1

), N

c

= diag(

^

N

2r

1

+1

(�

1

);

^

N

2r

2

+1

(�

2

)) with the

corresponding �

1

= ��

2

. Then

'̂

c

(P

c

; N

c

) =

0

B

B

B

B

B

B

B

B

B

@

J

r

1

+r

2

+1

;

2

6

6

6

6

6

6

6

6

6

4

N

r

1

(�

1

) 0 �

p

2

2

�

1

e

r

1

0 N

r

2

(�

2

) �

p

2

2

�

2

e

r

2

0 0

1

2

(�

1

+ �

2

)

0 0 0

0 0 0

0 0

i�

1

2

(�

1

� �

2

)
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i�

1

f(�

1

)e

r

1

e

H

r

1

N

r

1

(�

1

)

�H

0

p

2

2

i�

1

�

1

e

r

1

0 �i�

1

f(�

2

)e

r

2

e

H

r

2

N

r

2

(�

2

)

�H

�

p

2

2

i�

1

�

2

e

r

2

�

p

2

2

i�

1

e

H

r

1

N

r

1

(�

1

)

�H

p

2

2

i�

1

e

H

r

2

N

r

2

(�

2

)

�H

�

i�

1

2

(�

1

� �

2

)

N

r

1

(�

1

)

�H

0 0

0 N

r

2

(�

2

)

�H

0

p

2

2

e

H

r

1

N

r

1

(�

1

)

�H

p

2

2

e

H

r

2

N

r

2

(�

2

)

�H

1

2

(�

1

+ �

2

)

3

7

7

7

7

7

7

7

7

7

5

1

C

C

C

C

C

C

C

C

C

A

;

where

f(�) =

�

� � 1

for j�j = 1; � 6= 1; f(1) =

1

2

: (49)

7 Symplectic Kronecker canonical forms

Using these basic technical results and the obtained matrix block forms we can now as-

semble the symplectic Kronecker canonical form.

Theorem 35 (Symplectic Kronecker canonical form) Given a regular complex sym-

plectic pencil M

s

��L

s

. Then there exist a nonsingular matrix Y and a symplectic matrix

U such that

Y(M

s

� �L

s

)U =

"

M

11

M

12

M

21

M

22

#

� �

"

L

11

L

12

L

21

L

22

#

; (50)

with

M

11

� �L

11

=

2

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

d

� �I

R

0

� �I

3

7

7

7

7

7

7

5

;

M

21

� �L

21

=

2

6

6

6

6

6

6

4

0

0

0

G

d

0

3

7

7

7

7

7

7

5

;

M

12

� �L

12

=

2

6

6

6

6

6

6

4

0

D

e

D

c

D

d

0

3

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

4

R

�H

r

� �I

R

�H

e

� �I

R

�H

c

� �I

S

d

� �I

I � �R

H

0

3

7

7

7

7

7

7

5

;
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where the blocks are as follows.

1. The blocks with index r are associated with the pairwise distinct eigenvalues �

1

; : : : ; �

�

,

��

�1

1

; : : : ; ��

�1

�

, such that j�

k

j 6= 1. The blocks have the structure

R

r

= diag(R

r

1

; : : : ; R

r

�

);

R

r

k

= diag(N

d

k;1

(�

k

); : : : ; N

d

k;p

k

(�

k

)); k = 1; : : : ; �:

2. The blocks with indices e and c are associated with unimodular eigenvalues �

1

; : : : ; �

�

.

The associated parts of the structure inertia indices are Ind

e

S

(�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

), and

Ind

c

S

(�

k

) = (�

c

k;1

; : : : ; �

c

k;r

k

;��

c

k;1

; : : : ;��

c

k;r

k

). The structures of the blocks are

R

e

= diag(R

e

1

; : : : ; R

e

�

); D

e

= diag(D

e

1

; : : : ; D

e

�

);

R

e

k

= diag(N

l

k;1

(�

k

); : : : ; N

l

k;q

k

(�

k

));

D

e

k

=

1

2

diag(�

e

k;1

e

l

k;1

e

H

l

k;1

N

l

k;1

(�

k

)

�H

; : : : ; �

e

k;q

k

e

l

k;q

k

e

H

l

k;q

k

N

l

k;q

k

(�

k

)

�H

);

R

c

= diag(R

c

1

; : : : ; R

c

�

); D

c

= diag(D

c

1

; : : : ; D

c

�

);

R

c

k

= diag(B

k;1

; : : : ; B

k;r

k

); D

c

k

= diag(C

k;1

; : : : ; C

k;r

k

);

where for k = 1; : : : ; � and j = 1; : : : ; r

k

we have

B

k;j

=

2

6

6

4

N

m

k;j

(�

k

) 0 �

p

2

2

�

k

e

m

k;j

N

n

k;j

(�

k

) �

p

2

2

�

k

e

n

k;j

�

k

3

7

7

5

;

C

k;j

= i�

c

k;j

2

6

6

4

f(�

k

)e

m

k;j

e

H

m

k;j

N

m

k;j

(�

k

)

�H

0

p

2

2

�

k

e

m

k;j

0 �f(�

k

)e

n

k;j

e

H

n

k;j

N

n

k;j

(�

k

)

�H

�

p

2

2

�

k

e

n

k;j

�

p

2

2

e

H

m

k;j

N

m

k;j

(�

k

)

�H

p

2

2

e

H

n

k;j

N

n

k;j

(�

k

)

�H

0

3

7

7

5

;

and f(�

k

) is as in (49).

3. The blocks with index d are associated with two disjoint sets of unimodular eigenvalues

f


1

; : : : ; 


�

g and f�

1

; : : : ; �

�

g with the corresponding structure inertia indices (�

d

1

; : : : ; �

d

�

)

and (��

d

1

; : : : ;��

d

�

), respectively, where �

d

1

= : : : = �

d

�

. The corresponding Kronecker

blocks have the following block structures.

R

d

= diag(R

d

1

; : : : ; R

d

�

); D

d

= diag(D

d

1

; : : : ; D

d

�

);

S

d

= diag(S

d

1

; : : : ; S

d

�

); G

d

= diag(G

d

1

; : : : ; G

d

�

);

where for k = 1; : : : ; � we have

R

d

k

=

2

6

6

4

N

s

k

(


k

) 0 �

p

2

2




k

e

s

k

N

t

k

(�

k

) �

p

2

2

�

k

e

t

k

1

2

(


k

+ �

k

)

3

7

7

5

;
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D

d

k

= i�

d

k

2

6

6

4

f(


k

)e

s

k

e

H

s

k

N

s

k

(


k

)

�H

0

p

2

2




k

e

s

k

0 �f(�

k

)e

t

k

e

H

t

k

N

t

k

(�

k

)

�H

�

p

2

2

�

k

e

t

k

�

p

2

2

e

H

s

k

N

s

k

(


k

)

�H

p

2

2

e

H

t

k

N

t

k

(�

k

)

�H

�

1

2

(


k

� �

k

)

3

7

7

5

;

S

d

k

=

2

6

4

N

s

k

(


k

)

�H

0 N

t

k

(�

k

)

�H

p

2

2

e

H

s

k

N

s

k

(


k

)

�H

p

2

2

e

H

t

k

N

t

k

(�

k

)

�H

1

2

(


k

+ �

k

)

3

7

5

;

G

d

k

= i�

d

k

2

6

4

0 0 0

0 0 0

0 0

1

2

(


k

� �

k

)

3

7

5

:

4. The blocks with index 0 are associated with zero and in�nite eigenvalues and have the

structure

R

0

= diag(N

z

1

; : : : ; N

z

�

):

Proof. Using the above construction, the proof follows from the Hamiltonian case.

Again analogous to the Hamiltonian case, we have a result for real symplectic pencils. We

use the following notation. Either �

k

=

"

�

k;1

�

k;2

��

k;2

�

k;1

#

; with �

k;2

6= 0 and �

2

k;1

+ �

2

k;2

6= 1,

or �

k

is a real number and �

k

6= �1. Blocks �

k

have the form

"

a

k

b

k

�b

k

a

k

#

, a

2

k

+ b

2

k

= 1

and a

k

6= 1. Furthermore we have blocks F (�

k

) =

1

2

"

f

k

1

�1 f

k

#

with f

k

=

b

k

1�a

k

, and

F (I

2

) =

1

2

J

1

.

Theorem 36 (Real symplectic Kronecker canonical form) Given a real regular sym-

plectic pencilM

s

��L

s

. Then there exist a real nonsingular matrix Y and a real symplectic

matrix U such that

Y(M

s

� �L

s

)U =

"

M

11

M

12

M

21

M

22

#

� �

"

L

11

L

12

L

21

L

22

#

; (51)

with

M

11

� �L

11

=

2

6

6

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

u

� �I

R

d

� �I

R

0

� �I

3

7

7

7

7

7

7

7

7

5

;

M

21

� �L

21

=

2

6

6

6

6

6

6

6

6

4

0

0

0

0

G

d

0

3

7

7

7

7

7

7

7

7

5

;
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M

12

� �L

12

=

2

6

6

6

6

6

6

6

6

4

0

D

e

D

c

D

u

D

d

0

3

7

7

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

6

6

4

R

�T

r

� �I

R

�T

e

� �I

R

�T

c

� �I

R

�T

u

� �I

S

d

� �I

I � �R

T

0

3

7

7

7

7

7

7

7

7

5

;

and where we have the following structure for the di�erent blocks.

1. If �

k

is a nonzero real number, �

k

and �

�1

k

are both real eigenvalues of M

s

��L

s

. If

�

k;2

6= 0, then �

k

= �

k;1

+i�

k;2

, together with ��

k

, ��

�1

k

, and �

�1

k

are eigenvalues ofM

s

��L

s

and the associated blocks have the structure

R

r

= diag(R

r

1

; : : : ; R

r

�

);

R

r

k

= diag(N

d

k;1

(�

k

); : : : ; N

d

k;p

k

(�

k

));

2. The blocks with indices c, e and d are associated with unimodular eigenvalues �

k

:=

a

k

+ ib

k

and

�

�

k

contained in �

k

=

"

a

k

b

k

�b

k

a

k

#

with �

k

6= �1. The associated structure

inertia indices are

Ind

e

S

(�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

);

Ind

c

S

(�

k

) = (�

c

k;1

; : : : ; �

c

k;r

k

;��

c

k;1

; : : : ;��

c

k;r

k

);

Ind

d

S

(�

k

) = (�

d

k

; : : : ; �

d

k

| {z }

s

k

);

Ind

e

S

(

�

�

k

) = (�

e

k;1

; : : : ; �

e

k;q

k

);

Ind

c

S

(

�

�

k

) = (��

c

k;1

; : : : ;��

c

k;r

k

; �

c

k;1

; : : : ; �

c

k;r

k

);

Ind

d

S

(

�

�

k

) = (��

d

k

; : : : ;��

d

k

| {z }

s

k

);

and the blocks have the following form.

R

e

= diag(R

e

1

; : : : ; R

e

�

); D

e

= diag(D

e

1

; : : : ; D

e

�

);

R

c

= diag(R

c

1

; : : : ; R

c

�

); D

c

= diag(D

c

1

; : : : ; D

c

�

);

where for k = 1; : : : ; �,

R

e

k

= diag(N

l

k;1

(�

k

); : : : ; N

l

k;q

k

(�

k

));
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D

e

k

=

1

2

diag(�

e

k;1

"

0 0

0 I

2

#

N

l

k;1

(�

k

)

�T

; : : : ; �

e

k;q

k

"

0 0

0 I

2

#

N

l

k;q

k

(�

k

)

�T

);

R

c

k

= diag(B

k;1

; : : : ; B

k;r

k

); D

c

k

= diag(C

k;1

; : : : ; C

k;r

k

);

and for k = 1; : : : ; �, j = 1; : : : ; r

k

B

k;j

=

2

6

6

6

6

6

6

4

N

m

k;j

(�

k

) 0

"

0

�

p

2

2

�

k

#

N

n

k;j

(�

k

)

"

0

�

p

2

2

�

k

#

0 0 �

k

3

7

7

7

7

7

7

5

;

C

k;j

= �

c

k;j

2

6

6

6

6

6

6

6

4

"

0 0

0 F (�

k

)

#

N

m

k;j

(�

k

)

�T

0

"

0

p

2

2

J

1

�

k

#

0 �

"

0 0

0 F (�

k

)

#

N

n

k;j

(�

k

)

�T

"

0

�

p

2

2

J

1

�

k

#

h

0 �

p

2

2

J

1

i

N

m

k;j

(�

k

)

�T

h

0

p

2

2

J

1

i

N

n

k;j

(�

k

)

�T

0

3

7

7

7

7

7

7

7

5

:

The blocks with index d have the form

R

d

= diag(R

d

1

; : : : ; R

d

�

); D

d

= diag(D

d

1

; : : : ; D

d

�

);

S

d

= diag(S

d

1

; : : : ; S

d

�

); G

d

= diag(G

d

1

; : : : ; G

d

�

);

R

d

k

= diag(T

k;1

; : : : ; T

k;s

k

); D

d

k

= diag(X

k;1

; : : : ; X

k;s

k

);

S

d

k

= diag(Z

k;1

; : : : ; Z

k;s

k

); G

d

k

= diag(Y

k;1

; : : : ; Y

k;s

k

);

where for k = 0; 1; : : : ; �, j = 1; : : : ; s

k

T

k;j

=

2

6

6

6

4

N

t

k;j

(�

k

)

2

6

4

0

�a

k

b

k

3

7

5

0 a

k

3

7

7

7

5

; X

k;j

= �

d

k

2

6

6

6

6

4

"

0 0

0 F (�

k

)

#

N

t

k;j

(�

k

)

�T

2

6

4

0

�b

k

�a

k

3

7

5

�e

T

2t

k;j

N

t

k;j

(�

k

)

�T

b

k

3

7

7

7

7

5

;

Z

k;j

=

"

N

t

k;j

(�)

�T

0

e

T

2t

k;j

�1

N

t

k;j

(�

k

)

�T

a

k

#

; Y

k;j

= �

d

k

"

0 0

0 �b

k

#

:

3. The blocks with index u are associated with the eigenvalues �1. In particular the

blocks with index + are associated with the eigenvalue 1. Here Ind

d

S

(1) is void and the

other structure inertia indices are

Ind

e

S

(1) = (�

e+

1

; : : : ; �

e+

q

+

); Ind

c

S

(1) = (�

c

+

; : : : ; �

c

+

| {z }

r

+

;��

c

+

; : : : ;��

c

+

| {z }

r

+

):

The blocks with index � are associated with the eigenvalue �1. Here Ind

d

S

(�1) is void and

the other structure inertia indices are

Ind

e

S

(�1) = (�

e�

1

; : : : ; �

e�

q

�

); Ind

c

S

(�1) = (�

c

�

; : : : ; �

c

�

| {z }

r

�

;��

x

�

; : : : ;��

c

�

| {z }

r

�

):
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The block structures are

R

u

= diag(R

+

; R

�

); D

u

= diag(D

+

; D

�

);

R

+

= diag(R

e

+

; R

c

+

); D

+

= diag(D

e

+

; D

c

+

);

R

�

= diag(R

e

�

; R

c

�

); D

�

= diag(D

e

�

; D

c

�

);

R

e

+

= diag(N

u

1

(1); : : : ; N

u

q

+

(1));

D

e

+

=

1

2

diag(�

e+

1

e

u

1

e

T

u

1

N

u

1

(1)

�T

; : : : ; �

e+

q

+

e

u

q

+

e

T

u

q

+

N

u

q

+

(1)

�T

);

R

c

+

= diag(

"

N

v

1

(I

2

) �e

2v

1

�1

0 1

#

; : : : ;

"

N

v

r

+

(I

2

) �e

2v

r

+

�1

0 1

#

);

D

c

+

= �

c

+

diag(

2

6

4

"

0 0

0 F (I

2

)

#

N

v

1

(I

2

)

�T

�e

2v

1

�e

T

2v

1

N

v

1

(I

2

)

�T

0

3

7

5

;

: : : ;

2

6

6

4

"

0 0

0 F (I

2

)

#

N

2v

r

+

(I

2

)

�T

�e

2v

r

+

�e

T

2v

r

+

N

v

r

+

(I

2

)

�T

0

3

7

7

5

);

R

e

�

= diag(N

x

1

(�1); : : : ; N

x

q

�

(�1));

D

e

�

=

1

2

diag(�

e�

1

e

x

1

e

T

x

1

N

x

1

(�1)

�T

; : : : ; �

e�

q

�

e

x

q

�

e

T

x

q

�

N

x

q

�

(�1)

�T

);

R

c

�

= diag(

"

N

y

1

(�I

2

) e

2y

1

�1

0 �1

#

; : : : ;

"

N

y

r

�

(�I

2

) e

2y

r

�

�1

0 �1

#

);

D

c

�

= �

c

�

diag(

2

6

4

"

0 0

0 F (�I

2

)

#

N

y

1

(�I

2

)

�T

e

2y

1

�e

T

2y

1

N

y

1

(�I

2

)

�T

0

3

7

5

;

: : : ;

2

6

6

4

"

0 0

0 F (�I

2

)

#

N

2y

r

�

(�I

2

)

�T

e

2y

r

�

�e

T

2y

r

�

N

y

r

�

(�I

2

)

�T

0

3

7

7

5

):

4. The zero and in�nite eigenvalues of M

s

� �L

s

are depicted in the block

R

0

= diag(N

z

1

; : : : ; N

z

�

):

Proof. The proof is similar to the proof of Theorem 22, observing that by Table 5 the

eigenvalues 1 and �1 of a symplectic pencil are related to the eigenvalues 1 and 0 for the

corresponding Hamiltonian pencil.

We also have necessary and su�cient conditions for the existence of a symplectic trian-

gular Kronecker canonical form and a generalized symplectic Schur form, etc. The results

are analogous to the Hamiltonian case and we list them without proof.
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Theorem 37 (Symplectic triangular Kronecker canonical form)

LetM

s

��L

s

be a regular complex symplectic pencil, let �

1

; : : : ; �

�

be its pairwise distinct

unimodular eigenvalues and let the columns of U

k

span the de
ating subspaces corresponding

to �

k

. Then the following are equivalent.

i) There exists a nonsingular matrix Y and a symplectic matrix U , such that Y(M

s

�

�L

s

)U is symplectic triangular.

ii) There exists a unitary matrix Y and a unitary symplectic matrix U , such that Y(M

s

�

�L

s

)U is symplectic triangular.

iii) For all k = 1; : : : ; �, U

H

k

JU

k

is congruent to J .

iv) For all k = 1; : : : ; �, Ind

d

S

(�

k

) is void.

Moreover, if any of the equivalent conditions holds, then the matrices Y, U can be chosen

so that Y(M

s

� �L

s

)U is in symplectic triangular Kronecker canonical form

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

� �I 0

R

e

� �I D

e

R

c

� �I D

c

R

0

� �I 0

0 R

�H

r

� �I

0 R

�H

e

� �I

0 R

�H

c

� �I

0 I � �R

H

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where the blocks as in (50).

Theorem 38 (Real symplectic triangular Kronecker canonical form)

Let M

s

��L

s

be a regular real symplectic pencil and let �

1

; : : : ; �

�

be its pairwise distinct

unimodular eigenvalues and let the columns of the matrix U

k

span the de
ating subspaces

corresponding to �

k

. Then the following are equivalent.

i) There exist a real nonsingular matrix Y and a real symplectic matrix U , such that

Y(M

s

� �L

s

)U is symplectic triangular.

ii) There exist a real orthogonal matrix Y and a real orthogonal symplectic matrix U ,

such that Y(M

s

� �L

s

)U is symplectic triangular.

iii) For all k = 1; : : : ; �, U

H

k

JU

k

is congruent to J .

iv) For all k = 1; : : : ; �, Ind

d

S

(�

k

) is void.
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Moreover, the matrices Y, U can be chosen so that Y(M

s

� �L

s

)U is in real symplectic

triangular Kronecker canonical form

Y(M

s

� �L

s

)U =

"

M

11

M

12

0 M

22

#

� �

"

L

11

L

12

0 L

22

#

; (52)

with

M

11

� �L

11

=

2

6

6

6

6

6

6

4

R

r

� �I

R

e

� �I

R

c

� �I

R

u

� �I

R

0

� �I

3

7

7

7

7

7

7

5

;

M

12

� �L

12

=

2

6

6

6

6

6

6

4

0

D

e

D

c

D

u

0

3

7

7

7

7

7

7

5

;

M

22

� �L

22

=

2

6

6

6

6

6

6

4

R

�T

r

� �I

R

�T

e

� �I

R

�T

c

� �I

R

�T

u

� �I

I � �R

T

0

3

7

7

7

7

7

7

5

;

and where the blocks are as in (51).

Our �nal result in this section is the symplectic triangular Kronecker form under non-

symplectic transformations.

Theorem 39 A regular symplectic pencilM

s

��L

s

has a symplectic triangular Kronecker

canonical form if and only if the algebraic multiplicities of all unimodular eigenvalues are

even.

IfM

s

��L

s

is real it has the corresponding real symplectic triangular Kronecker canonical

form if and only if the algebraic multiplicities of all unimodular eigenvalues with positive

real parts are even.

Remark 8 We have seen that the symplectic canonical form is more complicated than

the Hamiltonian canonical form. One reason for this is that in the symplectic case inverses

occur in the canonical form. These can actually be moved to the other side of the pencil,

which would be the approach in numerical methods, see [18]. Another complication is that

the chains of principal vectors are di�cult to retrieve. However as in Hamiltonian case for

each Kronecker block the �rst half chain of the corresponding principal vectors is explicitly

displayed in the canonical form. Also in the triangular canonical form under symplectic

similarity transformations we obtain Langrangian de
ating subspaces.

In the next section we will discuss the case of symplectic matrices.

55



8 Symplectic Jordan canonical forms

A symplectic matrix S is a special symplectic pencil S � �I. So the canonical forms are

already included in the previous section. The only thing we need to do is to leave out the

subblocks in the canonical forms corresponding to the zero and in�nite eigenvalues. For

completeness we also display all these results without proof.

Theorem 40 (Symplectic Jordan canonical form) Given a complex symplectic ma-

trix S. Then there exists a symplectic matrix U such that

U

�1

SU =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

R

d

D

d

0 R

�H

r

0 R

�H

e

0 R

�H

c

G

d

S

d

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where the matrix blocks are as in (50).

In the real case we also have the corresponding canonical form.

Theorem 41 (Real symplectic Jordan canonical form) Given a real symplectic ma-

trix S. Then there exists a real symplectic matrix U such that

U

�1

SU =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

R

u

D

u

R

d

D

d

0 R

�T

r

0 R

�T

e

0 R

�T

c

0 R

�T

u

G

d

S

d

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;

where the blocks are as in (51).

Based on these two results we have the following necessary and su�cient conditions for

the existence of symplectic triangular Jordan canonical forms.

Theorem 42 (Symplectic triangular Jordan canonical form) Let S be a complex

symplectic matrix, let �

1

; : : : ; �

�

be its pairwise distinct unimodular eigenvalues and let the

columns of U

k

span the associated invariant subspaces. Then the following are equivalent.
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i) There exists a symplectic matrix U , such that U

�1

HU is in symplectic triangular

form.

ii) There exists a unitary symplectic matrix U , such that U

H

HU is symplectic triangular.

iii) U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �.

iv) Ind

d

S

(�

k

) is void for all k = 1; : : : ; �.

Moreover, if any of the equivalent conditions holds, then the matrix U can be chosen so

that U

�1

SU is in symplectic triangular Jordan canonical form

U

�1

SU =

2

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

0 R

�H

r

0 R

�H

e

0 R

�H

c

3

7

7

7

7

7

7

7

7

5

; (53)

where the blocks are as in (50).

Theorem 43 (Real symplectic triangular Jordan canonical form) Let S be a real

symplectic matrix, let �

1

; : : : ; �

�

be its pairwise distinct unimodular eigenvalues and let the

columns of U

k

span the associated invariant subspaces. Then the following are equivalent.

i) There exists a real symplectic matrix U , such that U

�1

HU is in symplectic triangular

form.

ii) There exists a real orthogonal symplectic matrix U , such that U

T

HU is symplectic

triangular.

iii) U

H

k

JU

k

is congruent to J for all k = 1; : : : ; �.

iv) Ind

d

S

(�

k

) is void for all k = 1; : : : ; �.

Moreover, if any of the equivalent conditions hold, then the matrix U can be chosen so

that U

�1

SU is in real symplectic triangular Jordan canonical form

U

�1

SU =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

R

r

0

R

e

D

e

R

c

D

c

R

u

D

u

0 R

�T

r

0 R

�T

e

0 R

�T

c

0 R

�T

u

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (54)

where the blocks are de�ned in (51).
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The �nal result is again the existence of the symplectic triangular form under nonsym-

plectic transformations. Note that although the symplectic matrices form a group, there

exist nonsymplectic similarity transformations that map a symplectic matrix to another

symplectic matrix.

Theorem 44 Let S be a symplectic matrix. Then S has a symplectic triangular Jordan

canonical form if and only if the algebraic multiplicities of all its unimodular eigenvalues

are even.

If S is real it has the corresponding real symplectic triangular Jordan canonical form if

and only if the algebraic multiplicities of all unimodular eigenvalues with postive real parts

are even.

9 Conclusion

We have presented structured canonical forms for Hamiltonian and symplectic matrices

and pencils under structured similarity and equivalence transformations. These result give

a complete picture on the invariants and the structured forms and they give necessary

and su�cient conditions for the existence of triangular canonical forms. Although some

of these forms were partly known in the literature, we have provided simple proofs and

constructions, that are the �rst steps towards numerical methods for these problems.
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