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Abstract

We present a new method for the computation of low rank approximations to the

solution of large, sparse, stable Lyapunov equations. It is based on a generalization

of the classical Smith method and pro�ts by the usual low rank property of the right

hand side matrix. The requirements of the method are moderate with respect to

both computational cost and memory. Hence, it provides a possibility to tackle large

scale control problems. Besides the e�cient solution of the matrix equation itself,

a thorough integration of the method into several control algorithms can improve

their performance to a high degree. This is demonstrated for algorithms for model

reduction and optimal control. Furthermore, we propose a heuristic for determining

a set of suboptimal ADI shift parameters. This heuristic, which is based on a pair

of Arnoldi processes, does not require any a priori knowledge on the spectrum of the

coe�cient matrix of the Lyapunov equation. Numerical experiments show the e�-

ciency of the iterative scheme combined with the heuristic for the ADI parameters.

Key Words: ADI iteration, Smith method, iterative methods, Lyapunov equa-

tion, matrix equation, model reduction, balanced truncation, optimal control, Riccati

equation, Newton method.

AMS Subject Classi�cation: 65F30, 65F10, 15A24, 93C05.

1 Introduction

The Lyapunov matrix equation plays an important role in control theory. For example, it

arises in stability analysis [LL61], the solution of Riccati matrix equations [Kle68], model

�
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reduction [Moo81, SC89], and H

1

optimal control [Fra87]. In this paper, we consider the

Lyapunov equation

A

T

X +XA = �BB

T

; (1)

where the matrix A 2 R

n;n

is stable, i.e., its eigenvalues are contained in C

�

, which denotes

the set of the complex numbers with negative real parts. Under this assumption a unique

solution X 2 R

n;n

exists, which is symmetric and positive semide�nite, e.g., [LT85]. There

are a number of direct methods for solving the Lyapunov equation (1) numerically, the

most important of which are the Bartels-Stewart method [BS72] and the Hammarling

method [Ham82]. Unfortunately, these methods, which are based on the QR algorithm,

ignore any sparsity in the equation and are not very attractive for parallelization. A rough

estimation of the complexity of the Bartels-Stewart method and the Hammarling method

gives about 25n

3


ops and 3n

2

words of memory. Note that we count one 
op as a single


oating point operation according to [GL96]. Although these methods should be considered

as standard methods for small, dense Lyapunov equations, their use is very limited when

large, sparse equations have to be solved. For example, dynamical systems arising from the

discretization of parabolic di�erential equations lead to large, sparse Lyapunov equations,

e.g., [RW95]. It is important to note that the number of columns of the matrix B 2 R

n;m

,

which is related to the number of inputs and outputs of the underlying dynamical system,

is usually very small and does not depend on the �neness of the discretization. This fact

is of importance for the method presented in Section 3.

If large, sparse problems have to be solved, iterative schemes are often the method

of choice because they do not destroy sparsity. Mostly, they are much more suitable for

parallelization than direct methods. In the sequel, we brie
y review two popular iterative

methods for Lyapunov equations which do not bene�t from the low rank property of the

right hand side.

The iterates X

A

i

of the alternating direction implicit iteration (ADI) [PR55, Wac88b]

are usually generated by the solution of two linear systems with multiple right hand sides

(A

T

+ p

i

I)X

A

i�1=2

= �BB

T

�X

A

i�1

(A� p

i

I)

(A

T

+ p

i

I)X

A

i

T

= �BB

T

�X

A

i�1=2

T

(A� p

i

I); (2)

where X

A

0

= 0 and the shift parameters p

1

; p

2

; p

3

; : : : are elements of C

�

. This pair of

equations is mathematically equivalent to the iteration step

X

A

i

= (A

T

�p

i

I)(A

T

+p

i

I)

�1

X

A

i�1

(A�p

i

I)(A+p

i

I)

�1

�2p

i

(A

T

+p

i

I)

�1

BB

T

(A+p

i

I)

�1

: (3)

The error matrices D

i

= X �X

A

i

obey the recursion

D

l

=

�

r

l

(A)r

l

(�A)

�1

�

T

D

0

r

l

(A)r

l

(�A)

�1

; (4)

where r

l

is the polynomial r

l

(t) = (t�p

1

)�: : :�(t�p

l

). The rate of convergence is dominated

by the spectral radius of the error transfer operator given by (4). The minimization of this
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spectral radius with respect to the shift parameters p

1

; : : : ; p

l

leads to the ADI minimax

problem

fp

1

; : : : ; p

l

g = argmin

fp

1

;:::;p

l

g�C

�

max

t2�(A)

jr

l

(t)j

jr

l

(�t)j

; (5)

which delivers criteria for the optimal and suboptimal choice of these parameters. Here

�(A) denotes the spectrum of A. The minimax problem (5) is solved for equations with

symmetric matrices A, e.g., [Wac63]. Unfortunately, there is still a lack in theory for the

general case, where the eigenvalues of A are possibly not real. Contributions to the solution

of the complex ADI minimax problem can be found in [Bag69, CR96, EW91, LR93, Sta91,

Sta92, Sta93, Wac88a, Wac90], for example.

The Smith method [Smi68] is derived from the Stein equation

X � S

T

XS = T (6)

with

S = (A� pI)(A+ pI)

�1

and T = �2p(A+ pI)

�T

BB

T

(A+ pI)

�1

; (7)

which is equivalent to (1) for any real p < 0. Under this assumption the sequence fX

S

i

g

1

i=0

generated by

X

S

0

= 0; X

S

i+1

= T + S

T

X

S

i

S (8)

converges to the solution X and the iterates can be written as

X

S

i

=

i

X

j=1

�

S

j�1

�

T

TS

j�1

: (9)

The Smith method can be shown to be mathematically equivalent to ADI when p =

p

1

= p

2

= : : :, but in general it converges much slower than ADI with nonconstant shift

parameters. Nevertheless, it has become quite popular since there exists an accelerated

version, the so-called squared Smith method. This version is based on the recursion

X

S

0

= 0; X

S

2

0

= T; X

S

2

j+1

= X

S

2

j

+

�

S

2

j

�

T

X

S

2

j

S

2

j

;

which is derived from (9). Thus, the subsequence

n

X

S

2

j

o

1

j=0

can be obtained with linear

computational cost. Despite the quadratic rate of convergence, one should be reluctant to

apply the squared method to large, sparse equations. The matrices S

2

j

, which have to be

squared explicitly in each step of the iteration, are dense even if A is sparse.

If the structure of the matrix A enables the e�cient solution of linear systems (A

T

+

pI)x = y, e.g., when A is a banded matrix, both ADI and the standard Smith method

should be considered as sparse matrix techniques. However, since the iterates are formed

explicitly in both methods, neither method can be applied when the dimension n becomes

so large that dense n-�-n matrices cannot be stored in memory. There are only a few itera-

tive methods which can really be used to solve very large, sparse Lyapunov equations, e.g.,
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[GL94, HP88, HPT96, HR92, JK94, Saa90]. These methods produce low rank approxima-

tions to the solution X. The iterates are stored implicitly in factored form, which decreases

the memory requirement signi�cantly. However, these methods often fail to determine ap-

proximate solutions of high accuracy. Moreover, the rank of their approximations tends to

be relatively large. This is indicated by the numerical experiments reported in the original

references as well as in our own experiments with one of the classical low rank methods

introduced in the sequel.

The method we refer to as full orthogonalization method for Lyapunov equations (FOM-

L) [HR92, JK94, Saa90] could be considered as an extension of FOM for systems of linear

equations [Saa81] to matrix equations. Note that this method is frequently called Arnoldi

method or Galerkin method. FOM-L is based on the Arnoldi process (if m = 1) or the

block Arnoldi process (if m > 1) applied to the matrices A

T

and B. The purpose of this

process is to establish an orthonormal basis V

k

2 R

n;w

(w � mk) in the Krylov subspace

K

k

(A

T

; B) = range

��

B A

T

B

�

A

T

�

2

B : : :

�

A

T

�

k�1

B

��

:

For details of the Arnoldi process or its block version see, e.g., [Arn51, GL96, Wil65]. The

FOM-L iterates X

F

k

de�ned by

X

F

k

= V

k

~

X

k

V

T

k

are required to ful�l the Galerkin condition

V

T

k

�

A

T

X

F

k

+X

F

k

A+BB

T

�

V

k

= 0:

Hence,

~

X

k

2 R

w;w

is given by the solution of the Lyapunov equation

V

T

k

A

T

V

k

~

X

k

+

~

X

k

V

T

k

AV

k

= �V

T

k

BB

T

V

k

: (10)

If the symmetric part of A is negative de�nite, it can be shown by Bendixon's theorem

(e.g., [MM92]) that V

T

k

AV

k

is stable. Under this assumption the Lyapunov equation (10)

has a unique solution and the matrices

~

X

k

and X

F

k

are symmetric, positive semide�nite.

If w is much smaller than n, this equation can be solved by direct standard methods. The

problem with FOM-L is that it converges rather slowly in many cases, i.e., relatively large

values of k and w are necessary to attain a quite accurate approximate solution. This in

turn may cause problems because the dense n-�-w matrix V

k

has to be stored in memory.

The remainder of this paper is organized as follows. In Section 2 we introduce the

cyclic Smith method, which is a fast converging generalization of the Smith method. It is

related to the ADI iteration with cyclic shift parameters and yields a sequence of full rank

iterates. Low rank versions of ADI and the cyclic Smith method are proposed in Section 3.

For each of these methods a set of suboptimal ADI parameters is needed. In Section 4 we

propose a heuristic procedure for determining such parameters, which does not require any

a priori knowledge of the spectrum of A. The cyclic low rank Smith method is not only

an attractive means for solving large Lyapunov equations. It also enables us to improve

the e�ciency of some \outer" control algorithms. This is illustrated in Sections 5 and 6 by
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example algorithms for model reduction and optimal control. Numerical tests in Section 7

demonstrate the e�ciency of the cyclic low rank Smith method combined with the heuristic

procedure for determining ADI shift parameters. Conclusions are provided in Section 8.

2 Smith(l) { a generalization of the Smith method

In this section we study the special case of the ADI iteration where l di�erent shift param-

eters are applied in a cyclic manner. In other words, we require p

i+jl

= p

i

for j = 1; 2; : : :

in (2). The practical importance of this special case is illustrated by an experiment with

the following medium scale example.

Example 1 [HPT96] This example describes the boundary control of the heat 
ow in

a thin rod. The discretization of the underlying parabolic di�erential equation by �nite

di�erences results in a dynamical system (18). This in turn leads to a Lyapunov equation

of order n = 400. The matrices A 2 R

n;n

and B 2 R

n;1

are de�ned as

A =

2

6

6

6

6

6

6

6

6

4

�1=h 1=h 0 � � � 0

1=h �2=h 1=h

.

.

.

.

.

.

0 1=h �2=h

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

1=h

0 � � � 0 1=h �2=h

3

7

7

7

7

7

7

7

7

5

and B =

2

6

6

6

6

6

6

6

4

0

.

.

.

.

.

.

0

1=h

3

7

7

7

7

7

7

7

5

with h = 1=(n + 1).

We investigate the dependence of the convergence speed of ADI on l. To this end we

determine the extremal eigenvalues of the symmetric matrix A. After that we compute

sets of optimal shift parameters for several values of l by an algorithm due to Wachspress

[Wac63, Section 2].

Table 1: ADI applied to Example 1. Numbers of iterations required to attain di�erent

relative residual norms depending on the number of di�erent shift parameters.

relative residual norm

l

10

�4

10

�6

10

�8

10

�10

10

�12

1 851 1368 1903 2448 3001

2 53 85 119 153 187

4 17 29 41 53 65

8 15 23 31 39 49

16 13 21 29 37 41

32 13 21 29 33 41

Table 1 shows the numbers of iterations required to attain di�erent relative residual

norms (i.e.,

�

�

�

�

�

�A

T

X

i

+X

i

A+BB

T

�

�

�

�

�

�

F

=

�

�

�

�

�

�BB

T

�

�

�

�

�

�

F

� tol with tol = 10

�4

; 10

�6

; : : :). It reveals
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two facts. First, the convergence is very slow for l = 1, which corresponds to the Smith

method, but a moderate increase of l (say l = 4) accelerates it to a high degree. Second, the

speed of convergence is hardly improved by a further increase of l. In fact, this experiment

and a number of further tests not reported here indicate that a relatively small number of

di�erent ADI parameters is su�cient to achieve rapid convergence of ADI.

Although the speed of convergence of the Smith iteration is often unsatisfactory, this

method has two algorithmic advantages over ADI. First, there exists a squared version of

the Smith method. Second, the low rank version of the Smith method, which is presented in

a generalized form in Section 3, is more e�cient with respect to the amount of computation

than that of ADI. This leads to the question whether there exists a generalization of the

Smith method that is mathematically equivalent to the fast converging ADI with cyclic

parameters. Indeed, such a generalization is easily derived from (4). If we extend the

original de�nition of the matrices S and T given in (7) to

S =

l

Y

j=1

(A� p

j

I)(A+ p

j

I)

�1

and T = X

A

l

; (11)

then (4) is equivalent to the Stein equation X �S

T

XS = T , which has the same structure

as (6). This Stein equation is the base for the generalized version of the Smith iteration

we refer to as cyclic Smith method (Smith(l)). The only essential di�erence between the

standard and the cyclic version is that the matrix T is given explicitly in the �rst case,

whereas it is the result of l steps of the ADI iteration with shift parameters p

1

; : : : ; p

l

applied to (1) in the second. Analogous to (8), the Smith(l) iterates are generated by the

recursion

X

0

= 0; X

(i+1)l

= T + S

T

X

il

S: (12)

For consistency we label these iterates by multiples of l. Note that, in contrast to ADI,

standard Smith method, and FOM-L, the iterates of Smith(l) are not provided with an

extra superscript. Using (4) and (11), it is easy to prove that X

il

= X

A

il

actually holds

for i = 1; 2; : : :, if the ADI iterates X

A

il

are generated by use of l-cyclic parameters. As a

consequence, Smith(1) is identical with the classical Smith method. In fact, the implemen-

tation (12) of Smith(l) in not more favorable than that of the ADI iteration (2) if sparse

Lyapunov equations are to be solved. It should rather be considered as a preliminary step

for deriving the low rank method LR-Smith(l) presented in the next section.

The squared version of Smith(l), which is derived analogously to that of the standard

Smith method, is not considered here because it involves dense n-�-n matrices in the com-

putation. However, such a version may be of interest for large, dense Lyapunov equations.

For l = 2 such a generalization of the squared Smith method has been proposed by Davison

and Man [DM68].
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3 LR-ADI and LR-Smith(l) { low rank versions of

ADI and Smith(l)

For the remaining part of this paper we assume m << n. This enables us to establish a low

rank version of the ADI we will refer to as LR-ADI. This iterative method again is needed

to construct the cyclic low rank Smith method. The key idea is to substitute the ADI and

Smith(l) iterates by products

X

A

i

= Z

A

i

Z

A

i

T

and X

il

= Z

il

Z

T

il

; (13)

respectively. This is always possible because the iterates X

A

i

and X

il

can be shown recur-

sively to be symmetric and positive semide�nite. Although a similar approach is pursued in

several methods for Lyapunov equations, e.g., [AL93, BQO97, Ham82, HR92, JK94, Saa90],

this has not been done in combination with ADI or Smith-like methods.

LR-ADI is based on the ADI single sweep (3). Using (13) this formula can be rewritten

in terms of the matrices Z

A

i

as

Z

A

i

=

h

(A

T

� p

i

I)(A

T

+ p

i

I)

�1

Z

A

i�1

p

�2p

i

(A

T

+ p

i

I)

�1

B

i

(14)

with

Z

A

1

=

q

�2p

1

(A

T

+ p

1

I)

�1

B:

The number of columns in the matrices Z

A

i

is enlarged by m in each step of the iteration

and rank(X

A

i

) � mi. Although the memory requirement and the computational cost per

iteration are linearly raising, LR-ADI poses an e�cient iterative scheme for solving large,

sparse Lyapunov equations since, in general, the number of ADI iterations is much smaller

than the dimension of the problem. In particular, LR-ADI is of interest if a sequence

fp

i

g

1

i=1

of di�erent shift parameters (e.g., [Bag69, Sta91, Sta93]) is available.

If the number of di�erent ADI parameters is limited, the cyclic low rank Smith method

(LR-Smith(l)) poses a more e�cient alternative to LR-ADI. The algorithm LR-Smith(l)

consists of two stages. First, the l-th iterate Z

A

l

of the LR-ADI method with the shift

parameters p

1

; : : : ; p

l

is computed. Analogous to (11), this matrix is used for the initial-

ization

Z

(l)

= Z

A

l

Z

l

= Z

(l)

:

Second, the actual LR-Smith(l) iteration is performed by

Z

((i+1)l)

= S

T

Z

(il)

(15)

Z

(i+1)l

=

h

Z

il

Z

((i+1)l)

i

;

where S is given by (11). Note that the computational cost per iteration step (15) is

constant, which is an important advantage of LR-Smith(l) over LR-ADI. It is straightfor-

ward to prove that LR-Smith(l) is linked to Smith(l) by (13). Moreover, LR-Smith(l) and

7



ADI are mathematically equivalent in the sense of Z

il

Z

T

il

= X

A

il

, if the shift parameters

p

1

; : : : ; p

l

are used cyclically in the ADI iteration. However, determining Z

il

by LR-Smith(l)

is generally much more e�cient than computing X

il

by ADI if n is large and m is small.

Concerning the implementation of the low rank methods, a few remarks should be

made. Neither the matrices (A

T

+ p

i

I)

�1

in LR-ADI nor the matrix S in LR-Smith(l) are

formed explicitly. Instead, the sparse matrices A

T

+ p

i

I are factorized a priori (e.g., by

LU factorizations) and the iterations (14) and (15) involve forward and backward substi-

tutions. Of course, a certain amount of �ll-in is generally produced by these factorizations.

Nevertheless, this procedure is much more e�cient than computing the inverses of A

T

+p

i

I

explicitly when the matrix A is banded. Alternatively, iterative methods can be utilized

to solve sparse, linear systems of the type (A

T

+ p

i

I)x = y, e.g., [Saa96].

Theoretically, a squared version of LR-Smith(l) can be derived as well. It requires to

form the dense matrix S explicitly. Hence, such a method should not be applied to large,

sparse Lyapunov equations since its memory requirement is O(n

2

) and the computational

cost is O(n

3

) even if A is sparse.

In some algorithms in control theory only the product of X with a matrix V containing

a few columns is sought instead of the solution matrix X itself. In this case LR-Smith(l)

can be very e�cient with respect to the memory requirement because the iterates Z

il

need

not be stored. The product XV can be evaluated by accumulating the sum on the right

hand side of

XV = lim

i!1

Z

il

Z

T

il

V =

1

X

i=1

Z

(il)

�

Z

(il)

T

V

�

(16)

in the course of the iteration (15). Such a procedure has been proposed in [Saa90, Section

3] in a similar context.

In general, it is not known a priori how many LR-Smith(l) steps are necessary to attain

a prescribed accuracy of the approximate solution. Therefore, it is necessary to compute

repeatedly the Frobenius norm of the current residual matrix. Unfortunately, this matrix

cannot be formed explicitly if the dimension of the problem is large. In this case it is

advisable to compute the norm of the residual by

�

�

�

�

�

�A

T

Z

il

Z

T

il

+ Z

il

Z

T

il

A+BB

T

�

�

�

�

�

�

F

=

�

�

�

�

�

�

�

�

h

A

T

Z

il

Z

il

B

i h

Z

il

A

T

Z

il

B

i

T

�

�

�

�

�

�

�

�

F

=

�

�

�

�

�

�R

1

R

T

2

�

�

�

�

�

�

F

; (17)

where R

1

and R

2

are the square, upper, triangular matrices resulting from the \economy

size" QR decompositions Q

1

R

1

=

h

A

T

Z

il

Z

il

B

i

and Q

2

R

2

=

h

Z

il

A

T

Z

il

B

i

.

There are a number of approaches to a parallelization of LR-Smith(l). The factorization

of the matrices A

T

+p

i

I can be realized e�ciently in parallel using l processors. Moreover,

in (15) the products of S

T

with the single columns of Z

(il)

can be computed simultaneously.

The computational cost for realizing one step of (15) is proportional to m. If m > 1, the

right hand side matrix of the Lyapunov equation (1) can be split up as

�BB

T

= �

m

X

j=1

b

j

b

T

j
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with B =

h

b

1

: : : b

m

i

, which has been proposed in [HR92, Section 5] in a similar

fashion. For a parallel computer with m processors this o�ers an ideal parallelization,

because the resulting m Lyapunov equations with right hand side matrices of rank 1 can

be solved simultaneously.

4 A heuristic procedure for determining suboptimal

ADI shift parameters

The performance of the ADI-based methods described in the previous sections depends

strongly on the choice of the shift parameters p

i

. The conventional approach to the com-

putation of these parameters is to cover the spectrum of A by a domain 
 � C

�

and to

solve the ADI minimax problem (5) with respect to 
 instead of �(A). For a few shapes of

the domain 
 (e.g., intervals, rectangles, circles, trapezoids) optimal or at least suboptimal

shift parameters have been found, e.g., [Sta91, Wac66, Wac90]. Moreover, several proce-

dures for constructing sequences of suboptimal ADI parameters for more general domains

have been proposed in [Bag69, Sta91, Sta93, CR96]. However, all these approaches, which

are based on approximation theory, require knowledge of certain bounds of the spectrum.

In rare cases such bounds can be computed analytically, but mostly one has to determine

bounds a priori by numerical methods. If A is a symmetric, banded matrix it is reasonable

to compute the spectrum by the QR method. In the unsymmetric case the most simple

approach might be to estimate the extreme eigenvalues of the symmetric and the skew-

symmetric part of A by power iteration or inverse iteration, e.g., [GL96], which deliver

bounds for the spectrum of A by Bendixon's theorem, e.g., [MM92]. Of course, this pro-

cedure cannot be applied if the symmetric part of A is inde�nite, since the rectangular

obtained in this way is not a subset of C

�

. Alternatively, estimates for the eigenvalues of

A can be obtained by the Arnoldi process. However, this method can fail in the inde�nite

case, too, because it may deliver estimates with nonnegative real parts.

In this section, we propose a procedure for determining a set P of l di�erent suboptimal

ADI shift parameters without �rst �nding a superset 
 of the spectrum. The resulting al-

gorithm is easy to implement. Although it relies more on heuristics than on approximation

theory, the numerical results are quite satisfactory. Our algorithm does not require any a

priori knowledge of the spectrum of A. All information about this matrix is obtained by

a pair of Arnoldi processes related to the matrix A itself and its inverse. We choose the

initial vector r of these processes at random. The integers k

+

and k

�

denote the numbers

of Arnoldi steps in the processes for the matrices A and A

�1

, respectively. Writing the

result of k = k

+

Arnoldi steps w.r.t. the pair (A; r) as a matrix equation, we get (e.g.,

[GL96])

AV

k

= V

k+1

~

H

k

with V

k

2 R

n;k

,

~

H

k

2 R

k+1;k

, V

1

2 spanfrg, V

T

k+1

V

k+1

= I

k+1

, (V

k+1

)

(1:n;1:k)

= V

k

.

Moreover,

H

k

:= (

~

H

k

)

(1:k;1:k)

= V

T

k

AV

k

9



is an upper Hessenberg matrix. This matrix and its eigenvalues are called Ritz matrix

and Ritz values, respectively. It is well known that the set R

+

:= �(H

k

) represents an

approximation of the spectrum of A [Arn51]. Repeating this procedure with the inverse of

A delivers the set R

�

, the elements of which approximate the eigenvalues of A

�1

. Conse-

quently, the set R := R

+

[ 1=R

�

can be considered as a guess of the spectrum of A. The

Ritz values obtained by the Arnoldi process tend to be located near the \outer" eigenval-

ues, i.e., the eigenvalues near the convex hull of the spectrum. In particular, eigenvalues

of large magnitude are usually approximated well. In contrast, the elements of R

+

are

generally poor approximations to the eigenvalues near the origin. Therefore, we involve

the set 1=R

�

to approximate these eigenvalues. In fact, this procedure can have a drastic

impact on the speed of convergence of the iteration, which is shown by an example at the

end of this section.

The key idea of our heuristic procedure is to replace �(A) by R in (5), provided that

R � C

�

. Moreover, we choose the suboptimal ADI parameters P := fp

1

; : : : ; p

l

g among

the elements of R because the function

s

P

(t) =

jr

l

(t)j

jr

l

(�t)j

=

j(t� p

1

) � : : : � (t� p

l

)j

j(t+ p

1

) � : : : � (t+ p

l

)j

becomes small over �(A) if there is one of the shifts p

i

in the neighbourhood of each

eigenvalue. Since the Lyapunov equations to be solved are real, we require P =

�

P. This

ensures the approximations Z

A

il

Z

A

il

T

and Z

il

Z

il

T

to be real as well.

Based on these considerations we determine the elements of P as follows. Firstly,

we detect the element �

i

2 R which minimizes the function s

f�

i

g

over R. The set P is

initialized by either f�

i

g or f�

i

; ��

i

g. Afterwards, we successively augment the set P by the

elements or pairs of elements of R, for which the maximum of s

P

is attained. In other

words, the maximum of s

P

with respect to the current set P is replaced by a zero in the

re�ned function s

P

. This strategy is summarized in the following algorithm. Note that

the heuristic applied in Step 7 is related to an algorithm by Bagby [Bag69]. The notation

card(P) is used for the number of elements contained in the set P.

Algorithm 1 (Suboptimal ADI parameters)

INPUT: A, l

0

, k

+

, k

�

OUTPUT: P

1. Choose r 2 R

n

at random.

2. Perform k

+

steps of the Arnoldi process w.r.t. (A; r) and compute the set of Ritz values

R

+

.

3. Perform k

�

steps of the Arnoldi process w.r.t. (A

�1

; r) and compute the set of Ritz

values R

�

.

4. R = f�

1

; : : : ; �

k

+

+k

�

g := R

+

[ (1=R

�

)

5. IF R 6� C

�

, STOP

10



6. Detect i with max

t2R

s

f�

i

g

(t) = min

�2R

max

t2R

s

f�g

(t)

and initialize P :=

(

f�

i

g : �

i

real

f�

i

; ��

i

g : otherwise

:

WHILE card(P) < l

0

7. Detect i with s

P

(�

i

) = max

t2R

s

P

(t) and set P :=

(

P [ f�

i

g : �

i

real

P [ f�

i

; ��

i

g : otherwise

:

END WHILE

Step 5 can be omitted ifA+A

T

is negative de�nite. This enables us to prove that A

�1

+A

�T

as well as the symmetric parts of the Ritz matrices w.r.t. A and A

�1

are negative de�nite,

too. Otherwise, this algorithm can fail, although this has never been observed in our

numerical experiments. However, it is possible to construct a starting vector r which

makes it fail in the inde�nite case.

If Algorithm 1 stops at Step 5, it can be restarted with a new random vector r or

the values of k

+

or k

�

can be increased. The latter is motivated by the observation that

Ritz values obtained by the Arnoldi process tend to approximate the spectrum of a matrix

better if the number of Arnoldi steps is enlarged. More sophisticated approaches may

involve implicit restart techniques [Sor92] to purge the sets R

+

and R

�

of elements with

nonnegative real parts.

In the remainder of this section we show the importance of employing the Ritz values

w.r.t. A

�1

in Algorithm 1. In Figure 1 we compare two runs of LR-Smith(10) applied to

Example 1 given in Section 2 with di�erent sets of ADI shift parameters. For the �rst run we

include the Ritz values w.r.t. A

�1

in the computation of the shift parameters by Algorithm

1. More precisely, we choose (k

+

; k

�

) = (20; 10). In contrast, we set (k

+

; k

�

) = (30; 0) for

determining the parameter set P for the second run. In either case P consists of l = l

0

= 10

elements.

Figure 1 shows that the convergence of LR-Smith(10) is fast and linear for the set P

obtained by use of the parameters (k

+

; k

�

) = (20; 10). In contrast, for (k

+

; k

�

) = (30; 0)

the convergence is very fast in the �rst stage, but in the second stage it almost stagnates.

This phenomenon can be explained as follows. There are a few eigenvalues which are poorly

approximated by the set R. As a consequence, the function s

P

(t) delivered by Algorithm

1 is almost 1 if t is equal to one of these eigenvalues, but it is relatively small if t belongs

to the majority of eigenvalues which are approximated well. Thus, the component of the

residual related to the latter sort of eigenvalues is quickly damped in the �rst stage of

the iteration, whereas the iteration is delayed in the second stage by a small number of

eigenvalues approximated poorly by R

+

. These eigenvalues, which are typically of small

magnitute, are usually represented well by elements of 1=R

�

.
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Figure 1: Example 1. Convergence of the LR-Smith(10) iteration with two di�erent sets of

shift parameters. These sets are determined by Algorithm 1 with (k

+

; k

�

) = (20; 10) and

(k

+

; k

�

) = (30; 0).
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5 Applications I: model reduction

Lyapunov equations have to be solved in a number of control algorithms for the dynamical

system

_x(� ) = Ax(� ) +Bu(� )

x(0) = x

0

(18)

y(� ) = Cx(� );

which is described by the matrix triplet (A;B;C) with A 2 R

n;n

, B 2 R

n;m

, and C 2 R

q;n

.

The entries of u, x, and y are called input, state, and output, respectively. If m and q

are small and A is large, sparse, and stable, a thorough integration of LR-Smith(l) in

these control algorithms can improve their overall complexity by a high degree. This is

demonstrated for an established model reduction method.

The purpose of model reduction is to replace the dynamical system (A;B;C) by a

reduced system (

^

A;

^

B;

^

C) with

^

A 2 R

k;k

,

^

B 2 R

k;m

,

^

C 2 R

q;k

, k < n, such that the input-

output behavior of the reduced system approximates that of the original system in some

sense. Here, we consider the implementation of the balanced truncation technique proposed

by Safonov and Chiang [SC89], which requires to compute the reachability Gramian X

B

and the observability Gramian X

C

. See also [Moo81, Glo84] for details. The matrices X

B

and X

C

solve the Lyapunov equations

AX

B

+X

B

A

T

= �BB

T

(19)
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A

T

X

C

+X

C

A = �C

T

C (20)

and it can be shown that the eigenvalues of the product X

B

X

C

are real and nonnega-

tive [Moo81]. The standard implementation of the method is sketched in the following

algorithm.

Algorithm 2 (Sketch of the model reduction method by Safonov and Chiang)

INPUT: A, B, C, k

OUTPUT:

^

A,

^

B,

^

C

1. Solve (19) and (20).

2. Determine the k largest eigenvalues of X

B

X

C

and compute orthonormal bases V

B

; V

C

2

R

n;k

of the corresponding right and left, invariant subspaces, respectively, by means of

ordered Schur forms.

3. U

C

�U

T

B

:= V

T

C

V

B

(singular value decomposition)

4. S

C

:= V

C

U

C

�

�1=2

; S

B

:= V

B

U

B

�

�1=2

5.

^

A := S

T

C

AS

B

;

^

B := S

T

C

B;

^

C := CS

B

Assuming k << n it is obvious that the major part of the computational cost and the

memory requirement are related to the �rst two steps. If m and q are very small, which

is actually the case in many applications, the Lyapunov equations in Step 1 can be solved

e�ciently by LR-Smith(l). In general, this method produces quite accurate approximate

solutions, the rank of which is much less then the dimension n, provided that n is large

and the ADI shift parameters are chosen properly. Note for instance the results of the

numerical experiments with Example 2 given by Table 2 in Section 7. Here the solution

matrix X

B

of order n = 10 000 is approximated very accurately by a matrix Z

B

Z

T

B

which

is only of rank r

B

= 100! What follows is a proposal for an implementation of Step 2 which

strongly bene�ts from the low rank property of the solution matrices.

Suppose that the application of LR-Smith(l) in Step 1 delivers a pair of (approximate)

solutions in factored form as X

B

= Z

B

Z

T

B

and X

C

= Z

C

Z

T

C

, where Z

B

2 R

n;r

B

, Z

C

2 R

n;r

C

,

and maxfr

B

; r

C

g << n. Taking the low rank structure into account, we determine a singular

value decomposition (SVD) of the product X

B

X

C

. For this reason, we �rst compute

\economy size" QR factorizations Z

B

=: Q

B1

R

B

and Z

C

=: Q

C1

R

C

with Q

B1

2 R

n;r

B

and

Q

C1

2 R

n;r

C

. After that an \economy size" SVD

R

B

Z

T

B

Z

C

R

T

C

=: Q

B2

DQ

T

C2

with the nonsingular diagonal matrix D 2 R

r;r

and r � minfr

B

; r

C

g << n is computed.

De�ning Q

B

:= Q

B1

Q

B2

and Q

C

:= Q

C1

Q

C2

, we �nally get the desired \economy size"

SVD of X

B

X

C

by

X

B

X

C

= Z

B

Z

T

B

Z

C

Z

T

C

= Q

B1

R

B

Z

T

B

Z

C

R

T

C

Q

T

C1

= Q

B

DQ

T

C

: (21)

13



By means of this equation we will now compute an orthogonal basis for the right, domi-

nant, invariant subspace of X

B

X

C

. Obviously, the right, invariant subspace related to the

nonzero eigenvalues of X

B

X

C

coincides with the range of Q

B

. Because of

X

B

X

C

Q

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

= Q

B

DQ

T

C

Q

B

(22)

all nonzero eigenvalues of X

B

X

C

are eigenvalues of the matrix DQ

T

C

Q

B

as well. If r << n,

the distinct merit of our approach is that we have to determine the dominant eigenvalues

of the r-�-r matrix DQ

T

C

Q

B

instead of those of the n-�-n matrix X

B

X

C

itself. More

precisely, we compute an ordered Schur factorization

DQ

T

C

Q

B

=: PMP

T

=

h

P

1

P

2

i

"

M

11

M

12

0 M

22

#

h

P

1

P

2

i

T

; (23)

where the block M

11

2 R

k;k

(k � r) corresponds to the k largest eigenvalues of M . Thus,

the desired orthonormal basis in the right, dominant, invariant subspace is formed by the

columns of the matrix V

B

:= Q

B

P

1

since

X

B

X

C

V

B

= Z

B

Z

T

B

Z

C

Z

T

C

Q

B

P

1

= Q

B

DQ

T

C

Q

B

P

1

= Q

B

P

1

M

11

= V

B

M

11

;

which is a consequence of (22) and (23). An orthonormal basis in the left, dominant,

invariant subspace of X

B

X

C

is obtained by an analogous procedure.

This realization of Step 2 requires O(nmaxfr

2

B

; r

2

C

g) 
ops and O(nmaxfr

B

; r

C

g) words

of memory, whereas the conventional implementation has a complexity of O(n

3

) 
ops and

O(n

2

) words of memory. Thus, if maxfr

B

; r

C

g << n, we expect a considerable gain in

e�ciency.

6 Applications II: optimal control

In this section we consider the linear-quadratic optimal control problem where the cost

functional

J (x

0

; u) =

1

2

Z

1

0

y(� )

T

Qy(� ) + u(� )

T

Ru(� )d� (24)

with

Q = Q

T

� 0 and R = R

T

> 0 (25)

is to be minimized and the dynamics (18) represents the constraints. The solution of this

problem is determined by the linear feedback

u(� ) = �R

�1

B

T

Px(� ) =: �K

T

x(� ); (26)

where P is the symmetric, positive semide�nite, stabilizing solution of the algebraic Riccati

equation (ARE)

C

T

QC +A

T

P + PA� PBR

�1

B

T

P = 0; (27)
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e.g., [Meh91, Sim96]. A solution of this ARE is called stabilizing i� each eigenvalue of the

matrix A � BR

�1

B

T

P has a negative real part. Under moderate assumptions a unique

stabilizing solution of (27) exists, e.g., [LR95].

The Newton method proposed by Kleinman [Kle68] is one of the standard methods for

computing the stabilizing solution of the ARE (27).

Algorithm 3 (Newton method for the ARE (27))

INPUT: A, B, C, Q, R, P

0

(e.g., P

0

= 0, if A is stable)

OUTPUT: P

FOR k = 1; 2; : : :

1. K

k�1

:= P

T

k�1

BR

�1

2. Solve (A�BK

T

k�1

)

T

P

k

+ P

k

(A�BK

T

k�1

) = �C

T

QC �K

k�1

RK

T

k�1

for P

k

.

END FOR

3. P := P

1

If the initial guess P

0

is stabilizing, which is for instance the case when P

0

= 0, Algorithm

3 yields a sequence of stabilizing iterates. The convergence of the Newton method is

quadratic, e.g., [LR95].

Due to (25) the matricesQ and R can be factored, e.g., by a Cholesky decomposition, as

Q =

~

Q

~

Q

T

and R =

~

R

~

R

T

, where the matrices

~

Q and

~

R have full rank. Thus the Lyapunov

equations to be solved in Step 2 have the structure

~

A

T

k

X +X

~

A

k

= �

~

B

k

~

B

T

k

with the stable matrix

~

A

k

= A � BK

T

k�1

and the matrix

~

B

k

=

h

C

T

~

Q K

k�1

~

R

i

. Note

that

~

B

k

contains at most m+ q columns. If m and q are very small, these equations can be

solved by LR-Smith(l). The Lyapunov solutions pose approximate solutions of the ARE

(27). Therefore, the combination of the Newton method and LR-Smith(l) can be utilized

to determine low rank solutions of Riccati equations. In fact, this approach enables the

solution of a class of large Riccati equations, where the explicit solution matrix is too large

to be stored in memory.

A second merit, which is maybe more important in the context of the optimal control

problem (18,24), relies on the fact that mostly the feedback matrix K is desired, instead

of the Riccati solution P . In the sequel, we propose a modi�cation of Algorithm 3 which

computes K without forming factored or explicit Riccati or Lyapunov iterates at all. The

basic idea is to generate the matrix K

k

itself in Step 2 instead of solving the Lyapunov

equation and computing the product K

k

= P

k

BR

�1

afterwards. The matrix K

k

is formed

in the course of the \inner" iteration, i.e., the LR-Smith(l) iteration, as a series of type

(16), where V is replaced by BR

�1

. Note that the partial sum of the �rst i terms of

this series is denoted by K

k;i

in Algorithm 4. Eventually, the desired matrix K is the

limit of the matrices K

k

= K

k;1

for k ! 1. The result of this strategy is stated in the
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following algorithm, which is best understood as a version of Algorithm 3 with an inner

loop consisting of interlaced sequences based on (15) and (16).

Algorithm 4 (Computation of the optimal feedback K)

INPUT: A, B, C, Q, R, K

0

(such that A�BK

T

0

is stable; e.g. K

0

= 0), k

+

, k

�

, l

0

OUTPUT: K

FOR k = 1; 2; : : :

1. Determine ADI shifts p

k;1

; : : : ; p

k;l

with respect to the matrix

~

A

k

= A�BK

T

k�1

by Algorithm 1.

2.

~

B

k

:=

h

C

T

~

Q K

k�1

~

R

i

3. Z

(l)

k

:= Z

A

k;l

, which denotes the l-th iterate of LR-ADI with shifts p

k;1

; : : : ; p

k;l

applied to

~

A

T

k

X +X

~

A

k

= �

~

B

k

~

B

T

k

.

4. K

k;1

:= Z

(l)

k

�

Z

(l)

k

T

BR

�1

�

FOR i = 2; 3; : : :

5. Z

(il)

k

:= S

T

k

Z

((i�1)l)

k

with S

k

=

l

Q

j=1

(

~

A

k

� p

k;j

I)(

~

A

k

+ p

k;j

I)

�1

6. K

k;i

:= K

k;i�1

+ Z

(il)

k

�

Z

(il)

k

T

BR

�1

�

END FOR

7. K

k

:= K

k;1

END FOR

8. K := K

1

For the remaining discussion in this section we assume that computing an LU factorization

of the sparse matrix A does not produce a large amount of �ll-in. In particular, this is

guaranteed if A is a banded matrix, which is the case in many applications. Otherwise,

it is often possible to transform a given matrix A into a matrix of such shape by several

reordering algorithms, e.g., [Cut72]. Under the assumption above, linear systems with

coe�cient matrices A

T

+ p

k;j

I can be solved e�ciently. Dense matrices with the structure

A�BK

T

k�1

or A�BK

T

k�1

+p

k;j

I, which are involved in Steps 1, 3, and 5, are never formed

explicitly. Linear systems with these matrices are solved by application of the Sherman-

Morrison formula, e.g., [GL96]. Concerning the complexity of Algorithm 4, it should be

noted that except for A all matrices involved in the computation consist of a relatively

small number of columns. More precisely, the matrices K

k;i

and K

k

contain m columns

whereas the matrix Z

(il)

has at most l(m + q) columns. We do not state an estimate

for the memory requirement since this quantity strongly depends on the amount of �ll-in

produced by the factorizations of the matrices A + p

k;j

I. Likewise, we do not give an
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estimate for the computational cost, because it is a�ected by several factors such as the

speed of convergence of the inner and outer iterations as well as the choice of the stopping

criteria in both loops. Nevertheless, it is obvious that Algorithm 4 is favorable compared

to the conventional implementation if n is large and m, q, l are small.

7 Numerical experiments

In this section, we provide four examples of large scale Lyapunov equations. We display

the results of numerical experiments with LR-Smith(l) applied to these examples. For

comparison we also show the test results obtained by FOM-L. All experiments were carried

out using MATLAB 5.1 and IEEE double precision arithmetic (machine precision � �

2:22�10

�16

) on an HP9000/800 workstation at the TU Chemnitz, Germany. We characterize

the performance of the iterative methods by both the number of iterations and the number

of 
ops required to attain prescribed tolerances for the accuracy, which is measured by the

relative Frobenius norm of the residual
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where X

i

denotes the i-th iterate of LR-Smith(l) or FOM-L. Note that for LR-Smith(l)

each sweep of (15) is counted as l iterations. The residual norm is determined after each

of these sweeps. In our implementation the norms of the residual are computed by (17)

since the dimensions of the examples are too large to form the residual matrix explicitly.

We consider the following examples in our tests.

Example 2 The structure of this example coincides with that of the medium scale Example

1, but here the Lyapunov equation is of order n = 10 000.

Example 3 [HPT96] This example corresponds to a second order model of dimension

n

0

which is equivalent to a dynamical system (18) of dimension n = 2n

0

. The matrices

A 2 R

n;n

and B 2 R

n;1

are given as
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"
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#
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2

6

6

6

6

4

0

.

.

.

0

1=h

2

3

7

7

7

7

5

with

A

21

=

2

6

6

6

6

6

6

6

6

4

�k=h

2

k=h

2

0 � � � 0

k=h

2

�2k=h

2

k=h

2

.

.

.

.

.

.

0 k=h

2

�2k=h

2

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

k=h

2

0 � � � 0 k=h

2

�2k=h

2

3

7

7

7

7

7

7

7

7

5

2 R

n

0

;n

0

;

17



where n = 2n

0

= 3000, h = 1=(n + 1), k = 10, and d = 1. For our numerical experiments

this system has been reordered by applying the permutation (n

0

+1; 1; n

0

+2; 2; : : : ; 2n

0

; n

0

)

to the columns and rows of A, such that it becomes a banded matrix with a very small

bandwidth.

Example 4 This example describes a model of heat 
ow with convection in the domain


 = (0; 1)

2

. The underlying parabolic di�erential equation has the structure

_
x = �x� f

1

(�)

@x

@�

1

� f

2

(�)

@x

@�

2

+ b(�)u(� )

with x = x(�; � ), � =

h

�

1

�

2

i

T

2 
, � 2 [0;1). The coe�cient functions in the con-

vection term are de�ned as f

1

(�) = 10�

1

and f

2

(�) = 1000�

2

. The di�erential equation

is discretized by �nite di�erences using a grid with equidistant spacing and 50 � 50 grid

points. The resulting sti�ness matrix A 2 R

2500;2500

is sparse, stable and its bandwidth is

50. The matrix B 2 R

2500;1

is chosen at random.

Example 5 This example originates from a nonlinear descriptor system arising in chro-

matography. For more background information we refer to [KG97]. This descriptor system

has been linearized in a working point and transformed into a dynamical system (18). To

reduce the bandwidth of the matrix A, we applied the reverse Cuthill-McKee algorithm,

which is provided as build-in function in MATLAB. The reordered matrix has the band-

width max

i;j:(A)

ij

6=0

ji � jj = 31. It is stable, but its symmetric part is inde�nite. The

Lyapunov equation is of order n = 3600. The underlying dynamical system has four in-

puts (m = 4) and two outputs (q = 2). In our numerical experiment we used the �rst

column of the matrix B in (18) to create the right hand side of the Lyapunov equation.

Thus, the computational cost for solving equation (19) is about four times the number of


ops given in Table 3, whereas solving (20) requires about twice the cost displayed in this

table.

In the sequel, we investigate the convergence speed of LR-Smith(l) applied to Examples

2{5. It should be noted that these examples pose problems of very large scale. The prop-

erties of these examples are not favorable for iterative methods. Whereas the matrix A is

symmetric, but ill-conditioned in Example 2, it has an inde�nite symmetric part in Exam-

ples 3{5. Note that we do not restrict ourself to examples with very small bandwidth for

which our method is most e�ective. For all examples we determine the shift parameters

by Algorithm 1, where the input parameters (k

+

; k

�

; l

0

) of this algorithm are chosen as

(40,20,10) for Examples 2, 4, 5 and (60,0,20) for Example 3. The latter is one of the few

examples where slightly better results are obtained by ignoring the Ritz values w.r.t. A

�1

in Algorithm 1. It is worth noting that this algorithm failed neither for Examples 2{5 nor

in any of our further numerical tests not reported here.

Table 2 displays the numbers of iterations required by LR-Smith(l) to attain di�erent

relative residual norms. For each example, LR-Smith(l) delivers, with reasonable conver-

gence speed, a solution of satisfactory accuracy. Consequently, the rank of the approximate
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solutions and the memory size needed to store them are comparably low. Table 3 shows

the computational costs in terms of the number of 
ops.

Table 2: LR-Smith(l). Number of iterations required to attain di�erent relative residual

norms.

relative residual norm

Example

10

�4

10

�6

10

�8

10

�10

10

�12

2 30 50 60 80 100

3 42 63 63 84 > 315

4 50 60 80 90 100

5 40 50 70 80 > 300

Table 3: LR-Smith(l). Number of 
ops required to attain di�erent relative residual norms.

relative residual norm

Example

10

�4

10

�6

10

�8

10

�10

10

�12

2 9.5e+07 1.3e+08 1.5e+08 1.9e+08 2.2e+08

3 2.2e+08 3.4e+08 3.4e+08 4.6e+08 >1.8e+09

4 1.4e+09 1.7e+09 2.1e+09 2.3e+09 2.5e+09

5 7.0e+08 8.6e+08 1.2e+09 1.3e+09 >4.9e+09

For comparison, we provide the results delivered by FOM-L in Table 4. In contrast

to LR-Smith(l), FOM-L fails to compute accurate solutions within a reasonable number

of iterations in two cases. In Table 5 the corresponding numbers of 
ops are displayed.

Furthermore, the last column of this table shows estimates for the expected computational

cost of the Bartels-Stewart method. Note that it was impossible to solve the large scale

Lyapunov equations of Examples 2{5 by the Bartels-Stewart method due to extensive

memory requirement of this method. However, even if the available memory was not the

limiting factor for the application of this method, a comparison of the 
op estimate for

the Bartels-Stewart method with the number of 
ops required by LR-Smith(l) shows the

superiority of our low rank method.

Table 4: FOM-L. Number of iterations required to attain di�erent relative residual norms.

relative residual norm

Example

10

�4

10

�6

10

�8

10

�10

10

�12

2 49 > 300 > 300 > 300 > 300

3 61 95 203 > 300 > 300

4 166 207 254 298 > 300

5 > 300 > 300 > 300 > 300 > 300
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Table 5: FOM-L and Bartels-Stewart method. Number of 
ops required by FOM-L to

attain di�erent relative residual norms. Estimates for the 
op count of the Bartels-Stewart

method are shown in the last column.

relative residual norm for FOM-L Bartels{

Example

10

�4

10

�6

10

�8

10

�10

10

�12

Stewart

2 1.1e+08 >4.2e+09 >4.2e+09 >4.2e+09 >4.2e+09 2.5e+13

3 6.6e+07 1.8e+08 1.1e+09 >2.7e+09 >2.7e+09 6.8e+11

4 6.0e+08 1.0e+09 1.8e+09 2.7e+09 >2.7e+09 3.9e+11

5 >3.1e+09 >3.1e+09 >3.1e+09 >3.1e+09 >3.1e+09 1.2e+12

8 Conclusions

This paper addresses the numerical solution of large, sparse, stable Lyapunov equations

with right hand side matrices of low rank. We have presented the iterativemethods LR-ADI

and LR-Smith(l), which deliver low rank approximations to the solution matrix. LR-ADI

and LR-Smith(l) are mathematically equivalent to the ADI iteration with a sequence of

arbitrary shift parameters or with a set of l cyclic shift parameters, respectively. In this

paper, LR-Smith(l) is of particular interest because the proper choice of l di�erent shift pa-

rameters, where l is of moderate size (say l = 10), generally ensures a rapid convergence of

ADI. The computational cost per iteration is constant for LR-Smith(l), but it is increasing

for LR-ADI. Furthermore, we have presented a heuristic algorithm for determining a set

of l suboptimal ADI parameters. The heuristic algorithm is easy to implement and does

not require any a priori knowledge about the spectrum of the matrix A. All information

about this matrix is gained from a pair of Arnoldi processes. Thus, LR-Smith(l) combined

with the algorithm for determining the ADI parameters can be considered as a \black box"

solver for large, sparse, stable Lyapunov equations. In general, the computational costs

of LR-Smith(l) and LR-ADI are much smaller than that of the classical implementation

of the ADI iteration. In particular, if A is a banded matrix, the memory requirements of

both methods are moderate because the low rank iterates are e�ciently stored in factored

form. This allows to solve Lyapunov equations the order of which is so large that the

explicit solution cannot be stored in computer memory. In general, LR-Smith(l) converges

fast compared to other low rank methods, such as FOM-L. As a consequence, it delivers

approximate solutions of very low rank. For instance, in Example 2, the largest of our test

examples, the solution matrix of order 10 000 is approximated quite accurately by a matrix

of rank 100. Considering this example, a comparison of LR-Smith(l) with direct standard

methods, such as Bartels-Stewart method or Hammarling method, reveals the e�ciency

of the low rank method. The estimated computational and memory costs of the direct

standard methods exceed those of LR-Smith(l) by factors 100 000 and 300, respectively!

LR-Smith(l) is not only an e�cient means for solving an important class of Lyapunov

equations, which arise in in a number of algorithms in control theory. Also, the thorough

integration of this method into such \outer" algorithms can improve the overall complex-

ity of these algorithms. This has been demonstrated using a model reduction method and
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an optimal control algorithm as examples. The model reduction method pro�ts from the

low rank property of the solution matrix. In contrast, only the product of the Lyapunov

solution with a matrix containing few columns is desired in the optimal control algorithm.

Such products can be computed e�ciently by LR-Smith(l) without even forming approxi-

mate solutions implicitly or explicitly. Whereas dense n-�-n matrices are involved in the

conventional implementations of both example algorithms, this is avoided in the alterna-

tive implementations presented in this paper. Hence, LR-Smith(l) o�ers an opportunity

to apply these control algorithms to several large scale control problems for which the

standard implementations fail due to extensive computation or lack of memory. However,

a prerequisite for involving LR-Smith(l) in these algorithms is that the numbers of inputs

and outputs in the underlying dynamical system are small.

Finally, we should point out two aspects of our low rank methods which can become

disadvantageous in some situations. Both LR-ADI and LR-Smith(l) require the solution

of systems of linear equations (A

T

+ pI)x = y. If the nonzero pattern of the matrix A is

unfavorable, the solution of these systems as well as the algorithms itself may be expensive

with respect to both memory and computation. However, most sparse matrices arising in

applications are either banded matrices or matrices which can be reordered to achieve this

structure. The second drawback of our method is the restriction to Lyapunov equations

with right hand side matrices of small rank. Nevertheless, if m >> 1, splitting up the right

hand side matrix into a sum of low rank matrices enables an e�cient parallelization of our

method.
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